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Abstract

Purpose—The understanding of the optimum function of the
healthy aortic valve is essential in interpreting the effect of
pathologies in the region, and in devising effective treatments
to restore the physiological functions. Still, there is no
consensus on the operating mechanism that regulates the
valve opening and closing dynamics. The aim of this study is
to develop a numerical model that can support a better
comprehension of the valve function and serve as a reference
to identify the changes produced by specific pathologies and
treatments.
Methods—A numerical model was developed and adapted to
accurately replicate the conditions of a previous in vitro
investigation into aortic valve dynamics, performed by means
of particle image velocimetry (PIV). The resulting velocity
fields of the two analyses were qualitatively and quantita-
tively compared to validate the numerical model. In order to
simulate more physiological operating conditions, this was
then modified to overcome the main limitations of the
experimental setup, such as the presence of a supporting stent
and the non-physiological properties of the fluid and vessels.
Results—The velocity fields of the initial model resulted in
good agreement with those obtained from the PIV, with
similar flow structures and about 90% of the computed
velocities after valve opening within the standard deviation
of the equivalent velocity measurements of the in vitromodel.
Once the experimental limitations were removed from the
model, the valve opening dynamics changed substantially,
with the leaflets opening into the sinuses to a much greater
extent, enlarging the effective orifice area by 11%, and
reducing greatly the vortical structures previously observed
in proximity of the Valsalva sinuses wall.
Conclusions—The study suggests a new operating mechanism
for the healthy aortic valve leaflets considerably different
from what reported in the literature to date and largely more
efficient in terms of hydrodynamic performance. This work
also confirms the crucial role that numerical approaches,

complemented with experimental findings, can play in
overcoming some of the limitations inherent in experimental
techniques, supporting the full understanding of complex
physiological phenomena.

Keywords—Fluid–structure-interaction (FSI), Valsalva sinus,

Heart valve dynamics, Haemodynamics.

INTRODUCTION

The comprehensive understanding of the optimum
haemodynamic environment that regulates the oper-
ating mechanisms of the healthy aortic valve is essen-
tial in enabling a correct interpretation of diseased
conditions and their implications, and to devise effec-
tive therapies that restore or mimic the crucial physi-
ological functions. It is therefore understandable that a
substantial amount of literature has been produced on
the topic.

Whilst there is consensus that the haemodynamics
established within the aortic root plays a key role in the
proper valve function4,38,40,48 and optimum flow to the
coronary arteries, there is no agreement on the specific
mechanisms involved.3,36,49 Although the Valsalva si-
nuses are commonly indicated to promote fluid recir-
culations, which in turn act upon the leaflets, some
investigations report that these vortices form within
the sinuses in early systole,15,33,52 while others claim
that these structures only occur during late sys-
tole.16,35,43 The number and locations of these vortices
are also disputed, with contrasting research indicating
multiple vortices within each sinus,15 a single vortex
fully contained within each sinus43 or a vortex only
partially within the sinus.16,35 Consequently, the basic
understanding of the native aortic valve’s operating
process is still fragmentary.
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The need for a better insight into the establishment
of optimum fluid dynamics in the aortic valve region
has now become a timely and critical issue, due to the
significant correlation with clinical complications re-
cently reported with surgical and transcatheter bio-
prosthetic replacements, which can be associated with
the non-physiological flow environment that they
produce.11,12,18 Unfortunately, in vivo studies based on
techniques such as magnetic resonance imaging (MRI)
and ultrasound present practical limitations in mea-
suring the velocity field, due to their reduced spatial
and temporal resolution39; and in vitro studies, al-
though capable of capturing the main flow features
downstream of the valve, only allow the measurements
in limited regions, normally outside of the valve
structure.2,12,13,31,54

