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Abstract

The peopling of the Americas represents the last major expansion of human populations

worldwide. As the first humans moved into the continent they were exposed to new en-

vironments requiring them to adapt. The subsequent colonization of the continent by

Europeans, along with the African slave trade, involved a major admixture process that

was accompanied by new selective pressures, most notably exposure to new pathogens.

Applying current and novel methods to genome-wide SNP data of Native and admixed

Latin Americans, this PhD thesis provides an analysis of the adaptive history in the

Americas. I show that prior to the European contact, candidate regions of selection in

Native Americans include genes associated with metabolic traits, highlighting a possible

adaptation to dietary changes. Using novel and existing methods to detect selection post-

admixture, I show that genes related to immune response were probably under selection

in admixed Latin Americans. As an example on the evolution of an adaptive trait, I also

conduct a Genome Wide Association Study on a sample of over 6,000 Latin Americans for

skin, eye and hair pigmentation. I report eighteen independent genome-wide significant

signals of association, including five novel variants. One of the novel variants associated

to skin pigmentation is common in East Asians and Native Americans, but is almost ab-

sent everywhere else in the world. I show that this variant was selected in East Asians

after their split from Europeans, and likely carried by the first Americans to the Americas.
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Impact Statement

Over the last decade, there has been a dramatic increase in the number human genomic

datasets being generated that have enabled us to study the historic and adaptive history of

human populations. Importantly, the identification of variants subject to selection, which

are likely to be of functional relevance, can lead to insights into how genes affect human

phenotypic variation. Such variants include those that predispose or protect individuals

to disease, and might therefore inform the development of therapeutic and prevention

strategies and/or aid biologically-informed drug discovery. In this PhD thesis, I apply

current and novel methods to detect signals of selection in Native and admixed Latin

Americans, and report regions of the genome with evidence of selection that may represent

important candidate genes with potentially functional relevance.

I also conduct a genome-wide association scan of pigmentation phenotypes in Latin

Americans. This work has several implications. First, human genetic studies have been

mainly conducted in populations of European descent, raising the question about the

transferability of these findings to other human populations. By analyzing Latin Amer-

icans, a vastly underrepresented population in human genetic studies, I have addressed

this question directly, by reporting the effect of pigmentation associated variants in this

population. Second, my work shows that the diversity in phenotypic and genetic variabil-

ity in Latin Americans affords ample opportunity to discover novel genetic associations,

and highlights how genetic variants that contribute to pigmentation phenotypes in other

worldwide populations are yet to be explored. Third, since the history of Latin Americans

involved extensive admixture of Native American, Europeans and Africans, my work shows

how genetic association studies in Latin Americans can also inform us about the impact

of associated variants in these parental populations. Finally, these findings have a direct

practical implication, as the better understanding of human skin pigmentation genetics is

highly relevant for medical studies due to the shared role between pigmentation-associated

loci and many type of skin cancers, and to forensic applications through the development

and application of pigmentation phenotype prediction based on DNA variants.
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Glossary

Adaptation

Heritable changes in genotype or phenotype that result in increased fitness.

Admixture

Gene-flow between previously isolated populations.

Allele

A variant form of a gene located at a specific location on a specific chromosome.

Bonferroni correction

When multiple hypotheses are tested, the Bonferroni correction to the overall desired sig-

nificance level (α) is obtained by dividing it by the number of independent tests (k), so

that each hypothesis is rejected if P-value < α/k.

Fitness

A measure of the capacity of an individual to survive and reproduce.

Genetic drift

Changes in allele frequency in a population due to random sampling from generation to

generation.

Genotype

Combination of alleles at a particular locus.

Genome Wide Association Study (GWAS)

A study of a genome-wide set of genetic variants in unrelated individuals to determine if

any variant is associated with a phenoype.

Haplotype

A set of alleles that are inherited together from a single source.

Heritability

The proportion of phenotypic variation that can be attributed to any genetic variation

(broad-sense heritability) or to additive genetic variation (narrow-sense heritability (h2)).



IMPUTE

A software to infer unobserved genotypes using known haplotype information.

Linkage Disequilibrium

The non-random association of alleles at different loci.

Locus

The location of a gene (or of a significant variant) on a chromosome. Plural loci.

Meta-analysis

The combination of the results of multiple scientific studies that address the same, or

similar, hypotheses.

Mutation

Permanent change in the nucleotide sequence of the genome of an organism.

Phase

The original allelic combinations that an individual received from its parents. When know

or inferred this is referred to as phased data.

Population stratification

Refers to a situation in which the population of interest includes subgroups of individuals

that are on average more related to each other than to other members of the wider popu-

lation.

Polygenic adaptation

Refers to a situation in which adaptation occurs by simultaneous selection on variants at

many loci (perhaps tens or hundreds or more) of (usually small) genetic effect.

Positive selection

Selection acting upon new advantageous mutations in a population.

Recombination

Genetic exchange of DNA segments between maternally and paternally inherited copies

of a chromosome.

Selection

Process by which certain phenotypes become more prevalent in a population than other

phenotypes resulting in a change in allele frequency over generations.

Selective sweep

Process by which a new advantageous mutation eliminates or reduces variation in linked

neutral sites as it increases in frequency in the population.

25



SHAPEIT

A software to infer haplotype phase from genotype data.

SNP

Single Nucleotide Polymorphism. Single change in a nucleotide occurring at a locus in the

genome.
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Chapter 1

Introduction

1.1 Overview

Modern humans emerged in Africa approximate 200,000 years ago (ya). Although the ex-

act routes of colonization remain controversial, by 15,000 ya modern humans had spread

over all continents of the earth (with the exception of Antarctica). The different environ-

ments (raging from tropical to arctic, low-lands to high-lands and even toxic environments)

that these early migrants encountered imposed new selective pressures that lead to novel

adaptations. As these humans spread out of Africa, they also encountered extinct ho-

minins with whom they interbred. It is now well established that non-African populations

share on average between 1-2% Neanderthal ancestry (Green et al., 2010; Wall et al.,

2013; Prüfer et al., 2014) and East Asians and Melanesians around 0.2% and 3% Deniso-

van ancestry (Reich et al., 2010, 2011; Meyer et al., 2012; Prüfer et al., 2014), respectively.

Highly divergent haplotypes have also been found in African genomes, suggesting archaic

introgression from an unknown population (Lachance et al., 2012). This archaic intro-

gression event may have provided a faster rate of adaptation and many populations are

now thought to have benefited from it (Huerta-Sánchez et al., 2014; Vernot and Akey,

2014; Sankararaman et al., 2014; Racimo et al., 2015; Deschamps et al., 2016; Vernot

et al., 2016; Dannemann et al., 2017; Dannemann and Kelso, 2017; Racimo et al., 2017;

Browning et al., 2018). At the end of the Neolithic revolution (∼ 10, 000 ya) humans had

transitioned from a hunter-gatherer to a more sedentary life style that included agriculture

and pastoralism. This change in subsistence strategy, which involved the availability of a

new dietary resource (mainly milk and its derivates), prompted a strong selection pressure

for the ability to digest it. Consequently, lactase persistance into adulthood currently rep-

resents one of the strongest signals of selection in the human genome (Bersaglieri et al.,

2004; Tishkoff et al., 2007; Gerbault et al., 2009; Gallego Romero et al., 2012; Schlebusch

et al., 2013; Sverrisdóttir et al., 2014; Allentoft et al., 2015). However, this transition was

also accompanied by a massive growth in population size that involved being in constant

proximity to other humans and animals that lead to an increase and spread of infectious

diseases (Bocquet-Appel, 2011). Infectious diseases are arguably one of the strongest selec-

tive forces exerted over human populations for over thousands of years and consequently,

immune-related genes have been shown to be major targets of selection (Fumagalli et al.,

2011; Karlsson et al., 2014). Although more controversial, there is now also increasing

evidence that several physiological and life-history, and body size traits, such as age at
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first birth in females, age of menopause, weight, and height, are associated with differen-

tial reproductive success in modern post-industrial societies (Nettle, 2002; Stearns et al.,

2010; Sanjak et al., 2018). Overall, it is now clear that past and ongoing selective pres-

sures have and are still shaping the genetic and phenotypic diversity of human populations.

Many of these documented adaptive events have been made feasible due to the advent

of sequencing and large-scale genotyping technologies. Genome-wide scans for signatures

of selection have now been conducted in modern and ancient human populations providing

a fuller picture of local human adaptation (Voight et al., 2006; Grossman et al., 2010; Sa-

beti et al., 2007; Mathieson et al., 2015; Fan et al., 2016; Field et al., 2016a). Although the

majority of genomic scans of selection have mainly been conducted as a means to explore

human history (and molecular evolution in general), identifying candidate variants have

also provided important and biologically meaningful information. The rationale for this

observation is simple: variants in the genome that are under positive selection must be

of functional importance, otherwise selection could not be acting on them (Nielsen et al.,

2007). Consequently, current efforts of adaptation studies are now relying on the inte-

gration of phenotypic, functional and environmental data providing a better description

of physiological impact and evolutionary history of candidate variants (Crawford et al.,

2017a; Martin et al., 2017b; Key et al., 2018; Ilardo et al., 2018).

Throughout the course of this thesis I will present analysis on the adaptive history of

Native Americans and admixed Latin Americans. I have performed this analysis primarily

through the application of current and newly developed genomic tools for the analysis of

high density SNP data. I have also integrated the results from my selection scan with

available phenotypic data available for this same sample of Latin Americans, in order to

better understand the phenotypic impact of the candidate variants found. Additionally, I

have also conducted an association scan in the same sample of Latin Americans on pigmen-

tation phenotypes, as an example of the evolution and discovery of novel variants affecting

an adaptive trait. Specifically, my analyses have provided novel inferences regarding:

1. Signatures of adaptation in Native Americans and admixed Latin Americans.

2. Genetic determinants of skin and eye pigmentation in admixed Latin Americans.

3. The convergent evolution of lighter skin pigmentation in Eurasian populations.

I start this chapter with a brief description of types of selection, current statistical

approaches for detecting instances of positive selection, and the main limitations and

challenges of their use. I then present the evolutionary and demographic history of the

Americas focusing on the peopling of the continent and the admixture process that shaped

the current genomic make-up of modern Latin Americans. I then describe previous studies

on detecting selection in Native Americans and admixed Latin Americans. I also briefly

describe the biological basis of human pigmentation variation, followed by its evolutionary

history and the main genetic variants affecting its variability. Finally, I describe the main

methodological aspects of a Genome Wide Association Study (GWAS) and a detailed
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description of the sample used for the upcoming analysis.

1.2 Natural selection

Natural selection as defined by Darwin and later elaborated by Fisher is the differential

reproduction of individuals with distinct genotypes in subsequent generations (Hartl et al.,

1997; Jobling et al., 2013). In other words, individuals with different genotypes will

have a differential ability to survive and reproduce in different environments. In order to

contribute genetically to the next generation, an individual must survive until reproductive

age and then reproduce. Thus, selection can occur at any stage from the formation of an

individual’s genotype during fertilization to that individual generating their own progeny.

The ability of an individual’s genotype to survive and reproduce is defined as its fitness,

which partly depends on the environment. When modeling natural selection, fitness can

simply be represented as the probability to survive and reproduce (Relethford, 2012). The

quantity of interest here, is the proportional change for each genotype from one generation

to the next, which is known as the absolute fitness (W ). However, when considering

the evolution under natural selection of different genotypes, rather than considering the

specific absolute fitness value it is more important to consider the absolute fitness of a

genotype relative to the other genotypes (Relethford, 2012). This value is known as the

relative fitness (w), which expresses (by convention) the absolute fitness relative to the

fittest genotype. Typically, relative fitness w has a subscript to refer to the different

genotypes. In the case of a bi-allelic variant with alleles A and a, the symbol wAA is

used to refer to the relative fitness of genotype of AA. The relative fitness is simply

computed by dividing each absolute fitness value to the highest absolute fitness value,

which sets the highest relative fitness to 1. Relative fitness is usually expressed in terms

of the selection coefficient (s), which measures the fitness advantage or disadvantage of a

particular genotype. By defining the relative fitness in terms of the selection coefficient,

it is easier to model different types or modes of natural selection by assigning specific

selection coefficient to particular genotypes, some of which are discussed below.

1.2.1 Types of selection

Natural selection can act in different ways. Random mutations are more likely to be dele-

terious rather than beneficial, and thus the majority of novel variants are removed from

the gene pool. These type of mutations that reduce the fitness of an individual are subject

to negative selection (also called purifying selection). The ongoing process of negative

selection is referred to as background selection, producing long stretches of conserved ge-

nomic regions, as many linked variants with the non-beneficial mutations are also removed

(Charlesworth et al., 1995; Hudson and Kaplan, 1995). Alternatively, mutations can also

result in beneficial variants, in which the allele is favoured by positive selection and so in-

creases in frequency in consecutive generations (Mitchell-Olds et al., 2007). The dynamics

of the selection process in diploid organism such as humans, will not only depend on the ad-

vantage or disadvantage of individual alleles, but on their interaction, which in turn afffects

the efficacy of natural selection to act on specific genotypes. One such type of selection
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is balancing selection, in which both alleles (in a diploid organism) are maintained in the

population (Richman, 2000). This process may happen during overdominance selection

(also known as heterozygote advantage) creating balancing polymorphism. Alternatively,

underdominance selection will operate when novel alleles reduce the fitness of heterozy-

gotic individuals. Additionally, frequency dependent selection, in which the frequency

of the genotype will determine its advantage, can also result in balanced polymorphism.

If the alleles being maintained in the population result in opposing phenotypic effects,

then this phenomenom is called diversifying (or disruptive) selection. By contrast, if the

intermediate phenotype values are favoured the phenomenom is called stabilizing selection.

Despite the diversity of different types of selection processes, the majority of research

has been focused on the development of methods to detect instances of positive selection

(Fan et al., 2016). One reason is practical, as detecting positive selection can be easier to

detect due to its more conspicuous signature left on the genome (Vitti et al., 2013) (see

Section 1.2.2). Another reason might be that positive selection is assumed to be the main

driver of local adaptation, particularly in human history (Figure 1.1) (Vitti et al., 2013;

Fan et al., 2016).

Figure 1.1: Examples of recent human local adaptation. Each example includes
the candidate gene under selection, the phenotype and/or the selective pressure. From
Fan et al. (2016).

1.2.2 Detecting positive natural selection

When a beneficial mutation is subjected to positive selection it rises up rapidly to high

frequency or fixation (i.e. 100% prevalence) within a population. Nearby linked sites

tend also to rise up in frequency, a process called “genetic hitchhiking”. Depending on its
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selection coefficient, the effect of selection can be faster than the ability of recombination

and mutation to break down the haplotypes carrying the beneficial mutations, drastically

reducing the genetic variability — a hallmark of a selective sweep (Figure 1.2). In the most

simple scenario a selective sweep occurs when positive selection acts on a novel mutation,

i.e. a “hard sweep” (Figure 1.2A). The beneficial mutation increases in frequency and so

does the haplotypic background it is associated with, thereby reducing the genetic variation

at this region in the population. A so-called “soft sweep” (Hermisson and Pennings, 2005;

Pennings and Hermisson, 2006a,b) describes two slightly different scenarios (Figure 1.2B).

In one scenario, independent mutations at a single locus can be subjected to positive

selection and increase in frequency simultaneously. If the alleles are similarly advantageous

none of them would fix during the selective event. In the second scenario, due to a change

in selective pressure, a variant that was previously segregating in the population becomes

advantageous and rises in frequency. Since the beneficial variant is usually present in

distinct haplotypic backgrounds, this type of selective event does not result in a complete

loss of genetic variation at the region. Thus, a “soft sweep” tends to be more difficult

to detect than a “hard sweep”. A third type of positive selection, termed polygenic

adaptation, refers to a process in which a population adapts through small changes in allele

frequencies at several loci. It is important to note that this does not mean that a polygenic

phenotype can only be targeted by natural selection via a polygenic adaptative event, as

any single locus (e.g. one with a strong genetic effect) can also be targeted by a selective

sweep, and consequently affect the evolution of a polygenic phenotype. (Figure 1.2C).

Importantly, this process is in line with classical models of natural and artificial selection

in quantitative genetics, where it is assumed that most traits are polygenic i.e. controlled

by many loci (Falconer, 1960). The common scenario of a polygenic adaptative event as

envisaged by Pritchard et al. (2010) involves a quantitative phenotype that is affected

by many alleles, each with a small genetic effect. Under a novel environmental pressure,

selection might favour a new phenotypic optimum and consequently the population will

adapt by allele frequency shifts at all loci controlling the phenotype. Importantly, this

allele frequency shift will not necessary push alleles upwards in frequency. The shift in allele

frequency is directional, favouring (or disfavouring) alleles towards the new phenotypic

optimum. The result will be that not many alleles will reach fixation and therefore, such

events are hard to detect using classical methods for selective sweeps.

A fourth process that can result in positive selection is gene-flow resulting from inter-

or intra-species admixture events (Figure 1.2D). In this scenario, following an admixture

event the beneficial mutation coming from one of the source populations rises up in fre-

quency in an haplotypic background not present in the receiving population. In the specific

case of human evolutionary genetics when the admixture event involved two populations

with an old divergence time (such as between modern humans and archaic hominins), this

process has been termed adaptive introgression (Racimo et al., 2017). In the case where

this admixture event happened between human populations that have not exchanged mi-

grants for several generations, such as the case between Africans, Europeans and Native

Americans in the formation of modern admixed Latin American populations, the process

has usually been referred to as selection post-admixture (Tang et al., 2007).
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Figure 1.2: Schematic representation of genomic signatures of positive selec-
tion. A) Hard sweep scenario in which a novel mutation is selected and rises up in
frequency. B) A soft sweep scenario in which selection is acting on i) two different de-
novo mutations or ii) standing mutations segregating in the population. C) A polygenic
adaptation scenario in which many loci associated to a particular phenotype are under
selection. D) An adaptive introgression scenario in which a novel mutation present in a
different population is selected after the admixture event. Each horizontal bar represents a
haplotype .The orange segment is graded to indicate the strength of LD between beneficial
(stars) and neutral (dots) loci. From Fan et al. (2016).
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1.2.3 Challenges to detecting selection

Although the explosion of genomic data generation and of novel statistical tools to search

for evidence of selection has allowed us to discover many instances of past adaptive events

(Vitti et al., 2013; Fan et al., 2016), one of the consequences of this revolution has been

a shift from hypothesis testing to a hypothesis generation framework (Vitti et al. 2013).

This has resulted in the majority of selection statistics being evaluated under an outlier

approach, where the significance is assessed by comparing the selection statistic score to its

genome-wide distribution. This approach has the benefit of accounting for demographic

processes that could mimic selective signals, as true selection events are expected to act

only on specific regions of the genome (Oleksyk et al., 2010; Vitti et al., 2013). However,

choosing an adequate threshold, such as defining a percentile, remains an arbitrary choice

among studies and there is not an established consensus. A second approach involves con-

structing a neutral model of the demographic evolution of the population being studied,

and assessing the significance of the observed selection score to the scores obtained from

simulations under neutral evolution. This requires a good knowledge of the demographic

history of the target population. Additionally, there will be a possibility that a demo-

graphic neutral model that was not considered could be a better fit to the data, leading to

an incorrect conclusion. Another limitation that is likely to be pervasive among genomic

scans of selection, is that of ascertainment bias as the majority of genomic data is still

based on SNP data. This can result in a biased representation of the true genetic diver-

sity of the tested population, as the majority of SNPs will fail to capture rare variants,

affecting inferences on populations that are largely underrepresented in genomic studies,

leading to spurious or low-powered inferences. Perhaps the most challenging aspect of

establishing instances of adaptation involves not only detecting a true adaptive locus, but

also determining the phenotype under selection and ideally, the selection pressure driving

the adaptation (Fan et al., 2016). In this regard, with the advent of “polygenic scores”,

which aim to predict an individual’s phenotype using GWAS data, recent studies have

provided important clues regarding the adaptation of complex phenotypes, with perhaps

the clearest example being that of selection for height in Europe (Turchin et al., 2012; Berg

and Coop, 2014; Robinson et al., 2015; Zoledziewska et al., 2015; Berg et al., 2017; Racimo

et al., 2018b; Guo et al., 2018). Specifically, these studies have found that polygenic scores

for height increase from a south-to-north gradient in Europe. Notably, two preprints re-

cently showed that these previously reported signals of selection on height, either did not

replicate or are significantly lower when using effect sizes obtained using the UK-Biobank

sample (Bycroft et al., 2018), which constitutes a much larger and homogenous cohort

than those previously used for these type of analyses (Berg et al., 2018; Sohail et al., 2018)

(Figure 1.3). These two studies thus highlight a need of caution when conducting analyses

of polygenic adaptation using polygenic scores across populations (Novembre and Barton,

2018). Finally, perhaps the ultimate assessment to understand and complement a study

of selection, will more likely involve some type of functional analysis e.g. in vitro cell lines

or model organisms (Vitti et al. 2013; Fan et al., 2016). However, this approach will also

have to be carefully assessed, as many variants are likely to possess a pleiotropic effect and

therefore the screening of many phenotypes will be needed before concluding the effect on
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a specific phenotype. Assessing the underlying selective force will also likely involve the

integration of environmental data. In this case, it will also be necessary to assume both

that the environmental variable used represents a good proxy for the past environmental

variable and that the selective pressure has not in fact been driven by another highly

correlated environmental variable.

Figure 1.3: Polygenic scores across Eurasian populations for different GWAS
data sets. The top row shows polygenic scores of height obtained in European popula-
tions from a combined dataset using the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2015) and Human Origins populations (Patterson et al., 2012) plotted
against latitude. The bottom row shows polygenic scores of height obtained in Eurasians
populations from the same two datasets plotted against longitude. While there is a strong
significantly correlation between polygenic scores of height using datasets previously used
to report adaptation of height in humans across geographical clines (first two panels),
the correlation is absent or greatly attenuated in the much more homogeneously designed
UK-Biobank study dataset (third to fifth panel). From Berg et al. (2018).

1.3 Genetic history of the Americas

In order to understand the selective pressures that could have shaped the genetic diversity

of the present-day inhabitants of the Americas, it is important to understand the evolution

and recent history of the Americas. In this section I briefly describe recent genomic studies

regarding the peopling of the Americas. The major migratory events to the Americas

described in the text are represented in Figure 1.4. I then describe genomic studies of

admixed Latin American populations. Finally, I describe recent results on the population

structure of the Consortium for the Analysis of the Diversity and Evolution of Latin

America (CANDELA) sample from Chacon-Duque et al. (2018), which is the main sample

used in this thesis.
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1.3.1 Genetic history of Native Americans

The American continent represents the last major landmass to have been settled by people

migrating from the northeastern tip of Asia through Beringia — a land bridge connecting

Siberia to Alaska (Reich et al., 2012; Raghavan et al., 2015). Archeological data shows

that northern eastern Siberia was occupied by at least 28,000 ya (Nikolskiy and Pitulko,

2013), a period that coincided with the Last Glacial Maximum (LGM) marked by drastic

climatic conditions and glacial barriers across northern latitudes (Hoffecker et al., 2016).

This observation led to the proposal that these early colonisers might have been isolated

for extended periods of time with limited dispersal across the region — a hypothesis known

as the Beringian Standstill or Beringian Incubation model (Tamm et al., 2007). Only after

the end of the LGM did the ice retreat from parts of the Pacific coast (circa. 16,000 ya),

raising the possibility for a coastal migration and later an ice-free corridor through the

center of the continent that permitted a second route for colonization to the Americas

(Heintzman et al., 2016). The first unambiguous evidence of presence in the Americas

dates from around 14,000 to 15,000 ya including occupation in southern Chile around

14,000 ya (Guidon and Delibrias, 1986; Dillehay and Collins, 1988; Parenti et al., 1990).

Together, these studies indicate that the colonization of most of the Americas was a rapid

process that could have happened in less than 2,000 years (Tamm et al., 2007; Brandini

et al., 2018). Current genomic efforts are focused on estimating whether and for how long

early Native Americans were isolated in Beringia, the number of migrations and timings

of the entry to the Americas, the timing of the divergence between Native Americans

groups, and additional genetic affinities with other populations apart from Northern East

Asians (Wang et al., 2007b; Reich et al., 2012; Raghavan et al., 2015; Skoglund et al.,

2015; Skoglund and Reich, 2016; Moreno-Mayar et al., 2018).

Genomic studies based on mitochondrial DNA (mtDNA) were the first to show evi-

dence of the profound founder effect in Native Americans (Wallace et al., 1985). These

studies showed that only a limited number of individuals contributed to the genomic

make-up of most modern Native American groups. The estimated time to the most recent

common ancestors (TMRCA) from the five observed founding maternal lineages have been

dated to around 15,000 to 18,000 ya, indicating a probable bottleneck around that time

(Torroni et al., 1992; Horai et al., 1993; Torroni et al., 1993). Subsequent mtDNA stud-

ies have also confirmed that the ancestors of Native Americans most likely paused when

they reached Beringia, a period that lasted many thousands of years with little shared

gene-flow of mtDNA from non-Native Americans, during which the mtDNA lineages dif-

ferentiated from their East Asian sister-clades (Tamm et al., 2007). In contrast to mtDNA

studies, Y-chromosome studies have been more challenging due to the drastic reduction

of indigenous Americans Y-chromosome lineages as a consequence of the Spanish con-

quest,which was characterized by a male-bias in gene-flow (Lell et al., 1997; Bianchi et al.,

1998; Karafet et al., 1999; Ruiz-Linares et al., 1999; Bortolini et al., 2003). Nonetheless,

Y-chromosome studies have found 2 major lineages that account for 6% and 75% of Na-

tive American Y chromosomes, respectively (Underhill et al., 1996; Karafet et al., 1997;

Lell et al., 1997; Bianchi et al., 1998; Karafet et al., 1999; Bortolini et al., 2003; Zegura
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et al., 2004; Battaglia et al., 2013). Given the highly distinct frequency of these founding

haplogroups and the difference in geographic distribution of their sub-clades, it has been

suggested that their entry occurred at different times. The most prevalent haplogroup is

thought to have arisen 24,5000 ya (Zegura et al., 2004), whereas the less prevalent seems

to to have originated 7,100 to 16,700 ya (Karafet et al., 2002). More recent Y-chromosome

studies have also confirmed that the differentiation of these major Y haplogroups most

likely occurred in Beringia (Battaglia et al., 2013).

In comparison with studies based on uni-parental markers, approaches using autosomal

DNA are now starting to provide a finer resolution of the history of Native American pop-

ulations. However, it still remains unknown whether one or more early migrations gave

rise to the founding population of Native Americans (Wang et al., 2007b; Reich et al.,

2012; Raghavan et al., 2015; Skoglund et al., 2015; von Cramon-Taubadel et al., 2017;

Moreno-Mayar et al., 2018). The first comprehensive study based on ∼ 700 microsatel-

lite genotype data included over 400 individuals representing 24 Native American groups

(Wang et al., 2007). This study found evidence that supported a single main colonization

event from Siberia. Additionally, they suggested an scenario in which coastal routes fa-

cilitated migration of early Native American founders in comparison with inland routes,

and a partial agreement between the genetic similarity and the linguistic classification of

Native American groups. A second major study based on genome-wide SNP data from

over 50 Native American populations suggested that Native Americans descended from

at least 3 migratory events coming from Northern East Asia (Reich et al., 2012). Specifi-

cally, Reich et al. (2012) showed that Native Americans from Central and South America

descended from a single ancestral population. Eskimo-Aleut speaking populations from

the Arctic however, seemed to have inherit almost 50% of their ancestry from a second

migratory event from East Asia, and the Athabaskan-speaking Chipewyan populations

were estimated to harbour approximately 10% of ancestry from a third migratory event.

Additionally, they suggested that the peopling of the Americas most likely followed an

initial southward expansion along the coast with a subsequent split and little gene flow

after the divergence, especially in South America, as suggested previously by Wang et al.

(2007). However, a third major study from Native American populations based on WGS

data claimed that Native American populations descended most likely from two migra-

tory events (Raghavan et al., 2015). Similar to Reich et al. (2012) the authors found

evidence that Inuit populations originated from a separate migration, but concludad that

Northern Native Americans including Athabaskan-speaking populations and Central and

South American Native Americans descended from a single migration that occurred no

later than 23,000 ya (Raghavan et al., 2015). The authors further dated the divergence

time between these northern and southern Native Americans groups to about 13,000 ya,

most likely within the American continent. Another recent study with contradictory re-

sults to these two previous studies further tested whether all groups of Central and South

American descended from a single migration event by analyzing novel genomic data from

previously uncharacterized Amazonian populations from Brazil. Skolund et al. (2015)

detected a strong signal linking these Amazonian populations to present-day Melanesians,
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New Guineans and Andaman Islanders, and thus providing evidence for two founding lin-

eages for Central and South America. By carrying different types of modelling analysis,

the authors further showed that the patterns of variation could be explained by approxi-

mately 2% admixture from Australian related populations or alternatively, from a larger

admixture component between 2 to 85% of ancestry from a population that existed in a

substructured North East Asia population.

Novel findings relevant for the history of Native American populations have also arisen

from studies of ancient individuals from the Americas and Siberia. One of the most im-

portant findings come from the remains of a child associated with the Clovis culture in

western Montana known as Anzick-1 and directly dated to 12,600 before present (BP)

(Rasmussen et al., 2014). The authors showed that this individual was more closely re-

lated to Central and South Americans than to some North American populations. This

result suggested that the present day structuring of Northern and Southern (i.e. Central

and South American) lineages dates back to at least 12,600 years (Rasmussen et al., 2015).

Another major ancient DNA study also revealed important observations regarding the ma-

jor admixture process that lead to the formation of the ancestral populations of Native

Americans (Raghavan et al., 2014). The analysis of a 24,000 year old individual from

Central Siberia showed affinities to both European (West Eurasian) and Native American

populations, but without close affinities to East Asian groups (Raghavan et al., 2014).

The authors estimated that up to 38% of Native American ancestry may have originated

through gene flow from this ancient population which this Central Siberian individual was

part of. Additionally, in line with what has been observed by Reich et al. (2012) and

Rasmussen et al. (2015), genomic evidence from a tuft of hair dated to 4,000 ya from

Greenland showed that the population which this individual belonged to (termed Paleo-

Eskimos) had migrated from Siberia to the Northern America Arctic region independently

of the Inuit migration, but that it was largely replaced by the Inuits approximately 700 ya

(Rasmussen et al., 2010). Thus, excluding the Inuit population, it seems that the genetic

evidence seems points to a highly structured Beringian population that contributed to

the formation of present day Native Americans (Skoglund et al., 2016). These comprise

populations related to East Asians, populations related a Central Siberian population, and

populations with ancestry related to present day Australo-Melanesians and Andamanese

Islanders (Skoglund and Reich, 2016). The existence of this highly structured Beringian

population was further confirmed by a recent study of one ancient genome from the Up-

ward Sun River in Alaska dated to about 11,500 ya (Moreno-Mayar et al., 2018). The first

mtDNA genetic data from two individuals from the same site (only one individual was

analyzed by Moreno-Mayar et al. (2018)) showed that the two different mitochondrial lin-

eages were not typical of the modern people inhabiting this region (Tackney et al., 2015).

The authors hypothesised that this population might represent the descendants of an an-

cient Benringian population, but were not able to test this hypothesis without autosomal

data. Moreno-Mayar et al. (2018) showed that this individual is basal to all ancient and

modern Native Americans and therefore represents an ancient Beringian population
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Figure 1.4: Major human migrations across the world inferred through ge-
nomic data. Migration routes to the Americas as described in the text that are highly
accepted are represented in solid lines and more controversial in dashed lines. Abbrevi-
ations: CA, Central Anatolia; FC, Fertile Crescent; IP, Iberian Peninsula; PCS, Pontic-
Caspian steppe. From Nielsen et al. (2017).

1.3.2 Genetic history of admixed Latin Americans

The genetic history of current admixed Latin American populations stems mainly from

the encounter of Native American, Europeans (mainly from the Iberian Peninsula) and

Western Africans. Estimates of the total size of the Native American populations at the

time of the arrival of first European “conquistadores” vary between 10 to 100 million,

but most place it around 40 million (Sanchez-Albornoz, 1974; Thornton, 1987; Denevan,

1992). Although definite estimates are not currently available for the sizes of different

Native American populations, it is likely that they varied greatly across the continent re-

flecting the highly heterogenous mode of subsistance and social organization that ranged

from densely populated urban areas (such as the Inca or Aztec empires) to scarcely pop-

ulated regions occupied mainly by hunter-gatherers (such as the Amazons and parts of

Patagonia and of North America) (Bellwood et al., 2007) (Figure 1.5). The European

colonization that was set in motion after Columbus’s arrival in America was mainly of

Spanish and Portuguese origin and was only later followed by other European nations

such as the British and French, and to a lesser extent the Dutch. It has been estimated

that during the colonial period up until the 19th century, approximately half a million

Spanish and half a million Portuguese migrated to the Americas. This migration was

predomenantly characterized by males, which comprised up to 80% of the total migration.

The total number of British, French and Dutch immigrants that arrived in their respective

American colonies is though to have been smaller and estimated to be around 1 million.

In contrast to the Iberian migration, they also included a considerable number of families.

The trans-Atlantic slave trade that caused the introduction of Africans into the Americas

is thought to have been mainly prompted by the strong decline of the indigenous Native
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American populations (Curtin, 1969; Thomas, 1997). It has been estimated that up to 90%

of the indigenous population perished after the arrival of the first Europeans, with highest

decline in areas with small Native American population densities such as the Antilles and

parts of North America. The number of Africans introduced to the Americas is thought

to have been around 10 million, with great heterogeneity among the different colonies

(Curtin, 1969) (Figure 1.6). Highest numbers of Africans are thought to have arrived in

Brazil (42%), followed by the British (25%), the Spanish (15%), and the French colonies

(14%). After the independence of the majority of American countries, the abolition of the

slave trade stopped the massive African flow, but there was still a continued migration of

over 100 million individuals from several European countries, mainly to the US. Several

million of Europeans also settled in former Ibero-American colonies, particularly in South

American countries such as Chile, Argentina, Uruguay, and Brazil (Baily and Miguez,

2003; Kent, 2016). The majority of these were of Spanish and Portuguese origin, followed

by Italians and Germans. In addition to Europeans, vast number of migrants from Asian

countries also migrated to the American continent, with the vast majority of them settling

in the US, although non-negligible numbers of Japanese and Chinese migrants also settled

in Brazil and Peru, respectively (Baily and Miguez, 2003).

The encounter of Native Americans with Europeans and Africans throughout the con-

tinent lead to extensive admixture. Early mtDNA and Y-chromosome studies in Latin

America showed a contrasting pattern where most of the paternal ancestry could be traced

back to Europeans, whereas the maternal ancestry was mainly of Native American or

African origin (Bedoya et al., 2006; Carvajal-Carmona et al., 2000, 2003; Wang et al.,

2008) (Figure 1.7). This result points to a strong sex-bias gene flow that involved mainly

men of European origin and Native American or African women, consistent with the docu-

mented historical records. Following the results using uni-parental markers, genome-wide

analysis also identified an enrichment of Native American or African ancestry in the X-

chromosome in comparison with the autosomes, consistent with a gene flow sex-bias (Wang

et al., 2008) (Figure 1.7). These more recent studies based on high-density genome-wide

data also showed the extensive variation in Native American, European and African ances-

try between as well as within countries throughout Latin America (Figure 1.8). Thus, far

from being a genetically homogenous population, Latin Americans have extensive popula-

tion structure, with individual admixture estimates frequently ranging from 0 to 100% of

the three main continental ancestries. Estimates of the time since admixture also illustrate

this complex and varying admixture process in Latin America. For example, analysis of

populations from the Caribbean populations estimated an admixture event approximately

16 generations ago (ga) (i.e. about 500 years considering 30 years per generation) for the

island populations, and about 13 ga for the continental populations (i.e. about 400 years

considering 30 years per generation), consistent with historical records (Moreno-Estrada

et al., 2013). Other genetic analysis in Latin Americans populations, also demonstrated

extensive gene-flow for longer periods of time (Bedoya et al., 2006), or multiple gene-flow

events (Kehdy et al., 2015; Homburger et al., 2015; Chacon-Duque et al., 2018).