In this scenario, the opportunity to adopt numeri-
cal models to comprehend the complex dynamics of
the valve is apparent. In fact, in silico simulations can
offer a comprehensive representation of the valvular
structures and flow dynamics across the valve at dif-

ferent spatial and temporal scales. This requires the
development of high resolution fluid–structure inter-
action (FSI) models, which allow the description of
both the mechanical behavior of the tissue compo-
nents and the fluid dynamics throughout the cardiac
cycle, which play a significant role towards the
achievement of a more extensive understanding of the
valve function.53 Nevertheless, due to the complexity
of the valve dynamics, this numerical approach can
easily lead to erroneous findings, and the correct
tuning of the involved parameters is crucial to attain
trustworthy representations of the studied phenom-
ena. This has been clearly acknowledged by the
International Organization for Standardization (ISO)
working group,50 which strongly endorses the com-
bination of advanced experimental and computational
studies to obtain reliable results from complex
numerical simulations.53

This synergistic approach was adopted in the pre-
sent study, with the aim to understand the optimum
flow dynamics that should be expected within a healthy

(a) (b) (c)

FIGURE 1. Sketch of the aortic root (a), the valve stent (b) and the leaflets (c) geometries used in the numerical model.
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and ideal aortic root, in physiologically normal oper-
ating conditions. In particular, a preliminary numeri-
cal model was designed to replicate a previous in vitro
study performed by our group47 that, with all inherent
limitations intrinsic in the experimental simulation,
had attempted to model healthy native physiological
conditions. The flow in that study was determined and
analysed at specific instants of the systolic cycle by
means of 2D particle image velocimetry (PIV). The
experimental velocity fields obtained from this in vitro
analysis are here used to achieve a quantitative and
qualitative validation of the numerical model at the
available instants, whilst a global verification of the
acceptability of the computational simulation was
confirmed via comparison of the effective orifice area
(EOA), a parameter recommended by the ISO to
quantify the systolic valve performance.

Once the numerical framework used to construct the
initial model was validated by the results from the
previous in vitro study, the simulation was altered to
better represent an idealized healthy aortic valve. Some
of the major limitations affecting the benchtop inves-
tigation, such as the presence of the bioprosthetic valve
stent, the rigid material used for the mock aortic root
and the use of a test fluid denser than blood, could be
corrected in a modified computational model, based on
the same framework as the validated model.

METHODOLOGY

Numerical Methodology

Numerical analyses were performed on an Intel
Core i7 3.4 GHz workstation using the explicit finite
element software LS-DYNA Release 9.2 (LSTC,
Livermore, CA, USA). This software specializes in
non-linear transient dynamic problems, suitable for

investigating complex phenomena involving large
deformations, advanced material models and fluid–
structure coupling.23 The package has been previously
used for the analysis of heart valve fluid dynam-
ics,6,9,25,34,36,43 and is recommended by the ISO work-
ing group as a commercial FSI software for the
assessment of potential thrombus formation in heart
valve implants.50

Simulations were performed by coupling a La-
grangian model of the aortic root and leaflets with an
Eulerian fluid domain via a hybrid Arbitray-La-
grangian-Eulerian (ALE) algorithm.29 The solid struc-
tures were immersed in the fluid control volume, where
each domain was modeled independently without the
need of a conforming mesh at the fluid–structure
boundary.32 An ‘‘operator split’’ technique was used to
solve the fluid domain23 and theALE algorithm coupled
the two domains, performing a remeshing of the La-
grangian elements only.7,32,51 The fluid motion equa-
tions were solved by splitting the time integration cycle
into two steps: aLagrangian time step, and a ‘‘remap’’ or
‘‘advection’’ step, where an advection term is applied to
remap the fluid domain to its original configuration.1

Although the fluid grid may distort in the Lagrangian
phase, the solution must be referred back to the undis-
torted initial frame during the advection phase.9

Validation of Preliminary Numerical Model

Geometry and Meshing

A preliminary computational model was created to
replicate the in vitro configuration previously used to
perform a fluid dynamic investigation of the aortic
valve by means of PIV analysis.47 This included a rigid
silicone root of geometry based on the description of
the healthy human anatomy provided by Swanson and
Clark,44 in reference to an annulus equal to 25 mm,