In addition to estimating the varying ancestral proportions of Native American, Eu-
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Figure 1.5: Estimated size of the Native American population at the time of
Columbus’s first landing on the Americas. From Adhikari et al. (2017).

ropean or African ancestry, high-density SNP genome-wide data and better approaches

that leverages the correlation between SNPs (i.e. use of haplotypes instead to independent

SNPs) have permitted the inference of fine-scale population structure (i.e. sub-continental

ancestry), producing novel results. For instance, Moreno-Estrada et al. (2014) showed that

the Native American component in individuals from the south east of Mexico has highest

genetic affinity to the Maya, whereas in individuals from central Mexico the highest genetic

affinity is to the Nahua. Similarly, Homburger et al. (2015) explored the sub-continental

population structure in five Latin American countries (Colombia, Ecuador, Peru, Chile

and Argentina) and found a strong gradient of Native American ancestry that was asso-

ciated with the geographical location of local indigenous populations. Furthermore, their

analysis of the European ancestry showed that while most of the European ancestry is

from the Iberian Peninsula, many individuals showed highest affinity to Italy, especially

those in Argentina. Additionally, small levels of East Asian ancestry in the Peruvian sam-

ples were detected that had not been reported previously. In Brazil, a similar analysis of

various populations throughout the country showed that, for example, the African com-

ponent has highest genetic affinity to Western African populations (Kehdy et al., 2015).
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Figure 1.6: Estimated number of African slaves transported to the American
continent. From Adhikari et al. (2017).

Finally, a recent analysis of the CANDELA cohort (Section 1.8), coupled with a novel

haplotype-based method, permitted the detection of further sub-continental ancestry pat-

terns (Chacon-Duque et al., 2018). Similar to other studies, pre-Columbian Native Amer-

ican genetic structure was associated to the local indigenous populations. However, the

authors also detected a Sephardic ancestry component across Latin America, that they hy-

pothesised steamed mainly from the clandestine colonial migration of Christian converts

of non-European origin, known as Conversos. Estimates of Sephardic ancestry present

in Latin American individuals were higher than those present in the sample of modern

Spanish individuals, which suggested the migration of individuals with higher levels of

that ancestry to the New World (Chacon-Duque et al., 2018). Interestingly, this period

coincides with the known expulsion of Jews from Spanish territory. Although this migra-

tion must have been clandestine, as migration to the colonies was forbidden to Conversos,

historical records have documented that a low number of individuals did arrive to the

Americas. This result not only supports these records, but also suggests that this was

substantially more prevalent that previously thought (Chacon-Duque et al., 2018). Al-

together, these observations emphasize the high level of fine-scale population structure

present across Latin America that is just starting to be explored and understand with
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Figure 1.7: Proportion of African, European and Native American ancestry
estimated with mtDNA, Y-chromosome, X-chromosome and autosomal data
in thirteen Latin American populations. Native American (and African ancestry)
is higher in the mt-DNA. Conversely, European ancestry is higher in the Y-chromosome.
This pattern is consistent with a sex-bias admixture process involving mainly European
men and Native American or African women. Consistent with this pattern the amount
of Native American and African ancestry is higher in the X-chromosome and lower in the
autosomes. From Adhikari et al. (2017). Adapted from Wang et al. 2008

more comprehensive sampling efforts and more sophisticated genomic approaches.

Figure 1.8: Proportion of African, European and Native American ancestry
from samples from countries and dependencies across the American continent.
There is a great variation of continental ancestries between different population throughout
the Americas. From Adhikari et al. (2017).
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1.4 Recent human adaptation

In the next section I describe past efforts of detecting adaptive events conducted exclusively

in Native Americans and on admixed Latin Americans. The review of this literature will

serve as a basis for the analysis on Native Americans conducted in Chapter 3 and on

admixed Latin Americans conducted in Chapter 4.

1.4.1 Previous studies on detecting selection in Native Americans

Compared to other human populations, there are currently fewer studies that have ex-

plored signals of natural selection in Native Americans (Fan et al., 2016). An exception,

are the populations of the Andean altiplano, which have been the focus of extensive re-

search to understand the biological basis for high altitude adaptation (Beall et al., 1997;

Bigham et al., 2009, 2010; Zhou et al., 2013a; Bigham et al., 2014; Eichstaedt et al.,

2014; Foll et al., 2014; Eichstaedt et al., 2015a; Valverde et al., 2015; Fehren-Schmitz and

Georges, 2016; Bigham, 2016; Crawford et al., 2017a). One of the genetic pathways that

have been extensively implicated is the Hypoxia Inducible Factor (HIF) a regulator in-

volved in the activation of genes responsible for cellular hipoxia, although other non-HIF

candidate genes have also been reported in several Andean populations (Bigham et al.,

2009, 2010; Zhou et al., 2013a; Eichstaedt et al., 2014, 2015a; Crawford et al., 2017a).

Other candidate gene loci in Andean populations have also been linked to growth and

birth outcomes (Bigham et al. 2014) and oxygen saturation (Bigham et al., 2014). A

study using whole genome sequencing (WGS) data has also revealed that genes related to

erythropoiesis and cancer appear to be associated with chronic mountain sickness (Zhou

et al., 2013a). A recent study, using WGS data from of an Aymara Andean population

has also found among the strongest genes showing evidence for selection genes not related

to the HIF pathways (Crawford et al., 2017a). Although all these recent advances have

produced interesting candidate genes, there is still a need to link the candidate genomic

loci to specific phenotypes, and to further characterize the functional effect of these vari-

ants.

Another interesting case results from the higher prevalence of metabolic and obesity

related traits (including Type 2 Diabetes) observed in Native Americans and admixed

Latin Americans (Mulligan et al., 2004; Cossrow and Falkner, 2004; Aguilar Salinas et al.,

2007). Early studies suggested that this suite of metabolic phenotypes arose as an adap-

tation for more efficient food storage utilization in post-Beringia environments, commonly

known as the “thrifty genotype hypothesis” (Neel, 1962). Interestingly, a study conducted

in over 4,000 Native American individuals from distinct populations examined the lev-

els of signatures of selection in a common variant in the ABCA1 (ATP-binding cassette

transporter A1) gene that has been associated to low high-density lipoprotein cholesterol

(HDL-C) (Villarreal-Molina et al., 2008). They found that this region showed strong sig-

nals of adaptations based on haplotype-based and allele-frequency differentiation methods

(Acuña-Alonzo et al., 2010).
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In another study conducted in more than 53 indigenous human populations including

Native American individuals, Pickrell et al. (2009) found that among the most differen-

tiated regions between Mexican Mayas and Siberians (used as a proxy for the ancestor

of modern Native Americans) was a gene highly expressed in lymphoblasts (DPP3 ) and

a cluster of interleukin receptors. Another recent study in Native American populations

from San Antonio de los Cobres in Argentina provided the first evidence for an adaptive

region related to arsenic-rich environments (Schlebusch et al., 2015). The authors found

a potentially protective regulatory variant at a gene involved in arsenic methylation; this

gene was likely to be under selection based on haplotype-based and allele-frequency differ-

entiation statistics (Schlebusch et al., 2015). In two Native American populations living in

the Amazonian tropical forest Amorim et al. (2015) found signals of positive selection in

genes related to lipid metabolism, and the immune system as well as body development.

Another recent study aimed to find signals of adaptation shared by Native American pop-

ulations explored the genomes of more than 44 Native American populations living across

the American continent and found strong evidence of adaptation in the fatty acid desat-

urases (FADS) gene cluster (Amorim et al., 2017). Interestingly, the same region was

previously found to be under strong selection in Greenlandic Inuit populations (Fumagalli

et al., 2015) and therefore the authors suggested that this adaptation probably arose due to

a single adaptive event most likely in Beringia, before the expansions of the first American

into the continent. It has recently been proposed that the Native Americans populations

living in Beringia during this time probably experienced strong selection in the FADS

genes cluster and in the ectodysplasin A receptor (EDAR) gene, because of the advantage

these variants conferred in transmitting nutrients from mother to infant through breast

milk under conditions of extremely low solar radiation exposure levels (Hlusko et al., 2018).

Finally, studies based on ancient DNA on Native American populations, although

scarce, have also confirmed and revealed interesting adaptive candidate loci. A recent

candidate gene study on known loci related to adaptation to high altitude in Andean

populations on more than 100 ancient samples found that a gradual allele frequency shift

across their samples time frame between 8,500 to 560 BP could be explained by invoking

natural selection compared to random genetic drift (Fehren-Schmitz and Georges, 2016).

Similarly, a study based on whole-genome exome data conducted in ancient and modern

individuals from the Northwest cost of North America, dating from before and after the

European conquest, identified strong signals of positive selection on the human leuco-

cyte antigen (HLA) gene HLA-DQA1 (Lindo et al., 2016). The authors concluded that

the signals observed were consistent with the European-borne epidemics of the 1800s in

the Northwest Coast region. Interestingly, this result is in line with a recent study that

found evidence from Salmonella enterica in ancient samples from southern Mexico (V̊agene

et al., 2018). The authors proposed this finding could represent a strong candidate for

the cause of population decline after the Spanish conquest that occurred in Meso America.
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1.4.2 Previous studies on detecting selection in admixed Latin Ameri-

cans

The early scans of selection post-admixture in admixed populations were usually based

on a small number of genetic markers (Workman et al., 1963; Reed, 1969). With the

advent of better local ancestry inference algorithms and high-density SNP data it is now

possible to more accurately infer ancestry along the genome. In this context local ances-

try simply refers to the ancestral origin for a particular genomic region in an individual’s

chromosome. In the local ancestry paradigm (Falush et al., 2003; Patterson et al., 2004;

Tang et al., 2006; Sankararaman et al., 2008; Price et al., 2009; Baran et al., 2012; Maples

et al., 2013; Guan, 2014) one can imagine each individual’s genome as partitioned into

chromosomal segments, each with a specific ancestral origin. The goal here is to define

the segment boundaries and assign a particular ancestry to each genomic region. This is

different to the global ancestry paradigm (Pritchard et al., 2000; Tang et al., 2005; Alexan-

der et al., 2009; Lawson et al., 2012). The first genomic scan of selection post-admixture

in an admixed Latin American population was conducted by Tang et al. (2007) in a

small sample of Puerto Ricans. Using a novel local ancestry inference software, Tang et

al. (2007) were able to infer regions of the genome that significantly deviated from the

genome-wide ancestry average — a hallmark of selection post-admixture. The rationale

is illustrated in Figure 1.9 and is closely related to an association mapping technique

called admixture mapping (Winkler et al., 2010). Under evolutionary neutrality it is ex-

pected that the mean local ancestry at a particular genomic region (averaged across all

individuals) should follow the genome-wide ancestry average. However, the local ancestry

proportion at a genomic region can deviate from the expectation for a number of rea-

sons: i) sampling error in the ancestral reference or admixed population, ii) genetic drift

and iii) selection. A significantly strong deviation is usually suggested as being caused

by some form of selection. Tang et al. (2007) reported three genomic regions showing

strong evidence of recent selection post-admixture including the human leukocyte antigen

(HLA) region, which harbours various genes with a known function in immune response,

including resistance and susceptibility to a broad range of infectious diseases (Hill, 1998,

2001). Given that African ancestry was enriched at this region, the authors suggested

that certain African alleles could have conferred a selective advantage to certain infectious

diseases most likely brought by Europeans. Other recent studies have since then inde-

pendently replicated the adaptive signal at the HLA region in admixed Latin American

populations such as Mexico (Zhou et al., 2016; Deng et al., 2016), Colombia (Rishishwar

et al., 2015; Deng et al., 2016), Argentina (Deng et al., 2016), and Costa Rica (Deng et al.,

2016). Interestingly, other genome-wide scans in Mexico (Basu et al., 2008) and Brazil

(Ettinger et al., 2009) however did not replicate this signal, although this could have been

due to the small sample size and/or low number of loci used in these studies.

It has also been cautioned, however, that many of these signals of selection might

have been artifacts due to wrongly assigned ancestries caused by unmodeled long range

admixture LD and innaccurate populations used as reference populations (Price et al.,

2007) Additionally, it is also important to consider the number of independent tests when
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Figure 1.9: Schematic of signal of selection post-admixture. Chromosomes from
an admixed populations are a mixture of ancestry segments depicted here with blue,
orange and red colors. Under neutrality the proportion of an ancestry at a locus should be
similar to the genome-wide population average. However, under selection the proportion
of that ancestry will deviate from the genome-wide average producing a deviation or an
enrichment signal. From Rishishwar et al. (2015).

performing a genome-wide scan of selection. In this case, the number of independent test

will not be the number of genetic markers employed, but the number of ancestral genomic

regions across the genome. These, will be determined by the evolutionary history of the

admixed population, specifically by the time since the admixture event, as younger ad-

mixed populations will have longer admixture-LD along the genomes than older admixed

populations.

1.5 Human pigmentation variation

Human pigmentation variation in skin, eye, and hair represents one of the most striking

aspect of human variation. The distribution of pigmentation traits shows a remarkable

variation between geographic regions (Figure 1.10) that stands in sharp contrast to other

phenotypic traits and variation at the genomic level (Relethford, 2002). For example,

Relethford (2002) estimated that ∼88% of the total variation in skin pigmentation can

be explained by differences between major geographical regions. The estimated variation

at the genomic level (depending on the genomic marker used) is usually between 10-15%

and that of other traits such as craniometric differences is around 13% (Lewontin, 1972;

Tishkoff and Kidd, 2004), two examples that highlight the atypical pattern of pigmentation

phenotypes considering the recent origin of modern humans and its expansion through-

out the world. The molecular, genetic, and evolutionary basis of this variation has been
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subject to extensive research by a variety of researchers in distinct fields across the life

sciences (Jablonski, 2008, 2012) and it is still of great interest today (Martin et al., 2017b;

Wollstein et al., 2017; Rawofi et al., 2017; Crawford et al., 2017b; Mathieson et al., 2018;

Brace et al., 2018; Hysi et al., 2018). In this section I will briefly describe the biological

basis of human pigmentation variation, followed by its evolutionary history and the main

genetic variants affecting its variability.

Figure 1.10: Skin pigmentation in world-wide human populations. The variation
of human skin pigmentation shows great differences between major geographical regions.
This map is based on the work from the Italian geographer Biasutti. From Parra (2007).

1.5.1 The biology of human pigmentation

The color of human skin, eye and hair is largely determined by the melanin pigment

(Barsh, 2003; Parra, 2007; Sturm, 2009). Other chromophores such as hemoglobin also

affect skin color, although with only a minor role (Parra, 2007; Sturm, 2009). Melanin is

produced within melanocytes, which are located in the basal layer of the epidermis, iris,

and hair bulb, and are also present in the inner ear, vaginal epithelium, meninges, bones

and heart. Within melanocytes, lysosome-like organelles called melanosomes synthesise

melanin. There are two major types of melanin: eumelanin and pheomelanin. The key

steps in melanin synthesis involve using the primary substrate tyrosine to form a key inter-

mediary molecule dopaquinone. In the abscence of the amino acid cysteine, dopaquinone

gives rise to the dark-brown eumelanin pigment, whereas in the presence of cysteine,

dopamine gives rise to the red-yellow pheomelanin (Bolognia and Orlow, 2003; Meredith

and Sarna, 2006) (Figure 1.11A). The regulation and distribution of melanin synthesis also

differs between skin, eye and hair. In the skin, melanosomes located within the basal layer

of epidermis are transferred to the surrounding keratinocytes, which then migrate to the

upper layer of the epidermis (Rees, 2003). Similarly, in the hair, melanosomes located in

the hair bulb are transferred to keratinocytes that will migrate to the hair shaft (Slomin-
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ski et al., 2005). In contrast to skin and hair, however, melanosomes present in the iris

do not migrate (Sturm and Frudakis, 2004). Although melanocytes can vary in different

parts of the body (Whiteman et al., 1999), the number or density of melanocytes does

not seem to affect differences between lighter and darkly pigmented individuals. Rather,

the main drivers of variation are the type (i.e. the ratio of eumelanin to pheomelanin),

the amount of melanin, as well as the shape and distribution of melanosomes (Parra,

2007; Sturm, 2009). Darkly pigmented skin has more melanin, is enriched in eumelanin

and the melanosomes are larger and distributed as single units (Szabó et al., 1969; Alaluf

et al., 2002). Lightly pigmented skin, on the other hand has a higher amounts of pheome-

lanin, and the melanosomes tend to be less pigmented, smaller and packaged into groups

(Szabó et al., 1969; Alaluf et al., 2002) (Figure 1.11). Darker hair has also the high-

est eumelanin-to-pheomelanin ratio compared to lighter hair (Rees, 2003). Darker irises

have larger amounts of melanin and high numbers of melanosomes, whereas lighter eyes

have low melanin content and a lower number of melanosomes (Sturm and Frudakis, 2004).

Figure 1.11: Melanin synthesis and histology of different skin types. A.
Schematic of melanin synthesis. The key step in melanin synthesis involves the primary
substrate tyrosine to form a key intermediary molecule dopaquinone. In the absence of the
aminoacid cysteine, dopaquinone gives rise to the dark-brown eumelanin pigment, whereas
in the presence of cysteine, dopamine gives rise to the red-yellow pheomelanin pigment.
B. Variation in melanosome structure and distribution among populations with varying
degrees of skin pigmentation. A single skin melanosome is partitioned into three sections
showing the stages of melanosome formation until the migration into the surroundings ker-
atynocytes. In heavily pigmented individuals (African), the melanosomes remain as sin-
gular pigmented units distributed across the keratynocytes, whereas in lightly pigmented
people (Asians and Europeans), the melanosomes cluster in membrane bound organelles.
From Barsh (2003).

1.5.2 The evolution of human pigmentation

One of the most distinguishable features of humans compared to the other great apes is

an almost complete absence of fur (Held, 2010). Because skin is not preserved in the fossil

record, research regarding loss of body hair has relied on comparative anatomical, paleo-

ecological, climatological and physiological evidence. This process has been proposed as

an adaptive process for enhanced thermoregulation during high physical activity, for ex-

ample by allowing the gain in sweat glands to increase heat dissipation (Bramble and
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Lieberman, 2004; Lieberman and Bramble, 2007). However, this event was also accom-

panied by a disadvantage due to reduced protection from solar radiation. Comparative

studies have revealed that many human accelerated regions (HARs) include genes related

to keratinization and epidermal differentiation, in line with this hypothesis (Waterson

et al., 2005; Toulza et al., 2007; Gautam et al., 2014). As our closest relatives such as

chimpanzees have lighter skin pigmentation under their fur, the ancestral skin color of the

human lineage has been assumed to be of a similar lighter shade (Jablonski, 2008, 2012)).

Strikingly, the timing of darkly pigmented skin from genomic studies of different human

populations at the human melanocortin 1 receptor (MC1R) gene was placed around the

time of body hair loss (Rogers et al., 2004), consistent with strong selective pressure at

this period of human evolution. Additionally, the absence of functional variants on this

gene seem to have been maintained by strong purifying selection (Harding et al., 2000b),

further supporting the reproductive advantage for darkly pigmented skin in strong solar

radiation environments (Jablonski and Chaplin, 2017).

The strongest hypothesis for the evolution and maintenance of dark skin pigmentation

in zones with high solar radiation exposure is due to the lower photodegradation of cuta-

neous and systemic folate. Folate deficiencies have been associated with greater neonatal

malformations such as neural tube defect and also with lower male fertility (Fleming and

Copp, 1998; Lucock, 2000; Tamura and Picciano, 2006) and thus have a direct association

to reproductive success, that other competing hypotheses lack (Jablonski and Chaplin,

2017). For example, the hypothesis that the evolution of darkly pigmented skin was as an

adaptation against sunburns and skin cancer (Greaves, 2014) does not provide an associ-

ation with a reduced reproductive success, as skin cancer rarely causes death during peak

reproductive age (Jablonski and Chaplin, 2014).

As modern humans moved out of Africa, they moved from a zone with constant high

amounts of solar radiation to zones with variable amounts of solar radiation. This change

in environment relaxed the selective pressure for darkly pigmented skin, but was accom-

panied by other selective pressures. Currently, the most popular hypothesis for prevail-

ing lighter human skin color variation in northern latitudes is the vitamin D hypothesis

(Loomis, 1967; Murray, 1934; Jablonski and Chaplin, 2000). Vitamin D production is de-

termined by the amount of solar radiation received on the skin and its deficiency can result

in rickets and an increase of miscarriages (Robins, 2009). Consistent with this hypothesis,

the distribution of skin color variation is highly correlated to solar radiation (r = 0.93)

(Figure 1.12). Patterns of solar radiation are relevant because only some wavelengths of

solar radiation (those between 270 and 300 nm) can activate vitamin D production. At

higher latitudes, average solar radiation along those wavelengths is low and highly variable,

and darker skin thus has a fitness disadvantage (Murray, 1934; Loomis, 1967; Jablonski

and Chaplin, 2000). Vitamin D production still occurs in darkly pigmented people living

at these higher latitudes, but low doses of solar radiation do not facilitate its production

to physiologically adequate levels (Jablonski and Chaplin, 2017). There is ample evidence

that people with darkly pigmented skin and living north or south of the 43◦ do not receive
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sufficient amounts of solar radiation to satisfy the required levels of vitamin D (Jablonski

and Chaplin, 2018). The end result would have been a strong selective pressure for re-

duced skin pigmentation at higher latitudes in order to allow for a long term habitation

in these regions.

Figure 1.12: Map of predicted skin pigmentation. Top panel. Predicted hu-
man skin pigmentation. Bottom panel. Solar radiation (Autumnal UV). Skin pigmenta-
tion can be almost fully modelled as an effect of solar radiation (r = 0.93; p < 0.0001).
Reproduced from http://sites.psu.edu/ninajablonski/educational-resources-2/. Based on
Jablonski and Chaplin (2000).

Therefore, according to these two hypotheses skin pigmentation variation would have

been determined by two opposing forces: one selecting for darkly pigmented skin in zones

with high and constant amounts of solar radiation, and one for reduced skin pigmentation

at higher latitudes. Skin pigmentation at intermediate latitudes on the other hand seems

to have evolved a greater capacity for tanning (Nan et al., 2009; Quillen, 2015). The
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indigenous inhabitants of the Americas with lighter skin pigmentation than other popu-

lations living at these latitudes seem to be explained by the fact that these populations

have inhabited these regions for shorter periods of time (at least < 15,000 to 20,000 ya)

and to better cultural adaptation such as the making of better shelters (Jablonski, 2012).

It is also important to note that these hypotheses do not necessarily posit invariant skin

pigmentation for populations living at zones with extreme amount of solar radiation such

as Africans populations living in the tropics. African individuals, although showing on

average a greater amount of skin pigmentation, have a much greater variation in skin

pigmentation compared to other non-African populations (Martin et al., 2017b; Crawford

et al., 2017b). For example, Martin et al. (2017) reported that Ghanians have a variance

that is ten times higher than Irish. This result can still be explained by the vitamin-D

folate hypothesis, and is consistent with a “melanin threshold” model (Chaplin, 2004;

Norton et al., 2006) where selection for dark skin pigmentation would act until a photo-

protective minimum is reached (in order to protect extensive folate degradation) above

which populations can vary (Lasisi and Shriver, 2018).

The role of sexual selection in skin pigmentation, which was initially proposed as early

as 1871 by Charles Darwin (Darwin, 1871) and later revived by others (Frost, 2006, 2007),

seems not to have sufficient explanatory power to explain the global pattern of human skin

pigmentation variation and its strong correlation with latitude (Jablonski and Chaplin,

2000, 2017). However, it seems that sexual selection could have had a role in increasing

the degree of sexual dimorphism (Jablonski, 2012; Jablonski and Chaplin, 2017). Lighter

skin pigmentation in females in many populations has been observed and it may possibly

be related to the greater vitamin D requirements during pregnancy (Jablonski, 2008, 2012).

In contrast to skin pigmentation, where solar radiation might have imposed a strong

selective pressure, variation in hair and eye color is more difficult to explain. There is not

an observable correlation between hair or eye color and solar radiation or latitude (Liu

et al., 2013b). In addition, variation in hair color is consistent across populations with the

exception of Europe. Similarly, variation in eye color is mainly present in Europe (and

its neighbour regions such as North Africa and parts of the Middle East) and in Central

and South East Asia (Westgate et al., 2013; Norton et al., 2016). Although dark hair

is considered to be more protective from solar radiation compared to lighter hair color,

this protection seems to be minor given the low coverage of hair in human bodies (Held,

2010). The back of the iris is also darkly pigmented for all types of iris color and therefore

provides a similar protection for all type of eye color (Liu et al., 2013b). Blue eye color,

however, has been associated with greater intraocular light scattering and higher levels of

melatonin supression, which might have been adaptive in higher latitudes (Higuchi et al.,

2007). Additionally, experimental data on color-based mate choice preference in fish has

been shown (Amundsen and Forsgren, 2001) and similarly in humans, blue-eyed woman

have been shown to be preferred by blue-eye men (Laeng et al., 2007). This result has

been interpreted as a preference because of the phenotypically-based assurance of pater-

nity (Laeng et al., 2007), suggesting mate-choice preference could have played a role in the
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evolution of eye color variation (Jablonski and Chaplin, 2017). However, given the highly

pleiotropic effect of many genetic variants contributing to skin, hair and eye pigmenta-

tion, it is also possible that strong selection for skin pigmentation phenotypes has affected

variation and hair and eye color simply as a by-product (Wilde et al., 2014; Jablonski and

Chaplin, 2017).

More recently, studies of ancient genomes, mainly from populations from Western

Eurasia have also started to contribute to the understanding of the evolutionary history

of pigmentation phenotypes (Wilde et al., 2014; Mathieson et al., 2015, 2018). Ancient

DNA samples from the Eneolithic (ca. 6,500 to 5,000 ya) and Bronze Age (ca. 5,000 to

4,000 ya) showed a strong support for strong positive selection for lighter pigmentation

phenotypes operating over the last 5,000 years (Wilde et al., 2014). Similarly, ancient

genomes from Anatolian Neolithic farmers in Western Eurasia (6,500 to 300 ya) showed

that selection for lighter skin pigmentation was operating since at least 6,500 to 4,000 ya

(Mathieson et al., 2015). These results, which point to selection for lighter skin pigmen-

tation only after the Neolithic revolution, might have resulted from a switch from more

rich and varied diet of hunter-gatherer populations (including vitamin D rich foods) to the

poorer diet of early farmers (Richards et al., 2005; Mathieson et al., 2015). This would

also be in line with the observation that hunter-gatherers had mainly darkly pigmented

skin (and distinctive lighter eye color) (Olalde et al., 2014; Mathieson et al., 2015, 2018).

Additionally, the light (particularly blue) eye color genetic variant has also been observed

to have a higher frequency in Scandinavian and Latvian hunter-gatherers compared to

hunter-gatherers from Ukraine and the border of present-day Romania and Serbia, which

could indicate the possibility of long-term balancing selection (Mathieson et al., 2018).

1.5.3 The genetic determinants of human pigmentation

Human skin, hair and eye pigmentation are complex polygenic traits. Unlike other com-

plex polygenic traits, such as height, where hundreds of genetic variants with small genetic

effects are involved (Lango Allen et al., 2010), pigmentation phenotypes are affected by ge-

netic variants that can explain large proportions of the variation as well as large differences

between major geographical regions. Other genes have more subtle effects and many are

still yet to be discovered, especially those affecting pigmentation variation outside Western

Europe (Martin et al., 2017b; Crawford et al., 2017b), but the vast majority of genetic

variants discovered so far have been characterized as mainly affecting the melanin synthe-

sis pathway.

The melanocortin 1 receptor (MC1R) is one of the most exhaustibly studied pigmen-

tation genes (Valverde et al., 1995; Schiöth et al., 1996; Bastiaens et al., 2001; Ha et al.,

2003; Naysmith et al., 2004; Rees, 2000, 2004; Mundy et al., 2003; Ringholm et al., 2004;

Sánchez-Más et al., 2005; Garćıa-Borrón et al., 2005; D’Orazio et al., 2006; Haitina et al.,

2007; Savage et al., 2008; Yamaguchi et al., 2012; Jarrett et al., 2015; Hernando et al.,

2016; Liu et al., 2016). Its role in normal pigmentation variation in humans was discovered
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through an association with fair skin and red hair Valverde et al. (1995). MC1R has also

been associated with freckles, but unlike other pigmentation genes it has not been found

to affect eye color (Bastiaens et al., 2001). MC1R has also been recently associated with

different types of skin cancer such as melanoma (Ransohoff et al., 2017) and basal cell

carcinoma (Chahal et al., 2016), as well as skin aging (Law et al., 2017) and to vitiligo

(Jin et al., 2016). MC1R is a member of the family of protein-coupled receptors and

has an important role in switching between the synthesis of eumelanin and pheomelanin.

Binding of the melanocyte-stimulating hormone (α-MSH) results in eumelanin production

whereas binding of its antagonist protein (ASIP) results in pheomelanin synthesis. MC1R

also shows an interesting pattern of variation across worldwide populations. Many non-

synonymous variants have been found to be nearly absent in several African populations,

especially in sub Saharan populations, but many polymorphisms have been found outside

Africa (Rana et al., 1999; Harding et al., 2000a; Makova and Norton, 2005; Nakayama

et al., 2006). Interestingly, a low number of polymorphisms have also been found to be

present in other darkly skin pigmented populations, such as Papuans and South Asians

(Rana et al., 1999; Harding et al., 2000a; Nakayama et al., 2006). This pattern of diver-

sity on MC1R has been interpreted by strong purifying selection acting at this locus in

zones with high incidence of solar radiation in order to remove variants that lead to less

darkly pigmented pheomelanin (Rana et al., 1999; Harding et al., 2000a; Parra, 2007). In

European populations many different genetic variants have been associated with lighter

skin and hair pigmentation Duffy et al. (2004); Sulem et al. (2007); Eriksson et al. (2010);

Lin et al. (2015); Liu et al. (2015), as well as tanning response (Nan et al., 2009). Addi-

tionally, many variants at this gene have also been shown to lead to a partial or complete

loss of function, which could explain the largely recessive inheritance of red hair color

(Ringholm et al., 2004). In Asia, different non-synonymous variants, which show higher

derived allele frequencies in East Asians and are almost absent in Europeans, seem to

have contributed to the independent evolution for lighter skin pigmentation in Western

and Eastern Eurasians (Nakayama et al., 2006; Yamaguchi et al., 2012). A related protein

to MC1R, is the agouti signalling protein ASIP that antagonizes the interaction between

MC1R and α −MSH resulting in pheomelanin production. SNPs at ASIP has been as-

sociated with skin and hair color in European and European admixed populations such as

Latin Americans Eriksson et al. (2010); Liu et al. (2015); Sulem et al. (2007); Hernandez-

Pacheco et al. (2017). ASIP has also been associated to pigmentation-related phenotypes

such as freckles (Sulem et al., 2008), tanning (Zhang et al., 2013a), melanoma (Ransohoff

et al., 2017), cutaneous squamous cell carcinoma (Chahal et al., 2016) and vitiligo (Jin

et al., 2016).

The so called “golden” gene (SLC24A5 ) was first shown to be associated with the

golden color of the zebrafish as well as with skin pigmentation in admixed African Ameri-

cans and African Caribbeans (Lamason et al., 2005). SLC24A5 encodes a Na+/Ca2+/K+

exchanger 5 (NCKX5) protein, an intracellular membrane protein that regulates the cal-

cium concentration in the melanosome (Lamason et al., 2005). A non-synonymous poly-

morphism (SNP rs1426654) was found to have the greatest allele frequency differentiation
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in populations from Europe compared to East Asians and Africans and thus suggested to

be have undergone strong selection in Europeans (Lamason et al., 2005). In addition, the

derived allele at this same SNP was found to be significantly associated with lower skin

pigmentation and to account for between 28 to 38% of differences in skin pigmentation

between European and African ancestry (Lamason et al., 2005). Interestingly, in South

Asian populations rs1426654 was also strongly suggested as being the casual variant for re-

duced skin pigmentation (Stokowski et al., 2007). In addition, Norton et al (2007) studied

the global distribution of this variant and found that higher frequency of the derived allele

was mainly found in Europe and its neighbour populations including North Africa, the

Middle East and Pakistan, and almost absent everywhere else. SNP rs1426654 has also

been associated with lighter skin pigmentation in African (Martin et al., 2017b; Crawford

et al., 2017b) and African admixed populations (Beleza et al., 2013a; Lloyd-Jones et al.,

2017). In admixed Latin American populations rs1426654 has also been recently asso-

ciated to skin (Hernandez-Pacheco et al., 2017) and hair pigmentation (Adhikari et al.,

2016a).

The solute carrier family 45 member 2 (SLC45A2 ) is another transporter protein that

mediates melanin synthesis. SLC45A2 is a melanocyte differentiation antigen highly ex-

pressed in melanoma cell lines (Harada et al., 2001). Mutations at this gene are known to

cause oculocutaneous albinism type 4 (OCA4) (Newton et al., 2001; Rundshagen et al.,

2004; Inagaki et al., 2004) and have also been recently associated to melanoma (Ransohoff

et al., 2017)) and squamous cell carcinoma (Asgari et al., 2016). Non-synonymous poly-

morphisms in this gene show a remarkable pattern of frequency across the world. Alleles

associated with lighter pigmentation are mainly restricted to European and its neighbour

populations and nearly absent everywhere else. Interestingly, the derived allele at SNP

rs16891982 is associated with darker skin and eye color in European (Graf et al., 2005,

2007; Han et al., 2008) and South Asian populations (Stokowski et al., 2007). Similarly,

the derived allele has been associated to darker hair and eye color (Eriksson et al., 2010).

In Latin American admixed populations rs16891982 has also been recently associated with

skin and hair pigmentation (Adhikari et al., 2016a; Hernandez-Pacheco et al., 2017).

The HECT and RLD domain containing the E3 ubiquitin protein ligase 2 (HERC2 ) and

oculocutaneous albinism 2 (OCA2 ) genes are two neighbouring genes that are of greatest

importance determining skin and eye pigmentation. The OCA2 gene (also known as the P

gene) encodes the P-protein that assists tyrosinase trafficking and processing, melanoso-

mal pH and glutathionine metabolism (Park et al., 2015). It has also been recently been

shown to assist in anion transport, increasing chloride conduction from the melanosome

(Bellono et al., 2014). The key determinant SNP (rs12913832) located 21kb upstream

of OCA2 and within intron 86 of HERC2 shows the strongest association for lighter eye

color with the derived allele in European populations (Sulem et al., 2007; Sturm, 2009; Liu

et al., 2010; Eriksson et al., 2010; Candille et al., 2012; Zhang et al., 2013a; Wollstein et al.,

2017). SNP rs12913832 has also been associated with lighter skin and hair pigmentation

in European populations (Han et al., 2008; Zhang et al., 2013a; Liu et al., 2015). HERC2

54



Chapter 1. Introduction

rs12913832 SNP was shown experimentally to function as an enhancer regulating OCA2

transcription by modulating chromatin folding (Visser et al., 2012). Specifically, molecular

approaches showed that HERC2 rs12913832 communicates with the OCA2 promoter via

a long-range chromatin loop that is modulated by several transcription factors, including

the Melanogenesis Associated Transcription Factor (MITF) (Visser et al., 2012). SNPs

at OCA2 independently of HERC2 have also shown strong association with eye color.

Particularly, when adjusting for HERC2 rs12913832, OCA2 rs1800407 SNP still showed a

significant association with eye color whereas the effect of other OCA2 SNPs was reduced

(Liu et al., 2009). Studies of interaction between HERC2 and OCA2 have also been re-

ported to affect eye pigmentation (Branicki et al., 2009; Liu et al., 2010; Pośpiech et al.,

2011), consistent with the regulatory action of HERC2 over OCA2. In Asian populations

two SNPs rs74653330 and rs1800414 have been associated to lighter skin pigmentation

Edwards et al. (2010); Abe et al. (2013) and are found at very low frequency outside of

Asia, consistent with the convergent evolution of lighter skin pigmentation in East Asia

(Murray et al., 2015). Interestingly, the distribution of these SNPs within Asia has shown

to be quite different within eastern Eurasia. While the derived allele of rs1800414 has high

frequencies in the broad East-Asian region, the derived allele of rs74653330 is primarily

restricted to northern East Asia (Murray et al., 2015). This result suggest that these

variants may have been selected independently in different regions of East Asia (Murray

et al., 2015). Recently, SNP rs1800414 has also been associated with lighter eye pigmen-

tation and iris heterochromia in East Asian populations (Rawofi et al., 2017). Outside of

Eurasia, SNP rs1800404 has also been associated with skin pigmentation in African popu-

lations (Crawford et al., 2017b) and with hair pigmentation in admixed Latin Americans

(Adhikari et al., 2016a).

The TYR gene encodes the Tyrosinase enzyme, a key enzyme for controlling melanin

synthesis (Kwon et al., 1987). As described above (Figure 1.11), TYR catalyses the first

step required for melanin synthesis: the oxidation of tyrosine and dopa to form the in-

termediate molecule dopaquinone, which is used as substrate to synthesise the two main

pigments eumelanin and pheomelanin. TYR was firstly associated with oculocutaneous

albinism type 1 (OCA1) in European populations (Rooryck et al., 2008). Common SNPs

have also been associated with skin, eye and hair pigmentation variation in different Eu-

ropean populations Sulem et al. (2007); Liu et al. (2010); Eriksson et al. (2010). The

strongest associated SNPs (rs1042602 and rs1126809) have high derived allele frequency

mainly in European populations and are largely absent in other continental populations,

similar to the geographical pattern observed for other well established pigmentation genes

as described above. In African American and African Caribbean populations highest as-

sociation was found at SNP rs1042602 with skin pigmentation (Shriver et al., 2003). In

admixed European-African admixed populations, SNP rs10831496 was associated with

skin pigmentation (Beleza et al., 2013a; Lloyd-Jones et al., 2017) and in admixed popula-

tions from Latin America another SNP rs598952 showed highest association with hair color

(Adhikari et al., 2016a). Other SNPs at TYR have also been associated with pigmentation-

related phenotypes such as presence of freckles (Sulem et al., 2007), sensitivity to sunburns
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(Zhang et al., 2013a), as well as to melanoma (Barrett et al., 2011; Ransohoff et al., 2017),

cutaneous cell carcinoma (Chahal et al., 2016) and vitiligo Jin et al. (2016).

The TYRP1 gene also encodes a key enzyme in the melanin synthesis pathway (Del Mar-

mol and Beermann, 1996). Mutations at TYRP1 lead to a complete loss of function that

results in oculocutaneous albinism type 3 (OCA3) or rufous albinism (Rooryck et al., 2006;

Chiang et al., 2009). One of the functions of TYRP1 is to stabilise Tyrosinase and form

heterodimeric complexes within the melanosome (Kobayashi et al., 1998; Kobayashi and

Hearing, 2007). SNP rs1408799 shows association with eye pigmentation (Sulem et al.,

2008; Zhang et al., 2013a). A suggestive association has also been found with hair pig-

mentation in European populations (Sulem et al., 2008). A notable example of convergent

lighter hair color evolution at this gene was reported in Solomon Islanders populations:

a non-synonymous SNP rs387907171 at TYRP1 was found to be associated with blonde

hair and the associated causal variant was not present in any other population outside

Oceania (Kenny et al., 2012). Recently, another SNP in TYRP1 has been associated to

skin pigmentation in African populations (Martin et al., 2017b).

The interferon regulatory factor 4 is a protein encoded by the IRF4 gene. A single

SNP (rs12203592) has been associated with eye and hair pigmentation in European popu-

lations (Han et al., 2008; Eriksson et al., 2010; Zhang et al., 2013a; Liu et al., 2015). The

associated variant at SNP rs12203592 is only found in Europe (and European admixed

populations) and shows a north-south gradient across the continent (Moskvina et al.,

2010; Walsh et al., 2011). SNP rs12203592 has also been associated with hair color in

admixed Latin American populations (Adhikari et al., 2016a). IRF4 SNPs have also been

associated with pigmentation-related phenotypes such as freckling (Eriksson et al., 2010),

tanning (Zhang et al., 2013), skin aging Law et al. (2017), sensitivity to sunburns (Zhang

et al., 2013) and different types of skin cancer (Zhang et al., 2013, Chahal et al., 2016;

Asgari et al., 2016). Recently, SNP rs12203592 has also been associated with the first time

to hair greying (Adhikari et al., 2016a).

A newly recognized skin pigmentation gene is the major facilitator superfamily do-

main containing 12 (MFSD12 ) gene, which encodes a lysosomal transmembrane solute

transporter (Crawford et al., 2017b). Functional experiments on model organisms showed

that MFSD12 significantly affected pigmentation. In knocked-out zebrafish and mice,

red-yellow pigments were lost and the mice’s light brown fur turned grey. Two derived

alleles, only found in African populations, were associated with darker skin pigmentation

(Crawford et al., 2017b). The observation that the derived variants in African populations

confer darker skin color support the hypothesis that darker pigmentation is probably a

derived trait that originated in the human lineage after humans lost most of their protec-

tive body hair, as discussed above (Section 1.5.2).

Other genes with more subtle effects compared to the ones listed above have also been

shown to be associated with different pigmentation phenotypes. These genes include:
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KITLG , DCT, TPCN2, LYST, and BCN2. KITLG encodes the c-KIT ligand that affects

melanocyte proliferation and activates keratinocytes (Cario-André et al., 2006). Mutations

at KITLG have been associated with familial progressive hyper- and hypo-pigmentation

(Wang et al., 2009; Amyere et al., 2011). Common polymorphisms have also been associ-

ated with eye and hair pigmentation in European populations (Sulem et al., 2007; Zhang

et al., 2013)and skin pigmentation in African Americans (Miller et al., 2007). DCT is a key

enzyme involved in the formation of eumelanin that is highly and exclusively expressed in

the skin. Particular DCT haplotypes have been associated with eye pigmentation in Eu-

ropeans (Frudakis et al., 2003), but the effect of particular SNPs is still uncertain (Ainger

et al., 2017). Variants at the two pore segment channel 2 TPCN2 gene have been associ-

ated with hair pigmentation in European populations (Sulem et al. 2008; Eriksson et al.,

2010) and with cutaneous malignant melanoma (Law et al., 2015). LYST is a vesicular

transport protein that affects lysosome-related organelles, including melanosomes (Jack-

son, 1997). In melanocytes, LYST may be regulated by MITF transcription factor (Hoek

et al., 2008). LYST has been associated only with human eye pigmentation in European

populations (Liu et al., 2010). BCN2 encodes a conserved zinc finger protein expressed in

many tissues with a potential regulatory function in keratinocytes (Romano et al., 2004).

BCN2 has been associated with skin pigmentation in Europeans and East Asians (Visser

et al., 2014; Jacobs et al., 2015).

1.6 Finding genetic associations

1.6.1 Genome Wide Association Study (GWAS) — rationale and scien-

tific basis

A Genome Wide Association Study (GWAS) is an experimental design that seeks to

discover variants associated to traits in a sample from a population. GWAS typically

focus on SNPs, although there have been many reported associations between traits and

other genetic variants, such as copy-number variants (CNVs) (Zhang et al., 2009), and the

underlying methodological aspects remain essentially the same. Current GWAS rely and

exploit the linkage disequilibrium (LD) patterns that exist along the genomes of human

populations that arise due to a variety of factors including: i) mutation, ii) genetic drift,

iii) recombination, and iv) natural selection. The statistical power to detect an association

between a genetic variant and a trait will depend on several assumptions, such as: the

underlying genetic architecture of the phenotype (i.e. the joint distribution of the allele

frequency and effect sizes), the sample size, and the LD between the genotyped genetic

variant and the true causal variant (Chapman et al., 2003; Spencer et al., 2009; Visscher

et al., 2017). Given that the LD structure of the human genome is complicated and

known to vary between different human populations, this effect cannot be easily captured

and statistical power is recommended to be calculated mainly via simulation (Spencer

et al., 2009). Nonetheless, there is an analytical formula to assess the power to detect the

association of a genetic variant and a trait using the non-centrality parameter (NCP) (i.e.

the value of the statistical test under the alternative hypothesis) assuming Hardy-Weinberg
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equilibrium (HWE) at the genetic locus (Visscher et al., 2017):

NCP = N2p(1− p)β2r2 (1.1)

where N is the sample size, p is the allele frequency of the tested variant, β2 is the

effect size of tested variant in standard deviation units, and r2 the LD between the geno-

typed variant and the casual variant. Although in reality estimating the power in a specific

GWAS study might be more complicated (Spencer et al. 2009) this equation does provide

useful intuition. For example, when the effect size β is large, the LD between the geno-

typed variant and the true casual variant r2 may only need to be weak, whereas if the

effect size β is small, the LD between the genotyped and true casual variant may need to

be strong. A further complication arises due to the fact that LD measured in this way can

only be large if the allele frequencies at both loci are similar (Wray, 2005). For example,

a variant that is rare (<0.01 in frequency in the population) will be in low LD with a

common variant (>0.05 in frequency in the population) even if they are both present on

the same haplotype block (Wray, 2005). This is specially relevant in studies based on SNP

arrays, given that most of the genotyping platform capture common SNPs. This problem

can be reduced by relying on imputation, which can be accurate even for variants with

frequencies < 0.0001 (McCarthy et al., 2016), or by using whole genome sequence (WGS)

data, in which r2 will be equal to 1. The major remaining limitation will be the frequency

of the tested variant; where in the case for very rare variants, even with strong effect sizes,

required samples sizes can turn out be prohibitively large, even in the order of millions of

individuals (Visscher et al. 2017).

In a GWAS, the desired reason for a significant result is a causal association between

the genetic variant and the phenotype of interest. However, the result of this associa-

tion can be confounded due to unaccounted population stratification, such as population

structure, admixture and/or cryptic relatedness (Astle et al., 2009). Neglecting or not

accounting for population stratification can therefore lead to false positives or spurious

associations (Balding, 2006). The problem of spurious association due to unaccounted

population structure is illustrated in Figure 1.13. In an hypothetical example of a case-

control study, the study population consists of two distinct subpopulations that differ

genetically. In this example, the blue allele of a bi-allelic SNP (represented here as circles)

has a higher frequency in subpopulation 1. Conducting an association on this structured

sampled population will likely produce a spurious (i.e. false positive) association with

the phenotype under study. The association at this SNP will occur simply because the

cases are more frequent in subpopulation 1, and not because the genetic variant is truly

associated with the disease. Because GWAS are conducted with over thousands of mark-

ers, failing to account for the underlying population structure can lead to hundreds of

genetic variants being falsely associated to the phenotype. A similar problem will arise

in an admixed population, because the cases and controls are composed of individuals

with different degrees of ancestries, and the cases (or controls) are overrepresented with

individuals with higher proportion of a particular ancestry. In this case, genetic variants

that have highly divergent allele frequencies between the ancestral populations (i.e. the
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populations that mixed to gave rise to the admixed population) will be falsly associated

to the phenotype. This will be extremely important in populations where the disease

prevalence differs between individuals of different ancestries, such as in Latin America,

where Native American ancestry is associated with higher prevalence of different diseases

partly due to its association to lower socio-economic status (Ruiz-Linares et al. 2014).

Accounting for population structure is therefore of utmost importance in GWAS. I discuss

three of the most common methods applied to account for this problem in the Methods

section (Section 2.7.2)

Figure 1.13: Spurious association due to unaccounted population structure.
In an hypothetical example of a case-control study, the study population consist of two
distinct subpopulations that differ genetically. Here, the blue allele of a bi-allelic SNP
(represented here as circles) has a higher frequency in subpopulation 1. Conducting an
association on this structured sampled population will likely produce a spurious (i.e. false
positive) association with the phenotype under study. From Balding (2006).

Despite some of these limitations, GWAS have been proven to be remarkably success-

ful. As of February 2018 the National Human Genome Research Institute (NHGRI) and

European Bioinformatics Institute (EBI) GWAS catalogue (Welter et al., 2013) currently

reports ∼ 10, 000 robust associations (defined as having P-value < 5× 10−8) with one or

more complex phenotypes. Figure 1.14 shows a cumulative GWAS SNP-trait discovery

timeline from the year 2008 up to 2016 showing many robustly associated genetic variants

for a variety of traits. Additionally, for particular phenotypes GWAS have been shown

to be highly replicable within and between populations (Torgerson et al., 2011; Marigorta

and Navarro, 2013). One of the early observations arising from GWAS studies was the

minor contribution of the most significant genetic variants on the phenotypic variability.

This observation was refered to as the mystery of the “missing heritability” (Manolio et al.,

2009), but has largely been resolved by showing that many genetic variants with genetic

effect sizes below the genome-wide significant association threshold account for most of the

“missing heritability”, as exemplified in the study of height (Yang et al., 2012; Shi et al.,
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2016). Nonetheless, it has also been shown that many rare genetic variants with larger

genetic effect sizes can also explain a large proportion of phenotypic variability (Marouli

et al., 2017), especially in diseases with strong impact of fitness (Simons et al., 2014).

Figure 1.14: GWAS SNP-trait discovery time line. From Visscher et al. (2017).

Another important observation was that many complex phenotypic traits are mainly

driven by genetic associations falling outside gene regions (Pickrell, 2014; Li et al., 2016),

which is in sharp contrast to Mendelian diseases (Botstein and Risch, 2003). Many of

these genetic associations have been shown to fall within active chromatin genomic re-

gions, such as promoters and enhancers (Maurano et al., 2012; Farh et al., 2015; Roadmap

Epigenomics Consortium et al., 2015). These two observation, lead Boyle et al. (2017) to

readdress the view on complex phenotypic traits, changing from a polygenic to an om-

nigenic model (Figure 1.15). The authors stated that for a given complex phenotype,

only a limited number of genes (termed “core genes”) will have a direct and consequently

non-trivial genetic effect on the phenotype. However, given that cell regulatory networks

(including transcriptional networks, post-translational modifications, protein-protein in-

teractions, and intercellular signaling, etc.) are highly interconnected, the small-world

property suggest that most genes will only be a few nodes away from the core genes and

therefore will also have a non-trivial genetic effect on the phenotype. Further, since the

core genes are hugely outnumbered by the peripheral genes, a much larger fraction of the

total genetic variability will therefore be explained by genetic variants at these non-core

genes. It has repeatedly been found that the same genetic variants can be associated with

different phenotypic traits. This had been already noticed in the study of many Mendelian

disorders where specific mutations caused a specific syndrome or disease associated with

various phenotypes (Hamosh et al., 2005). Furthermore, analytical methods that esti-

mate the correlation between different GWAS have also provided additional evidence for

this widespread pleiotropy (Solovieff et al., 2013; Bulik-Sullivan et al., 2015a). Finally,

although GWAS have provided huge insights in understanding the links between genetic

variations and specific phenotypes including disease, there is still a gap of the translation
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between GWAS results into medicine. For example, there is currently only 8 examples

between GWAS discoveries and drug targets, with the best examples probably arising only

from three particular examples: type 2 diabetes, auto-immune diseases, and schizophrenia

(Visscher et al., 2017). Large biobank efforts such as the UK BioBank (Sudlow et al.,

2015) and others will undoubtedly provide many novel insights that will arise not only

due to the increasing size of the cohorts, but also due to better analytical methods, better

phenotype sampling and a move towards long-term studies including repeated measures

over time. It is therefore of the utmost importance to expand this technology and efforts

to all different populations throughout the world (Need and Goldstein, 2009; Bustamante

et al., 2011; Popejoy and Fullerton, 2016).

Figure 1.15: The omnigenic model for complex phenotypic traits. Left panel.
A gene-network showing genes associated with complex phenotypic trait. Under the om-
nigenic model. only a small number of core genes (e.g. those possessing genetic variants
showing genome-wide significant; black stars) will have a direct effect on the phenotypic
trait. However, due to the small world property of networks, the majority of genes will be
only a few steps aways (nodes) from the core genes and thus, will have a non-zero effect on
the phenotypic trait. Right panel. Cumulative distribution of the heritability explained
for a complex phenotypic traits as a function of the degree of separation from core genes.
Since core genes only represent a small proportion of all genes, the vast majority of the
heritability can be explained by the effect of many genes indirectly related to the cores
genes. From Boyle et al. (2017).

1.7 Genomics is failing on diversity

As described in the previous section, over the last years a remarkable range of discoveries

have been prompted by the use of GWAS methodology. Nonetheless, the vast majority of

GWAS conducted to date have been exclusively performed in European descendant popu-

lation and have therefore failed to explore the vast majority of genomic diversity worldwide

and its potential for novel discovery (Need and Goldstein, 2009; Bustamante et al., 2011;

Popejoy and Fullerton, 2016). Need & Goldstein (2009) reported that > 96% of par-
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ticipants in GWAS were of European ancestry (Figure 1.16). These findings prompted

the response of some members of the scientific community to advocate for more inclusive

studies. Bustamante et al. (2011) warned:

“Geneticists worldwide must investigate a much broader ensemble of populations, in-

cluding racial and ethnic minorities. If we do not, a biased picture will emerge of which

variants are important, and genomic medicine will largely benefit a privileged few.”

A recent reanalysis of the number of participants from different ethnicities showed

that while the percentages of participants of non-European ancestry had increased from

4% to 19%, approximately 14% of this was due to the inclusion of participants of Asian

ancestry, while the inclusion of participants from other ancestries had barely changed or

even decreased (Figure 1.16) (Popejoy and Fullerton, 2016). For example, the number

of Latin American individuals in GWAS up to 2016 currently constitutes 0.5% and that

of indigenous Natives only 0.05%, compared to 0.06% and 0.06% in 2009. If this bias

continues, research efforts will still fail to capture most of the genetic diversity of human

populations and thus fail to discover associations that could benefit the populations which

currently have the greatest health disparities (Bustamante et al., 2011). Although some of

the persistent bias may be due to logistical and systemic biases, e.g. due to the costs related

to the recruiting of volunteers in order to have enough statistical power, or the logistics of

conducting studies in countries with low resources (Bustamante et al., 2011; Popejoy and

Fullerton, 2016), conducting GWAS in these settings can still provide to be cost-effective

and/or produce novel biological insights. For example, the aforementioned discovery of a

novel variant in Inuit populations associated to height and cholesterol levels (Fumagalli et

al., 2015), showed that this variant had also an effect on height in European populations,

a conclusion that would have otherwise been missed given the extremely low frequency of

this variant in Europeans. In a more recent example, Crawford et al. (2017) discovered a

novel variant associated with skin pigmentation in a sample of ∼ 2,000 individuals, even

though skin pigmentation has been extensively researched in European populations with

bigger sample sizes. Finally, a number of big consortia such as the Population Architecture

using Genomics and Epidemiology (PAGE) Consortium have started to use novel strategies

for multi-ethnic analysis, including studying admixed populations, and have shown strong

evidence of the genetic effect-size heterogeneity across ancestries for previously published

associations (Wojcik et al., 2017). These results highlight the need for novel and larger

genomic efforts in diverse human populations.

1.8 Consortium for the Analysis of the Diversity and Evo-

lution of Latin America - CANDELA

The Consortium for the Analysis of the Diversity and Evolution of Latin America (CAN-

DELA) is a research effort focused on the evolutionary history and phenotypic variation

of Latin America (Ruiz-Linares et al., 2014). The sample consists of over 6,000 Latin

American individuals from five different locations: Porto Alegre in Brazil, Arica in Chile,
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Figure 1.16: Proportions of volunteers of different ancestries in Genome-Wide
Association Studies (GWAS) in 2009 and 2016.. During the past years, the pro-
portion of volunteers used in GWAS from participants who are not of European ancestry
has increased fivefold. However, ∼ 78% of this growth is due to an increase in the number
of volunteers from Asian ancestry. From Popejoy and Fullerton (2016).
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Medellin in Colombia, Mexico City in Mexico and Lima in Peru (Figure 1.17). Adult

individuals of both sexes were recruited from these sites with the condition that their four

grandparents had been born in the same country. Information on a range of variables was

obtained for each volunteer, including phenotypic data, socio-economic information and

self-perception of ancestry. Genomic data was obtained using the Illumina Omni express

bead chip consisting of 730,525 SNPs. An extensive description of this sample can be

found in Ruiz-Linares et al. (2014) and Adhikari et al. (2016a).

Figure 1.17: Birthplace locations of CANDELA volunteers. Adapted from Ruiz-
Linares et al. (2014).

1.9 Summary

In this introduction I have described what is currently known about the evolutionary de-

mographic and adaptive history of modern populations in the Americas, including Native

Americans and admixed Latin Americans. I have also presented the evolutionary history

of pigmentation variation in humans, and the known genetic determinant that influence
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this trait. I have also described the rationale and scientific basis of GWAS and highlighted

the importance of including underrepresented human populations in genetic association

studies. In short, this thesis aims to shed further light on the adaptive history of Native

Americans and admixed Latin American populations and discover novel variants associ-

ated to pigmentation phenotypes trough a GWAS in a large sample of admixed Latin

Americans.

In chapter 2 I outline some of the commonly used methods currently applied to genome-

wide autosomal data in order to detect natural selection. I describe a variety of methods

including those that aim to discover signals of selection at a particular locus or a biological

pathway. I also describe selection methods that rely on external data, such as environ-

mental variables in order to get insight into the selective pressures driving the adaptive

process. Additionally, I also present the methodological aspects of a GWAS and various

commonly applied methods to account for population structure, a feature that is present

in the CANDELA sample. Some of these methods are referred to in subsequent chapters

within this thesis.

In chapter 3 I conduct a genome-wide scan of selection in Native Americans. I pro-

vide important candidate genes that were likely beneficial in the ancestral population of

Native Americans in Beringia, prior to their entry into the Americas. I show that some

of the selected variants are shared with several Arctic populations and found at high fre-

quency, consistent with a shared adaptive event. In this chapter I also report candidate

genes in local Native American populations by leveraging the predominant Native Amer-

ican ancestry present in admixed Latin Americans from the CANDELA cohort. I report

candidate regions of selection impacting on immune-related genes that probably resulted

from an adaptation to local pathogens in the Americas or perhaps to diseases brought

after European contact.

In chapter 4 I conduct a genome-wide scan of selection in five admixed Latin American

population from the CANDELA sample. I do this via a novel statistical model that detects

signals of selection post-admixture. I report a strong signal of selection post-admixture in

the Peruvian sample at a genomic region associated with glucose metabolism. In addition,

I also report a significant increase of African ancestry at the MHC in the Chilean and

Mexican populations. The genes at MHC involved in infectious disease resistance might

have been selected due to diseases brought from the Old World after European contact.

In chapter 5 I report novel variants associated to skin and eye pigmentation in admixed

Latin Americans. The results highlight the complex genetic architecture of pigmentation

in Latin Americans, as evidenced by independent variants at different gene regions as

well as multiple independent variants within gene regions. The novel associations using

quantitative eye color variables show the greater statistical power obtained by using sen-

sible color models. I also report a novel associated variant in the MFSD12 gene, which

represents a potential East Asian and Native American specific skin pigmentation locus.

In chapter 6 I provide evidence that the novel variant in MFSD12 played a role in

shaping lighter skin pigmentation in East Asians but not in Europeans. I further show

that the distribution of the derived allele frequency of this variant seemed to have been

affected by the solar radiation intensity in East Asia, supporting the role of natural selec-
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tion in shaping skin pigmentation variation and the convergent evolution of lighter skin

pigmentation that occurred in Eurasia.

In the final chapter I discuss and conclude the work presented in this thesis. I end

by describing the possible directions and significance of research in studies of human

population adaptation and genetic association studies.

In each of the above chapters tables and figures are included as part of the chapter.

Where this is not the case, but that additional tables and figures make important contri-

butions to the chapter narrative, they are included in the thesis appendices and referred

to with a letter A to D.
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Methods

2.1 Overview

There is an increasing interest in genomic regions that have been targeted by natural se-

lection. The interest stems from the desire to learn more about evolutionary processes and

from the realization that inferences regarding selection can provide important functional

information. The effect of natural selection can leave distinctive patterns of DNA variation

along the genome and many statistics have been developed to detect these signals. In this

chapter, I review methods commonly applied to detect signals of selection. Methods to

detect selection can be broadly classified between approaches that detect selection at the

macroevolutionary level (i.e. at the species level) and at the microevolutionary level (i.e.

at the population level). I describe methods aimed at detecting instances of selection at

the population level that are based on sequencing and genotype data. I end this chapter

by describing the experimental design of Genome Wide Association Studies (GWASs). In

recent years GWASs have led to a remarkable range of discoveries in human genetics that

have facilitated not only the understanding of the biology of diseases, but also to a bet-

ter understanding of the genetic architecture of complex traits. I present the underlying

methodology in a GWAS by describing the statistical framework with an emphasis on how

to account and correct for population structure.

2.2 SNP-based approaches to detect selection

2.2.1 Allele frequency differentiation based approaches

Allele frequency differentiation methods rely on the principle that allele frequency differ-

ences between populations can arise due to differences in environmental pressures. That

is, if selection is acting on one population, but not the other, then selection on a beneficial

allele will tend to increase the levels of genetic differentiation between populations at that

particular locus.

One of the most common used statistics for population differentiation is Wright’s

fixation index (FST ) (Wright, 1949). FST can be defined in different ways (Bhatia et al.,

2013), with one typical implementation simply comparing the variance of allele frequencies
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within and between populations and usually defined as:

FST =
δ2S
δ2T

(2.1)

FST =
δ2S

p− (1− p)
(2.2)

Where p is the mean frequency of an allele in the total population, δ2S the variance in

allele frequency of the allele between populations (weighted by population size), and δ2T
the variance in the total population. Large values of FST will indicate strong differentia-

tion between populations, e.g. positive selection in one population. Values close to zero

can indicate that the population are genetically homogenous, which could also indicate

balancing or positive selection at both populations. One of the advantages of population

differentiation methods is that they can detect different types of selection, including hard

or soft-sweeps. However, one disadvantage is that FST does not offers directionality so it

is not possible to identify the population which selection has been acting on.

There are different derivatives from FST that address this issue, and in turn improve its

power by analysing more than two populations. The Locus Specific Brach Length (LSBL)

(Shriver et al., 2004) uses pairwise FST measurements between three populations, and is

capable of discerning population specific allele frequency changes. A very similar method

that incorporates data from three populations is the Population Branch Statistic (PBS)

(Yi et al., 2010). It involves converting the FST estimates into branch lengths (T ) via a

log-transformation (Cavalli-Sforza, 1969):

T = −log(1− FST ) (2.3)

Using the above log-transformation has the benefit of obtaining additive distances that

place branches of different magnitudes on the same scale. PBS is then defined as:

PBS =
T TargetControl + T TargetOutgroup − TControlOutgroup

2
(2.4)

where T TargetControl represents the branch length between a target population and a

control population, T TargetOutgroup the branch length between a target population and

an outgroup population, and TControlOutgroup the branch length between the control and

outgroup populations. A PBS value for a target population thus represents an estimate

from the amount of allele frequency change at a locus since the divergence from the other

two populations (Yi et al., 2010) (Figure 2.1). Additionally, because one of the reference

populations used in the analysis can be a population with a very short divergence time,

PBS has greater power to detect incomplete sweeps compared to other classic neutrality

test methods (e.g. Tajima’s D) (Yi et al., 2010). Recently, a modified version of the PBS

statistics termed PBSn1 (Crawford et al., 2017a) has been proposed where a rescaling of

the PBS scores are computed in order to account for saturation (i.e. when FST are high

or low between all populations) avoiding artificially high PBS values.
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Figure 2.1: Schematic representation of the Population Branch Statistic. An
unrooted tree showing the relationship between a Target, Control and Outgroup popu-
lation under neutral evolution. Dotted lines along the branches represent the estimated
branch lengths (T ) between each pair of populations (left panel). An unrooteed tree of
the same three populations showing an instance of positive selection in the Target popula-
tion (right panel). The Population Branch Statistic (PBS) equation estimates the length
of the branch leading to the Target population since the divergence from the Control
and Outgroup population (bottom panel). Adapted from a figure provided by Matteo
Fumagalli.

2.2.2 Haplotype-based approaches

Haplotype-based methods rely on Linkage Disequilibrium (LD) structure along genomes.

Specifically, the genetic diversity at or near a locus under selection is reduced, and nearby

linked SNPs tend to be homozygous (and identical by descent). The reduction in genetic

variation at a locus under selection has been termed genetic hitchhiking (Smith and Haigh,

1974) and different types of statistics that have been developed to exploit this genetic sig-

nature. Most are based on a model of a hard-sweep where a de novo mutation arises in

a particular haplotypic background and quickly rises up in frequency due to selection. A

similar model, termed soft-sweep, occurs when the selected variant was previously segre-

gating in the populations in different haplotypic backgrounds before the selection event.

Depending on the selection intensity, this process can occur at a faster rate than the re-

combination rate leaving a distinct pattern along the genome. One of the earliest methods

developed is the Extended Haplotype Homozygosity (EHH) statistic (Sabeti et al., 2002a).

This statistic measures the probability that two random chromosomal segments with the

same “core” haplotype (i.e. a haplotype with a locus of interest) are homozygous for an

extended interval from this region. Formally, for a sample on n chromosomes, if C denotes

all possible distinct haplotypes at a core locus and C(xi) all possible distinct haplotypes

extending (upstream and downstream) i number of markers from the locus of interest,
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following Szpiech and Hernandez (2014), EHH can be defined as:

EHH(xi) =
∑
h∈C

(
nh
2

)(
n
2

) (2.5)

where nh represents the number of observed haplotypes of type h ∈ C(xi). When a

core haplotype containing an adaptive locus has recently reached or is reaching towards

fixation, EHH(xi) is expected to decay much slower than a core haplotype evolving un-

der neutrality. Thus, to formally assess for selection at a locus a relative EHH (rEHH)

is usually calculated by comparing the EHH at a locus of interest to the EHH of other

haplotypes randomly selected across the genome.

2.2.2.1 Integrated Haplotype Score (iHS)

Building from this same premise, many derivatives of the EHH statistic have also been

developed. The integrated Haplotype Score (iHS) statistic (Voight et al., 2006) computes

the EHH for locus of interest and estimates the area under EHH for the haplotypes carrying

the ancestral (0) and derived alleles (1), separately. Because the areas are integrated

with respect to genetic distances, these estimates are referred to as integrated Haplotype

Homozygosity (iHH) scores. Formally, and following Szpiech and Hernandez (2014), iHH

can be defined as:

iHH =
D∑
i=1

1

2
(EHH(xi−1)+EHH(xi))g(xi−1, xi)+

U∑
i=1

1

2
(EHH(xi−1)+EHH(xi))g(xi−1, xi)

(2.6)

where D is the set of loci downstream of the locus of interest, such that xi ∈ D

denotes the ith closest downstream locus from the locus of interest (xo); U and xi ∈ U are

defined similarly; and g(xi−1, xi) is the genetic distance between two adjacent loci. The

unstandardized iHS is computed as a log-ratio of the ancestral and derived iHH scores:

iHS(unstandardized) = ln (
IHH1

IHH0
) (2.7)

Under this formulation, unstandarized iHS close to zero indicate that the rate of decay

of EHH is the same on the ancestral and derived haplotypes and there is therefore, low

evidence for selection. Large negative values indicate longer than expected haplotypes

carrying the derived allele and positive values indicate the converse, and are indicative of

selection. Because unstandardized iHS can be correlated with allele frequency (e.g. low

frequency variants are expected to be young and reside in longer haplotypes), the final

standardized iHS score (i.e. mean zero and unit standard deviation [SD]) is computed

using frequency bins across the genome. Formally:

iHS =
ln ( IHH1

IHH0
)− Ep[ln ( IHH1

IHH0
)]

SDp[ln ( IHH1
IHH0

)]
(2.8)

where Ep[ln ( IHH1
IHH0

)] and SDp[ln ( IHH1
IHH0

)] is the mean or expected and SD of the iHS(unstandardized)
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at frequency bin p, respectively. Although large negative iHS scores (indicating that the

haplotype carrying the derived allele has swept up in frequency) would suggest selection,

Voight et al. (2006) showed that large positive iHS scores can also arise at nearby SNPs if

the haplotype carrying the ancestral allele has been hitchhiked with the selected variant.

Therefore, it is common to search for high absolute iHS values (i.e. both negative and

positive iHS values) as signals of selection.

2.2.2.2 Number of Segregating Sites by Length (nSL)

The number of Segregating Sites by Length (nSL) statistic (Ferrer-Admetlla et al., 2014)

is another approach to detect long stretches of haplotypes in homozygosity that is highly

related to iHS. The main difference is the use of physical distance instead of genetic map

information. While iHS estimates iHH by using the genetic distance between adjacent

SNPs, nSL measures the estimates based on the number of segregating sites. Because a

genetic map is not required, this statistic is more robust towards recombination and mu-

tation rates (Ferrer-Admetlla et al., 2014). Similar to iHS, the log-ratio of iHH scores at

derived and ancestral haplotypes are computed and standardized in frequency bins across

the genomes to obtain a final standardize nSL score. In contrast to iHS, nSL has been

shown to have greater power to detect sweeps from standing variation (i.e. soft-sweeps)

and incomplete sweeps (Ferrer-Admetlla et al., 2014).

2.2.2.3 Cross Population Extended Haplotype Homozygosity (XP-EHH)

Another haplotype-based method, called the Cross-Population Extended Haplotype Ho-

mozygosity (XP-EHH) statistic (Sabeti et al., 2007), has been developed to compare haplo-

type homozygosity patterns between a target and a reference population. Similarly to iHS,

iHH (based on genetic distance) is calculated for each population separately, and the log

ratio of these values is estimated to obtain an unstandardized XP-EHH score. The unstan-

dardized XP-EHH scores are typically standardized with respective to the genome-wide

distribution of XP-EHH scores. In contrast to iHS and nSL, however, the XP-EHH scores

are directional, and positive values (or negative) are indicative of longer haplotypes in the

target (or reference) populations depending on the formulation of the log-ratio. Due to

the use of a target and reference population, XP-EHH scores have been shown to possess a

higher statistical power to detect selection at SNPs where the frequency has approached or

reached fixation at a site compared to other haplotype-based methods (Sabeti et al., 2007).

One major limitation of haplotype-based methods is the effect of recombination rates

and especially recombination hot-spots on haplotype homozygosity patterns. Although,

some statistics, like nSL, may be more robust to variation in recombination rates, it is still

not clear how a genetic map estimated from one population can be applied to other hu-

man populations (Hinch et al., 2011). Additionally, population genetics theory (Pritchard

et al., 2010) as well as recent empirical data based on genomic scans of selection across dif-

ferent populations (Schrider and Kern, 2016, 2017a) both suggest that soft-sweeps are the
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dominant mode of adaptation in the human genome. Many of the methods describe above,

still lack enough statistical power to detect soft-sweeps, although novel methods with the

specific aim of detecting this pattern have also recently been developed (Garud et al.,

2015). Novel methods, based on powerful machine learning approaches with high power

to detect and differentiate between different type of selective sweeps have also started to

been developed with great promise (Pavlidis et al., 2010; Lin et al., 2011a; Ronen et al.,

2013; Pybus et al., 2015; Schrider and Kern, 2016; Sheehan and Song, 2016a; Flagel et al.,

2018; Sugden et al., 2018).

2.2.3 Time scales for the signatures of selections

Finally, while more powerful methods might be able to better detect and differentiate be-

tween different type of selective events, it is important to consider that the different type

of genomic signatures that these methods aim to detect will persist over varying different

time scales, which will ultimately define their statistical power (Smith and O’Brien, 2005;

Sabeti et al., 2006; Oleksyk et al., 2010). Allele-frequency differentiation approaches (Sec-

tion 2.2.1), rely on the degree of reproductive isolation between populations, which in the

case of human populations, will limit their power to detect events that occurred >75,000

years ago (Smith and O’Brien, 2005; Sabeti et al., 2006). In the case of haplotype-based

approaches (Section 2.2.2), the major limitations is due to the rapid break down of hap-

lotypes over generations. For example, after approximately 30,000 years a chromosome

is estimated to have undergone more than one recombination ever per 100kb, leaving

haplotypic fragments too short to detect for current haplotype-based selection statistics.

2.3 Combining selection signals from many loci

Phenotypic traits that are controlled by two or more genes are called polygenic pheno-

types or polygenic traits (Stranger et al., 2011). When a polygenic trait is undergoing

adaptation, a process called polygenic adaptation, the signature of adaptation tends to be

more diffused and thus, no specific region along the genome shows a strong signature of

selection (Pritchard et al., 2010). The selection process however, affects the distribution

of allele frequency at these loci, thus, producing an adaptive signature across the genome

(Latta, 1998, 2004; Pritchard et al., 2010; Le Corre and Kremer, 2012; Berg and Coop,

2014; Stephan, 2016). Although the majority of selection statistics are not well suited

to capture this type of selection, using the information on specific genes or variants from

different databases such as biological pathways (Daub et al., 2013, 2015; Hsieh et al., 2016;

Polimanti et al., 2016; Daub et al., 2017; Owers et al., 2017; Bergey et al., 2018) or Genome

Wide Association Studies (GWAS) (Turchin et al., 2012; Corona et al., 2013; Fraser, 2013;

Berg and Coop, 2014; Adhikari et al., 2016a; Berg et al., 2017) can produce statistics to

detect this type of selection.

Using information from GWAS, recent studies have tried to detect instances of poly-

genic adaptation by looking for coordinated shifts in the allele frequency distributions of
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different polygenic phenotypes (Turchin et al., 2012; Fraser, 2013; Corona et al., 2013).