FIGURE 2. (a) Mesh of the structural components in the validation model, including the aortic root, the stent, and the leaflets; (b)
mesh of the fluid domain, with the inlet and outlet reservoirs; and (c) pressure and velocity waveforms applied as boundary
conditions to the surface of the fluid domain in contact with the inlet and outlet reservoir.
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corresponding to an average healthy adult.46 The
aortic root cross section was approximated by an
epitrochoid function assuming identical dimensions for
the three Valsalva sinuses, as suggested by Reul et al.37

The root hosted a 29 mm Labcor (Labcor Labo-
ratórios Ltd., Belo Horizonte, Brazil) stented porcine

bioprosthesis. This surgical valve size was selected be-
cause its leaflets were of similar size to those of a native
aortic valve with a 25 mm annulus.47 In the experi-
mental study, a groove was made in the silicone root to
embed the stent and the sewing ring, thus reducing
flow perturbations induced by the presence of these
components. However, in order to maintain the correct
position of the leaflets with respect to the aortic root,
small portions of the frame remained exposed at the
base of the Valsalva sinuses. In addition, the aortic
chamber was rigid rather than compliant and, since it
resulted unachievable to create a test fluid with the
same viscosity and density as human blood whilst
maintaining the required refractive index matching
between the solution and the silicone root, higher fluid
density than blood had to be accepted for the blood
substitute solution.

The preliminary numerical model replicated the in-
ner surface of the idealized aortic root (without
including the groove needed in the physical model to
host the stent and sewing ring) and the external sur-
faces of the stent geometry, as measured from the
physical model (Figs. 1a and 1b). Compenetration
between the two components was allowed, mimicking
the embedding of the stent into the groove of the mock
root. As the shape of the leaflets is very complex to
replicate,53 and the intent of the study was to analyse a
generalized configuration representative of ideal native
conditions, the leaflet geometry adopted for the
numerical model was based on the description of the
idealized healthy human aortic valve provided by

FIGURE 3. Mesh of the structural components in the
physiological model, including the aortic root and the
leaflets. The fluid domain, with the inlet and outlet
reservoirs is unchanged, as represented by colored regions.

FIGURE 4. Comparison between in silico FSI and in vitro PIV of the flow velocity map and vectors fields at instants ‘A’, ‘B’, ‘C’ and
‘D’ of the cardiac cycle.
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Thubrikar45 (Fig. 1c) for an annulus diameter equal to
25 mm.

The aortic root, the stent and the valve leaflets were
discretized into 9960, 6852 and 6564 4-noded Be-
lytschko-Tsay shell elements,23 respectively. Shell ele-
ments were preferred for the modeling of thin-walled
structures, due to their computational efficiency com-
pared to solid elements.9 In fact, the ability to include
several integration points through their thickness al-
lows more accurate modeling of the bending of non-
linear material models, with no significant increase in
the computational time.34 The aortic leaflets and wall
thicknesses were considered to be uniformly dis-
tributed with a value of 0.5 mm26,35,41 and 3 mm,43

respectively. The attachment nodes of the leaflets were
shared with the elements at the base of the Valsalva
sinuses and commissural lines of the root.

Since Thubrikar’s description of the aortic leaflets
provides information to generate a fully closed valve
configuration, whilst the bioprosthetic porcine valve
used for the in vitro validation was characterized by a
semi-open shape when at rest in saline solution, a pre-
expansion procedure was undertaken. To achieve this,
the leaflets were initially modeled as linear elastic, with
a Young’s modulus of 1 MPa and a Poisson’s ration of
0.45, and then expanded by applying a uniformly dis-
tributed opening pressure of 5 mmHg. The resulting
configuration, which resulted similar to that observed
for the prosthetic porcine leaflets used in the in vitro
experiment, was then adopted as the initial unloaded
shape, by rezeroing the stresses and strains in the
model. The resulting model of the structure is repre-
sented in Fig. 2a.