Berg and Coop (2014) presented an improvement over these works, by being able to detect

instances of polygenic adaptation using several populations with an arbitrary underlying

population structure. They proposed an excess of variance test that compares the Poly-

genic Risk Scores (PRS) (i.e. the sum of population allele frequencies weighted by effect

size) across populations, to the distribution of PRS based on a null model constructed

using randomly chosen loci which should therefore capture the underlying population his-

tory between populations. The distance of the observed PRS is then compared to the

distribution of the null model to assess the significance of a polygenic adaptive event for a

particular trait (Berg and Coop, 2014). More recently, Racimo et al. (2018a) developed a

method to detect polygenic adaptation in an admixture graph, which is a representation

of the historical splits and admixture events between different populations through time.

Notably, their new method can not only detect which populations have evidence of poly-

genic adaptation, but also where in the history of these populations adaptation occurred.

Other commonly used methods that exploit signals of selection across loci are gene set

enrichment approaches. This type of approach involves testing whether the distribution

of a selection statistic computed across genes from a particular biological category (e.g.

Gene Ontology [GO] (Ashburner et al., 2000) or biological pathways (Kanehisa and Goto,

2000)) statistically differs from the genome-wide expectation. This method differs from

those aimed at detecting signals of polygenic adaptation using GWAS data, in that the

individual selection scores computed at each locus are used only to assign selection scores

to each gene, and no information regarding whether the particular locus is associated

to a phenotype (or its genetic effect on that particular phenotype) is taken into account.

Nonetheless, this information can also be easily incorporated in this kind of approaches, for

example by simply defining a set of genes on the basis of whether they have variants that

have been previously associated to a particular phenotype, as has been done previously in

(Adhikari et al., 2016a) and in this thesis (Section 6.3.3). One of the first methods, termed

set enrichment analysis (GSEA) (Subramanian et al., 2005), simply employs a weighted

Kolmogorov-Smirnov test to assess enrichment of a biological pathway. Building up from

this approach several other variation have also been developed (Subramanian et al., 2007;

Wang et al., 2007a; Holden et al., 2008; Nam et al., 2010; Zhang et al., 2010a; Kofler and

Schlötterer, 2012; Rosenberger et al., 2015; Schmid et al., 2016; Yoon et al., 2018). A

method developed by Daub et al. (2013) computes the sum of a selection statistic asso-

ciated to each gene in a given biological pathway (termed the SUMSTAT score (Tintle

et al., 2009)) and compares it to the SUMSTAT score using a set of random genes. After

correcting for the number of variants used to compute each selection statistic per gene,

a significantly different SUMSTAT score for a given biological pathway can be used as

evidence for polygenic adaptation (Daub et al. 2013; Daub et al. 2016). Other very

similar implementations involve conducting non-parametric tests, such a Mann-Whitney

U test, to compare if the distribution of selection statistics for a given biological pathway

is significantly different to the distribution for all other genes across the genome (Adhikari

et al., 2016a; Hsieh et al., 2016; Owers et al., 2017).
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Because the majority of phenotypic traits are highly polygenic (Falconer, 1960) it is

likely that the majority of selection at these traits will occur due to polygenic adaptation,

rather than by hard selective sweeps (Pritchard et al. 2010). It is therefore expected

that with the increase in number of GWAS and/or better annotation of current genomic

regions, tests for polygenic adaptation will discover many more novel instances of human

adaptation.

2.4 Using environmental data to identify loci underlying lo-

cal adaptation

Comparing allele frequencies between populations that differ in environmental conditions

was one of the earliest methods developed to detect selection, and approaches were usually

based on allele frequency differentiation estimates such as FST measures (Cavalli-Sforza,

1966; Lewontin and Krakauer, 1973; Endler, 1983). Other approaches, although similar

in principle, differed from these early efforts by looking at associations between allele fre-

quencies and environmental variables, in order to identify the environmental pressures (or

a highly correlated variable) driving the selection (Haldane, 1948; Slatkin, 1973; Mullen

and Hoekstra, 2008). Modern implementations include conducting a logistic regression be-

tween the counted allele data and environmental variables (Joost et al., 2007). However,

conducting a standard logistic regression assumes that the allele counts across populations

are independent and thus fails to capture the correlation between populations due to their

shared genetic history. Another method to detect correlations between genetic and envi-

ronmental variables involves conducting a partial Mantel test. Under this approach, the

partial Mantel test is first used to estimate the relationship between allele frequencies and

geographical distances between populations, and then to test for the effect of an environ-

mental variable above and beyond isolation by distance (Nadkarni et al., 2005; Balloux

et al., 2009). Because this approach involves the use of 3 matrices, significance can be

assessed via permutations in which rows and the corresponding columns are shuffled at

random.

A more modern implementation of this principle uses a Bayesian framework to test the

fit of a model with a linear relationship between allele frequencies and an environmental

variable over a null model in which the allele frequencies are dependent on population

structure alone (Coop et al., 2010; Günther and Coop, 2013). Specifically, given a set

of populations a null model is first constructed using a set of unlinked variants to esti-

mate how allele frequencies covary across populations. Sample allele frequencies are then

drawn from a set of underlying population frequencies assumed to be distributed according

to a multivariate normal distribution around a transformed global allele frequency, with

a variance-covariance matrix representing population structure across populations. The

Markov chain Monte Carlo (MCMC) algorithm is then used to sample from the posterior

distribution of the covariance matrix given the ancestral allele frequencies (α) and pop-
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ulation allele frequencies. The alternative model is then constructed to allow the allele

frequency to be dependent on an environmental variable. Specifically, the allele frequency

at a tested locus is allowed to have a deviation from its ancestral allele frequency that is

linearly proportional to the tested environmental variable with a coefficient β. Formally:

P (θ|Ω, α, β) ∼ N(α+ βY, α(1− α)Ω) (2.9)

Where θ is the transformed allele frequency, α is the ancestral allele frequency, Y is the

environmental variable, and Ω is the variance-covariance matrix from a single draw from

the posterior estimated in the null model. A Bayes Factor (BF) is constructed to estimate

the support for the alternative over the null model. This method has greater power com-

pared to other similar methods, mainly because it accounts for population structure (Coop

et al., 2010; Günther and Coop, 2013; De Mita et al., 2013). It has also been applied to

humans producing strong candidate loci thought to be under selection (Hancock et al.,

2008, 2011; Fumagalli et al., 2011; Kita and Fraser, 2016). Other similar methods that

estimate the covariance matrix by explicitly modelling isolation by distance have been

shown to produce considerable gains in computational time (Guillot et al., 2014). Ad-

ditionally, other methods based on a latent factor mixed model that estimates the effect

of population history and environmental correlations simultaneously have also been de-

voloped (Frichot et al., 2013). Finally, models that were originally developed to compare

traits across species accounting for phylogenetic autocorrelation, such as the Phylogenetic

Regression (Grafen, 1989), have also recently been applied to human data by computing

a phylogenetic tree based on genome-wide FST values (Key et al., 2018).

2.5 SNP-based approaches to detect natural selection in ad-

mixed populations

2.5.1 Local ancestry deviations

Under evolutionary neutrality it is expected that the mean local ancestry at a particular

genomic region (averaged across all individuals) should follow the genome-wide ancestry

average. However, the local ancestry proportion at a genomic region can deviate from the

expectation due to sampling error in the ancestral reference or admixed population, genetic

drift and/or selection. A significantly strong deviation is usually suggested as a being

caused by some type of selection. Tang et al. (2007) formally tested this by introducing

a new statistic called delta-ancestry (δmk ). Specifically, for a particular ancestry k at a

genomic locus m, delta ancestry is defined as:

δmk = qmk − qk (2.10)

where qmk is the mean of ancestry k at genomic locus m averaged over all individuals,

and qk is the proportion of ancestry k averaged over all individuals and the entire genome.

In order to assess significance it is straightforward to perform a permutation test (Tang
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et al., 2007) or, under a normal approximation, compute associated P-values using the

corresponding standard deviations at each site (Zhou et al., 2016).

2.6 Inferring the starting time and intensity of selection via

Approximate Bayesian Computation (ABC)

The methods discussed above have been mainly developed to detect genomic regions under

selection. However, another major goal in population genetics in recent years has been to

infer the parameters underlying this adaptive process, such as the time when a selected

variant arose, the time when the variant started to be selected and the selection coefficient

(Beaumont et al., 2002; Wegmann et al., 2010; Peter et al., 2012). One of the method-

ologies developed to estimate these parameters in complex demographic models is the

Approximate Bayesian Computation (ABC) framework (Beaumont et al., 2002; Fagundes

et al., 2007; Blum and François, 2010; Csilléry et al., 2010; Wegmann et al., 2010). ABC is

a rejection sampling algorithm used to estimate the posterior distribution of a parameter

(θ) under a given model, commonly used when the likelihood cannot be computed analyt-

ically. Formally, in the ABC inference framework, a parameter value θi is sampled from

a prior distribution to simulate a dataset yi, for i = 1...n, where n denotes the number

of simulations. A set of summary statistics S(yi) is then computed from the simulated

data and compared to the set of summary statistics obtained from the actual data S(y0).

If these set of summary statistics are sufficient (i.e capture all the information present in

the simulated data), this step is exact (Peter et al., 2012). However, in reality, computed

summary statistics do not capture the full information present in the data and comparing

the set of simulated summary statistics S(yi) to the observed S(y0) results in an approxi-

mation step (Peter et al., 2012). The condition of an exact match is relaxed and therefore,

some distance measure (δ) (such as the absolute Euclidean distance) is considered, i.e.

|δ(S(yi), S(y0)| < ε (2.11)

and only simulations with some arbitrarily, but conservative small distance ε are ac-

cepted. The accepted θi represent a sample from an approximation of the posterior dis-

tribution. Point estimates and intervals, such as the Maximum A Posteriori (MAP) and

Bayesian Credible Intervals (BCI) can be computed. It is also common to perform some

post-sampling adjustment to correct for the approximation step, e.g. by using regression

techniques (Blum and François, 2010).

While computing a large number of summary statistics can indeed increase the amount

of information extracted from the data, an important phenomenon that can arise is the

so-called “curse of dimensionality” (Wegmann et al., 2010). When there is a large sum-

mary statistics space, it becomes extremely difficult to obtain simulations that will closely

match the observed data, which in turn affects the threshold used in the rejection step.

Additionally, the larger the number of summary statistics, the larger the noise that is

basically included in the posterior estimation (Joyce and Marjoram, 2008). To solve this
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problem, Wegmann et al. (2010) proposed to transform the summary statistics via Partial

Least Squares (PLS) (Boulesteix and Strimmer, 2006), to obtain a number of orthogonal

linear combinations of the summary statistics that best explain the variance in the model

parameter space.

2.7 Genome Wide Association Studies (GWAS)

2.7.1 Single marker associations

Univariate and multivariate regression analysis using generalized linear models (GLM)

are a suitable framework to detect genetic associations between a genotyped variant and a

phenotype of interest (Stram, 2016). Linear or logistic regression analysis of a continuous

(i.e. a quantitative phenotype) or a discrete (i.e. case-control status) thus represent natural

statistical tools to test for associations (Balding, 2006). In this section I will consider the

case where the data used for the genetic association include genotype and phenotype data

of a sample of n individuals. yi denotes the phenotype value (i.e. the dependent variable)

of the ith individual. This value can be either continuous (in the case of a quantitative

variable) or discrete with values of 0 or 1 (in the case of a case-control study). I will

only consider a bi-allelic SNP marker with alleles A and a as the independent variable.

This variable is usually presented as an indicator variable, where gi can be either 0, 1 or

2, depending on the number of copies of the allele A present in individual i. Additional

covariates (e.g. age and/or sex) will be represented as xij with j = 1, ..., r. Formally,

when the phenotype y is a continuous variable, the standard regression analysis can be

presented as:

yi = β0 + β1gi + β2xi1 + ...+ ε (2.12)

where ε is the noise variable, i.e. the part of the phenotype variable y that is not

explained by the SNPs or the additional covariates (e.g. environmental effects). When the

y variable is discrete, a logistic regression analysis can be applied by the transformation

logit(π) = log(π/(1− π)), where πi is the disease risk of the ith individual. Other statis-

tical tests can also be performed besides GLM (e.g. see Balding (2006) and Stram (2016)).

2.7.2 Correcting for population structure

2.7.2.1 Genomic control

In a GWAS, the desired reason for a significant result is a causal association between the

genetic variant and the phenotype of interest. However, the result of this association can

be confounded due to unaccounted population stratification (Astle et al., 2009). Neglect-

ing or not accounting for population stratification can therefore lead to false positives or

spurious associations (Balding, 2006). In this section I describe three methods that ac-

count for population stratification commonly used in GWAS.
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In Genomic Control (GC) (Devlin and Roeder, 1999), the Armitage trend statistic is

computed at each SNP, and compared to its expectation under the null hypothesis, which

follows a χ2
1 distribution. An inflation factor λ is calculated by dividing the median of the

Armitage trend statistic computed at each SNP to the median of the χ2
1. If there is no

population structure, the distribution of the Armitage trend statistic computed at each

SNP should follow the null and thus λ should be ≈ 1. If there is population structure, the

distribution will deviate from χ2
1 due to an inflated variance and thus λ is expected to be

> 1. Devlin and Roeder (1999) proposed to account for population structure, in the case

λ > 1.12, by dividing the test statistic used for the association by this λ inflation factor to

cancel the population structure effect. However, it has been shown that GC can be either

too conservative or too anticonservative in different settings (Marchini et al., 2004).

2.7.2.2 Regression-based adjustment for leading Principal Components

Principal Component Analysis (PCA) probably represents the most widely used method

to identify and account for population structure in GWAS (Zhang et al., 2003; Patterson

et al., 2006). This method involves applying PCA to the genotype data to infer continuous

axes of variation to reduce this data to a number of small dimensions that explain as much

variability as possible. Here, the idea is that the genotypes of the individuals should not be

correlated in the absence of population structure. Since the PCs are linear combinations

of the original genotypes, plotting the location of these individuals along the major axes

of variation should not show any clustering. Formally, if Z denotes a matrix with n rows

corresponding to the number of individuals and l corresponding to the number of SNPs,

standardized to have zero mean and a unit variance, with ith, lth elements, for the ith

individual and lth SNP, i.e.

Zil =
gli − p̂l√
p̂l(1− p̂l)

(2.13)

where p̂l is the estimated population allele frequency at SNP l, an estimated kinship

matrix K̂ can be obtained by:

K̂ =
1

l
ZZT (2.14)

PCA is then performed by obtaining the eigendecomposition of the kinship matrix

K̂. In practice, the l SNPs must be in the orders of thousands and should not be in

strong LD between each other (i.e. should be independent). The top PCs are then used

as covariates, for example in a linear regression analysis, to account for the underlying

population structure:

yi = β0 + β1gi + β2xi1 + β3PCi1 + β3PCi2 + ...+ ε (2.15)
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2.7.2.3 Mixed Linear Models

Recently, linear mixed models (LMMs) have been proposed as a powerful approach to de-

tect genetic association in a sample with related individuals. Following the same notation

as above, the model is constructed as:

Y = Wα+ gβ + u+ ε (2.16)

where W is an n × c matrix of covariates (fixed effects) including a column of 1s for

the intercept, α is a c-vector of corresponding coefficients including the intercept, u is a

n vector of random effects with u ∼ N(0, σ2gK) where σ2g represents the additive genetic

variance, and ε is an n random vector with ε ∼ N(0, σ2eI) where σ2e represents non-genetic

variance and I the identity. In contrast to PCA, typically 100,000 or more SNPs are

needed to construct the kinship matrix K̂ in order to capture fine scale population struc-

ture, such as cryptic or familial relatedness (Astle et al., 2009). A number of LMMs have

been proposed an implemented to conduct fast and robust GWAS (Kang et al., 2010;

Zhang et al., 2010b; Lippert et al., 2011; Zhou et al., 2013b).

Finally, it is important to note that, although the most common cause of confounding

in GWAS is due to unaccounted population structure, if the trait under study is polygenic

i.e. affected by the (usually small) genetic effect of many variants, the distribution of

the estimated test statistic can also be inflated (Bulik-Sullivan et al., 2015b). Briefly, if a

phenotype is determined by many genetic variants along the genome, genetic variants that

are in LD with these causal variants will also show a strong association and consequently

affect the distribution of the test statistic (Bulik-Sullivan et al., 2015b). One solution that

has been proposed in order to differentiate between these two types of confounding is the

LD-score regression method, which can also provide a more powerful and accurate cor-

rection factor than the GC (Bulik-Sullivan et al., 2015b). However, because the method

is based on the amount of LD between the genetic variants, this method is currently not

appropriate for admixed populations, as these can show long-range LD due to their shared

ancestry (Price et al., 2008; Bulik-Sullivan et al., 2015b).

2.8 Summary

In this chapter I have described commonly used methods to detect genomic regions un-

der selection such as allele-frequency differentiation and haplotype-based methods. I have

also described methods that rely on external data, such as environmental data in order

to get insight into the selective pressures driving the adaptive process, or biological path-

ways that can help detect instances of polygenic adaptation. I ended by describing the

methodological aspects of a GWAS and the various methods used to account for popu-

lation structure, a feature that is present in admixed samples, such as the CANDELA

sample used in this thesis.
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Detecting signatures of selection

in Native Americans

3.1 Overview

In this chapter I conduct a genome-wide scan of selection on a large dataset of Native

Americans. By considering samples from throughout the American continent I explore

selective pressures imposed on the common ancestral population of Native Americans.

Here I show that some of the candidate regions with the strongest selection signatures have

functions that were likely beneficial for the climatic and dietary conditions in Beringia,

prior to the range expansion into the American continent. Some of the variants with the

strongest selection signatures are found in high frequency in several Arctic populations,

consistent with a shared adaptive event as reported in previous studies. In addition, I also

conduct a genome-wide selection scan on three Native American populations to explore

instances of local adaptation in the Americas. I use a large sample of admixed Latin

American individuals that derive most of their ancestry from these three Native American

groups. As these individuals have extensive non-Native American ancestry, I correct for

this admixture by computing pseudounadmixed allele frequencies. I report selection signals

at immune-related genes in these Native American populations that probably resulted from

an adaptation to local pathogens in the Americas or to diseases brought after European

contact. I also report selection signals at genes with an important adaptive interest that

have been previously reported in other Native American populations and other human

populations highlighting the utility of this approach.

3.2 Background

The American continent represents the last major landmass to have been settled by people

migrating from the northeastern tip of Asia through Beringia — a land bridge connecting

Siberia to Alaska. Genomic studies have elucidated the complex demographic history of

Native American populations, particularly those involving the distinct migratory episodes

from East Asia, the time and location of the basal split between the main northern and

southern Native American branches, and the migratory routes used to colonize the Ameri-

can continent (Wang et al., 2007b; Reich et al., 2012; Moreno-Estrada et al., 2014; Ragha-

van et al., 2015; Skoglund et al., 2015; de la Fuente et al., 2018; Moreno-Mayar et al., 2018;
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Scheib et al., 2018; Schroeder et al., 2018). In addition, recent studies have also supported

the long-term habitation of ancestral Native Americans in Beringia prior to their expan-

sion to the American continent, an hypothesis known as the Beringian “standstill model”

(Tamm et al., 2007; Raghavan et al., 2015; Llamas et al., 2016; Moreno-Mayar et al., 2018).

Importantly, this long term isolation from other human groups in Beringia before entering

the Americas seems to have imposed strong selective pressures in these ancestral Native

American populations. Amorim et al. (2017) recently reported that one of the strongest

signals of selection shared by Native Americans was present on the FADS gene cluster.

This gene is involved in the metabolism of omega-3 polyunsaturated fatty acids (Lattka

et al., 2010) and was previously found to be under strong selection in Greenlandic Inuit

populations (Fumagalli et al., 2015). By analyzing the geographic distribution of the pu-

tatively selected haplotype, Amorim et al. (2017) concluded that a single adaptive event

most likely occurred in Beringia before the expansion of the first Americans throughout

the American continent (Figure 3.1). Building up from these findings, Hlusko et al. (2018)

has recently suggested that the genetic adaption in the FADS gene cluster was likely ac-

companied by selection on the Ectodysplasin A (EDA) receptor (EDAR) gene. EDAR is

known to have several pleiotropic effects as it influences ectodermally derived structures,

such as hair, teeth hair, and mammary gland ductal branching (Fujimoto et al., 2008;

Mou et al., 2008; Kimura et al., 2009; Park et al., 2012; Tan et al., 2013, 2014; Peng et al.,

2016). This gene has been shown to be under strong positive selection in East Asians

(Sabeti et al., 2007; Grossman et al., 2010), and a recent study showed that selection at

EDAR most likely occurred more than 30,000 years BP in eastern China, and thus prior to

the entry to the Americas (Kamberov et al., 2013) (Figure 3.2). In addition, the authors

suggested that EDAR was possibly selected due to its effect for modulation of thermoregu-

latory sweating. The recent study of Hlusko et al. (2018) however, provided an alternative

hypothesis for the selection of EDAR in Native Americans. The authors hypothesised

that selection at EDAR was likely due to its effect on ductal branching in the mammary

gland, thereby amplifying the transfer of important nutrients (particularly vitamin D)

from mothers to infants under an extreme low UV environment, such as Beringia. They

also suggested that the joint selection at FADS was likely due to its role in modulating

lipid profiles transmitted to milk from a vitamin D-rich diet high in omega-3 fatty acids.

While this provides evidence for a strong, shared signal among Native American popu-

lations, there is still a lack of studies on local adaptive events in different Native American

populations. Perhaps the exception are Andean highlanders, who have been the focus of

extensive research to understand the biological basis for high altitude adaptation (Beall

et al., 1997; Bigham et al., 2009, 2010; Zhou et al., 2013a; Bigham et al., 2014; Eichstaedt

et al., 2014; Foll et al., 2014; Eichstaedt et al., 2015a; Valverde et al., 2015; Fehren-Schmitz

and Georges, 2016; Bigham, 2016; Crawford et al., 2017a). The American continent shows

extensive variation in climatic environments as its territory extends along a North-South

axis that must have imposed strong subsistence and environmental constraints on Na-

tive Americans. Other studies in Native American populations include the adaptation to

arsenic-rich environments in Andeans (Schlebusch et al., 2015; Eichstaedt et al., 2015b;

Apata et al., 2017), adaptations to lipid metabolism and body development in Amazonians
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Figure 3.1: The geographic distribution of the putatively selected FADS hap-
lotype in Native American populations. The signal of natural selection at the fatty
acid desaturases (FADS) genes is not only present in Arctic populations, as was previ-
ously suggested, but throughout the American continent, suggesting a shared and strong
adaptive event that occurred in Beringia. From Amorim et al. (2017).

Figure 3.2: The geographic origin of the selected EDAR haplotype. A) World-
wide geographic distribution of the EDAR haplotype. The inset figure shows the six most
common haplotypes, including the haplotype carrying the derived variant of the putatively
selected allele (in red). B) The Posterior Probability density for the geographic origin of
the putatively selected allele at the EDAR gene obtained by Approximate Bayesian Com-
putation simulations. From Kamberov et al. (2013).
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(Amorim et al., 2015), and immune related adaptations in distinct Native American pop-

ulations attributed to diseases brought after the European contact (Fehren-Schmitz and

Georges, 2016; Lindo et al., 2016; V̊agene et al., 2018). These studies show that Native

Americans have adapted to their distinct environments throughout the Americas, despite

its recent and rapid settlement (Tamm et al., 2007; Reich et al., 2012). A complication in

studying Native American adaptive history is the extensive admixture with Europeans and

Africans (Wang et al., 2007; Reich et al., 2012; Moreno-Estrada et al., 2013; Chacon-Duque

et al., 2018). This admixture can be a challenge as non-Native American ancestry can

affect the statistics used to detect adaptive signals. To address this issue, two approaches

have been employed. The first approach, which is the more common one, involves restrict-

ing the analysis to individuals carrying only Native American ancestry. Nonetheless, this

can drastically reduce the sample size and consequently reduce the power to detect posi-

tive selection. Additionally, this approach would invalidate investigating Native American

populations where all individuals show non-negligible amount of non-Native American an-

cestry, which is common for many Native American populations. The second, less common

approach, involves accounting for non-Native American in admixed Native Americans by

producing estimates of pseudounadmixed allele frequencies using the admixture ancestry

proportions and allele frequencies from the populations contributing to the admixed Native

American populations. This approach has been employed to successfully detect signals of

positive selection in recently admixed populations, such African Americans (Bhatia et al.,

2011), Ethiopian highlanders (Huerta-Sánchez et al., 2013) and more recently, in Andeans

highlanders (Crawford et al., 2017a). Crawford et al. (2017a) conducted a genome-wide

scan of selection using a modified version of the Population Branch Statistic (PBS; see

Section 2.2.1 for a detailed description of the method), using a closely related population

(lowland Native Americans), and an outgroup (Europeans). To account for the non-Native

American ancestry, the authors estimated admixture proportions and admixture-corrected

allele frequencies using NGadmix (Skotte et al., 2013), a software program that implements

a model very similar to that of ADMIXTURE (Alexander et al., 2009). Notably, the au-

thors found strong evidence of selection at genes related to cardiovascular development,

and further demonstrated that the putatively selected haplotypes was associated with

phenotypic variations related to cardiovascular health, thus highlighting the utility of this

approach.

Recently, Chacon-Duque et al. (2018) examined the ancestry of more than 6,500

Latin Americans from Brazil, Chile, Colombia, Mexico and Peru (denoted the CANDELA

sample, Section 1.8). Based on a novel haplotype-based analysis, and using data from

several modern samples that contributed to the ancestry of present-day Latin Americans,

the authors were able to infer distinct Native American ancestry components present in

the CANDELA sample (Figure 3.3). The availability of these distinct Native American

ancestry components in the CANDELA sample therefore offers the opportunity to explore

instances of natural selection in different Native American groups using admixed Latin

Americans.
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Figure 3.3: Native American reference population samples and ancestry es-
timates for the CANDELA sample. A) Colored pies and grey dots indicate the
approximate geographic location of the 38 Native American reference populations. B)
The estimated proportion of Native American components in the CANDELA sample.
Adapted from Chacon-Duque et al. (2018).

3.3 Materials and methods

3.3.1 Description of Data

The individual samples analyzed here were part of several publicly available datasets.

I started by using admixed Latin Americans sampled from the CANDELA Consortium

(Ruiz-Linares et al., 2014 and Section 1.8). This data includes a total of 6,630 volunteers

sampled in five Latin American countries: Brazil, Chile, Colombia, Mexico and Peru. I

then combined this data with 231 Native American individuals from Chacon-Duque et al.

(2018), 148 CLM (Colombians, from Medellin, Colombia), 107 MXL (Mexicans from Los

Angeles, United States of America) and 130 PEL (Peruvians, from Lima, Peru) individuals

from the 1000 Genomes Project (1KG) (1000 Genomes Project Consortium et al., 2015),

50 Native American individuals from western Argentinian from (Eichstaedt et al., 2014)

and 28 Native American individuals from the Simons Genome Diversity Project (SGDP)

(Mallick et al., 2016).

3.3.2 Quality control

I used PLINK v1.9 (Chang et al., 2015) to perform quality control (QC) analyses. I ex-

cluded SNPs and individuals with more than 1% missing data and retained only autosomal

SNPs. After performing LD pruning the PLINK inferred IBD coefficient was calculated

across all pairs of individuals within each population. Individuals with a IBD higher than
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0.125 (i.e. third degree relatives) were removed. For the Native Americans population, I

used the methodology described in Chacon-Duque et al. (2018), where individuals with

more than 10% from the median IBD value were discarded. This is due to the lower

effective population size present in this population that can affect IBD estimates based

on population allele frequencies (Manichaikul et al., 2010). After applying these filters

679,855 autosomal SNPs and 6,589 individuals were retained for further analysis.

3.3.3 Selecting individuals without post-Columbian admixture

Previous studies have identified substantial amounts of European and African ancestry

in modern Latin Americans (Wang et al., 2007; Reich et al., 2012; Moreno-Estrada et

al., 2013; Chacon-Duque et al., 2018). This admixture is extensive across the American

continent and involves not only Natives (i.e. the indigenous habitants), but also the general

population, or what is now usually referred to as Latin Americans (Ruiz-Linares, 2014).

To restrict the selection analysis on individuals without evidence of European or African

admixture, I excluded all individuals with > 1% cluster membership of the European and

African ancestry component based on an unsupervised ADMIXTURE (Alexander et al.,

2009) using K = 3 components. This resulted in a total of 168 individuals (hereinafter

referred to as Native Americans) without European or African ancestry that were used

for the selection analysis described below (Section 3.3.4).

3.3.4 Selection scans in Native American individuals without post-Columbian

admixture

To explore signals of selection in Native Americans I computed the Population Branch

Statistic (PBS), which represents the amount of allele frequency change at a SNP of a

target population compared to two other reference populations (Yi et al., 2010 and Sec-

tion 2.2.1). For this analysis I used East Asians (CHB; Han Chinese in Beijing, China)

and Northern Europeans (CEU; Utah Residents with Northern and Western European

Ancestry) from the 1KG as reference populations. Pairwise FST were estimated using

using Hudson’s estimator as in equation 9 of Bhatia et al. (2013). The branch length (T)

between two populations was then computed as T = − log10(1 − FST ) (Cavalli-Sforza,

1969). The PBS combines the pairwise branch lengths between these three populations,

which was computed as:

PBSNAM =
TNAM,CHB + TNAM,CEU − TCHB,CEU

2
(3.1)

where NAM is the target population and CHB and CEU the two reference pop-

ulations. To remove signals that could be driven by a single SNP that might be due

to genotyping errors I excluded SNPs that are above the 99.99th percentile of PBS scores

that do not have any other significant neighbour SNP within ±100Kb (i.e. 200Kb window).
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I also complemented the PBS analysis by computing three additional haplotype-based

statistics: the Integrated Haplotype Score (iHS) (Voight et al., 2006), Cross Population

Extended Haplotype Homozygosity (XP-EHH) (Sabeti et al., 2007) and number of Seg-

regating sites by Length (nSL) (Ferrer-Admetlla et al., 2014) to capture patterns of hap-

lotype homozygosity based on a model of a hard selective sweep. iHS and XP-EHH have

power to detect selective sweeps that have reached moderate and high frequency respec-

tively, while nSL retains some power to detect soft selection sweeps, thus making these

three statistics complementary. As these selection statistics are haplotype-based tests that

employ adjacent SNPs to compute a per-SNP selection score, I used lenient QC threshold

by removing SNPs with > 5% missing data. This is expected to increase the power of

haplotype-based selection scans. iHS and nSL were estimated as in Voight et al. (2006)

retaining all SNPs with a MAF > 5% and standardizing the scores by binning the SNPs

by allele frequencies and subtracting the mean and dividing by the standard deviation to

obtain a final normalized statistic with a mean of 0 and variance of 1. The frequency bins

were defined by 1% frequency increments. Both of these statistics require the ancestral

and the derived allele states to be specified for each SNP analyzed. To obtain this, I used

the Human Ancestral Sequence FASTA file from the 1KG Project retaining both low and

high confidence calls. This sequence file is based on a 6-way primate whole-genome align-

ment. XP-EHH statistic requires the definition of a reference population for which I use

the CHB as reference population. The standardization of XP-EHH scores was conducted

such that the set of all XP-EHH scores had a mean of 0 and variance of 1 as in Sabeti et al.

(2007). Since XP-EHH scores are directional (Sabeti et al., 2007), I only retained positive

scores, which would be indicative of positive selection in the Native American population.

For the three haplotype-based selection statistics, the HapMap GRh37 genetic map (In-

ternational HapMap Consortium, 2003) was used to estimate genetic distances between

SNPs. Importantly, allele frequency differentiation and haplotype based approaches, ex-

ploit different genomic signatures that persist over varying times scales (Section 2.2.3),

and thus I do not expect to find selection signals at a genomic locus across all different

tests.

3.3.5 Identification of Latin American individuals with specific Native

American ancestry components

To select admixed individuals carrying a specific Native American ancestry component, I

used the inferred Native American ancestry proportions previously identified by Chacon-

Duque et al. (2018) in the CANDELA sample (Figure 3.3). Combining closely related

Native American ancestries, I selected admixed Latin American that derive most of their

Native American ancestry to three distinct Native American populations. Specifically, I

merged the “Quechua”, “Colla” and “Aymara” Native American ancestries into a “An-

dean” component, the “Nahua”, “South Mexico” and “Mixe” Native American ancestries

into a “Meso-American” component and the “Mapuche” ancestry into one component.

I then selected CANDELA individuals with > 10% inferred ancestry from a particular

Native American ancestry component (i.e. Meso-American, Andean or Mapuche), with

< 1% combined inferred ancestry from all other Native American groups, and additionally
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< 1% inferred East Asian and North African ancestry. Thus, each group of admixed indi-

viduals were composed exclusively of Native American from a particular Native American

group, European and African ancestry. The final number of individual per Native Amer-

ican population was N = 689 for Meso-Americans, N = 375 for Andeans, and N = 427

for Mapuche.

3.3.5.1 Estimating Native American allele frequencies in admixed Latin Amer-

ican samples

To estimate allele frequencies for each of the Native American groups (described in Sec-

tion 3.3.5) I corrected observed allele frequencies by the amount of non-Native American

ancestry. Similar approaches have been employed to infer the population or adaptive his-

tory of admixed populations by obtaining admixture-corrected allele frequencies based on

admixture proportions estimated from the whole genome (Bhatia et al., 2011; Huerta-

Sánchez et al., 2013; Moltke et al., 2015). Following these previous studies, I computed

the admixture-corrected (or pseudounadmixed) Native American allele frequency fNat at

each SNP as:

fNat =
fAdm − fEurαEur − fAfrαAfr

1− αEur − αAfr
(3.2)

where fAdm is the admixed allele frequency, fEur is the European allele frequency, fAfr

is the African allele frequency; αEur is the European ancestry proportion and αAfr is the

African ancestry proportion. The allele frequencies at each SNP for fEur and fAfr were

estimated using the IBS and YRI populations from the 1KG. The ancestry proportion

for αEur and αAfr were taken from the genome-wide average estimates for the admixed

individuals in Chacon-Duque et al. (2018).

3.3.5.2 Genome-wide scan of selection using admixture-corrected allele fre-

quencies

To detect SNPs under positive selection I calculated the PBS as in equation 3.1 using the

admixture-corrected allele frequencies. For each Native American group I used the two

other Native American populations as reference populations in order to detect instances

of local adaptation in these three Native American groups. PBS scores were estimated

only at SNPs that were polymorphic in at least two populations. To remove signals driven

by a single SNP that might be due to genotyping errors I removed SNPs with PBS scores

above the 99.99th percentile that do not have any other significant neighbour SNP within

±100Kb (i.e. 200Kb window).

3.3.6 Gene set enrichment analysis using biological pathways

To test for signals of polygenic adaptation, I assessed if particular gene sets were enriched

with high PBS scores. For each gene I assigned the highest PBS score in a ±2kb region
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surrounding each gene based on the UCSC RefSeq annotation, retaining genes with more

than 2 SNPs. I also estimated the mean PBS score for each gene, and found that there

was a positive correlation between the highest and the mean PBS score, indicating that

the highest scoring SNP is a good representative of the selection pattern in a gene (Figure

A.1). As the assigned PBS scores in a gene region can be correlated with SNP density

(i.e. the number of SNPs in a gene region), I corrected for this bias by binning gene

regions with a similar amount of SNPs: < 10, 10 — 19, 20 — 29, 30 — 39, 40 — 49,

50 — 59, 60 — 69, 70 — 79, 80 — 89, 90 — 99 and ≥100, and standardizing the PBS

scores within each bin. I then downloaded the curated human gene sets from the NCBI

Biosystems database (https://www.ncbi.nlm.nih.gov/biosystems/; as of November 2017)

and discarded all genes from the gene sets that could not be mapped to the genes based on

the RefSeq annotation. I then further excluded any gene set that contained less than 10

genes, and this resulted in ∼ 1, 900 gene sets depending on the Native American population

tested. For each gene set I obtained the distribution of maximum PBS scores for genes

included in the gene set and the distribution of maximum PBS scores of genes in the rest

of the genome. To assess significance, I compared these two distributions using a one-sided

Mann-Whitney U test and reported Bonferroni adjusted P-values.

3.3.7 Gene Ontology (GO) enrichment analysis

To test for GO categories containing genes that were enriched with high PBS scores, I

performed an enrichment test on the PBS-ranked gene regions, using the minimum hyper-

geometric (mHG) score method for ranked lists implemented in the web-based application

(GOrilla) (Eden et al., 2009). I reported significant GO categories (P-values<0.001), with

low false discovery rate q-values (q<0.1) and high enrichment scores (S>5) as in Fumagalli

et al. (2015). The enrichment score is equal to (b/n)/(B/N), where N is the total number

of genes, B is the number of genes associated with a GO category, n is the number of

genes at the top of the PBS-ranked list (as defined by the mHG method) and b is the

number of genes in the intersection of n and B.

3.3.8 Phenotypic association analysis

I used the CANDELA Consortium (Ruiz-Linares et al., 2014; Section 1.8) phenotypic

data to perform association analysis. All volunteers underwent anthropometric mea-

surements including: height (cm), weight (kg), Body Mass Index (BMI) (kg/m2), hip-

circumference (HC) (cm), waist-circumference (WC) (cm), waist-to-hip ratio (WHR), HC

adjusted for BMI (HCadjBMI), WC adjusted for BMI (WCadjBMI) and WHR adjusted

for BMI (WHRadjBMI). Obese individuals defined as having BMI > 35 and individuals

older than 45 years were excluded. All anthropometric phenotypes appeared normally dis-

tributed and therefore no transformation was applied (Figure A.2). Genetic association

analyses were performed using a multivariate linear regression approach with an additive

genetic model incorporating age, sex and the first 6 genetic PCs as covariates as conducted

in previous GWAS in the CANDELA sample (Adhikari et al., 2015, 2016a,b). Addition-

ally, 1,172 volunteers recruited in Mexico were analyzed for 6 biochemical measurements.

The measurements were performed with commercially available standardized methods
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in blood samples obtained after a 12 hour fast as described in Villarreal-Molina et al.

(2007). The biochemical measurements included: fasting glucose (mg/dl), total choles-

terol (mg/dl), triglycerides (mg/dl), high-density lipoprotein (HDL) cholesterol (mg/dl),

low-density lipoprotein (LDL) cholesterol (mg/dl) and non-HDL cholesterol (mg/dl). All

biochemical measurements were approximately normally distributed (Figure A.3). Ge-

netic association analyses were performed using a multivariate linear regression approach

with an additive genetic model incorporating age, sex, BMI and the first 2 genetic PCs

as covariates. Only the first two PCs were used for the genetic association of metabolic

phenotypes as they captured most of the population structure caused by admixture in the

Mexican sample (Figure A.5).

3.3.9 Worldwide allele frequencies

To explore the geographic distribution of the variants showing signals of selection I com-

piled a dataset from several human populations. This dataset included 10 populations

from Africa (Schlebusch et al., 2012; 1000 Genomes Project Consortium et al., 2015), 18

populations from Europe (1000 Genomes Project Consortium et al., 2015; Chacon-Duque

et al., 2018), 4 populations from North Africa and the Middle East (Chacon-Duque et

al., 2018), 20 populations from East, South and South East Asia (1000 Genomes Project

Consortium et al., 2015; Mallick et al., 2016; Mörseburg et al., 2016), 4 populations from

Siberia (Cardona et al., 2014) and 7 populations from the Americas (Eichstaedt et al.,

2014; 1000 Genomes Project Consortium et al., 2015; Chacon-Duque et al., 2018). This

dataset is described in detail in Table A.1. I detail the sources of the data, number of

individuals per population and geographic coordinates of the sampling locations.

3.4 Results

3.4.1 Overview

A limitation in studying Native American adaptive history is the high levels of admixture

with European and African populations (Wang et al., 2007; Reich et al., 2012; Moreno-

Estrada et al., 2013; Chacon-Duque et al., 2018). To address this complication, I used

two different approaches in this chapter. The first approach involved restricting the anal-

ysis to individuals across the Americas without evidence of post-Columbian admixture.

This allowed me to detect candidate regions of selection that occurred after the split of

the ancestral Native Americans from Asians. In addition, this also allowed me to use

haplotype-based approaches, as these can only be applied to non-recently admixed popu-

lations. Further, by using a larger set of individuals, I am also expected to obtain a higher

statistical power to detect selective events. Second, in order to explore possible instances

of local adaptation in the Americas, I used a large sample of admixed Latin Americans that

derive most of their Native American ancestry to three particular Native American groups

and estimated pseudounadmixed allele frequencies by accounting for non-Native American

ancestry. For convenience, throughout this section I refer to these three Native American
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components simply as Andean, Meso-American and Mapuche Native Americans.

3.4.2 Selection signals in Native Americans

To study selection signals in Native Americans shared across the American continent I col-

lated genome-wide data from 168 Native Americans individuals present in several public

databases. I used the Population Branch Statistic (PBS) statistic, which identifies alleles

that have experienced strong changes in allele frequency in one target population (Na-

tive Americans) relative to two reference populations (East Asians [CHB] and Europeans

[CEU] from the 1KG Project). The PBS analysis revealed 11 candidate regions of selec-

tion (Figure 3.4 and Table 3.1), defined as being composed of at least two adjacent SNPs

with PBS scores above the 99.99th percentile of the empirical distribution. Throughout

the text I refer to these SNPs as top selected SNPs. Within the 11 candidate regions of se-

lection, two contained intergenic non-protein coding RNAs (LINC00641 and LINC00871 )

without any known function and five contained no genes. To complement the PBS se-

lection analysis, I also computed three haplotype-based selection statistics (see Section

3.3.4) at each candidate genomic region (i.e. those with SNPs with PBS scores above the

99.99th percentile of the empirical distribution). Given that these four selection statistics

are moderately to strongly correlated (rho ranging from 0.12 to 0.84) (Figure A.6), as

these have different power to detect different type of selection signals, combining differ-

ent selection statistics can provide further evidence for selection at these candidate regions.

Figure 3.4: Genome-wide scan for selection in Native Americans. Population
Branch Statistic (PBS) selection scores per-SNP were computed for 168 Native Americans
using CHB (East Asians) and CEU (North Western Europeans) from the 1000 Genomes
Project as reference populations. The red dashed line represents the 99.99th percentile.
Regions with fewer than two SNPs within 200Kb above the 99.99th percentile were ex-
cluded. Names of genes associated with the highest peaks are shown.
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Table 3.1: Candidate regions under selection in 168 Native Americans based on the Population Branch Statistic (PBS) selection
statistic.

Genomic coordinatesa Length (bp) PBS value (highest SNPsb) Candidate targeted genes

Chr3:64514393-64525420 11,027 2.14 (rs7631391) ADAMTS9

Chr14:48581772-48633622 51,850 1.88 (rs8021638) -

Chr14:21671316-21674214 2,898 1.76 (rs1243370) LINC00641

Chr3:21260370-21354506 94,136 1.62 (rs7628403) -

Chr22:41961831-41995335 33,504 1.61 (rs5996039, rs8139993) CSDC2,PMM1,DESI1

Chr14:32635572-32688214 52,642 1.55 (rs7151991) -

Chr22:42187199-42218856 31,657 1.55 (rs139553) MEI1,CCDC134

Chr10:115180454-115239602 59,148 1.54 (rs12414053) -

Chr14:46933384-46963280 29,896 1.52 (rs17740937, rs754960, rs2642103) LINC00871

Chr2:101540415-101549843 9,428 1.44 (rs356652) NPAS2

Chr5:155331080-155361116 30,036 1.44 (rs1432734) -
a Candidate regions are defined as SNPs with PBS values above the 99.99th percentile of the empirical distribution. SNPs within 200Kb are merged into a single entry.

b rs ID for the SNP showing the highest PBS value is reported in parenthesis.
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The strongest signal is located at 3p14 within the ADAM Metallopeptidase With

Thrombospondin Type 1 Motif 9 (ADAMTS9 ) gene (Figure 3.5). At this genomic region,

none of the haplotype-based selection statistics showed strong signals of selection. Mem-

bers of the ADAMTS family are implicated in the cleavage of proteoglycans, the control

of organ shape during development and the inhibition of angiogenesis (Porter et al., 2005;

Brocker et al., 2009). Notably, this gene has been associated with HDL cholesterol and

fasting insulin levels (Liu et al., 2013a), as well as several anthropometric phenotypes

including body fat distribution, body mass index (BMI), hip circumference, waist-to-hip

ratio (WHR), and also with type 2 diabetes (T2D) (Zeggini et al., 2008; Heid et al.,

2010; Fox et al., 2012; Morris et al., 2012; Liu et al., 2013a; Locke et al., 2015; Shungin

et al., 2015; Graff et al., 2017; Justice et al., 2017; Ng et al., 2017; Zhao et al., 2017;

Bonàs-Guarch et al., 2018; van der Harst and Verweij, 2018). From the GTEx database,

the highest expression of ADAMTS9 is reported to be in visceral adipose tissue (GTEx

Consortium, 2013). Two other candidate regions with strong signals of selection are lo-

cated at 22q13. The strongest of these encompasses three genes: the Cold Shock Domain

Containing C2 (CSDC2 ), the Phosphomannomutase 1 (PMM1 ), and the Desumoylating

Isopeptidase 1 (DESI1 ) genes (Figure 3.6). At this genomic region, none of the haplotype-

based selection statistics showed strong signals of selection. Of potential adaptive interest

is the PMM1 gene that is a phosphomannomutase enzyme that catalyzes the conversion

between D-mannose 6-phosphate and D-mannose 1-phosphate, which is a substrate for

GDP-mannose synthesis (Schollen et al., 1998; Heykants et al., 2001). Diseases associ-

ated with phosphomannomutase enzymes include Congenital Disorder Of Glycosylation

Type Ia (OMIM: 212065). Recently, it has been shown that PMM1 is significantly up-

regulated in the liver of obese subjects compared with that of lean subjects (Lee et al.,

2016). The second candidate region within chromosome 22 encompasses two genes: the

Meiotic Double-Stranded Break Formation Protein 1 (MEI1 ) gene and the Coiled-Coil

Domain Containing 134 (CCDC134 ) gene (Figure 3.7). At this genomic region, none of

the haplotype-based selection statistics showed strong signals of selection. Of potentially

adaptive interest, is the CCDC134 that is implicated in immune function. The coded pro-

tein promotes proliferation and activation of CD8(+) T cells, suggesting a cytokine-like

function and shows strong anti-tumor effects (Huang et al., 2014). The selection signal

at 2q11 encompassess the Neuronal PAS Domain Protein 2 (NPAS2 ) gene. Notably, the

XP-EHH selection statistics, showed also several SNPs with strong signals of selection at

this genomic region (Figure 3.8). This gene encodes a transcription factor which is thought

to be the major transcriptional regulators of the circadian clock mechanism in mammals

(DeBruyne et al., 2007). The circadian clock, is an internal time-keeping system that

regulates distinct physiological processes through the generation of ∼ 24 hour circadian

rhythms in gene expression, which are translated into rhythms in metabolism and behav-

ior (DeBruyne et al., 2007). Notably, epidemiological studies have linked NPAS2 with a

variety of psychological disorders, including winter depression (Partonen et al., 2007).
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Figure 3.5: Selection for four selection tests in candidate region surrounding
top selected SNP rs7631391 in Native Americans. The first four panel show the
score for four individual selection statistics score: PBS, XP-EHH, iHS and nSL. The bot-
tom panel shows the UCSC RefSeq genes within the genomic region (in hg19 coordinates).
The red dotted line indicates the position of the top selected SNP. The grey dotted line
in the PBS panel denotes the 99.99th percentile of the empirical distribution and the grey
dotted lines in the other panels denotes the 95th percentile of the empirical distribution
for each selection statistic.
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Figure 3.6: Selection for four selection tests in candidate region surrounding
top selected SNP rs5996039 in Native Americans. The first four panel show the
score for four individual selection statistics score: PBS, XP-EHH, iHS and nSL. The bot-
tom panel shows the UCSC RefSeq genes within the genomic region (in hg19 coordinates).
The red dotted line indicates the position of the top selected SNP. The grey dotted line
in the PBS panel denotes the 99.99th percentile of the empirical distribution and the grey
dotted lines in the other panels denotes the 95th percentile of the empirical distribution
for each selection statistic.
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Figure 3.7: Selection for four selection tests in candidate region surrounding
top selected SNP rs139553 in Native Americans. The first four panel show the score
for four individual selection statistics score: PBS, XP-EHH, iHS and nSL. The bottom
panel shows the UCSC RefSeq genes within the genomic region (in hg19 coordinates). The
red dotted line indicates the position of the top selected SNP. The grey dotted line in the
PBS panel denotes the 99.99th percentile of the empirical distribution and the grey dotted
lines in the other panels denotes the 95th percentile of the empirical distribution for each
selection statistic.
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Figure 3.8: Selection for four selection tests in candidate region surrounding
top selected SNP rs356652 in Native Americans. The first four panel show the score
for four individual selection statistics score: PBS, XP-EHH, iHS and nSL. The bottom
panel shows the UCSC RefSeq genes within the genomic region (in hg19 coordinates). The
red dotted line indicates the position of the top selected SNP. The grey dotted line in the
PBS panel denotes the 99.99th percentile of the empirical distribution and the grey dotted
lines in the other panels denotes the 95th percentile of the empirical distribution for each
selection statistic.
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3.4.3 Association testing with metabolic and anthropometric pheno-

types in top SNPs in Native Americans without post-Columbian

admixture

Currently, the best-documented example of selection in Native Americans is through di-

etary adaptations (Acuña-Alonzo et al., 2010; Amorim et al., 2017; Hlusko et al., 2018). I

therefore assessed whether SNPs within a 5Kb radius around ADAMTS9 (a gene which has

been previously associated to different anthropometric and metabolic phenotypes) were

associated associated to metabolic and anthropometric phenotypes in the CANDELA sam-

ple. The association analysis did not reveal any significant association, after Bonferroni

correction for testing for association considering the 72 SNPs within the tested genomic

region (Figure 3.9 and 3.10). The top two candidate SNPs with the strongest PBS scores

at ADAMTS9 revealed only marginally significant associations with plasma glucose levels

(rs76311391, P-value = 0.04; rs17070941,P-value = 0.03).

Figure 3.9: Regional Manhattan plot focused on ADAMTS9 within a 5Kb ra-
dius around the gene for nine anthropometric phenotypes. Each plot is composed
of two panels. The upper panel shows the -log10(P-values) of the association analysis. The
bottom panel shows the shows the UCSC RefSeq genes within the genomic region (in hg19
coordinates). The black dotted line indicates the Bonferroni corrected threshold of 3.15,
which was computed after considering 72 SNPs within the tested genomic region.
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Figure 3.10: Regional Manhattan plot focused on ADAMTS9 within a 5Kb
radius around the gene for six metabolic phenotypes. Each plot is composed of
two panels. The upper panel shows the -log10(P-values) of the association analysis. The
bottom panel shows the shows the UCSC RefSeq genes within the genomic region (in hg19
coordinates). The black dotted line indicates the Bonferroni corrected threshold of 3.15,
which was computed after considering 72 SNPs within the tested genomic region.
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3.4.4 Gene set enrichment analysis using biological pathways and Gene

Ontology (GO) categories in Native Americans

Enrichment of selection scores in biologically relevant pathways can be used to detect in-

stances of polygenic adaptation. I used the gene sets of biological pathways from the NCBI

Biosystems Database, and tested whether the PBS scores distribution in a set of genes

from a particular biological pathway were significantly shifted toward larger PBS values

than that of the remaining data. None of the biological pathways showed significance after

adjusting for multiple testing (i.e. Bonferroni-adjusted P-values > 0.05). Additionally, I

conducted an enrichment analysis of Gene Ontology (GO) categories using the GOrilla

web-based application (Eden et al., 2009), and found three significant GO categories (Ta-

ble A.2). However, the three GO categories are likely significant because they all contain

several members of the protocadherin gamma gene cluster that are contiguous at 5q13.

3.4.5 Selection signals in three distinct Native American populations

3.4.5.1 Meso-American Native Americans

In the Meso-American Native American population, the PBS analysis revealed 13 candi-

date regions of selection (Figure 3.11 and Table 3.2), of which seven contained no genes.

The strongest signal is located at 7q32 and encompasses the Interferon Regulatory Factor

5 (IRF5 ) and Deoxyribonuclease 1 Like 3 (DNASE1L3 ) genes. Of potential adaptive

interest is the IRF5 gene, which is part of a group of transcription factors with diverse

roles, including virus-mediated activation of interferon and immune system activity (Yanai

et al., 2007). Interestingly, this gene has been associated with autoimmune diseases, such

as systemic lupus in different populations including Latin Americans (Bentham et al.,

2015; Alarcón-Riquelme et al., 2016; Morris et al., 2016; Márquez et al., 2017). The candi-

date region located at 1p36 encompasses 8 genes: PLEKHG5, NOL9, TAS1R1, KLHL21,

ZBTB48,PHF13, THAP3 and DNAJC11. The SNP (rs4243829) with the highest PBS

score within this region is an intronic variant of the Pleckstrin Homology And RhoGEF

Domain Containing G5 (PLEKHG5 ) gene. This gene encodes a protein that activates the

nuclear factor kappa B (NFKB1) signaling pathway (Matsuda et al., 2003). Mutation in

this gene have been associated with autosomal recessive distal spinal muscular atrophy-4

(OMIM; 611067) (Maystadt et al., 2007) and with intermediate Charcot-Marie-Tooth dis-

ease C (OMIM; 615376), an autosomal recessive peripheral neuropathy resulting in walking

difficulties due to muscle weakness and atrophy (Azzedine et al., 2013). Three candidate

regions of selection are located within 12q12 encompassing a total of 5 genes: CUX2,

BRAP, ACAD10, ALDH2, and RPH3A. Of potential adaptive interest is the Aldehyde

Dehydrogenase 2 Family (Mitochondrial) (ALDH2 ) gene that encodes the second enzyme

of the major oxidative pathway of alcohol metabolism. Variants within ALDH2 have been

shown to be strongly associated to alcohol consumption (Luczak et al., 2006; Eng et al.,

2007; Baik et al., 2011; Takeuchi et al., 2011; Quillen et al., 2014; Wall et al., 2016; Gelern-

ter et al., 2018) and esophageal cancer (Cui et al., 2009) in Asian populations. Notably,

this gene shows also strong signals of selection in Asian populations (Okada et al., 2018).
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The candidate region at 17q21 encompasses the Carbonic Anhydrase 10 (CA10 ) gene.

This gene encodes a protein that belongs to the carbonic anhydrase family of zinc metal-

loenzymes, which catalyze the reversible hydration of carbon dioxide in various biological

processes (Mori et al., 2009). Interestingly, variants within this gene have been associated

to age at first menstrual bleeding in different GWAS conducted in European populations

(Elks et al., 2010; Perry et al., 2014; Pickrell et al., 2016).

3.4.5.2 Andean Native Americans

In the Andean Native American group the PBS analysis revealed 9 candidate regions of

selection (Figure 3.11 and Table 3.3), of which three contained no genes. The strongest

selection signal is located at 10q24 spanning ∼700Kb and encompassing several genes.

One of the genes within this region is the Arsenite Methyltransferase AS3MT gene, which

encodes an enzyme that is essential for the efficient metabolization of arsenic in humans

(Sumi and Himeno, 2012). Notably, this gene has been shown to under selection in Andean

populations, probably as an adaptation to environments with high levels of arsenic that

can be found in the Andean altiplano (Eichstaedt et al., 2015b; Schlebusch et al., 2015;

Apata et al., 2017). The second strongest signal was located in the 10q11 genomic region

and encompasses four genes: STOX1, DDX21, DDX50 and KIF1BP. Of potential adaptive

interest is the Storkhead Box 1 (STOX1 ) gene, where mutations within this gene have

been associated to preeclampsia (van Dijk et al., 2005, 2010), a pathology of pregnancy

characterized by high blood pressure and signs of damage to another organ system, that

can be lethal for the mother and for the fetus (Sibai, 2005). The third strongest signal,

also located at 10q24, encompasses the Nucleolar And Coiled-Body Phosphoprotein 1

(NOLC1 ). This gene encondes a nuclear localization signal binding protein (Meier and

Blobel, 1990, 1992). The candidate region at 6p22 is located within the MHC region,

which possesses important function for the immune system (Hill, 1998, 2001; Shiina et al.,

2009; Mosaad, 2015). The strongest SNP was located within the TRIM31 gene. Members

of the TRIM superfamily are expressed in response to interferons and are also involved in

a broad range of biological processes that are associated with innate immunity (Rajsbaum

et al., 2008; Reymond et al., 2001). The candidate region at 11p15 encompasses the

Signal Peptide, CUB Domain And EGF Like Domain Containing 2 (SCUBE2 ). This gene

codes for a secreted cell-surface glycoprotein and is predominantly expressed in vascular

endothelial cells (Tsai et al., 2009). SCUBE2 has also been reported to act as a tumor

suppresor in human breast cancer (Cheng et al., 2009; Lin et al., 2011b; Song et al., 2015).

The candidate region at 15q21 encompasses two genes: SORD and DUOX2. Of adaptive

interest is the Sorbitol Dehydrogenase (SORD) gene, which encodes an enzyme with an

important function in the sorbitol pathway (part of carbohydrate metabolism) and has

been suggested to play a role in the development of diabetic complications (Carr and

Markham, 1995).

3.4.5.3 Mapuche Native Americans

In the Mapuche Native American group, the PBS analysis revealed 7 candidate regions

of selection (Figure 3.11 and Table 3.4), of which two contained no genes. The candidate
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region at 2p25 encompasses the Lipin 1 (LPIN1 ) gene. This gene encodes an enzyme

involved in triglyceride synthesis (Langner et al., 1989; Reue et al., 2000; Reue, 2009) and

is highly expressed in adipose tissue and skeletal muscle (Phan and Reue, 2005). Physio-

logical studies in humans have also demonstrated a correlation between LPIN1 expression

levels in adipose tissue and insulin sensitivity (Frayn, 2002; Reue and Zhang, 2008). Ad-

ditionally, variants in LPIN1 have shown association with different metabolic phenotypes

including fasting serum insulin, BMI, WC, obesity and T2D (Suviolahti et al., 2006; Loos

et al., 2007; Wiedmann et al., 2008; Chang et al., 2010; Zhang et al., 2013b). The candi-

date region at 6p22 impacted at the MHC region that encompasses three MHC Complex

Class I genes including HLA-F, HLA-F-AS1, and HLA-G. The region at 1p22 encompasses

the Synapse Defective Rho GTPase Homolog 2 (SYDE2 ) gene. This gene and its paralog

SYDE1 are the mamalian orthologs of SYD-1, which is required for axonal guidance in

Caenorhabditis elegans, and Syd-1, which regulates pre- and postsynaptic maturation in

Drosophila (Hallam et al., 2002). The candidate region at 11q14 encompasses the Discs

Large MAGUK Scaffold Protein 2 (DLG2 ) gene. This gene encodes proteins belonging

to the membrane-associated guanylate kinase (MAGUK) superfamily, which are located

in the postsynaptic density of glutamatergic excitatory brain synapses (Zhu et al., 2016).

This gene has been associated with developmental disorders and intellectual disability

(Reggiani et al., 2017).
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Section 3.4. Results

Figure 3.11: Genome-wide scan for selection in Meso-Americans, Andeans and
Mapuche Native American populations. Population Branch Statistic (PBS) values
per SNP. The red dashed line represents the 99.99th percentile. Names of genes associated
with the highest peaks and discussed in the text are shown.
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Table 3.2: Candidate regions under selection in Meso-American Native Americans based on the Population Branch Statistic (PBS)
selection statistic.

Genomic coordinates (hg19) Length (bp) PBS value (highest SNPs) Candidate targeted genes

Chr7:128560761-128773770 21,3009 0.40 (rs10488631) IRF5, DNASE1L3

Chr1:6577765-6705944 128,179 0.32 (rs4243829) PLEKHG5, NOL9, TAS1R1, KLHL21, ZBTB48

PHF13, THAP3, DNAJC11

Chr1:84485512-84514988 29,476 0.32 (rs615352) -

Chr12:111706877-111754597 47,720 0.31 (rs7300860) CUX2

Chr12:112123284-112245170 121,886 0.30 (rs2238151) BRAP, ACAD10, ALDH2

Chr12:112985328-113024793 39,465 0.29 (rs741334) RPH3A

Chr16:26639714-26642059 2,345 0.29 (rs237135) -

Chr17:49984205-50508394 35,109 0.29 (rs203075) CA10

Chr17:50462226-50508394 46,168 0.29 (rs16951420) -

Chr2:172098069-172127920 29,851 0.28 (rs4667682) -

Chr8:70240509-70243940 3,431 0.28 (rs12542665) -

Chr11:72390640-72394706 4,066 0.28 (rs341053) -

Chr1:189918985-189931733 12,748 0.27 (rs815742) -
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Table 3.3: Candidate regions under selection in Andean Native Americans based on the Population Branch Statistic (PBS) selection
statistic.

Genomic coordinates (hg19) Length (bp) PBS value (highest SNPs) Candidate targeted genes

Chr10:104487382-105211432 724,050 0.44 (rs10883869) SFXN2, WBP1L, CYP17A1, C10Orf32, AS3MT,

CNNM2, C10Orf32-AS3MT, NT5C2, LOC729020, BC040734,

PCGF6, INA, TAF5, CALHM2, USMG5

Chr10:70613280-70771895 15,8615 0.43 (rs10998460) STOX1, DDX21, DDX50, KIF1BP

Chr10:103922896-103931947 9,051 0.34 (rs7897) NOLC1

Chr6:30033884-30077967 44,083 0.32 (rs3132680) PPP1R11, TRIM31, RNF39, TRIM31-AS1

Chr17:50299021-50376564 77,543 0.31 (rs1927589) -

Chr5:151921873-152030714 10,8841 0.29 (rs2964243) -

Chr15:62646690-62737452 90,762 0.29 (rs289151) -

Chr11:9093486-9109287 15,801 0.30 (rs2647528) SCUBE2

Chr15:45358846-45385916 27,070 0.28 (rs10851420) SORD, DUOX2

Table 3.4: Candidate regions under selection in Mapuche Native Americans based on the Population Branch Statistic (PBS)
selection statistic.

Genomic coordinates (hg19) Length (bp) PBS value (highest SNPs) Candidate targeted genes

Chr1:247507887-247513049 5,162 0.49 (rs10924990) -

Chr14:25646203-25698081 51,878 0.47 (rs1461556) -

Chr2:11844839-11853964 9,125 0.40 (rs4640359) LPIN1

Chr6:29616607-29828660 21,2053 0.40 (rs1611704) MOG, HLA-F, HLA-F-AS1, HCG4, LOC554223, HLA-G

Chr1:85662851-85704193 41,342 0.36 (rs7524465) SYDE2

Chr6:118608535-118692498 83,963 0.35 (rs7764272) SLC35F1

Chr11:84627035-84708782 81,747 0.34 (rs10898329) DLG2
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3.4.6 Gene set enrichment analysis using biological pathways and GO

categories in three distinct Native American populations

Applying the same methodology to test for polygenic adaptation as described in Section

3.4.4 to the three distinct Native American populations did not reveal any biological

pathways enriched in PBS selection scores. The enrichment analysis of GO categories

revealed 8 significant categories in the Andean Native American population (Table A.2).

However, all of these were likely significant because they all contain several members of

the UDP Glucuronosyltransferase gene family that are contiguous at 2q37.

3.5 Discussion and limitations

In this chapter I have performed a genome-wide selection scan based on the PBS selection

statistic among Native Americans. By considering samples from throughout the American

continent I was able to identify candidate regions of selection in the common ancestral

population of Native Americans that likely resulted from selective pressures imposed on

this population prior to the range expansion into the American continent. In addition to

detecting signals of adaptation shared across the Americas, I also conducted a PBS selec-

tion scan based on pseudounadmixed allele frequencies for Meso-American, Andean and

Mapuche Native American populations that I estimated using admixed Latin Americans

individuals who derive most of their Native American ancestry from these populations.

This allowed me to explore instances of local adaptation in the Americas. Some of the

candidate regions of selection did not contain any genes and for some of them it is less clear

what the selective pressure may have been. I therefore discuss the functional significance

of the genes within the candidate regions based mainly on prior biological studies and as-

sociation with normal and disease phenotypes. I organize the discussion of candidate genes

below into two broad functional categories: metabolism and defense against pathogens. I

then end by discussing candidate selected genes that have been reported to be under selec-

tion in other studies including Native Americans and the main limitations of these findings.

3.5.1 Dietary adaptations in Native Americans

Currently, the best-documented examples of selection in Native Americans is through di-

etary adaptations (Acuña-Alonzo et al., 2010; Amorim et al., 2017; Mychaleckyj et al.,

2017; Hlusko et al., 2018). In line with these previous findings, I detected the strongest

signal of selection across Native Americans at the ADAMTS9 gene. This gene has been

previously associated to different anthropometric and metabolic phenotypes in various hu-

man populations. Notably, a recent selection scan conducted in admixed North-Eastern

Brazilians showed that, after accounting for non-Native American ancestry, ADAMTS9

possessed the strongest selection signal across the genome (Mychaleckyj et al., 2017).

Given that no North-Eastern Brazilian Native Americans were included in the selection

analysis performed here, this finding further supports that ADAMTS9 might have repre-

sented an important adaptive gene in the common ancestral population of Native Ameri-

cans. Recently, Amorim et al. (2017) suggested that the strong signal of selection shared
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across Native American, and that had been previously reported to be under selection Inuit

Greenlanders (Fumagalli et al., 2015), was consistent with a strong adaptation in Beringia.

To test whether the selection signal at ADAMTS9 was also in line with this finding, I ex-

plored the frequency of the top selected SNP (rs763139) in a world-wide set of human

populations that included Arctic populations (Table A.1). Notably, SNP rs763139 is not

only at its highest frequency in Native Americans, as expected, but also in several Arctic

populations, with the highest frequency among these populations observed in the Eskimo

(Figure 3.12). Eskimos are the result of an admixture process between the Ancestors of the

first Americans colonizers and North Asians (Reich et al., 2012). Multidisciplinary studies

have also suggested that Eskimos are descendants of ancient Beringians (González-José

et al., 2008; Bortolini et al., 2014). The high frequency of the selected variant observed

here shared with Eskimos, is reminiscent of the signal found in the FADS2 and also in line

with the recent suggested adaptive role of EDAR (Hlusko et al., 2018), and therefore also

consistent with a scenario of selection in Beringia. Importantly however, the SNPs within

ADAMTS9 do not seem to affect the different anthropometric or metabolic phenotypes in

admixed Latin Americans. It will be necessary to conduct genetic association analysis in

Native American populations to further elucidate the phenotypic effect of ADAMTS9 in

this population. In addition, although many of the top SNPs in the selection analysis for

all Native Americans showed moderate to high frequency in Siberian populations (Figure

A.7), the top SNP located within the NPAS2 gene showed one of the highest allele fre-

quencies in the four Siberian populations analyzed here (Figure 3.12). The NPAS2 gene

encodes a transcription factor thought to be the major transcriptional regulators of the

circadian clock mechanism in mammals (DeBruyne et al., 2007), an internal time-keeping

system that regulates distinct physiological processes including feeding behaviour, lipid

and carbohydrate metabolism, sleep, and blood pressure control (Dunlap et al., 2004).

Studies on knockout mice in circadian clock genes have also shown associated changes

in physiology, which include altered insulin/glucose responsiveness, obesity and arrhyth-

micity (van der Horst et al., 1999; Bunger et al., 2000; Rudic et al., 2004; Staels, 2006).

Further, in humans, epidemiological studies have also linked NPAS2 with a variety of

psychological disorders, including winter depression (Partonen et al., 2007). Notably, in

a recent selection scan of circadian clock genes in several worldwide human populations,

one variant within NPAS2 was shown to possess extreme allele frequency differences be-

tween populations living at different latitudes, and hence going through different modes

of seasonal fluctuations including photoperiods (Dall’Ara et al., 2016). It is interesting to

speculate as to whether longterm habitation at high latitudes in Beringia also prompted

selection for better adaptation to extreme photoperiods in the ancestors of Native Amer-

icans.

3.5.2 Immune adaptations in Native Americans

In addition to genes potentially related to dietary adaptations, it is intriguing that immune-

related genes comprise several of the top candidate regions of selection in Native American

populations. In the Meso-American Native Americans the strongest signal of selection is
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Figure 3.12: Worldwide allele frequencies of the top PBS SNPs detected in
Native Americans within ADAMTS9 and NPAS2. The allele frequencies are esti-
mated from 2,391 unrelated individuals collated from several public databases. The colors
of the bars reflect the geographic origin of the populations for which the allele frequencies
were estimated: Africa (green), Europe (blue), Middle East and North Africa (brown),
South Asia (pink), East Asia (purple), South East Asia (orange), Siberian(grey), America
(red) and Oceania (yellow). The number of individuals in each population (N) is given
next to the population name and the derived allele frequency is shown at the top of each
bar.
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located in the IRF5 gene, which is part of a group of transcription factors with diverse

roles, including virus-mediated activation of interferon and immune system activity (Yanai

et al., 2007). In the Andean and Mapuche Native American populations, the strongest

signals of selection are located in the MHC genomic region, which plays an important role

in the immune system (Hill, 1998, 2001; Shiina et al., 2009; Mosaad, 2015). Additionally,

in the selection analysis comprising all Native American samples, one of the top candi-

date regions encompasses the CCDC134 gene that is implicated in immune function likely

through a cytokine-like function (Huang et al., 2014). Notably, there is evidence showing

that Native American populations are immunologically different from other populations

(Bhatia et al., 1995; Lindenau et al., 2014a,b; Augusto et al., 2015; Lindenau et al., 2016).

It has been shown that there are a reduced number of human leukocyte antigen (HLA)

alleles (the gene complex encoding the majority of the MCH) in Native American popu-

lations compared to non-Native American populations, which has been suggested as one

of the explanations for their differentiated susceptibility to introduced diseases from the

Old World (Bhatia et al., 1995; Lindenau et al., 2014b; Augusto et al., 2015; Lindenau

et al., 2016). Importantly, because these selection analyses were conducted on living Na-

tive Americans who represent surviving individuals of populations affected by European

colonization, it is not possible to determine whether the immune-related genes found here

were selected before or after European contact. Interestingly however, in a recent study

of ancient individuals from the Northwest Coast of North America dating from before Eu-

ropean contact, Lindo et al. (2016) showed that the strongest signals of selection derived

from the MHC region. It is thus likely that at least some of adaptive signals found here

support a hypothesis of Native American populations adapting to local pathogens in the

Americas and not only to diseases brought after the European contact.

3.5.3 Adaptations at previously reported genes under selection

Another gene of adaptive interest found in the Meso-American Native American popula-

tion may be ALDH2. This gene encodes the second enzyme of the major oxidative pathway

of alcohol metabolism (Ohta et al., 2004). Specific variants within this gene are involved

in alcohol metabolism and are strongly associated to alcohol consumption (Luczak et al.,

2006; Eng et al., 2007; Baik et al., 2011; Takeuchi et al., 2011; Quillen et al., 2014; Wall

et al., 2016; Gelernter et al., 2018) and esophageal cancer (Cui et al., 2009) in Asian

populations. Interestingly, in a sample of Native Americans, Long et al. (1998) found

evidence for genetic linkage of alcohol dependence in the vicinity of the alcohol dehy-

drogenases (ADH) gene cluster. Similarly, Mulligan et al. (2003) showed associations of

ADH alleles with an increased risk of alcohol dependence and binge drinking in a Native

American sample. The genes underlying human alcohol metabolism provide a fascinating

example of how genetic variants can contribute to a complex phenotype through distinct

physiological and behavioural processes. During alcohol metabolism, alcohol is first ox-

idized by alcohol dehydrogenase to acetaldehyde, which is then oxidized to acetate by

acetaldehyde dehydrogenase (Eng et al., 2007; Wall et al., 2016). These enzymes occur in

several distinct isozyme forms encoded by multigene families. Specific variants at these

108



Chapter 3. Detecting signatures of selection in Native Americans

loci, including ALDH2, can produce physiological reactions including increased levels of

blood flow, dizziness, increased heart rate, sweating and nausea, which in combination

are usually referred to as “flushing response” (Harada et al., 1981; Eng et al., 2007; Wall

et al., 2016). Individuals suffering from these physiological response are usually protected

from alcoholism due to the undesirable feeling associated to heavy alcohol consumption

(Matsushita and Higuchi, 2017). Although it would be difficult to assert whether alcohol

consumption was the causal phenotype that derived selective pressure, the fact that heavy

alcohol consumption is also a major risk factor for developing esophageal cancer, selection

at ALDH2 in Meso-American Native American for protection to alcoholism is a hypothesis

worth considering.