The fluid was discretised into a structured mesh of
113,520 8-noded hexahedral Eulerian elements with a
characteristic dimension of 1 mm, which satisfied a
convergence analysis (for further details refer to Ap-
pendix A1 in the Electronic Supplementary Material).
The choice of hexahedral elements was based on their
superior performance in the FSI algorithm compared
to tetrahedral elements, which typically leads to re-
duced accuracy and numerical instability during the
remap phase.29 Two reservoirs were created at the level
of the inlet and outlet (Fig. 2b), made of elements
capable of supplying and absorbing fluid.9 These were
used to impose the fluids’ boundary conditions, which
were applied as a combination of physiological flow
velocity and pressure differences, as described below.
Finally, the control volume and reservoirs’ mesh grids
were discretised respecting the Valsalva sinuses sym-
metry, in order to guarantee a proper setting of the
boundary conditions on the fluid domains, as recom-
mended by Luraghi et al.30

Materials Modeling: Aortic Tissues and Blood Proper-
ties

The aortic root and the valve stent were modeled as
perfectly rigid in the preliminary numerical model, to
better replicate the negligible compliance of the mock
root and the high stiffness of the stent in the experi-
mental study.47 Leaflets were approximated as homo-
geneous isotropic membranes,24 neglecting the
influence of their complex multilayer histological
microarchitecture.5 Their non-linear constitutive
behavior was modeled as hyperelastic and incom-

FIGURE 5. Comparison of the peak axial velocity between the two models. The standard deviation of the PIV data is displayed as
the error bar.
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pressible, adopting an Ogden’s formulation. This is
suitable for describing the mechanical properties of
complex materials such as rubbers, polymers, and
biological tissues.55

The Ogden model expresses the strain energy (W) by
principal stretches (ka), a = 1, 2, 321:

W ¼
XN

p¼1

lp
ap

kap1 þ kap2 þ kap3 � 3
� �

ð1Þ

where l; aand N are material characteristic constants.
The material constants used in the analysis were taken
from a previous study,8 and fitted using a four
parameters equation with l1 = 7.6 9 10�6 MPa;
l2 = 5.7 9 10�4 MPa; a1 = a2 = 26.26. A density of
1100 kg/m3 was selected, as this is typical for biological
soft tissues.19

In the validation study, the fluid was modeled as
Newtonian, isothermal and incompressible, with a
dynamic viscosity of 4 9 10�3 Pa s and density equal
to 1294 kg/m3.47 These match the physical properties
of the test fluid used for the in vitro experiment selected
for validation.47

Boundary Conditions

An aortic pressure waveform was prescribed at the
outlet cross section throughout the cardiac cycle,
oscillating between 80 mmHg (diastolic) and
120 mmHg (systolic). For the inlet boundary condi-
tions, the velocity flow waveform measured from the
in vitro study used for validation47 was applied during
systole. This enforced healthy physiological conditions
at rest characterized by a cardiac output of 4 l/min, a
heart rate of 70 bpm with 35% of systolic time, and a
mean aortic pressure of 100 mmHg. Due to the prox-
imity of the root to the ventricular chamber, which is
substantially shorter than its entry length, the velocity
was uniformly distributed over the inlet cross sec-
tion. In order to best simulate the closing dynamics,
which involves the closing leakage produced by the
reversal of the transvalvular pressure difference, during
diastole the velocity profile was replaced by the
application of a ventricular pressure waveform,
establishing the pressure drop measured during the
same phase in the in vitro test.47 This approach is
reported to be appropriate to capture the physiological
valve opening-closure mechanics.27

FIGURE 6. Comparison of the velocity profiles over the cross-section of the root at the Sino-Tubular junction and analysed at
instants (a), (b), (c) and (d) of the cardiac cycle. The Particle Image Velocimetry (PIV) data includes an error bar representing the
standard deviation of the measurements over 100 PIV image pairs.
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The boundary conditions applied to the fluid are
summarized in Fig. 2c.

Three consecutive cycles were run, discarding the
results from the first cycle and using the other two to
confirm that cyclic stability in the predicted flow
parameters was achieved.

Validation

Results were analysed using Ls-PrePost 4.3 and
Paraview 5.4.1 post-processing software. The data
from the last of the three simulated cycles of the
numerical model were used to extract the velocity
contour maps and the corresponding velocity vectors.