In the Andean Native American group the highest selection signal encompasses the

AS3MT gene, which encodes an enzyme that is essential for the efficient metabolization

of arsenic in humans (Sumi and Himeno, 2012). Although high levels of arsenic in water

resources can be found all over the world, there is evidence that high levels of arsenic have

been present in different water resources in the Andean region for several thousands of

years (Concha et al., 2006; López et al., 2012). Long term exposure to arsenic can result

in a range of ailments that include skin lesions, cancer, cardiovascular and pulmonary

diseases (Abernathy et al., 2003; Rahman et al., 2009; Banerjee et al., 2013; Sun et al.,

2014), and can also hinder foetal development as arsenic can cross the placental barrier

(Fry et al., 2007; Raqib et al., 2009). Notably, previous studies in different Andean Na-

tive American populations have detected selection signatures within AS3MT (Engström

et al., 2013; Eichstaedt et al., 2015b; Apata et al., 2017). In light of these results, it seems

that high arsenic levels have probably imposed a strong selective pressure throughout

the Andean altiplano and has not been restricted to only some specific Andean Native

American groups. It would be interesting to analyze whether the selected haplotype is

shared between several Andean populations or has resulted through independent selec-

tion. Another gene of adaptive interest in the Andean Native American population is the

STOX1 gene. Mutations in this gene have been previously associated to preeclampsia in

European women (van Dijk et al., 2005, 2010). Preeclampsia is a pathology of pregnancy

characterized by high blood pressure and signs of damage to another organ system, that

can be lethal for the mother and for the fetus (Sibai, 2005; Agius et al., 2017). Interest-

ingly, this condition has been reported to be higher in Hispanic women (Wolf et al., 2004)

and exacerbated in high altitude regions such as the Andes (Moore et al., 1982, 2004;

Julian, 2011). Because environmental factors such as high altitude might affect the sus-

ceptibility to develop preeclampsia it is possible that selection has acted on genes related

to this condition. Notably, there is evidence showing that endothelin-1 (ET-1), a peptide

hormone with potent vasoconstrictor properties, is differentially regulated by pregnancy

and chronic hypoxia in Andeans compared to European residents of high altitude (Moore

et al., 2004). The authors suggested that this findings support the hypothesis that long-

term inhabitants of high altitude may be protected from the effect of chronic hypoxia

on vascular responses to pregnancy via ET-1. It is therefore possible that selection has

acted on genes related to pregnancy disorders affected by high altitude habitation such
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as STOX1 in Andean populations. In order to elucidate the adaptive importance of this

gene, for example to test whether variants in this gene confer a protection to preeclampsia

in Native American Andean women, it will be necessary to assess whether this gene is

associated with preeclampsia in this population.

One key limitation of this study when considering samples from throughout the Amer-

ican continent is that I could not differentiate between selective events that occurred only

in the ancestral population of Native Americans, or in the ancestral populations of Na-

tive Americans and Siberians, as the PBS selection analysis conducted here included East

Asians and Europeans as reference groups. To overcome this limitation, I could have

incorporated northern Siberians and East Asians in the PBS selection analysis. I would

expect the strong signals of selection observed at ADAMTS9 and NPAS2 to disappear,

as the derived allele of the SNPs with high PBS scores at these locus showed also high

frequencies in Siberian populations (Figure 3.12), but to find novel signals of selection that

occurred probably after Native Americans entered the continent. Further, this same ra-

tionale could also be applied to the XP-EHH analysis, using northern Siberians instead of

East Asians as a reference group. An important limitation of the PBS analysis conducted

in the different Native American populations using pseudo-unadmixed allele frequencies

is that it assumes that both the Spanish and Western African population used here, were

good proxies for the ancestral populations that admixed with modern Latin Americans,

and that the allele frequencies in these populations today, have not largely changed since

the admixture event. If these two assumptions are strongly violated then it is possible

that the pseudo-unadmixed allele frequencies for the different Native American popula-

tions have not been correctly estimated, which could affect the PBS selection analysis by

producing spurious signals of positive selection. Finally, for both the selection analysis

conducted in samples from throughout the Americas and in the different Native American

populations, I have limited my discussion based on the functional significance of the genes

within the candidate regions based mainly on prior association studies. However, many of

the SNPs with the highest selection signals were found in intergenic regions Table 3.1, 3.2,

3.3 and 3.4). It possible that many of the selection signals were driven by distal regulatory

effects and not by changes affecting the structure of the gene. One way to address this

limitation could have been to query the Genotype-Tissue Expression (GTEx) database

(GTEx Consortium, 2013) for associations between genotypes and gene expression across

a large panel of human tissues for evidence of cis- or trans-expression quantitative trait

loci (eQTLs). In addition, it would have also been possible to explore the functional con-

sequences of genetic variation at the SNPs with the strongest selection signals using the

Combined Annotation Dependent Depletion (CADD) scores (Kircher et al., 2014), which

provides an estimate of the functional severity of each SNP. Finally, to further investigate

the possible phenotypic effect of these SNPs, I could have taken advantage from other re-

sources besides the CANDELA cohort, such as the Biobank cohort (Bycroft et al., 2018),

which although does not include individuals of Latin American, provides a rich variety of

phenotypic and health-related information.
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3.6 Summary

In this chapter I have conducted a genome-wide scan of selection in Native Americans

and identified important candidate genes that I hypothesize were likely beneficial in the

ancestral population of Native American in Beringia prior to the entry into the American

continent, particularly adaptation to diet. In addition, I also explored instances of local

adaptation in the Americas using admixed Latin American individuals that derive most of

their ancestry from distinct Native American populations. I reported selection signals at

immune-related genes in these Native American populations that probably resulted from

an adaptation to local pathogens in the Americas or perhaps to diseases brought after

European contact.
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Chapter 4

Detecting Post-Columbian signals

of selection in Latin Americans

4.1 Overview

In this chapter I conduct a genome-wide scan of selection post-admixture in five admixed

Latin American populations from Brazil, Chile, Colombia, Mexico and Peru. I introduce a

novel statistical model that identifies loci that have been selected after an admixture event

by modelling the admixture proportions and genetic drift in an admixed population. Us-

ing this new method, I report a strong signal of selection post-admixture in the Peruvian

samples at a genomic region associated to metabolic-related phenotypes. I also test for

selection post-admixture by searching genomic regions with unusually high or low levels of

Native American, European or African ancestry. This analysis shows a highly significant

increase in African ancestry in the Chilean and Mexican populations, expanding over a

large genomic region that encompasses the Major Histocompatibility Complex (MHC),

which harbours various genes with a known function in immune response, including re-

sistance and susceptibility to a broad range of infectious diseases. I discuss the potential

advantages and limitations of detecting selection post-admixture by employing these two

different approaches.

4.2 Background

Admixed populations offer a unique opportunity to detect recent selection. In addition to

the canonical view where selection acts on a novel mutation, or a variant already present

in the population (known as selection on de-novo mutations or on standing variation,

respectively), another potential source of genetic variation can arise from an admixture

event (Figure 4.1). In the human lineage, genomic studies have demonstrated the per-

vasiveness of admixture events in the history of the vast majority of human populations

(Green et al., 2010; Patterson et al., 2012; Hellenthal et al., 2014; Lazaridis et al., 2014;

Prüfer et al., 2014). By leveraging the identification of the genomic segments of the donor

ancestral populations, several recent studies have demonstrated the importance of this

process in having contributed to genetic adaptations among human populations. Notable

examples include the transfer of a protective allele in the Duffy blood group gene provid-

ing resistance to Plasmodium vivax malaria in Malagasy population from Bantu-speaking
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Africans (Hodgson et al., 2014; Pierron et al., 2014, 2018) and the transmission of the lac-

tase persistence allele in the Fula pastoralists from Western Eurasians (Busby et al., 2017).

Figure 4.1: Schematic representation of a selection post-admixture event. Each
horizontal bar represents an haplotype in two different populations. The selected variant
is represented as a star and neutral variants as dots. Following an admixture event,
the beneficial variant can rise in frequency in the admixed population due to selection.
Adapted from Fan et al. (2016).

An ideal setting in which to test whether admixture contributed to genetic adaptation

is Latin America. The genetic make-up of the majority of present day Latin Americans

stems mainly from three distinct ancestral populations: indigenous Native Americans,

Europeans (mainly from the Iberian Peninsula), and West Africans (Wang et al., 2008;

Moreno-Estrada et al., 2013, 2014; Homburger et al., 2015; Chacon-Duque et al., 2018).

The admixed genomes of Latin Americans are thus the result of an intermixing process

between human populations that had been evolving independently for several tens-of-

thousands of years and that were suddenly brought together in a new environment. In

this new environment, the ancestral genomes were quickly subjected to novel environmen-

tal challenges that were largely unfamiliar from where they first evolved. Therefore, it is

expected that some variants from the different ancestral populations may be more bene-

ficial and hence increase in frequency to the detriment of the others because of selection.

Motivated by this scenario several studies have explored the genomes of admixed Latin

Americans in search for signatures of selection post-admixture (Tang et al., 2007; Basu

et al., 2008; Ettinger et al., 2009; Guan, 2014; Rishishwar et al., 2015; Deng et al., 2016;

Zhou et al., 2016). These studies have relied on an approach similar to that of admixture

mapping, where the ancestry of a genomic region is assigned to a particular ancestral

population, averaged across all individuals, and compared to the genome-wide population

average. A significantly deviated ancestry from the genome-wide population average is

then assumed to have evolved under some form of selection (Tang et al., 2007). The first

study exploring selection post-admixture in Latin Americans that used genome-wide SNP

data examined a small cohort of Puerto Rican individuals and reported three genomic
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regions thought to be under strong recent selection post-admixture. The strongest signal

was found at chromosome 6q at MHC. MHC harbors various genes with known function

in immune response, including resistance to different pathogens (Hill, 1998, 2001; Frod-

sham and Hill, 2004). The increase in African ancestry was suggested to have conferred

a selective advantage from infectious diseases likely brought from the Old World to the

Americas after European colonization. In a more recent study, Rishishwar et al. (2015)

examined a small sample of Colombian individuals and reported several genomic regions

thought to be under strong recent selection post-admixture, using an approach similar

to that of ancestry deviations. The strongest genomic regions with evidence of selection

post-admixture included MHC, as well as the genomic region harbouring SLC45A2, which

has been associated to skin pigmentation, and the ectodysplasin A receptor EDAR, which

is involved in a range of phenotypic traits, including sweat gland density, incisor shovel-

ing, and mammary gland ductal branching. Rishishwar et al. (2015) suggested that MHC

could confer immune resistance to different endemic hosts in the Colombian population

such as malaria, that the increase in European ancestry at SCL4A5 could be related to

preference for partners of lighter skin pigmentation (i.e. assortative mating), and that

the increase in Native American ancestry in EDAR was involved in adaptation to the

tropical environment given the association with sweat gland density. Finally, in a more

recent study, Zhou et al. (2016) analysed genome-wide SNP data from over 3,000 Mexican

individuals and reported a single genomic region under strong recent selection, as evi-

denced by an elevated amount of African ancestry that also impacted on the MHC region.

Similar to previous reports, the authors interpreted the increase in African ancestry as

occurring through an enrichment of African alleles that conferred protection from diseases

likely brought from the Old World. Nonetheless, this approach has been criticized due

to long-range LD (i.e. admixture-induced LD) (Price et al., 2008), inaccurate ancestral

populations (Baran et al., 2012; Pasaniuc et al., 2013; Deng et al., 2016; Zhou et al., 2016)

and systematic biases in local-ancestry inference (Baran et al., 2012; Pasaniuc et al., 2013;

Zhou et al., 2016). Furthermore, sampling error and genetic drift have also been suggested

to cause large differences in ancestry proportions along the genome (Long, 1991; Bhatia

et al., 2014; Mathieson et al., 2015). Finally, detecting selection post-admixture can also

be problematic in cases where admixture occurred only a few generations ago, as there

may not have been enough time for selection to generate a detectable signal in the distri-

bution of ancestry across the genome (Pierron et al., 2018).

In this chapter I present a novel statistical model for identifying SNPs under selection

post-admixture using genome-wide data from five different Latin American populations

collected as part from the CANDELA Consortium (Ruiz-Linares et al., 2014) and the 1000

Genomes Project (hence forth 1KG) (1000 Genomes Project Consortium et al., 2015). In

contrast to previous studies, this approach is based on allele frequencies and as such does

not require correct confident assignment of local ancestry along the genome to identify

regions to detect selection post-admixture. In order to contrast the findings here with

previous studies that have suggested the action of selection post-admixture at some loci

in Latin Americans populations, I complemented the allele-frequency based analysis by
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searching for local ancestry deviations along the genome. I report signals of selection

post-admixture at genes related to metabolic function and the immune system. I end this

chapter by discussing the advantages and limitations of these two different approaches.

4.3 Materials and methods

4.3.1 Description of the genomic data

The Latin American individuals analyzed here are part of the CANDELA (Ruiz-Linares

et al., 2014) and the 1KG (1000 Genomes Project Consortium et al., 2015) data collections.

The CANDELA sample included data sampled from 6,630 volunteers from five countries

(Brazil, Chile, Colombia, Mexico and Peru) (Section 1.8). All participants were genotyped

on the Illumina HumanOmniExpress chip at 730,525 SNPs. The genotype data from CLM

(Colombians, from Medellin, Colombia), MXL (Mexicans from Los Angeles, USA) and

PEL (Peruvians, from Lima, Peru) individuals from the 1KG Project were downloaded

from the 1KG FTP site available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/.

4.3.2 Quality control

I used PLINK v1.9 (Chang et al., 2015) to perform quality control (QC) analyses. For the

1KG data I excluded insertions or deletions (indels) and further retained only bi-allelic

SNPs. I then merged these two datasets and excluded SNPs and individuals with more

than 1% missing data or that showed evidence of genetic relatedness. Due to the admixed

nature of Latin Americans, there is an inflation in Hardy-Weinberg P-values and therefore

I did not exclude SNPs based on Hardy-Weinberg deviation. This resulted in a total of

476,840 autosomal SNPs and 6,352 individuals.

4.3.3 ADMIXTURE and PCA analysis

Ancestry values were estimated from a set of LD pruned SNPs via supervised ADMIX-

TURE (Alexander et al., 2009) at K = 3. References populations from African (YRI;

Yoruba in Ibadan, Nigeria), southern Europe (IBS; Iberian Population in Spain) and

Native American groups were chosen from the 1KG and selected Native Americans pop-

ulations from Chacon-Duque et al. (2018). I then removed non-admixed Latin American

individuals that I define as having less than 10% or more than 90% Native American

genome-wide ancestry. Based on a Principal Component analysis (PCA) I noted that the

PEL, MXL and CLM individuals from the 1KG clustered with the Peruvian, Mexican and

Colombian individuals from the CANDELA dataset, respectively (Figure B.1) and there-

fore decided to group these individuals into one population. The final Latin American

populations included in the selection analyses consisted of 208 Brazilians (BRA), 1,887

Colombians (COL; composed of CLM and Colombians from CANDELA), 1,770 Chileans

(CHL), 1,256 Mexicans (MEX; composed of MXL and Mexicans from CANDELA) and
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1,231 Peruvians (PER; composed of PEL and Peruvians from CANDELA).

4.3.4 A new statistical model to detect selection post-admixture

The novel model presented here was written by Dr. Garrett Hellenthal and developed

jointly by Dr. Garrett Hellenthal and myself. This model can detect loci under selection

post-admixture by using genome-wide SNP data from one admixed population and a set

of ancestral (“donor”) populations. The model compares the observed allele frequency

from the admixed population to those expected under a linear combination of the allele

frequencies of ancestral populations and their ancestry contributions. This approach is

most closely related to the work of Long (1991) and more recently to that of Mathieson

et al. (2015). However and in contrast to previous studies, the model can also simulta-

neously estimate an additional parameter that controls for the variance of the expected

allele frequency in the admixed population using all SNPs across the genome. This pa-

rameter can therefore be thought of broadly as a “genetic drift” estimate that is able

to capture the amount of drift experienced in the modern admixed population after the

admixture event, as well as unmodeled ancestry not captured by the linear combination

model. The model then evaluates whether each SNP shows a deviation larger than that

expected from the admixture process and genetic drift, which is assumed to be a signal of

selection post-admixture.

Formally, assume each bi-allelic SNP j ∈ [1, . . . , S] from a modern admixed population

k formed from ancestral (donor) populations d ∈ [1, . . . , D] draws pjk, its frequency of a

chosen allele, from a Beta distribution. The aim is to test whether a modern admixed

population has a highly selected (i.e. deviated) allele frequency at each SNP. If SNP j is

not selected, the mean of the Beta distribution is αjk, with variance Fkajk(1−ajk). Under

this latter setting αjk represents the allele frequency of the chosen allele at SNP j in the

ancestral admixed population k formed as a linear combination of allele frequencies in D

ancestral (donor) populations. Fk measures the amount by which the modern admixed

population has drifted from this ancestral admixed population. Under the former selected

setting, pjk follows a uniform distribution.

Let Gjk ∈ {0, 1} be an indicator for whether SNP j is selected in the modern admixed

population k with prior probability s. βdk is the admixture contribution of ancestral donor

population d to the admixed population k and λ the parameter of a symmetric Dirichlet

distribution. pjd is the allele frequency at SNP j in ancestral donor population d, njk the

number of non-missing alleles of admixed population k at SNP j, xjk the counts of the

chosen allele at SNP j in admixed population k, njd the number of non-missing alleles of

ancestral donor population d at SNP j, and xjd the counts of the chosen allele at SNP j

in the ancestral donor population d. Formally, the model assumes:

pjk|αjk, Fk ∼

Beta(αjk(1− Fk)/Fk, (1− αjk)(1− Fk)/Fk, if Gjk = 0.

Uniform[0, 1], if Gjk = 1.
(4.1)
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xjk|pjk ∼ Binomial(njk, pjk) (4.2)

Gjk|s ∼ Bernoulli(s) (4.3)

αjk =
D∑
d=1

βdkpjd (4.4)

βdk|λ1, . . . , λD ∼ Dirichlet(λ1, ..., λD) (4.5)

pjd|xj,d, njd ∼ Beta(xjd + 1, njd − xjd + 1) (4.6)

Fk ∼ Beta(c, d) (4.7)

Note that xjk|αjk, Fk, Gjk follows a Beta-Binomial distribution. I use c=1 and d=500

to define the distribution of Fk, assume s is equal to 0.001 i.e. the prior probability

for a SNP to selected and λd=1 for d = [1, . . . , D]. I sample posterior probabilities for

Gjk at each SNP j for each admixed population k, conditional on the data. I use the

following Markov Chain Monte Carlo (MCMC) technique to do so, components of which

are analogous to Falush et al. (2003).

Start with initial values of α
(0)
jk equal to the allele frequency of the chosen allele at SNP

j using Equation 4.4. βdk is sampled using Equation 4.5 and each pjd is sampled using

Equation 4.6

Then for m = [1, . . . ,M ] :

A. Sample G
(m)
jk using Gibbs sampling, such that

Pr(G
(m)
jk = g) ∝ Pr(xjk|α

(m−1)
jk , F

(m−1)
k , G

(m)
jk = g)s(m−1) (4.8)

for j = [1, . . . , S] and k = [1, . . . ,K].

B. For k = [1, . . . ,K] update β
(m)
dk using an Metropolis-Hastings (M-H) step. I.e. sam-

ple x from a normal distribution with mean zero and standard deviation 0.05. Randomly

select one donor population d (i.e. d = 1) and set its β
(m)
1k to β

(m−1)
1k + x, and then select

a second donor population d (i.e. d = 2) and set its β
(m)
2k to β

(m−1)
2k −x. Accept β

(m)
dk with

probability MHβ where MHβ ≡ min(1,
π(β

(m)
dk )

π(β
(m−1)
dk

) and

π(β
(m)
dk ) =

∏
j

[
∑
g

Pr(xjk|α
(m)
k , F

(m−1)
k , G

(m)
jk = g)1

[G
(m)
jk ]

]Pr(β
(m)
dk |λ

(m−1)). (4.9)

Automatically reject any β
(m)
dk outside (0,1).
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D. Update α
(m)
jk with β

(m)
dk and p

(m)
jd using Equation 4.4.

E. For k = [1, . . . ,K] update F
(m)
k using an M-H step. I.e propose a new F

(m)
k by

sampling from a normal distribution with mean F
(m−1)
k and standard deviation 0.05.

Accept F
(m)
k with probability MHF , where MHF ≡ min(1,

π(F
(m)
k )

π(F
(m−1)
k )

) and

π(F
(m)
k ) =

∏
j

[
∑
g

Pr(xjk|α
(m)
k , F

(m−1)
k , G

(m)
jk = g)1

[G
(m)
jk ]

]Pr(F
(m)
k ). (4.10)

Automatically reject any F
(m)
k outside (0,1).

For large M , this algorithm is guaranteed to converge to the true posterior distribution

of the Gjk ’s (Gamerman and Lopes, 2006). In practice, for all results presented here I use

M=20,000, sampling every 200th iteration after an initial “burn-in” of 10,000 iterations.

To remove an undesirable observed pattern of low minor allele frequency (MAF) SNPs

showing higher posterior probabilities, I replaced Fk with Vk/(αjk(1 − αjk)) and instead

infer Vk in step E. by sampling from a normal distribution with mean zero and standard

deviation 0.01, but otherwise using the same M-H acceptance procedure.

I defined the ancestral populations for all five Latin American populations using the

same Native Americans, Spanish Europeans (IBS) and Western Africans (YRI) used in

the ADMIXTURE analysis (described above in Section 4.3.3). This method is run in

two steps: for each population I run the algorithm for each chromosome separately, and

then averaged the inferred admixture proportions and genetic drift parameters across

chromosomes, weighting these parameters by the number of SNPs. I then fixed these

parameters in each population separately to estimate the posterior probability for selection

post-admixture at each SNP. SNPs with posterior probabilities higher than 0.5 (i.e. those

more likely of being selected than being not selected) were considered to be under selection

post-admixture.

4.3.5 Local ancestry deviation analysis

To conduct local ancestry assignment I used the discriminative modeling approach imple-

mented in RFMix (Maples et al., 2013). In order to increase the local ancestry assignment

accuracy, which is dependent on the number of SNPs (Maples et al., 2013), I used a more

lenient QC threshold removing SNPs with more than 5% missingness. A higher number of

SNPs is expected to increase the accuracy of local ancestry assigment (Baran et al., 2012;

Maples et al., 2013; Pasaniuc et al., 2013). This left a total of 667,674 autosomal SNPs.

The phased genotype data needed as input was obtained by using SHAPEIT2 (Delaneau

et al., 2013) with default parameter settings. Genetic distances were obtained from the

HapMap Phase II genetic map build GRCh37 (International HapMap Consortium, 2003).

As reference continental panels I used Native Americans, Spanish Europeans (IBS) and

Africans (YRI) individuals, as used in ADMIXTURE and in the new method presented

here, but setting the number of individuals per reference population to 100, in order to

avoid biases resulting from unbalanced reference panel sizes in the random forest algorithm

(Maples et al., 2013). I ran RFMix with default parameters, the phase correction feature
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enabled, and performed two rounds of the Expectation-Maximization (EM) algorithm.

To test for selection I followed the rationale that an excess or depletion of a given

ancestry on a genomic region can be indicative of selection post-admixture (Tang et al.,

2007). I computed the delta-ancestry value (Tang et al., 2007) for each SNP along the

genome. The delta-ancestry value is the difference in the ancestry proportion at a SNP

compared to the genome-wide average of that particular ancestry (Section 2.5.1). I esti-

mated the average ancestry at each locus as the average of that particular ancestry across

all samples. To estimate the genome-wide average I estimated the average of each ancestry

across all SNPs and all samples. Formally, for a particular ancestry k at a SNP j, delta

ancestry (δjk) is defined as:

δjk = qjk − qk (4.11)

where qjk is the mean of ancestry k at SNP j averaged over all individuals, and qk is the

proportion of ancestry k averaged over all individuals and the entire genome. Since delta-

ancestry values are normally distributed (Tang et al., 2007), I used standard deviation

(SD) units from the genome-wide average to assess significance. In order to correct for

multiple testing, I note that this analysis is similar to that of admixture mapping, where

the number of ancestry blocks is the important parameter to account for the number of

independent hypotheses and not the total number of SNPs. I therefore used a statistical

significance threshold of P-value = 5.68 × 10−5 that has been reported to be a sensitive

significance threshold for admixture mapping in Latin American populations (Browning

et al., 2016). Under normality, this significance threshold would correspond to 4.03 SD

units from the genome-wide average for a particular ancestry.

4.4 Results

4.4.1 Description of the new beta-binomial model to detect selection

post-admixture

The new model is based on the principle that allele frequencies in an admixed population

can be described as a linear combination of the allele frequencies in the ancestral (“donor”)

populations and their ancestry contributions. Given that admixture affects all loci equally,

the admixture proportions in an admixed population are expected to be the same across

all loci, and departures from the expectation are usually assumed to have evolved under

some type of selection (Long, 1991; Mathieson et al., 2015). However, since the estimated

admixture proportions at a locus can also vary simply due to genetic drift experienced in

the admixed population after the admixture event, it is important to account explicitly

for this factor. This model detects selection post-admixture by simultaneously estimat-

ing admixture proportions and a genetic drift parameter (described in detail in Section

4.3.4) in an admixed population (using joint information across all SNPs). It then aims

to identify loci in which the modern admixed population has experienced a larger than

expected change in allele frequency compared to the predicted allele frequency based on
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the admixture process and genetic drift, which is assumed to be evidence for selection

post-admixture (Figure 4.2).

Figure 4.2: Schematic of the new model used to identify variants under selec-
tion post-admixture in admixed populations. The model assumes a set of ancestral
(“donor”) populations (in this case three donor populations: D1, D2 and D3) with al-
lele frequencies pd=1,2,3 at a particular SNP, contributing ancestry proportions βd=1,2,3

(represented as solid lines) to an ancestral admixed population (K) with expected al-
lele frequency αk. The ancestral admixed population (K) then evolves under genetic drift
(Fk; represented as a dashed line) to form the modern (sampled) admixed population (K ′)
with allele frequency pk. The allele frequencies of the donor populations are drawn from
a Beta distribution to reflect uncertainty in ancestral allele frequencies and are therefore
represented as distributions on the top of each donor population. Similarly, the observed
allele frequency in the modern admixed population is modelled by a Beta-Binomial dis-
tribution with variance proportional to the expected allele frequency αk and genetic drift
Fk (represented as a solid and dashed lines in the distribution, respectively) (see Section
4.3.4). In this illustration the observed allele frequency in the modern admixed population
pk has experienced a larger than expected change (i.e. deviation) in allele frequency as
expected from the admixture process and genetic drift, and is therefore assumed to have
been selected (*) after the admixture event.
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4.4.2 Admixture proportions and genetic drift estimates in five admixed

Latin American populations

In order to detect selection post-admixture, the new model first estimates admixture

proportions in a target admixed population given a set of ancestral donor populations. I

first compared the admixture estimates produced by new model to two ancestry estimation

softwares: ADMIXTURE (Alexander et al., 2009) and RFMix (Maples et al., 2013). Most

modern admixed Latin Americans derive their ancestry from indigenous Native Americans,

southern Europeans (mainly from the Iberian Peninsula) and West Africans (Wang et al.,

2008; Moreno-Estrada et al., 2013, 2014; Ruiz-Linares et al., 2014; Homburger et al., 2015;

Adhikari et al., 2017; Chacon-Duque et al., 2018). I therefore modelled each admixed

Latin American population analysed here (Brazil, Chile, Colombia, Mexico and Peru)

using modern proxies for these ancestral populations. Encouragingly, the proportions

of Native American, European and African ancestry estimated by the new model were

similar to those obtained by ADMIXTURE and RFMix (Table 4.1). Differences between

the ancestry proportions across methods were low, with slightly closer ancestry estimates

obtained by the new model and RFMix, likely due to the fact that these two methods used

the whole set of SNPs whereas ADMIXTURE used a set of LD-pruned SNPs. The genetic

drift parameters estimated by the new model were low and similar across all populations.

Slightly lower genetic drift estimates were also observed in the Brazilian and Peruvian

samples.

4.4.3 Candidate regions of selection post-admixture identified by the

new beta-binomial model in admixed Latin Americans

The new beta-binomial model identified the strongest signals of selection post-admixture in

the Peruvian sample at 10q22 (Figure 4.3 and Table 4.3). SNPs with posterior probability

> 0.5 (i.e. those more likely of being under selection than under neutrality) encompass a

region of circa 360Kb and are distributed across three genes: Hexokinase Domain Contain-

ing 1(HKDC1 ), Storkhead Box 1 (STOX1 ) and VPS26, Retromer Complex Component

A (VPS26A). HKDC1 is an hexokinase enzyme, highly conserved across vertebrates and

expressed in many tissues (Irwin and Tan, 2008). Variants within HKDC1 have been as-

sociated to 2 hour fasting plasma glucose levels in a sample of pregnant women (including

Hispanics) (Hayes et al., 2013), and with gestational mellitus diabetes in a south Indian

population (Kanthimathi et al., 2016). The Retromer Complex Component A (VPS26A)

gene encodes a component of the retromer complex, a multimeric protein involved in

transport of proteins from endosomes to the trans-Golgi network (Seaman et al., 1997,

2009), and is expressed in pancreatic, adipose tissues, amongst others (Kim et al., 2008).

VPS26A has been associated to type 2 diabetes (T2D) in individuals of south Asian an-

cestry (Kooner et al., 2011). STOX1 is a protein coding gene. Mutations within this

gene have been associated to preeclampsia (van Dijk et al., 2005, 2010), a pathology of

pregnancy characterized by high blood pressure and signs of damage to another organ

system, that can be lethal for the mother and for the fetus (Sibai, 2005).

In the Brazilian, Chilean, Colombian and Mexican population, no genomic regions
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Table 4.1: Ancestry proportions estimates based on ADMIXTURE, the new
beta-binomial model and RFMix for five Latin American populations.

ADMIXTURE

Population Native American European African

BRA 0.19 0.72 0.09

COL 0.28 0.64 0.08

CHL 0.45 0.54 0.02

MEX 0.55 0.42 0.03

PER 0.65 0.32 0.03

Beta-binomial model

Population Native American European African

BRA 0.21 0.69 0.11

COL 0.31 0.59 0.10

CHL 0.46 0.50 0.05

MEX 0.55 0.40 0.06

PER 0.63 0.31 0.06

RFMix

Population Native American European African

BRA 0.19 0.71 0.09

COL 0.30 0.61 0.09

CHL 0.45 0.52 0.03

MEX 0.57 0.40 0.03

PER 0.64 0.33 0.04
Abbreviations: BRA, Brazilian sample; COL, Colombian sample; CHL, Chilean sample;
MEX, Mexican sample; PER, Peruvian sample.

Table 4.2: Genetic drift estimates based on the new beta-binomial model for five Latin
American populations.

Population Genetic drift

BRA 0.00065

COL 0.00097

CHL 0.00104

MEX 0.00105

PER 0.00089
Abbreviations: BRA, Brazilian sample;
COL, Colombian sample; CHL, Chilean sam-
ple; MEX, Mexican sample; PER, Peruvian
sample.
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Chapter 4. Detecting Post-Columbian signals of selection in Latin Americans

surpassed the posterior probability threshold of 0.5 (Figure 4.3). However, there was a

strong signal of selection in the Mexican population at 6p22, that was also shared by all

other Latin American populations. Interestingly, this genomic regions harbours the MHC

that contains several genes which play an important role in the immune system (Hill, 1998,

2001; Frodsham and Hill, 2004).
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Section 4.4. Results

Figure 4.3: Genome-wide scan of selection post-admixture in admixed Latin
American populations. Each dot represents the posterior probability estimated by the
new beta-binomial model (per-SNP prior probability (s) was set equal to 0.001). The
dashed black line represents the 0.5 Posterior Probability. Names of genes discussed in
the text are shown. Abbreviations: BRA, Brazilian sample; CHL, Chilean sample; COL,
Colombian sample; MEX, Mexican sample; PER, Peruvian sample.

124



C
h

ap
ter

4.
D

etectin
g

P
ost-C

olu
m

b
ian

sign
als

of
selection

in
L

atin
A

m
erican

s

Table 4.3: Top candidate SNPs of selection post-admixture based on the beta-binomial model in the Peruvian sample. SNPs with
posterior probability > 0.5 are listed in the table. Genomic position, SNP, annotation, candidate gene and posterior probability, ordered by posterior
probability.

Genomic coordinates (hg19) SNP Annotation Candidate gene Posterior probability

Chr10:70975916 rs5030938 5’ UTR HKDC1 0.702

Chr10:70613280 rs10998460 Intronic STOX1 0.700

Chr10:70871598 rs2394505 Intergenic - 0.684

Chr10:70890482 rs6480383 Intronic VPS26A 0.549

Chr10:70906916 rs10823305 Intronic VPS26A 0.514
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4.4.4 Candidate regions of selection post-admixture based on local an-

cestry deviations

I also tested for post-admixture selection by searching for genomic regions with unusu-

ally high or low levels of Native America, European or African ancestry in the five Latin

American samples. To measure the extent of the contribution of these ancestry across the

genome, I used the discriminative modelling approach implemented in RFMix (Maples et

al., 2013) to perform local ancestry inference. The distribution of the ancestry inference

across each genomic region revealed a highly significant increase in African ancestry (and

decrease in Native American ancestry) at 6p22 in the Chilean and Mexican samples (Fig-

ure 4.5 and 4.7). The highest amount of inferred African ancestry in this region in the

Chilean and Mexican samples are 5.9% and 7.3%, corresponding to 6.9 and 7.2 standard

deviation (SD) units from the genome-wide average which, under the normal approxi-

mation corresponds to a P-value = 6.3 × 10−13 and P-value = 3.5 × 10−12, respectively.

The increase in African ancestry in the Chilean and Mexican sample (4.03 SD units from

the genome-wide average), extended over a large region of ∼12Mb (chr6:23,858,310 —

35,457,396) and ∼14Mb (chr6:22,150,358 — 36,342,181), respectively. Noticeably, this re-

gion includes the MHC locus, which plays an important role in the immune system (Hill,

1998, 2001; Frodsham and Hill, 2004). Interestingly, the other Latin American popula-

tions also showed some evidence of an increased African ancestry at the MHC region,

albeit below the significance threshold set at 4.03 SD units from the genome-wide average

(Figure 4.4, 4.6 and 4.8). Compared to the other regions, where fluctuations in ancestry

deviation essentially showed a random pattern, the African ancestry in these populations

was elevated throughout the MHC region. Additionally, other genomic regions in the

Brazilian, Chilean and Colombian samples showed ancestry deviations slightly above the

significance threshold (Figure 4.4, 4.5 and 4.6). However, these regions included mostly

small genomic segments covered by small number of SNPs and are therefore more likely

to represent local ancestry assignment errors than true selection signals.

4.5 Discussion

In this chapter I presented a novel statistical model to detect signals of selection post-

admixture. The underlying model is based on the principle that allele frequencies in an

admixed population can be modelled as a linear combination of the allele frequencies in

the ancestral populations proportional to their admixing contributions, and that devia-

tions from the expectation can be a product of selection after the admixture event. This

model is most closely related to the work of Long (1991) and more recently to that of

Mathieson et al. (2015), but provides significant improvements for (at least) four reasons.

First, the beta-binomial model incorporates the estimation of a parameter that controls

the variance in the predicted allele frequencies in the admixed population, given the set

of ancestral populations used in the admixture model. This parameter can thus help to

control for large deviations in allele frequency arising solely from genetic drift experienced

in the admixed population. The role of genetic drift in affecting signatures of selection

post-admixture has long been noted and explored in previous and more recent studies.
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Chapter 4. Detecting Post-Columbian signals of selection in Latin Americans

Figure 4.4: Local ancestry deviation in BRA admixed population. Proportion
of Native American (upper panel), European (middle panel) and African (bottom panel)
ancestry at each SNP along the genome. The black solid line indicates the genome-wide
average proportion of each ancestry. Grey dashed line indicates ±4.03 SD from the mean.
SD was calculated empirically over all SNPs.

Figure 4.5: Local ancestry deviation in CHL admixed population. Proportion
of Native American (upper panel), European (middle panel) and African (bottom panel)
ancestry at each SNP along the genome. The black solid line indicates the genome-wide
average proportion of each ancestry. Grey dashed line indicates ±4.03 SD from the mean.
SD was calculated empirically over all SNPs.
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Figure 4.6: Local ancestry deviation in COL admixed population. Proportion
of Native American (upper panel), European (middle panel) and African (bottom panel)
ancestry at each SNP along the genome. The black solid line indicates the genome-wide
average proportion of each ancestry. Grey dashed line indicates ±4.03 SD from the mean.
SD was calculated empirically over all SNPs.

Figure 4.7: Local ancestry deviation in MEX admixed population. Proportion
of Native American (upper panel), European (middle panel) and African (bottom panel)
ancestry at each SNP along the genome. The black solid line indicates the genome-wide
average proportion of each ancestry. Grey dashed line indicates ±4.03 SD from the mean.
SD was calculated empirically over all SNPs.
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Figure 4.8: Local ancestry deviation in PER admixed population. Proportion
of Native American (upper panel), European (middle panel) and African (bottom panel)
ancestry at each SNP along the genome. The black solid line indicates the genome-wide
average proportion of each ancestry. Grey dashed line indicates ±4.03 SD from the mean.
SD was calculated empirically over all SNPs.

For example, based on simple admixture models, Long (1991) showed how genetic drift

alone could produce large differences in ancestry proportions along the genome of an ad-

mixed population. Similarly, Bhatia et al. (2014) showed via simulations that genetic

drift can significantly contribute to variance in average local ancestry, as a function of the

effective population size of the admixed population. In a more recent study, Mathieson

et al. (2015) identified loci under selection by modelling the observed allele frequencies in

modern Europeans as a linear combination of the allele frequencies and admixture pro-

portions of three ancestral populations that contributed most of the ancestry to present

day Europeans. Importantly, the authors noted that the test statistic employed showed

substantial inflation and suggested that this was most likely due to unmodelled ancestry

or additional genetic drift not captured by their model. Second, the beta-binomial model

can also account for the uncertainty in ancestral allele frequencies by drawing the ancestral

allele frequency estimate from a random Beta distribution. This feature will be of impor-

tance when large sample sizes are not available to compute reliable allele frequencies in

the ancestral populations, a feature that is common in ancient DNA samples. Third, the

Bayesian framework implemented in the new beta-binomial model can also be extended

to take into account the differential action of selection across the genome . For instance, a

simple extension would be to incorporate different prior probabilities to different genomic

contexts. Finally, the beta-binomial model can also simultaneously estimate the ancestry

admixture proportions in an admixed population without having to resort to other soft-

wares.
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In this chapter I used the new beta-binomial model to test whether admixture con-

tributed to genetic adaptation in Latin American samples from Brazil, Chile, Colombia,

Mexico and Peru. Latin Americans represent an ideal setting in which to detect recent

selection post-admixture as these populations were formed by the mixing of genetically

differentiated ancestral populations that were suddenly exposed to new environmental

challenges (Wang et al., 2008; Moreno-Estrada et al., 2013, 2014; Homburger et al., 2015;

Chacon-Duque et al., 2018). The beta-binomial model detected strong signals of selection

post-admixture only in the Peruvian population, with less evidence of selection post-

admixture in the other populations (Figure 4.3). There are two possibilities that might

explain this finding. The first possibility is that the recent admixture event in Latin

Americans may not have provided enough time for selection to generate a detectable sig-

nal (Wang et al., 2008; Moreno-Estrada et al., 2013; Homburger et al., 2015; Chacon-Duque

et al., 2018). The second possibility could be due to a combination of factors affecting the

statistical power of the new beta-binomial model across Latin American populations. For

instance, the different sample sizes, admixture proportions and the current allele frequen-

cies of putatively selected variants are likely to contribute to the statistical power across

populations. It is also likely that the fixed prior probability (set at 0.0001) or that the

posterior probability threshold (0.5) used here are too stringent and may not be suitable

to detect signals of selection in recently admixed populations such as Latin Americans.

Future work will be needed to determine the statistical power of this posterior probability

threshold under different prior posterior probabilities, different selection coefficients and

different starting allele frequencies of the selected variant using simulations that closely

resemble the admixture history of these populations.

The genomic region with the strongest selection signal post-admixture was detected

in the Peruvian sample at 10q22 (Figure 4.3 and Table 4.3). The SNP with the over-

all strongest evidence of selection post-admixture was located in the 5’ UTR of HKDC1,

which has an important function in glucose metabolism (Irwin and Tan, 2008; Hayes et al.,

2013; Guo et al., 2015). In addition, association studies have shown that variants within

this gene might affect glucose levels in pregnant women (Hayes et al., 2013). From an

evolutionary perspective, even very small effects on fertility and childhood survival can

pose strong selective pressures (Williams, 1957). Interestingly, this same genomic region

was also found to possess signals of selection in Andean Native Americans (see Section

3.4.5). It is worthwhile to note another potential caveat in the new beta-binomial model.

The five Latin American populations analyzed here were modelled using the same set of

Native Americans, Spanish Europeans and West Africans samples, and therefore might not

represent the best proxy donor populations for each different Latin American population.

For example, Chacon-Duque et al. (2018) showed that different local Native Americans

groups contributed to the Native American ancestry of these five Latin American popula-

tions, and that the European component in the Brazilian sample is most similar to that of

a Portuguese and West Spanish populations, while in Mexico, Colombia, Peru and Chile

it is most similar to that of Central and southern Spanish population. It is possible that

departures from the expected allele frequencies might be due to large differences between

the allele frequencies of the proxies population used in the model and the true ancestral
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populations. The fact that the high posterior probabilities at this region was not accompa-

nied by a significant deviation of Native American, European or African ancestry, further

suggest this signal might not represent a true selection post-admixture in the Peruvian

population (Figure 4.9). Moreover, as modern admixed populations are being modelled

using modern reference populations, it is important to note that the new beta-binomial

model will not be able to distinguish whether selection happened in the admixed popu-

lation or one (or more) of the reference populations. For instance, in this case it is more

likely that the high posterior probability is detecting a selection signal in the ancestral

Native American populations, in agreement with the results presented in Chapter 3 (see

Section 3.4.5). Although the most appropriate use for this new model would be to employ

ancient DNA samples from the Native Americans, Europeans and Africans populations

that contributed to these Latin American populations, there are currently no ancient DNA

samples from these specific populations.

As a complementary approach I also searched for signals of selection post-admixture

by identifying genomic regions with unusually high or low levels of Native American, Eu-

ropean or African ancestry. Applying this approach revealed two genomic regions showing

strong ancestry deviations in the Mexican and Chilean populations, both of which were

found at the MHC region (Figure 4.5 and 4.7). In the Brazilian, Colombian and Peru-

vian populations, a higher increase of African ancestry was also observed at MHC, albeit

without reaching genome-wide significance (Figure 4.4, 4.6 and4.8). Notably, the new

beta-binomial model also showed evidence of selection post-admixture at the MHC re-

gions in all five Latin American populations, with highest signals being observed in the

Mexican population (Figure 4.10). MHC harbours various genes with a known function

in immune response, including resistance and susceptibility to a broad range of infectious

diseases (Hill, 1998, 2001; Frodsham and Hill, 2004). It is well established that many dis-

eases, such as smallpox, measles, mumps and influenza were introduced to the Americas

after European contact, and that these caused high mortality that led to many disease

outbreaks that lasted even up until colonial times (Duffy, 1972; Crosby, 1976; Dobyns,

1993; Cook and Lovell, 2001; Acuna-Soto et al., 2004; Fields, 2004). Under these adverse

conditions, genes related to infectious disease resistance are therefore likely to have been

under strong selection post-admixture in Latin Americans. Notably, two recent studies

have also reported a strong signal of selection post-admixture at the MHC genomic in

Mexicans (Zhou et al., 2016) and Colombians (Rishishwar et al., 2015). I took this oppor-

tunity to investigate why I detected the signal in the Mexican population analyzed here,

but failed to detected the selection in the Colombian population.

In the first study, Zhou et al. (2016) identified a significant excess of African ancestry

at the MHC in a sample of over 2,000 Mexicans. The authors used a sample of Maya and

Pima Native Americans from the Human Genome Diversity Project and northern Euro-

peans (CEU) and West Africans (YRI) from the 1KG as reference populations. To test the

robustness of the choice of the reference populations used, the authors re-estimated local

ancestry inferences using different European and African populations. In addition, they

also adjusted their local ancestry assignment statistical model to infer local ancestry us-
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Figure 4.9: Signals of selection post-admixture at 10q22 in the Peruvian pop-
ulation. The Posterior Probabilities estimated by the new beta-binomial model (upper
panel). Z-scores representing the excess or deficiency of Native American (red), European
(blue) and African (green) ancestries from the genome-wide average (middle panel). UCSC
RefSeq genes present at the genomic regions (bottom panel). The grey dashed line in the
upper panel indicates the Posterior Probability threshold of 0.5. The dashed grey lines
in the middle panel indicates the significant threshold of ±4.03 SD from the genome-wide
average.
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ing only European and African reference samples and learning Native American segments

from the admixed Mexicans. Notably, the selection signal at the MHC region remained

significant under these different settings. The results found in the Mexican sample an-

alyzed here further support this finding. In the second study Rishishwar et al. (2015)

also detected a significant increase in African ancestry at the MHC region in a sample

of over 100 Colombians from the 1KG. However, unlike the study of Zhou et al. (2016),

the authors employed East Asians (CHB), northern European (CEU) and West African

(YRI) from the 1KG as reference populations. In addition, the authors did not test the

robustness of their ancestry assignment using different reference populations. Given that

the Colombian sample presented here included a sample of Colombians from the 1KG,

contained a larger number of samples, and used a better proxy of reference populations, it

is possible that the significant increase in African ancestry reported by Rishishwar et al.

(2015) was due to the inaccurate Native American proxy population used. Overall, the

results presented here and the findings from the study of Zhou et al. (2016) give further

support to a strong selection at MHC in Mexicans since admixture. Nonetheless, it still

will be necessary to assess the robustness of the significant African enrichment found in

the Mexican and Chilean sample here, ideally using closely related populations for their

ancestral donor populations. Finally, it would also be necessary to assess the the accuracy

of the genotyping at MHC, given that the exceptionally high diversity and polymorphisms

makes this locus hard to map (Szolek et al., 2014; Nariai et al., 2015; Nelson et al., 2015;

Duke et al., 2016; Dilthey et al., 2016; Kawaguchi et al., 2017). For example, a simple

check such as the one used by Tang et al. (2007) when assessing the reliability of the signal

found at MHC in Puerto Rican could be also implemented here. The authors repeated

their local ancestry assignment separately with even-numbered and odd-numbered SNPs

to eliminate the possibility that the peaks were due to a few outliers (i.e. badly genotyped

SNPs). In addition, bioinformatic tools specifically developed to assess the accuracy of

the genotyping at MHC could also be employed (Jeanmougin et al., 2017).
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Figure 4.10: Signals of selection post-admixture at the MHC region in the
Mexican population. The Posterior Probabilities estimated by the new beta-binomial
model (upper panel). Z-scores representing the excess or deficiency of Native American
(red), European (blue) and African (green) ancestries from the genome-wide average (mid-
dle panel). UCSC RefSeq genes present at the genomic regions (bottom panel). The grey
dashed line in the upper panel indicates the Posterior Probability threshold of 0.5. The
dashed grey lines in the middle panel indicates the significant threshold of ±4.03 SD from
the genome-wide average.
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4.6 Summary

In this chapter I presented a novel statistical model aimed to detect selection post-

admixture in admixed populations. I apply this new method to five different Latin Ameri-

can populations and showed that there was a strong selective event in the Peruvian sample

at a genomic region associated with glucose metabolism. I showed that it is also likely

that this signal was driven by the use of inaccurate Native American reference populations

and that the selection signal was likely driven by a selection event that occurred in the

Native American population that contributed most of the Native American ancestry to the

Peruvian sample. Testing for selection via local ancestry deviations in these populations

showed a significant enrichment of African ancestry at the MHC in the Chilean and Mex-

ican populations only. The genes at MHC involved in infectious disease resistance might

have been selected due to diseases brought from the Old World after European contact.
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Chapter 5

Genetic determinants of

pigmentation in Latin Americans

5.1 Overview

In this chapter I perform a Genome Wide Association Study (GWAS) on over 6,000 Latin

American individuals from the CANDELA sample for skin and eye pigmentation. A

GWAS of hair pigmentation measured categorically has been previously reported in these

same individuals (Adhikari et al., 2016a). Here, I add to this study by considering the

results for all pigmentation traits examined in this sample. The majority of genetic studies

of pigmentation have been performed in Northern European populations and thus, a large

proportion of the genetic variation that contributes to pigmentation phenotypes in other

worldwide populations is yet to be explored. Additionally, and in contrast to most genetic

studies of pigmentation variation, the pigmentation phenotypes assessed here (with the

exception of hair pigmentation) were evaluated using quantitive measurements, which en-

hance the power to identify genetic association. In this chapter I report novel associations

for both skin and eye pigmentation. I provide evidence that the genomic regions associ-

ated with pigmentation phenotypes contain genes that represent important candidates for

follow-up functional analyses. The work in this chapter also serves as an example of the

necessity and the advantage of conducting GWAS in populations that have been underrep-

resented in human genetic studies, and how using quantitative pigmentation phenotypes

enhances identification of genetic associations.

5.2 Background

Human pigmentation is mainly driven by the type, amount and distribution of melanin in

the skin, eye and hair. In recent years, association studies have identified genes affecting

common variation in pigmentation in various human populations (Section 1.5.3). The

majority of these studies however, have been carried out in European populations (Section

1.7), and there are still substantial gaps in the understanding of the genetic architecture

of pigmentation phenotypes in different worldwide groups (recently reviewed in Lasisi and

Shriver (2018)). A better understanding of human skin pigmentation genetics is highly

relevant for medical studies, for example, due to the shared role between pigmentation loci
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and many type of skin cancers (Zhang et al., 2013a; Asgari et al., 2016; Chahal et al., 2016;

Ransohoff et al., 2017), evolutionary biology, given the adaptive role of skin pigmentation

variation across different latitudes exposed to varying amounts of solar radiation (Jablonski

and Chaplin, 2000, 2017), and to forensic applications, such as pigmentation phenotype

prediction based on DNA variants (Walsh et al., 2011). Recently, there have also been

important advances in the developments of methods based on reflectance and imaging

technologies to better characterize pigmentation phenotypes (Liu et al., 2010; Edwards

et al., 2010; Andersen et al., 2013; Beleza et al., 2013a; Edwards et al., 2016; Norton

et al., 2016; Lloyd-Jones et al., 2017; Rawofi et al., 2017; Wollstein et al., 2017). These

studies have shown that using quantitative measurements, compared to using manually

defined phenotype categories, can increase both power to detect genetic associations and

prediction accuracy of pigmentation phenotypes.

5.2.1 Previous studies

Human pigmentation variation is a trait known to be strongly influenced by genetics

(Clark et al., 1981; Rees and Harding, 2012). Candidate genes for pigmentation pheno-

types were initially proposed based on model organisms (e.g. the Color Gene database:

http://www.espcr.org/micemut/). Functional variants for human pigmentation varia-

tion have also been discovered through the study of rare syndromes involving pigmen-

tation anomalies (Hamosh et al., 2005). Previous association studies, including candidate-

gene and GWAS have successfully validated previously proposed pigmentation genes as

well as discovered novel associations (Section 1.5.3). Established genes involved in nor-

mal variation in skin, hair and eye pigmentation in human populations include: MC1R

(Melanocortin 1 receptor, OMIM: 155555), OCA2 (Oculocutaneous Albinism II, OMIM:

611409), HERC2 (HECT and RLD domain Containing E3 ubiquitin protein ligase 2,

OMIM: 605837), ASIP (Agouti Signalling Protein, OMIM: 600201), IRF4 (Interferon

Regulatory Factor 4, OMIM: 601900), TYR (Tyrosinase, OMIM: 606933), SLC24A4 (So-

lute Carrier family 24 member 4, OMIM: 609840), SLC24A5 (Solute carrier family 24

member 5, OMIM: 609802), KITLG (KIT ligand, OMIM: 184745), and TYRP-1 (Tyrosi-

nase related Protein 1, OMIM: 115501).

The vast majority these human pigmentation genetic studies however, have been car-

ried out in European populations, which limits the understanding of the underlying genetic

architecture of this phenotype. A recent exception includes a study of skin pigmentation

variation in ∼1,500 ethnically diverse Sub-Saharan Africans (Crawford et al., 2017). In

this study, the SNPs with the second strongest association to skin pigmentation contained

the Major Facilitator Superfamily Domain-containing protein 12 (MFSD12 ) gene. Two of

the eight potentially causal SNPs (rs56203814 and rs10424065), where the derived allele

was associated with darker pigmentation, are present only in African populations (or those

with recent African descent) and are almost absent everywhere else. Additionally, coales-

cent based analysis estimated the Time to the Most Recent Common Ancestor (TMRCA)

of SNP rs10424065 to be 612 kya (95% CI 515-736 kya), thus predating the 300 kya esti-

mate for the origin of modern humans (Richter et al., 2017). This study thus exemplifies
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the need for the inclusion of diverse human population in pigmentation genetic studies to

further inform about the evolutionary history of pigmentation phenotypes.

Most genetic studies of human pigmentation have assessed these phenotypes cate-

gorically or even indirectly for example using questionnaires. Categorizing pigmentation

variation in ordinal categories however, represents an oversimplification of the truly con-

tinuous nature of human pigmentation variation. It follows that using continuous variables

that better capture pigmentation traits, can aid in the identification of novel genes. While

many studies have quantified human skin pigmentation variation using continuous vari-

ables (most commonly the Melanin Index) (Candille et al., 2012; Abe et al., 2013; Beleza

et al., 2013a; Eaton et al., 2015; Liu et al., 2015; Crawford et al., 2017b; Lloyd-Jones et al.,

2017; Martin et al., 2017b; Rawofi et al., 2017), the vast majority of genetic studies of eye

and hair pigmentation were based on categorical trait information. The first study to

quantify continuous eye pigmentation variation was conducted in ∼6,000 northern Euro-

peans (Liu et al., 2010). Liu et al. (2010) showed that eye color varied in more dimensions

than the the blue, green and brown categories more commonly used and identified the

LYST gene and the DSCR9 gene as promising functional candidates. Similarly, the first

GWAS of quantitative skin and eye pigmentation of non-European populations was re-

cently conducted in a small sample (∼300) of East Asians (Rawofi et al., 2017). Although

no novel variants were identified for skin pigmentation, one variant within the ZNF804B

gene was identified as a potential candidate for eye pigmentation variation. These studies

show how the use of continuous trait information of pigmentation phenotypes can increase

the power to identify novel pigmentation loci.

5.3 Materials and methods

5.3.1 Study subjects

To study genetic determinants of pigmentation in Latin Americans I use a dataset of 6,357

unrelated volunteers from 5 countries (Brazil, Chile, Colombia, Mexico and Peru), part

of the CANDELA Consortium sample (Ruiz-Linares et al., 2014; Section 1.8). A detailed

description of the main features of the study sample is presented in Table C.1.

5.3.2 DNA genotyping and quality control

DNA samples from participants were genotyped on the Illumina HumanOmniExpress chip

at 730,525 SNPs. PLINK v1.9 (Chang et al., 2015) was used to exclude SNPs and indi-

viduals with more than 5% missing data, SNPs with minor allele frequency less than 1%,

related individuals, and those who failed the X-chromosome sex concordance check (sex

estimated from X-chromosome heterozygosity not matching recorded sex information).

After applying these filters, 669,462 SNPs and 6,357 individuals were retained for further

analysis. Due to the admixed nature of the study sample (Figure C.1) there is an inflation
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in Hardy-Weinberg P-values, and SNPs were therefore not excluded based on concordance

with Hardy-Weinberg equilibrium.

5.3.3 Description of pigmentation phenotypes

A physical examination of each volunteer was carried out using the same protocol and

instruments at all recruitment sites. Eye color was recorded in five ordinal categories (1-

blue/grey, 2-honey, 3-green, 4-light brown, 5-dark brown/black). Hair color was recorded

in four categories (1-red/reddish, 2-blond, 3-dark blond/light brown or 4-brown/black),

as described in Adhikari et al. (2016). Individuals with red hair were excluded prior

to the analyses, as it is a rare in the sample (frequency of 0.6%) and this phenotype

is known to stem from rare variants in MC1R (Valverde et al., 1995). A quantitative

measure of constitutive skin pigmentation (the Melanin Index, MI) was obtained using

the DermaSpectrometer DSMEII reflectometer (Cortex Technology, Hadsund, Denmark).

The MI was recorded from both inner arms and the mean of the two readings used in

downstream analyses. The absolute difference of the two measurements was taken as the

variability within an individual, and the median variability across all individuals was 1.03

MI units (Figure C.2). For comparison the total variability in the CANDELA sample was

20 to 65 MI units.

In addition to direct assessment of eye color into five ordinal categories, I obtained

quantitative variables related to eye color from digital photographs of the volunteers. One

of the two eyes was selected based on image quality. Photographs were landmarked manu-

ally via a graphical interface tool designed in MATLAB 3.2.5 by Dr. Kaustubh Adhikari.

Ten landmarks were used to delimit and extract the visible part of the iris. Additional

landmarks were placed to select the whitest part of the sclera. This white reference and

the darkest part of the pupil were used to normalize the image, adjusting for variable color

casts or illumination levels across images. An adaptive threshold was then used to remove

highlights such as reflections on the iris. The resulting images were individually checked

for the presence of errors during the digitization steps leading to their exclusion. In total

5,513 iris images were retained for extracting RGB (Red, Green, Blue) pixel color values.

The multivariate median of the RGB values across all pixels was calculated in order

to obtain average RGB values for an iris. However, although the RGB color-space is con-

venient for digital imaging it is not necessarily the most appropriate in terms of human

perception or biological relevance. Several other color spaces have therefore been consid-

ered in genetic association studies of pigmentation. In particular, the HCL and CIE Lab

color spaces have the advantage over RGB of being perception-based (Liu et al., 2010,

2015; Norton et al., 2016; Edwards et al., 2010, 2016; Rawofi et al., 2017). Furthermore,

it has been shown that melanosome density and the skin MI are strongly correlated with

brightness (L) (Takiwaki et al., 1994). The main difference between the HCL and CIE Lab

color spaces is that HCL, being directly derived from RGB, represents the three primary

colors (red, green, blue) in opposing corners, while the CIE Lab represents four colors in
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different corners (red against green and blue against yellow). Since the HCL values in

the CANDELA dataset occupy mainly the opposing red-orange and cyan-blue color hues

(Figure 5.2), for this study I considered the HCL color space as more informative than

the nearly equivalent CIE Lab color space. H is a circular variable representing color Hue

(tone) ranging from 0◦ to 360◦, with red at 0◦, green at 120◦, blue at 240◦. C (Chroma or

saturation) ranges from 0 (no color) to 1 (fully saturated color). L (Lightness or bright-

ness) ranges from 0 (black) to 1 (white). HCL values lie approximately on a 2-dimensional

plane passing through the vertical central axis (Figure 5.2) at an angle of approximate

20◦ (obtained from the circular median of H). H values were therefore standardized by

subtracting 20◦. Furthermore, since H is a circular variable, it was converted to cos(H)

prior to its use in the analyses performed here. Cos(H) ranged from -1 (blue-grey eyes) to

+1 (olive/brown/dark brown eyes). As the distribution of HCL values was nearly planar,

sin(H) showed comparatively little variation (equivalent to taking a projection onto the

plane) and was ignored.

5.3.4 Phasing and imputation

The chip genotype data (compromising 669,462 SNPs after QC; Section 5.3.2) was phased

using SHAPEIT2 (Delaneau et al., 2013) with default parameters. IMPUTE2 (Howie

et al., 2009) was then used to impute genotypes at untyped SNPs using variant positions

from the 1000 Genomes Project data (1000 Genomes Project Consortium et al., 2015).

The 1000 Genomes Project reference data set included haplotype information for 1,092

individuals across the world at 36,820,992 variant positions. Positions that are monomor-

phic in 1000 Genomes Latin American samples were excluded, leading to 11,025,002 SNPs

being imputed in the dataset. Of these, 48,695 had imputation quality scores <0.4 and

were excluded. Median “info” score (imputation certainty score) provided by IMPUTE2

for the remaining imputed SNPs was 0.986. The IMPUTE2 genotype probabilities at each

locus were converted into most probable genotypes using PLINK (Chang et al., 2015) (at

the default setting of <0.1 uncertainty). Imputed SNPs with >5% uncalled genotypes or

minor allele frequency < 1% were excluded. IMPUTE2 provides a “concordance” metric

for chip genotyped SNPs, obtained by masking the SNP genotypes and imputing it using

nearby chip SNPs. Genotyped SNPs with a low concordance value (<0.7) or a large gap

between info and concordance values, suggested poor genotyping quality, and were also

removed. The median concordance values of the remaining chip SNPs was 0.994. After

these quality control filters, the final imputed dataset contained genotypes for 9,143,600

SNPs.

5.3.5 Narrow sense heritability

Narrow-sense heritability (defined as the additive phenotypic variance explained by a Ge-

netic Relatedness Matrix, GRM, computed from the SNP data) was estimated using the

software GCTA (Yang et al., 2011a). GCTA fits an additive linear model with a random

effect term whose variance is given by the GRM (with age and sex as covariates). The
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GRM was obtained using the LDAK software (Speed et al., 2012), which accounts for LD

between SNPs.

5.3.6 ADMIXTURE analysis

Approximate proportions of ancestry for each individual were estimated from a set of LD

pruned dataset of 160,858 SNPs via supervised ADMIXTURE (Alexander et al., 2009).

Reference populations from African (YRI, Yoruba in Ibadan, Nigeria) European (CEU,

Utah Residents with Northern and Western European Ancestry), East Asian (CHB, Han

Chinese in Beijing, China) were chosen from the 1000 Genomes Project together with

selected Native Americans populations from Ruiz-Linares et al. (2014) and Chacon-Duque

et al. (2018). ADMIXTURE was then run with K = 3 to K = 4.

5.3.7 Association analysis

PLINK 1.9 (Chang et al., 2015) was used to perform the primary GWAS for each phenotype

using multiple linear regression with an additive genetic model incorporating age, sex,

and 6 genetic Principal Components (PCs) as covariates. PCs were obtained from an LD-

pruned dataset of 160,858 SNPs. Individual outliers (including individuals with >20%

African or >5% East Asian ancestry, as estimated by ADMIXTURE (Figure C.1)) were

removed and PCs recalculated after the removal of these individuals. The number of

PCs to be included in the regression was determined by inspecting the proportion of

variance explained and by checking scree and PC scatter plots. Based on the proportion

of variance explained a total of 6 genetic PCs were used (Figure C.3) as in previous

GWAS conducted in the CANDELA sample (Adhikari et al., 2015, 2016a,b). The quantile-

quantile (QQ) plots for all association tests showed no evidence of residual population

stratification (Figure C.4) , except for skin pigmentation (λ=1.11) (Table C.2). This result

however, is expected as highly polygenic traits can show some genomic inflation even in

the absence of population structure (Yang et al., 2011b; Bulik-Sullivan et al., 2015b).

Polygenicity of the traits were measured using the tail strength (TS) statistic (Taylor and

Tibshirani, 2006) (Table C.2), which measures the overall strength of univariate (single-

SNP) associations in a chip array dataset. In a GWAS with n SNPs, if the ordered P-values

are p1 ≤ p2 ≤ ... ≤ pn, the statistic is:

TS(p1,...,pn) =
1

n

n∑
k=1

(1− pk
n+ 1

k
). (5.1)

Under the null hypothesis of no association between the trait and all SNPs, TS should

be equal to zero. A positive value of TS indicates the overall extent of association in

the entire dataset and is interpreted as polygenicity, with higher values of TS indicating

greater polygenicity. The asymptotic variance of TS can be approximated by 1/n∗, where

n∗ is the effective number of independent SNPs. As LD prunning on our dataset yielded

160,858 SNPs, the SD can be estimated as 1/
√

160, 858 = 0.0025, and a confidence interval

would be TS±3×SD = TS±0.0075. The estimated TS statistics obtained in the GWAS
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analysis are shown in Table C.2. Association analysis were performed on the imputed

dataset using the best-guess imputed genotypes in PLINK (Chang et al., 2015). Upon

the initial analysis a set of well-known pigmentation loci were strongly associated with

most of the traits: rs16891982 (SLC45A2 ), rs12203592 (IRF4 ), rs10809826 (TYRP1 ),

rs1800404 (OCA2 ), rs12913832 (HERC2 ), rs1426654 (SLC24A5 ). Therefore, to increase

power, subsequent GWAS analyses were performed conditioned on these SNPs (Yang et

al., 2012). P-values reported for other SNPs are taken from the conditioned analysis.

5.3.8 Meta-analysis

A meta-analysis was carried out on the novel index SNPs identified in the primary analyses

(Table 5.4) by testing for associations separately in each country sample. Forest plots were

produced with MATLAB 3.2.5 combining all regression coefficients and standard errors.

Histograms of the traits within each country were compared to the forest plots to examine

how trait variability across countries relates to the association signals.

5.3.9 SNP x SNP interaction of genome-wide associated SNPs

Tests of interaction of pairwise index SNPs (i.e. those with genome-wide significant asso-

ciation P-values < 5× 10−8) were carried out for each phenotype by performing multiple

linear regressions of the phenotype value on covariates, index SNPs, and pairwise interac-

tions between index SNPs.

5.4 Results

5.4.1 Distributing of pigmentation phenotypes in Latin Americans

Information on skin, hair and eye (iris) pigmentation (Figure 5.1 A-C) was obtained for

6,357 Latin American individuals. Skin pigmentation was assessed with the Melanin Index

(MI, a quantitative variable), measured by reflectometry and showed extensive variation,

the MI ranging from 20 to 65 (mean = 34.98 and SD = 5.34). The lightest mean pig-

mentation was observed in Brazil and the darkest mean pigmentation in Mexico and Peru

(5.1A). Hair color was classified into 3 ordinal categories (1-blond, 2-dark blond/light

brown, 3-brown/black). The most prevalent hair colors were black and brown, represent-

ing ∼ 80% of the sample (Figure 5.1B). These were also the most prevalent categories

across countries, except in Brazil where ∼ 50% of individuals had dark-blond/light-brown

or blond hair. Eye color was classified into 5 ordinal categories (1-blue/grey, 2-honey,

3-green, 4-light brown, 5-dark brown/black). The most common categories were dark

brown/black and light brown, compromising ∼ 85% of the sample (Figure 5.1C). The

lighter eye color categories (blue/grey and green) were more common in Brazil (∼ 40%)

than in other sampled countries (≤ 10%).

142



Chapter 5. Genetic determinants of pigmentation in Latin Americans

Figure 5.1: Distribution of skin, hair and categorical eye pigmentation pheno-
types in the CANDELA sample. A) Frequency distribution of skin Melanin Index
(MI). Histograms are shown for the full CANDELA sample and for each country sample
separately. To facilitate relating MI values to skin color the MI values (Y-axis) were con-
verted to approximate RGB values. B) Stacked bar plots showing the frequency (percent)
of the three hair color categories. C) Stacked bar plots showing the frequency (percent)
of eye color categories. Modified from Adhikari & Mendoza-Revilla et al. (2018).
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In addition to eye color measured by ordinal categories, I obtained quantitative mea-

surements of eye color from the analysis of digital photographs using the HCL color space

(Hue, Chroma, Lightness) (Figure 5.2A-D). Hue (H) measures variation in color tone,

whereas Chroma (C) and Lightness (L) measure saturation and brightness, respectively

(Figure 5.2A). In contrast to the ordinal categories of eye color, these quantitative color

variables capture variation not only in the blue/grey to brown spectrum (mainly captured

by L), but also variation within the brown spectrum (mainly captured by C) (Figure 5.2C

and D). While individuals with the highest L values exhibited mainly blue/grey eyes, in-

dividuals with the highest C values exhibited eye colors with the lightest shades of brown

(i.e. light brown or honey, Figure 5.2C). As H is a circular variable it was standardized

and converted to cos(H) before testing for association (see Methods Section 5.3.3).

5.5 Correlation between pigmentation phenotypes and co-

variables.

All pigmentation traits examined are significantly (P-values <0.001) and positively corre-

lated (Table 5.1). The strongest correlation was observed between hair and categorical eye

color (r=0.50), while there is lower correlation of these two traits with skin pigmentation

(r=0.30 and r=0.31, respectively). Categorical eye color was strongly correlated with the

L digital eye color variable (r=-0.78), but only moderately and minimally correlated with

cos(H) and C (r of 0.40 and -0.08, respectively), highlighting the considerable amount of

variation that is not captured by the eye color categories. Darker pigmentation of hair,

skin and eyes was also significantly and negatively (P-values <0.001) correlated with the

genetic estimates of European ancestry and significantly and positively (P-values <0.001)

correlated with Native American ancestry (Table 5.2). Pigmentation phenotypes were also

strongly associated with the first Principal Component (P-values <0.001). Darker pigmen-

tation of skin and eye was also negatively correlated with age (Table 5.2). Darker skin

pigmentation was significantly and positively associated with being male (P-value=0.03)

and lighter hair and eye pigmentation were significantly and positively associated with

being female (P-values <0.001 (Table 5.2).
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Figure 5.2: Quantitative eye pigmentation phenotypes examined in the CAN-
DELA sample. A) The full range of the HCL color space, showing how the three color
components vary in the space. B) 3-dimensional distribution of quantitatively assessed
iris colors in the bicone HCL (Hue, Chroma, Lightness) color space. Each dot corresponds
to a CANDELA individual and its color represents the average iris color for that per-
son. The color space has a polar coordinate system, where the vertical axis represents L
(Lightness/brightness, from dark=0 to light=1), the horizontal distance from the central
axis represents C (Chroma/saturation, from desaturated=0 to fully saturated=1), and H
(Hue/tone) represents the angle when a vertical plane is rotated along the central axis
(the three primary colors red (R), green (G) and blue (B) being situated at angles of
0◦, 120◦ and 240◦ respectively). C) Side view of the bicone in D showing how the L
(Lightness/brightness) and C (Chroma/saturation) of eye colors vary among CANDELA
volunteers. The position of the dots corresponding to the average eye colors of the sam-
ple images are indicated. D) Top view of the bicone in D showing how H (hue) varies
among the eye colors of CANDELA volunteers. The position of the dots, corresponding
to the average color of the sample images, are highlighted by white circles. Eye colors
cluster around a vertical plane at a 20◦ angle. In addition to the primary RGB colors, the
secondary colors orange (O), yellow (Y), cyan (C) and magenta (M) are shown at their
corresponding H angles. Modified from Adhikari & Mendoza-Revilla et al. (2018).
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Table 5.1: Correlation between pigmentation phenotypes. Correlation values are presented in the lower left triangle, while corresponding
P-values are presented in the upper triangle. The sample size for skin, hair and categorical eye color phenotypes is 6,357 whereas for quantitative eye
color is 5,513 individuals.

Trait Skin color (MI) Hair color (categorical) Eye color (categorical) L (Brightness) C (Saturation) cos(H) (Hue)
Skin color (MI) - < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Hair color (categorical) 0.30 - < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Eye color (categorical) 0.31 0.50 - < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

L (Brightness) -0.35 -0.46 -0.78 - < 2.2× 10−16 < 2.2× 10−16

C (Saturation) -0.20 -0.05 -0.08 0.34 - < 2.2× 10−16

cos(H) (Hue) 0.10 0.24 0.40 -0.39 0.23 -

146



C
h

ap
ter

5
.

G
en

etic
d

eterm
in

an
ts

of
p

igm
en

tation
in

L
atin

A
m

erican
s

Table 5.2: Correlation between pigmentation phenotypes and covariables. Native American, European and African continental ancestry
estimates were obtained using ADMIXTURE. Sex was coded as female = 0 and male = 1.