The velocity fields of the sagittal aortic root cross
section from the numerical study, matching the cross
section analysed in the in vitro study, were compared
with the experimental measurements at the 4 different
instants of the cardiac cycle analysed with PIV in the
in vitro experiment. The time instants considered cor-
responded to the following flowrate conditions: maxi-
mum increasing flowrate (Instant ‘A’), peak flowrate
(‘B’), maximum decreasing flowrate (‘C’) and end of
systole zero flowrate (‘D’).

The numerical velocity fields at each instant were
qualitatively compared and validated against those
obtained from the experiment, focusing on the flow
distribution, direction and magnitude in the sinuses
and central jet, as well as on the presence, develop-

ment, size and (where applicable) direction of vortices
and stagnant regions.

A quantitative validation was carried out by com-
paring the evolution, with respect to time within each
cycle, of the velocity across the full field. The experi-
mental data were plotted together with their standard
deviation to take into account the cyclic variation of
the velocity fields.

For further quantitative validation, the downstream
velocities across the root diameter aligned with one of
the commissures, at the height of the STJ, were ex-
tracted from both studies and compared (for the
in vitro analysis, the standard deviation was included).

The EOA was used as a quantitative parameter
describing the global hydrodynamic performance across
the whole simulated cycle for both the experimental and
numerical analyses. Based on the international standard
ISO 5840 recommendation, this is estimated as:

EOA ¼ qvRMS

51:6
ffiffiffiffi
Dp
q

q ; ð2Þ

where qvRMS is the root mean square forward flow
during the positive differential pressure period, ex-
pressed in ml/s; Dp is the mean pressure difference
measured during the positive differential pressure
period, expressed in mmHg; and q is the density of the
test fluid, expressed in g/cm320 Hence, this parameter
takes into account both the flowrate and the

FIGURE 7. Velocity maps within the sinus and across the valve annulus at different instants of the cardiac cycle.
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transvalvular pressure difference during the entire
systolic phase.

Physiological Healthy Model

Once the preliminary model had been validated by
comparison with the in vitro experimental data, mod-
ifications were made to provide a more accurate
description of the healthy physiological condition. This
was achieved by: (a) removing the presence of the stent
and sewing ring; (b) including the compliance of the
root walls, and (c) adjusting the physical properties of
the fluid, to match that of healthy human blood. In
particular, the aortic wall’s material was modeled as
linearly elastic, with a Young’s modulus of 3.25 MPa

and a Poisson’s ration of 0.45. These were estimated to
match the vessel compliance value of a normal healthy
aorta, as recommended in the international standard
ISO 5840 (C = 0,32%/mmHg).17 No change was
introduced in the constitutive model of the leaflets
compared with the model implemented for validation.
The fluid was maintained Newtonian, as this is con-
sidered acceptable by the ISO standards for the levels
of shear rates and vessel diameters involved in the
study.50 Its density was reduced to 1060 kg/m3, cor-
responding to the standard value for healthy human
blood. The geometries and mesh of the root, leaflets
and fluid domain were left unaltered, (see Fig. 3) as
well as the boundary conditions prescribed to the fluid
reservoirs. In order to avoid a significant change in the
shape of the pressurized aorta, a uniformly distributed
pressure equal to 80 mmHg, directed inwards, was
applied to all elements of the root wall above the
leaflets’ attachment.

RESULTS

Validation of Preliminary Model

The velocity fields of the sagittal aortic root cross
section for the preliminary numerical model and the
PIV analyses are represented in Fig. 4. Due to optical
obstruction from the pulse duplicator and the shadow
produced by the leaflets and stent, the experimental
approach only allowed PIV analysis of a limited region
of the sagittal cross section.47 This area was identified
in the numerical cross section, as indicated by the areas
delimited by the white dashed border line in Fig. 4.

A quantitative comparison based on the peak
component of the velocity across the analysed region
at the same instants of the cardiac cycle between the
two models is presented in Fig. 5.

FIGURE 8. Velocity maps at the maximum leaflets opening obtained for the validation and for the physiological models.

FIGURE 9. Pressure distribution at the systolic peak.
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At instant ‘A’, i.e. when the flowrate reaches its
maximum increase at the beginning of the valve
opening, the main flow features of the FSI analysis are
characterised by a diverging flow, supporting the
opening of the leaflets, and a narrow centeralised fast
jet flow with peak velocity of 3.2 m/s, compared with a
broader jet and a peak velocity magnitude of
1.1 ± 0.31 m/s for the PIV study in the equivalent
region. Due to the discretisation of the numerical re-
sults, the exact time equivalent of instant ‘A’ from the
in vitro study falls between two timesteps from the
computational simulation. The peak velocity identified
as ‘A-’ in Fig. 5 indicates the peak velocity from the
earlier of these two time instants, whilst the faster peak
velocity marked in the chart represents the latter of
these timesteps.

At peak systole (instant ‘B’ in Fig. 4), the valve
cusps expand into the sinuses, the central jet deflects
towards the sinus side of the aortic wall, and two slow
flow recirculation zones develop at the proximal and
distal outflow side of the leaflet, in both the numerical
and in vitro models. A recirculation also forms above
the commissure, maintaining this location throughout
systole. A maximum ejection velocity of 1.7 m/s mea-
sured inside the vena contracta (the minimum diameter
of the fast central jet) of the numerical model matches
the value of 1.7 ± 0.34 m/s taken from the in vitro
model (Fig. 5). At a smaller scale, the distribution of
fluid velocity in the sinus is also similar between the
two models, with a region of relatively high flow at the
top of the sinus, adjacent to the root wall.

When the flow undergoes maximum deceleration
(instant ‘C’ in Fig. 4), the vortical structures formed in
the sinuses are still present in both models, whilst the
jet flow, with peak velocity of 1.1 m/s in the compu-
tational analysis correlating with 1.1 ± 0.23 m/s in the
experimental study, and the jet flow still angles towards
the sinus side root wall. A comparable width of slow
and return flow is evident on the commissure side of
the root, with a similar diameter central jet flow across
both investigations. The sinus flow distribution is again
similar in the overlapping velocity fields of the two
analyses, with the faster sinus flow concentrated in the
upper region alongside the root wall.

At the end of systole (instant ‘D’ in Fig. 4), the two
recirculations previously observed in the Valsalva sinus
and above the commissure move towards the axis of
the aorta in both the in vitro and in silico analyses.
Again, the peak axial velocity of the numerical model,
0.2 m/s, matched the equivalent data from the in vitro
investigation, 0.2 ± 0.16 m/s (Fig. 5).

Further quantitative comparison was carried out by
correlating the velocity profiles of the in vitro and in
silico studies at the sinotubular junction, as shown in
Fig. 6.

Apart from the central jet portion of instant ‘A’,
where the velocity ranges from 1.1 ± 0.15 m/s in the
PIV analysis in contrast to a peak velocity of 3.2 m/s in
the FSI analysis, the velocity profiles acquired from the
numerical analysis were consistent with those from the
in vitro data. For instants ‘B’–‘D’, 90% of the velocity
magnitudes across the STJ of the numerical model
were within the standard deviation of the velocity
measurement for the in vitro model, with 96%
matching for ‘B’, 96% for ‘C’, and 77% for ‘D’.

The EOA for the numerical simulation was calcu-
lated as 2.46 cm2, close to the value estimated from the
in vitro investigation of 2.43 ± 0.02 cm2.47

Healthy Physiological Mechanism

Velocity fields across a sagittal cross section (as in
the previous validation) and a transversal cross section
at the valve annulus obtained at the closest available
time-step to the selected instants of the cardiac cycle
used in the validation are shown in Fig. 7.

Analysis of the flow velocity maps and vectors
indicates some major differences from the previous
analysis. Opening is promoted by a radially expanding
component of the flow, which develops in the early
systolic phase, occupying most of the Valsalva sinuses
region (instant ‘A’ in Fig. 7). Although the valve
leaflets are unchanged in terms of geometry, boundary
constraints and material properties, in the absence of
the stent they undergo a much wider opening, taking a
bulging shape closely matching the profile of the si-
nuses. As a result, the gap that forms between the
leaflet and the aortic wall is reduced and does not allow
the formation of large flow recirculations.

A comparison of the sagittal cross section at the
maximum opening of the leaflets for both the prelim-
inary and physiologically adapted models is shown in
Fig. 8.

The comparison clearly shows how the presence of
the stent determines a marked reduction in the ability
of the leaflets to expand, leaving a much larger
chamber between the valve and the sinus wall, thus
enabling the formation of vortices within this volume.
The physiological configuration promotes a mecha-
nism which was not observed in the preliminary model,
nor in the literature: as the central jet increases in
velocity, the flow contraction at the leaflets’ exit gen-
erates a reduction in pressure which results in some
suction in the gap between the leaflets and the sinus
wall. This produces a trans-leaflet pressure difference,
measured at around 15 mmHg in this simulation,
which contributes to further expand the leaflets to-
wards the sinuses wall. This process, which has a
stronger effect when the ejected flow becomes faster,
increases the EOA of the valve (from 2.46 cm2 in the

Validation and Extension of a Fluid–Structure Interaction Model



preliminary model to 2.76 cm2 in the adapted model,
an increase of 11%), improving the hydrodynamic
valve performance. Figure 9 illustrates the map of the
pressure distribution obtained at the timestep associ-
ated with the maximum flow velocity.

At the end of systole, as shown in Fig. 7d, the
Valsalva sinuses play a primary role in promoting a
centripetal flow which supports a prompt valve closing.
Vortices become evident during the diastolic phase,
when two large recirculations, one on top of the other,
establish into the sinus, decreasing blood stagnation.

DISCUSSION

This study was undertaken to develop a reliable FSI
model which provided a more accurate description of
the haemodynamics expected in an idealized healthy
physiological aortic root.

The first part of the study attempted to achieve a
validation of the numerical approach by comparing the
relevant features with corresponding PIV experimental
measurements. Although 2D PIV has previously been
used for the validation of computational studies of
mechanical heart valves’ behavior,10,22 the reliability of
FSI models of biological valves has generally been
established by comparison of the valve opening and
closing time with in vivo measurements.31,34,36 Where
suitable in vitro experimental data have been available,
the validity of the numerical analyses was supported by
visual comparisons of the leaflets’ position or angular
displacement throughout the cardiac cycle.9,14,28,42

In this study a more comprehensive validation,
based both on quantifiable haemodynamic parameters
and PIV findings, was performed to ascertain the
reliability of the numerical results obtained with the
preliminary model. This was fulfilled by analyzing the
velocity maps obtained across a section of the aortic
root, comparing the peak axial velocity and the
velocity profiles at the STJ for 4 different instants in
the systolic cycle, along with qualitative evaluation of
the flow patterns at these instants. EOA was also
acquired as a global hydrodynamic valve performance
parameter for both techniques, enabling further
quantitative comparison.

Achieving a satisfactory validation was not trivial,
and involved the tuning of numerical parameters, such
as the mesh grid resolution of the fluid and structure,
the number of coupling points within the fluid–struc-
ture coupling definition, and the setting of appropriate
algorithms able to contain the excessive distortion of
the elements.

The qualitative and quantitative comparisons indi-
cate a generally good agreement, confirming the con-
sistency and periodicity of the results. The results were

also closely matched in terms of EOA. The largest
discrepancies were obtained for the velocity fields at
instant ‘A’, corresponding to the opening of the valve,
where a significant mismatch could be observed,
though limited to the central region of the flow. This
can be attributed to the fast dynamics that character-
izes this phase of the cycle, for which any slight dif-
ference in the instant analysed may result in
significantly different configurations. As a conse-
quence, the two investigations for instant ‘A’ do not
necessarily analyse the same degree of valve opening in
the two studies. The higher velocity central flow
observed in the computational analysis is due to the
development of an initial orifice at the center of the
valve, which can be observed for the first time at this
timestep. On the contrary, the velocity distribution
from the in vitro result suggests that this stage has not
been reached yet. Analyzing the timestep before that
presented as instant ‘A’, indicated by the datum des-
ignated as ‘A-’ in Fig. 5, resulted in a velocity distri-
bution with no central jet, and lower magnitude than
that of the experimental study, confirming that the
numerical model was, in fact, reproducing similar flow
dynamics to the in vitromodel, but the timestep did not
enable the display of the same exact instant from the
experimental investigation. Differences may also result
from the phase averaging over 100 cycles in the PIV
study,47 wherein variations between cycles (e.g. differ-
ent extents of valve opening) could lead to a broader
and less intense central jet than in the numerical study.

In summary, the preliminary FSI model showed the
ability to reproduce and capture the haemodynamic
features detected in the experimental investigation,
especially once valve opening has been completed.

This validated numerical framework was then al-
tered by removing the presence of the stent and
adjusting the physical properties of the fluid and vessel
wall, to better represent the healthy native aortic valve.
These changes resulted in major changes in the valve
opening and functional mechanisms. In particular,
during systole, the leaflets protrude much deeper into
the Valsalva sinuses, reducing their propensity to
generate and host the recirculation areas observed in
both the experimental and preliminary numerical
model. A key function of the sinuses appears to be that
of providing a chamber able to host the cusps during
systole, reducing the cusps’ impact on the flow through
the valve. During ventricular ejection, the native aortic
valve cusps expand very close to the vessel walls,
enhancing the valve’s geometric orifice area. This effect
is amplified by a suction that establishes in the gap
between the leaflets and the aortic wall, due to a
Venturi effect induced by the fast jet flow, which is
strongest at the maximum flowrate. Vortical zones,
which appear to be negligible during the vast majority
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of the systolic cycle, become significant during diastole,
contributing to prevent blood stagnation.

This study suggests that presence of systolic vortices
in the sinuses, subject of much of the literature to
date,4,40,47 is not associated with healthy physiological
operating conditions, but rather with stenotic dynam-
ics due to calcifications, geometric mismatch or other
non-physiological causes, such as the constricting
presence of a supporting stent, as in the presented
in vitro case.

CONCLUSIONS

The use of numerical FSI models, validated with
in vitro findings, has led to a more complete
understanding of the physiological mechanisms that
determine the aortic valve function. The study has
shown an alternative phenomenon to what is currently
described in the literature, where the function of vor-
tical flow regions during the systolic phase appears
strongly debunked.

The presented model can serve as a benchmark for
the flow conditions associated with a healthy func-
tioning mechanism of the aortic valve, providing en-
hanced valve performance indicators. This can
represent an important basis to improve investigation
of the haemodynamic changes produced in diseased
and treated conditions, supplying a powerful tool in
the design of novel and/or improved devices and
therapies.

The study confirms the role that numerical
approaches can play in the prediction of pathologies
induced by flow alterations, providing a full view of the
flow dynamics within the aortic root that are limited
using experimental techniques.

LIMITATIONS

Although the validated FSI model was shown to
realistically and accurately simulate the fluid dynamics
established in the aortic root, some assumptions still
need to be considered. The shape and dimensions of
the aortic valve and root are based on an idealized
model assuming that the 3 Valsalva sinuses and their
corresponding leaflets are identical, thereby introduc-
ing a 120-degree geometrical symmetry. In reality, the
native aortic valve and root are characterised by indi-
vidually specific shapes and dimensions. The native
aorta is longer and more complex than that presented
in this study, which could induce alterations to the
fluid dynamics. Moreover, the presence of coronary
arteries was not taken into account, and requires fu-
ture studies, as does the effect of different degrees of

wall compliance upon the haemodynamics of the re-
gion. Finally, the outlet of the fluid domain is relatively
close to the aortic root so that the associated boundary
layer effect cannot be fully eliminated.
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