Ancestry Genetic PCs

Trait Age Sex European Native American African PC1 PC2 PC3 PC4 PC5 PC6

Skin color (MI) -0.05 0.03 -0.47 0.4 0.19 -0.46 0.13 -0.04 0.15 0.01 -0.03

Hair color (categorical) -0.01 -0.1 -0.38 0.34 0.08 -0.35 0.21 -0.1 0.12 -0.11 -0.01

Eye color (categorical) -0.08 0 -0.43 0.39 0.07 -0.39 0.2 -0.08 0.12 -0.06 0

L (Brightness) 0.14 -0.07 0.48 -0.43 -0.13 0.44 -0.29 0.17 0.04 -0.02 -0.01

C (Saturation) 0.07 -0.05 0.24 -0.23 0.01 0.24 -0.03 -0.11 0.08 -0.22 0.01

cos(H) (Hue) -0.06 0 -0.2 0.18 0.07 -0.18 0.18 -0.05 0.06 -0.14 0.03

Age Sex European Native American African PC1 PC2 PC3 PC4 PC5 PC6

Skin color (MI) 0 0.03 0 0 0 0 0 0 0 0.32 0.01

Hair color (categorical) 0.36 0 0 0 0 0 0 0 0 0 0.46

Eye color (categorical) 0 0.85 0 0 0 0 0 0 0 0 0.98

L (Brightness) 0 0 0 0 0 0 0 0 0.01 0.23 0.51

C (Saturation) 0 0 0 0 0.59 0 0.01 0 0 0 0.45

cos(H) (Hue) 0 0.79 0 0 0 0 0 0 0 0 0.05
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5.5.1 Heritability of pigmentation phenotypes in Latin Americans

Based on a kinship matrix obtained from the SNP chip data (Speed, 2011), I estimated a

narrow-sense heritability for skin pigmentation of 0.85 (S.E. 0.05) and of 1 (S.E. 0.05) for

both hair and eye color. Similarly, quantitative eye color variables showed high heritabil-

ity estimates (between 0.79 and 1.00, S.E 0.06) (Table 5.3). Very high heritabilities for

pigmentation traits have also been estimated from family data (Bräuer and Chopra, 1978;

Byard and Lees, 1981). Interestingly, lower narrow-sense heritability estimates for skin

pigmentation have been estimated for European populations, possibly due to lower within

continental skin pigmentation variation due to strong selective pressure (Zaidi et al., 2017).

Table 5.3: Heritability of pigmentation phenotypes

Trait Heritability S.E. P-value

Skin color (MI) 0.85 0.05 < 2.2× 10−16

Hair color (categorical) 1 0.05 < 2.2× 10−16

Eye color (categorical) 1 0.06 < 2.2× 10−16

L (Brightness) 1 0.06 < 2.2× 10−16

C (Saturation) 0.79 0.06 < 2.2× 10−16

cosH (Hue) 0.84 0.06 < 2.2× 10−16

5.5.2 Genomic regions showing signals of association

Genome-wide significant association (P-values < 5× 10−8) were found for SNPs in twelve

genomic regions (Table 5.4 and Figure 5.3). Skin pigmentation showed association with

SNPs in eight of these, of which: (i) five have been robustly replicated in previous studies

of Europeans or East Asians (Lamason et al., 2005; Soejima and Koda, 2007; Sulem et al.,

2007, 2008; Cook et al., 2009; Stokowski et al., 2007; Han et al., 2008; Graf et al., 2005;

Eriksson et al., 2010; Zhang et al., 2013a); (ii) one (19p13) has recently been associated

with skin pigmentation in Africans (Crawford et al., 2017), but to different SNPs than

seen here; and (iii) one (10q26) has not been previously reported. SNPs in four of the skin-

pigmentation regions were also found to be significantly associated with eye and hair color

(5p13, 6p25, 15q13 and 15q21; Table 5.4). In addition to these, eye pigmentation shows

association with SNPs in five other regions (1q32, 9p23, 20q11, 20q13 and 22q12), of which

three (1q32, 20q13 and 22q12) have not been reported previously. The genomic regions

associated with categorical eye color showed stronger association with the quantitative

eye color variables extracted from the individual photographs and all the novel eye-color

associations were genome-wide significant only for the quantitative variables (Table 5.4).

These observations are consistent with greater statistical power for association testing of

quantitative color variables, compared with categorical variables (e.g. see Wollstein et al.

(2017)).
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Table 5.4: Genome-wide associated SNPs with pigmentation phenotypes in the CANDELA sample. P-values for the associations are
presented in a −log10 scale. The five novel pigmentation-associated SNPs are shown in bold. Abbreviations: MI, Melanin Index; L, lightness; C,
chroma; H, hue.

Skin Hair Eye

Region SNP Gene Annotation MI Categorical Categorical L C cos(H)

1q32 rs3795556 DSTYK 3’ UTR 0.8 0.1 0.1 7.7 8.9 0.6

5p13 rs16891982a,b SLC45A2 F374L 116.9 65.2 14.9 16.4 7.8 4.3

6p25 rs12203592a IRF4 Intronic 9.5 12.7 11.9 13.5 2.8 1.1

9p23 rs10809826a,b TYRP1 Intergenic 2.7 1.2 10 15.3 7.7 2.1

10q26 rs11198112 EMX2 Intergenic 10.1 0.2 0.4 0.1 0.2 0.2

11q14 rs1042602 TYR S192Y 13 8.6 0.2 0.5 1.7 0

15q13 rs12913832a HERC2 Intronic 17 104.1 200 200 6.3 91.9

15q21 rs1426654a SLC24A5 T111A 129.8 18 26 49.1 44.2 0.2

16q24 rs885479 MC1R R163Q 8.4 1.3 0.1 0.1 0.1 0.1

19p13 rs2240751 MFSD12 Y182H 12.4 0 0.5 0 0.8 0

20q13 rs17422688 WFDC5 H97Y 0.1 0.3 0 0.7 0 8.5

22q12 rs5756492 MPST Intronic 2.6 0 1.1 2 7.3 0.7
aP-values shown for these SNPs are unconditioned, while P-values for the other index SNPs are conditioned. Results from conditioned and unconditioned analyses are consistent and
confirm an increase in power upon conditioning (see Methods). Of the five novel associations shown here (bold), three (rs11198112, rs2240751 and rs17422688) are also genome-wide
significant in the unconditioned analyses and two (rs3795556 and rs5756492) are just below the threshold for genome-wide significance in the unconditioned analyses (Tables C.3 and C.4).
bThese markers were obtained through imputation. Their imputation quality “info” metric was ≥ 0.975, the median value being 0.993. The other markers were obtained from chip
genotyping, and their “concordance” metric was > 0.9, the median value being 0.981.
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Figure 5.3: Summary of GWAS findings. Results are presented for 6 pigmentation
traits: skin melanin index (MI, quantitative), categorical hair color, categorical eye color,
and three quantitative eye color variables extracted from digital photographs: L (Light-
ness/brightness), C (Chroma/saturation), and cos H (cos Hue/tone). These traits are
represented on the right. The HCL color-space with the three axes of variation is shown
in the inset. To provide a global summary of the results, a composite Manhattan plot is
presented at the bottom combining significant signals for all the traits. Horizontal lines
indicate the suggestive (blue line, P-value=5× 10−5) and significant (red line, P-value =
5 × 10−8) thresholds. The Y-axis was truncated at -log10(P-value)=14. Index SNPs in
each region are listed above the Manhattan plot. The association of these SNPs with the
pigmentation traits is indicated in the checkered table at the top: a colored box is shown if
a SNP is associated with that trait (Tables 1A and B). Colors correspond to that assigned
to each chromosome in the Manhattan plot, with slight variation when multiple indepen-
dent hits were observed on the same chromosome. From Adhikari & Mendoza-Revilla et
al. (2018).
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5.5.3 Meta-analysis

I examined association for each genome-wide associated SNPs at newly associated regions

(Table 5.4) in all countries sampled separately and combined results as a meta-analysis.

Encouragingly, for all associations, significant effects were in the same direction in all

countries, with the variability of effect size across countries reflecting sample size (Figure

5.4).

5.5.3.1 Genome-wide association signals at known pigmentation loci

Seven genomic regions associated with pigmentation traits in the CANDELA sample in-

clude genes that are well-known to be involved in pigmentation pathways and that have

been related with pigmentation phenotypes in a number of previous studies (Table 5.4).

The 5p13 region includes the solute carrier family 45 member 2 gene (SLC45A2 ). Vari-

ants at this gene have been shown to cause Oculocutaneous Albinism type 4 (OCA4) in

humans (Newton et al., 2001) and to impact on pigmentation in mice (Du and Fisher,

2002), horses (Mariat et al., 2003) and tigers (Xu et al., 2013). The SLC45A2 protein is a

transport protein involved in melanogenesis. The strongest association was found for SNP

rs16891982 which results in a F374L substitution in SLC45A2. In previous association

studies this SNP has been associated with skin, hair and eye pigmentation (Stokowski

et al., 2007; Han et al., 2008; Eriksson et al., 2010; Liu et al., 2015; Adhikari et al., 2016a;

Hernandez-Pacheco et al., 2017). 6p25 shows strongest association with SNP rs12203592

in the second intron of the interferon regulatory factor 4 gene (IRF4 ). This SNP has

been associated with skin, hair and eye pigmentation (Han et al., 2008; Eriksson et al.,

2010; Zhang et al., 2013; Liu et al., 2015; Adhikari et al., 2016). In-vitro analyses have

demonstrated that rs12203592 impacts the function of an enhancer element regulating

IRF4 expression and the induction of tyrosinase (TYR), a key enzyme in the melanin

synthesis pathway (Visser et al., 2015) (Section 1.5.3). The associated SNP (rs10809826)

in 9p23 occurred in a non-coding region, upstream of TYRP1. The TYRP1 gene encodes

a melanosomal enzyme with a role in the eumelanin pathway. Rare mutations of TYRP1

cause Oculocutaneous albinism in humans (Rooryck et al., 2006; Chiang et al., 2009), and

coat color alterations in mice (Kobayashi et al., 1998) and cats (Lyons et al., 2005). A

private variant in the Solomon Islands (R93C) mutation in exon 2 has been shown to be

associated with blond hair (Kenny et al., 2012). Association studies have found variants

at TYRP1 to be associated with variation in skin and eye pigmentation (Frudakis et al.,

2003; Sulem et al., 2008; Liu et al., 2010; Zhang et al., 2013a; Martin et al., 2017b). The

region in 11q14 shows three independent signals of association impacting on the Tyrosi-

nase (TYR) and the Glutamate Metabotropic Receptor 5 (GRM5 ) gene. The tyrosinase

enzime, encoded by TYR gene, plays a key role in the biosynthesis of melanin by medi-

ating the first steps in melanin formation (Parra, 2007, Liu et al., 2013). Mutations in

TYR are responsible for Oculocutaneous Albinism type 1 in humans (Kwon et al., 1987)

and various pigmentation phenotypes in other organisms (Schmidt-Küntzel et al., 2005;

Polanowski et al., 2012). GRM5 lies upstream of TYR and an independent variant has

been previously shown to be associated with skin pigmentation in an European admixed

population (Beleza et al., 2013). The 15q13 region comprises the oculocutaneous albinism
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Figure 5.4: Meta-analysis for 6 index SNPs representing novel associations to
pigmentation traits. Panels a-b, d, f-g, i show forest plots for the index SNPs in the five
novel regions reported in Table 5.4 for four pigmentation traits. Each pigmentation trait
is shown in one row. Meta-analysis was performed by combining association results from
each country. Estimates obtained in each country are shown as blue boxes. Red boxes
indicate estimates obtained in the meta-analysis. Box size is proportional to sample size.
Horizontal bars indicate confidence intervals representing 2×standard errors. Intervals
that include zero (that is, nonsignificant effects) are shown in light blue. A histogram for
the trait in each country and the combined sample is presented at the end of each row
(panels c, e, g, h, j). The proportion of negative values (corresponding to blue-grey eyes)
is small for cos(H), so a histogram of cos(H) values restricted into the negative values is
shown in panel k to show variation across countries. From Adhikari & Mendoza-Revilla
et al. (2018).
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type 2 (OCA2/HERC2 ) genes. Variants in this region have been shown to result in a

range of pigmentation phenotypes in humans and other organisms (Rinchik et al., 1993;

Sulem et al., 2007; Sturm, 2009; Liu et al., 2010; Eriksson et al., 2010; Candille et al., 2012;

Zhang et al., 2013a; Caduff et al., 2017; Wollstein et al., 2017). The OCA2 gene encodes

the P-protein that assists tyrosinase trafficking and processing, melanosomal pH and glu-

tathionine metabolism (Park et al., 2015). It has also been shown that the encoded protein

assists in anion transport increasing chloride conduction from the melanosome (Bellono

et al., 2014). Variants located upstream of OCA2 and within intron 86 of HERC2 show

the strongest association for lighter eye color with the derived allele in European pop-

ulations (Sturm et al., 2008; Sturm et al., 2009; Eriksson et al., 2010; Liu et al., 2010;

Zhang et al., 2013). HERC2 variants have been shown experimentally to function as an

enhancer regulating OCA2 transcription by modulating chromatin folding (Visser et al.,

2012). Specifically, molecular approaches showed that HERC2 acts as an enhancer to

OCA2 via a long-range chromatin loop that is modulated by several transcriptor factors

including the Melanogenesis Associated Transcription Factor (MITF) (Visser et al., 2012).

SNPs in the 16q24 region show maximal association for rs885479 leading to a R163Q in the

Melanocortin 1 Receptor gene (MC1R). Variants of MC1R have been previously shown

to influence hair pigmentation in humans (notably red hair) (Valverde et al., 1995; Sulem

et al., 2007; Han et al., 2008; Eriksson et al., 2010; Lin et al., 2015), as well as skin pig-

mentation (Liu et al., 2015). SNP rs885479 within MC1R has been associated with skin

pigmentation variation in East Asians (Yamaguchi et al., 2012).

5.5.3.2 Candidate genes at newly associated regions

Two novel signals of association with skin pigmentation are located in 10q26 and 19p13.

The 10q26 region shows SNPs with genome wide significant association spanning ∼100Kb

within an intergenic region of ∼400Kb exhibiting relatively low LD (Figure 5.6). Genome

annotations indicate that this region overlaps an open chromatin segment, that is highly

conserved evolutionarily and includes several transcription factor binding sites (Figure

C.5). The derived allele for the index SNP (rs11198112) is segregating at low to moderate

frequencies across many populations, but reaches its highest frequency in Native American

Amazonians and Melanesians (Figure 5.5).

Interestingly, the derived allele was associated to darker skin pigmentation in con-

trast to many of the other variants associated to skin pigmentation (Figure C.6). The

SNP rs11198112 is also present in the binding site for transcription factor EBF1 (Early

B-cell factor) (Figure C.5). If the effect of this SNP is mediated through regulation of

nearby genes, of potential interest is the gene encoding for the EMX2 transcription factor

(Empty Spiracles Homeobox 2), which flanks the associated region (Figure 5.6). Mouse

experiments have shown that Emx2 regulates the expression of Mitf (a key regulator of

melanocyte development and survival) as well as of Tyr and Tyrp-1 (two melanocyte-

specific genes responsible for melanin production) (Bordogna et al., 2005). In addition,

EMX2 has also been recently associated to tanning response in Europeans (Visconti et al.,

2018).
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SNPs showing genome-wide significant association in the 19p13 region span ∼100Kb

and show strongest association for SNP rs2240751 located in the Major Facilitator Su-

perfamily Domain Containing 12 (MFSD12 ) gene (Figure 5.6). SNPs in this gene have

recently been associated with skin pigmentation variation in Sub-Saharan Africans (Craw-

ford et al., 2017). The index SNP identified in this sample (rs2240751) leads to a tyrosine

for histidine substitution at amino-acid 182 of MFSD12 (Y182H), which is common in

East Asians and Native Americans but is rare elsewhere (Figure 5.5) and occurs in a

highly conserved sequence (as indicated by GERP and SiPhy metrics). The replacement

of a polar for a basic amino acid is likely to affect protein function, as indicated by low

SIFT (<0.01) and high PolyPhen2 (>0.99) scores. Animal model studies indicate that

MFSD12 is involved in lysosomal biology (Crawford et al., 2017). A transcriptome anal-

ysis has shown that MFSD12 is amongst the most down-regulated genes in skin biopsies

from vitiligo patients (Yu et al., 2012).

Of the three novel regions associated with quantitative digital eye color variables, the

one in 1q32 is characterized by substantial LD over a region of ∼300Kb (Figure 5.6) and

is associated with the L and C variables (Table 5.4). The strongest association is seen

for markers overlapping the DSTYK gene (Dual Serine/Threonine and Tyrosine Protein

Kinase), the index SNP (rs3795556) being located in the 3’ untranslated region of the

DSTYK transcript. Interestingly, expression studies have shown that MITF regulates the

expression of DSTYK in human melanocytes (Hoek et al., 2008). The 20q13 region asso-

ciated with the cos(H) variable shows strong LD over a region of ∼200Kb. The strongest

association is seen for SNPs overlapping the WFDC5 gene (WAP Four-Disulfide Core Do-

main 5, Figure 5.6), with the index SNP (rs17422688) leading to a histidine for tyrosine

substitution (H97Y) in a highly conserved region (based on GERP and SiPhy conservation

metrics). This amino acid change is predicted to affect protein function, as implied by low

SIFT (< 0.03) and high PolyPhen2 (> 0.81) scores. Several WFDC genes have been shown

to be expressed in the human iris (Wistow et al., 2002). SNPs in 22q12 associated with the

C variable shows LD over a region of ∼100Kb (Figure 5.6). The index SNP (rs5756492)

is located in the second intron of the gene encoding Mercaptopyruvate sulfurtransferase

(MPST ) an enzyme playing a role in cyanide detoxification Billaut-Laden et al. (2006)

and cellular redox regulation (Nagahara et al., 1998). MPST is also expressed in the skin

(GTEx Consortium, 2013).

5.5.4 Allelic heterogeneity at OCA2/HERC2 and GRM5/TYR

I evaluated the presence of multiple, independent signals of association at each genomic

region highlighted in the primary GWAS by performing step-wise regression (using the

same model as in the primary analyses; see Section 5.3.7), conditioning on the index SNP

at each region (Table 5.5). Evidence of genome-wide significant association was abolished

for all regions except 11q14 and 15q13, where a total of three and five independent signals

were detected, respectively (Tables 5.4 and 5.5). These two regions include, respectively,
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Figure 5.5: Worldwide allele frequencies of novel variants associated to skin
pigmentation. The allele frequency for SNP rs11198112 (top) was retrieved from the
ALFRED database via https://alfred.med.yale.edu/alfred. This database includes allele
frequency information for 84 populations for this SNP. The colors of the bars reflect the
major geographic origin of the available populations as categorized by ALFRED: Africa
(green), Europe (blue), Middle East and North Africa (orange), East Asia (purple), Siberia
(grey), America (red) and Oceania (yellow). The allele frequency for SNP 2240751 (bot-
tom), was estimated from 2391 unrelated individuals from a worldwide dataset including
64 populations (Table D.1). The colors of the bar reflect the geographic origin of the
populations: Africa (green), Europe (blue), Middle East and North Africa (brown), East
Asia (purple), South Asia (pink), South East Asia (orange), Siberia (grey), America (red)
and Oceania (yellow). The numbers of the individuals per population (N) is given next to
the population name and the derived allele frequency is displayed on the top of each bar.
From Adhikari & Mendoza-Revilla et al. (2018).
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Figure 5.6: Regional association (LocusZoom) plots for SNPs in the five ge-
nomic regions showing novel genome-wide significant associations to pigmen-
tation traits. Chromosomal location and trait are specified in the title of each panel.
At the top, index SNPs (Table 5.4A) are highlighted with a purple diamond. Colors for
other SNPs represent the strength of LD between that SNP and the index SNP (in the
1000 Genomes AMR data). Local recombination rate in the AMR data is shown as a
continuous blue line (scale on the right y-axis). Genes in each region, their intron and
exon structure, direction of transcription and genomic coordinates (in Mb, using the NCBI
human genome sequence, Build 37, as reference) are shown in the middle of each panel.
At the bottom of each plot is shown a pair-wise LD heatmap across all SNPs in a region
(using r2, ranging from red indicating r2 = 1 to white indicating r2 = 0). From Adhikari
& Mendoza-Revilla et al. (2018).
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the GRM5/TYR and OCA2/HERC2 genes, and SNPs in these regions have been consis-

tently associated with pigmentation traits in previous analyses, including several GWAS

and candidate gene studies (Section 1.5.3). However, since the SNPs examined in those

reports often differ, the independence of their effects has not been systematically evalu-

ated. Consistent with these findings, two independent signals of association in 11q14 have

been reported in a GWAS for skin pigmentation in the African/European admixed pop-

ulation of Cabo Verde (Beleza et al., 2013a; Lloyd-Jones et al., 2017). Seven of the eight

independent SNPs were associated with skin pigmentation (the exception being rs4778249

in 15q13). In addition to the effect of skin pigmentation for the three associated SNPs in

11q14, two (rs1042602 and rs7118677) were also associated with hair pigmentation, and

one (rs1126809) with eye color (Table 5.5). The five independently associated SNPs in

15q13 impact on eye color variation, with one of these SNPs also impacting on hair color

(rs12913832). Genome annotations suggest that the eight independently associated SNPs

detected here could be functional (Table 5.5). Four occur in exons, of which three result

in non-conservative amino-acid substitutions, and one (rs1800404) encodes a synonymous

substitution (in exon 10 of OCA2 ) and is located in a conserved binding site for tran-

scription factor YY1 (known to regulate pigmentation in animal models (Li et al., 2012)).

The other four independently associated SNPs are located in introns of GRM5/TYR or

OCA2/HERC2. For one of these (rs12913832), intronic within HERC2, there is experi-

mental evidence indicating that it regulates transcription of the neighboring OCA2 gene

(Visser et al., 2012).
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Table 5.5: Additional index SNPs in the GRM5/TYR and OCA2/HERC2 gene regions showing independent association with
pigmentation traits.

Skin Hair Eye

Region SNP Gene Annotation MI Categorical Categorical L C cos(H)

11q14 rs7118677b GRM5 Intronic 11.2 7.6 0.4 0 0.3 0.2

11q14 rs1126809b TYR R402Q 9.2 5 4.7 7.5 0.9 3.2

15q13 rs4778219 OCA2 Intronic 8.5 2.4 6.4 10.4 0.2 0.3

15q13 rs1800407 OCA2 R419Q 18.3 3.8 16.2 18.9 7.4 2.1

15q13 rs1800404a OCA2 Synonymous/TFB 10.3 2.4 10.9 18.3 9.5 1.6

15q13 rs4778249b HERC2 Intronic 2.9 0.3 1.5 8.6 13.7 0.8
aP-values shown for these SNPs are unconditioned, while P-values for the other index SNPs are conditioned. Results from conditioned and unconditioned analyses are consistent and
confirm an increase in power upon conditioning (see Methods).
bThese markers were obtained through imputation. Their imputation quality “info” metric was ≥ 0.975, the median value being 0.993. The other markers were obtained from chip
genotyping, and their “concordance” metric was > 0.9, the median value being 0.981.
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5.5.5 Interactions between SNPs independently associated to pigmen-

tation

I examined interactions between the genome-wide significant SNPs (i.e. index SNPs) (Ta-

ble 5.4 and 5.5) by testing regression models including all possible pairs of index SNPs. A

number of significant interactions were detected at a Bonferroni corrected P-value thresh-

old of 3.3 × 10−4 (Figure 5.7). A different pattern of interaction was observed for skin,

relative to hair or eye pigmentation. In the case of skin, significant interactions were

seen mainly between SNPs that, individually, have strong effects (in SLC45A2, SLC24A5,

HERC2/OCA2 and TYR/GRM5 ). By contrast, for hair and eye color, SNPs in the regions

with strongest individual effects (SLC45A2, SLC24A5 and HERC2/OCA2 ) showed signif-

icant interaction with SNPs at most other pigmentation-associated regions. This included

regions that individually do not have a significant effect on a particular trait (e.g. MC1R

and MFSD12 with hair or eye pigmentation, respectively). This result is in accordance

with the common occurrence of epistasis in the determination of pigmentation variation

(Pośpiech et al., 2011), particularly in eye pigmentation variation (Wollstein et al., 2017)

that is associated with an increase in the prediction accuracy for eye color categorization

(Pośpiech et al., 2011; Walsh et al., 2013; Walsh and Kayser, 2016; Wollstein et al., 2017).

5.6 Discussion and limitations

The analyses presented here highlight the complex genetic architecture of pigmentation

variation in Latin America. In model organisms, more than 100 genes have been associ-

ated to pigmentation variation (Color Gene database: http://www.espcr.org/micemut/),

while in humans, less than 20 genes have been robustly associated to pigmentation vari-

ation (Section 1.5.3). This observation lead to the assumption that pigmentation is a

rather simple phenotype, with only a few variants being highly predictive of pigmentation

phenotypes across human populations, as mainly evidenced by genetic forensic analysis

(Walsh et al., 2011, 2013; Walsh and Kayser, 2016). However, recent genetic studies of

skin pigmentation of underrepresented populations, such as Africans (Crawford et al.,

2017; Martin et al., 2017) have shown that previously uncharacterized genes strongly con-

tribute to pigmentation variation and that pigmentation is a rather complex polygenic

trait. The results presented here are consistent with these observations. The pigmenta-

tion variation in Latin America is affected by multiple gene regions (Table 5.4) as well as

multiple independent variations at the OCA2/HERC2 and GRM5/TYR regions (Table

5.5).

Since the history of Latin America involved extensive admixture of Native Americans,

Europeans and Africans (Wang et al., 2008; Ruiz-Linares et al., 2014; Chacon-Duque et

al., 2018), it is to be expected that variants impacting pigmentation in these populations

are segregating in Latin America, and as a consequence, affect pigmentation variation in

modern Latin Americans. Further, since Native Americans can trace most of their ancestry

to East Asians, it is also expected that variants affecting pigmentation in Native Ameri-

cans are also shared with Asian populations. Consistent with this scenario, seven variants
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Figure 5.7: Heatmaps of statistical interactions between the 18 SNPs showing
genome-wide significant associations to pigmentation phenotypes. Each panel
corresponds to a different trait. The lower left triangle represents -log10 P-values for
the interaction term included in the regression model (with the color-scale shown at the
top). The upper right triangle represents regression beta coefficients for each interaction
term, colored from blue (negative effect) to white (no effect) to red (positive effect). As
the scale for each trait is different, separate scales for effect sizes are shown next to each
panel. Interactions that are significant (after Bonferroni-correction) are marked with a
dot. From Adhikari & Mendoza-Revilla et al. (2018).
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that have been previously associated in Europeans and one previously associated in East

Asians, were replicated in the CANDELA dataset (Table 5.4). It is possible that some of

the previously associated variants with pigmentation phenotypes in Eurasian populations

were not replicated in this dataset due to a variety of factors affecting power across stud-

ies. For example, some of the previously associated variants in Europeans or East Asians

could have high frequency in populations that did not contribute to admixture in Latin

Americans. The majority of the pigmentation association studies in Europe have been

mainly carried out in Northern European populations (Sulem et al., 2007, 2008; Liu et al.,

2010; Lin et al., 2015; Jacobs et al., 2015) and pigmentation loci that contribute to pig-

mentation variation in other European populations (such as Southern Europeans) are yet

to be more carefully explored (López et al., 2014). A recent detailed population structure

analysis carried out in the CANDELA dataset (Chacon-Duque et al., 2018) showed that

the majority of the European component in this sample steemed from Southern European

populations, in line with documented historical records. Similarly, variants associated to

pigmentation in East Asians populations shows a geographically structured pattern (Fig-

ure 6.1), and therefore, it is possible that the Eastern Eurasian ancestors carrying these

variants may not have contributed extensive ancestry to the ancestral population of mod-

ern Native Americans. Additionally, dissimilarities in phenotype assessment approaches

and in phenotype definitions are also likely to explain some of the differences in associ-

ation results across studies. For example, GWAS carried out in Europeans have mostly

focused on variation in the brown to blue color spectrum. By contrast, the C (Saturation)

color component examined here, with which two new loci have been associated, captures

variation within brown eyes (Table 5.4) and the associated SNPs at these loci have the

highest derived allele frequencies in East Asians (Table C.5).

The novel variants associated to the quantitative eye color variables clearly demon-

strate the increase in association power when adopting quantitative pigmentation pheno-

types compared to the much more common ordinal categorical approach. Although the

novel candidate genes represent important candidate genes, as they are related to pigmen-

tation biology, it would be necessary to conduct functional analysis to validate their role

in eye pigmentation variation. It is interesting that the highest frequency of the derived

allele was present in non-Northern European populations, and as such replication in pop-

ulations from Southern Europe and Asia could represent important target populations for

replication analysis. Similarly, for the novel variant associated to skin pigmentation on the

10q26 region (rs11198112; Table 5.4), highest frequency of the derived allele was found in

Native American Amazonians and Melanesians (Figure 5.5). Further, the derived variant

was associated to darker skin pigmentation and it would be interesting to assess whether

this region shows signals of natural selection in these populations, perhaps associated to

their habitation in latitudes with increased solar radiation exposure.

In East Asia, lighter skin pigmentation seems to be due to the effect of derived vari-

ants in the genes OCA2 and MC1R (Edwards et al., 2010; Abe et al., 2013; Eaton et al.,

2015; Edwards et al., 2016; Norton et al., 2016; Yang et al., 2016; Rawofi et al., 2017).
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Here, I also report a new variant (rs2240751) at MFSD12 as another potential East Asian-

specific skin pigmentation association. This same gene has been recently implicated in a

study of skin pigmentation variation in a genetically diverse set of sub-Saharan African

populations (Crawford et al., 2017). The variants showing the strongest association were

present in non-coding SNPs that are segregating mainly in African populations (Crawford

et al., 2017). By contrast, the novel variant reported here, is seen for a Y182H amino-acid

substitution in MFSD12 with the highest frequency in East Asian and Native Ameri-

can populations (Figure 5.5). It is therefore likely that this variant was carried by the

East Asian populations who entered the Americas. It would also be interesting to assess,

whether this variant shows association with skin pigmentation variation in East Asian and

Native American populations.

Considering the evidence for solar radiation having shaped the diversity of pigmen-

tation loci in Eurasia populations it is interesting that the GWAS in Latin Americans

did not detect any pigmentation variants private to the Americas. The American con-

tinent shows extensive variation in solar radiation levels as its territory extends along a

North-South axis comprising circumpolar and Equatorial latitudes (Figure 6.4). However,

Native Americans do not exhibit a variation in skin pigmentation similar to that seen in

Old World populations living at similar latitudes (Jablonski, 2008, 2012). It has been

suggested that the difference between continents could relate to cultural adaptations or

to environmental factors, as exemplified by the wearing of sewn clothing and the making

of shelters, as well as better natural shelter from the sun in the American tropics due to

the abundance of high-density canopy (Jablonski, 2008, 2012). Additionally, it has also

been suggested that adaptation to solar variation in Native Americans occurred due to a

better tanning ability compared to other Old World populations (Jablonski, 2008, 2012).

So far, only two genes (OPRM1 and EGFR) have been suggested to contribute to skin

pigmentation differences between Native Americans and Europeans (Quillen et al., 2012).

However, neither of these SNPs (rs6917661 and rs12668421) showed a significant associa-

tion with skin pigmentation in the CANDELA sample (P-values > 0.05 for both SNPs).

It is also possible that rare variants that contribute to pigmentation variation in Latin

American (e.g. inherited from their Native American ancestors) are not well captured by

SNPs present in the SNP-array platform or in the imputed dataset used here. Finally, the

lack of novel genetic adaptations in relation to solar radiation in the Americas could be

related to the relatively recent and rapid settlement of the New World (Tamm et al., 2007;

Reich et al., 2012; Raghavan et al., 2015). This settlement history thus limits the time-

span for which novel genetic variants could arise and change in frequency in response to

regional environmental selection pressures. Thus, it is possible that the majority of genetic

adaptations to variable solar radiation levels in the Americas would have involved mainly

variants introduced from the Old World. Future research in larger number of diverse Na-

tive Americans may reveal additional variants associated with pigmentation phenotypes

and will shed light on the evolutionary history and adaptive significance of this phenotype

in the Americas.
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5.7 Summary

In this chapter I reported novel variants associated to skin and eye pigmentation in Latin

Americans. The results here highlight the complex genetic architecture of pigmentation

in Latin Americans, as evidenced by independent variants at different genomic regions as

well as multiple independent variants within the associated regions. The novel associations

using quantitative eye color variables show the greater statistical power obtained by using

rich color models. Further, the reported genomic regions associated to eye pigmentation

variation represent important candidate genes that should be followed up by functional

analyses. Finally, the novel associated variant in the MFSD12 gene represents a potential

East Asian and Native American specific skin pigmentation locus.

163



Chapter 6

Exploring the convergent

evolution of lighter skin

pigmentation in Eurasia

6.1 Overview

In this chapter I investigate the convergent evolution of lighter skin pigmentation in Eura-

sia. I use sequence data from individuals from one North Western European and one

East Asian population from the 1000 Genomes Project to conduct genome-wide scans of

selection on pigmentation-associated genomic regions, and show that different genomic

regions and variants have been selected in these populations. This analysis represents a

follow-up investigation of the skin pigmentation-associated loci reported in Chapter 5 and

does not represent an extensive survey of selection signals at all known skin pigmentation-

associated loci. I also assess the potential selective pressures acting on skin pigmentation,

by using genome-wide SNP data from a large set of worldwide human populations, and

evaluate the correlation between the allele frequency at pigmentation-associated loci and

solar radiation. I provide evidence that the present distribution of a novel candidate SNP

at MFSD12 (associated to skin pigmentation and previously reported in Chapter 5) has

probably been affected by exposure to solar radiation in Eastern Eurasia. Finally, I show

that the patterns of genomic diversity at this locus are compatible with a scenario of con-

vergent adaptation for lighter skin pigmentation in East Asia and that this selection event

probably occurred long after the divergence from Europeans.

6.2 Background

It is well established that the evolution of pigmentation phenotypes, i.e. skin, hair and eye

color in human populations have been driven (at least partly) by selection (Section 1.5.2).

Whilst hair and eye pigmentation are usually regarded as having evolved through sexual

selection, the high correlation between solar radiation exposure and skin pigmentation

strongly suggests the role of natural selection in shaping the worldwide distribution of this

phenotype (Jablonski and Chaplin, 2000; Jablonski, 2008, 2012; Jablonski and Chaplin,

2014, 2017). The currently accepted hypothesis regarding the evolution on skin pigmen-

tation in human populations is the so called folate/vitamin D hypothesis (Jablonski and
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Chaplin, 2000). Under this hypothesis, skin pigmentation is regulated by two opposing

forces: one selecting for darker skin tones in populations living in zones with high solar

radiation exposure to protect against the photolysis of folate, and another selecting for

lighter skin tones in populations living in zones with low solar radiation exposure to per-

mit the synthesis of adequate levels of Vitamin D. The deficiencies of these two vitamins

have been shown to have detrimental effects on the reproductive fitness of individuals and

as such, are regarded as good candidates for existing strong selective pressure throughout

human history (Jablonski and Chaplin, 2017, 2018). In addition, the similarities in light

skin pigmentation in Europeans and East Asians have also been regarded as either the

result of a shared genomic origin or independent evolutionary adaptations to low solar

radiation environments. Although there is evidence that some loci affecting lighter skin

pigmentation have probably evolved prior to their population divergence (McEvoy et al.,

2006; Norton et al., 2007), there is also strong evidence supporting convergent evolution

in Europeans and East Asians (Edwards et al., 2010; Abe et al., 2013; Eaton et al., 2015;

Edwards et al., 2016; Norton et al., 2016; Yang et al., 2016; Rawofi et al., 2017).

6.2.1 Previous studies

Previous studies have shown that convergent evolution of lighter skin pigmentation in

Western and Eastern Eurasians occurred through different genetic mechanisms and thus,

likely evolved after their population divergence (McEvoy et al., 2006; Norton et al., 2007).

In Europe, four genes, namely SLC24A5, OCA2/HERC2, GRM5/TYR, and SLC45A2,

show signals of selection exclusively in this population. Functionally important derived

variants that have been associated to lighter skin pigmentation at these genes are largely

restricted to Europeans or their neighbour populations, and consequently only affect skin

pigmentation in these populations (or European derived populations such as Latin Amer-

icans or African Americans). The onset of selection at these European specific variants

in SLC24A5 and SLC45A2 has been estimated to between 11,000 to 19,000 ya (Beleza

et al., 2013), consistent with their independent evolution long after the divergence of the

ancestral population of Europeans and East Asians, which has recently been estimated to

have occurred around 42,000 ya (Jouganous et al., 2017). In East Asians, lighter skin pig-

mentation seems to be due to the effect of derived variants in the genes OCA2 and MC1R

(Norton et al., 2007; Edwards et al., 2010; Abe et al., 2013; Eaton et al., 2015; Edwards

et al., 2016; Norton et al., 2016; Yang et al., 2016; Rawofi et al., 2017). Interestingly,

two non-synonymous SNPs in the OCA2 gene, rs1800414 and rs74653330, associated to

lighter skin pigmentation, show contrasting distributions in Asia (Figure 6.1). As shown

on Figure 6.1, SNP rs1800414 is at high frequency across East Asia, whilst rs74653330 is

primarily restricted to Northern East Asia, suggesting that these two variants may have

been selected independently in different regions of the continent (Murray et al., 2015).

The estimated date of the derived allele at both these SNPs has been estimated to be

long after the split of European and East Asian populations. SNP rs1800414 is thought

to have arisen ∼ 10, 000 ya (Chen et al., 2015) or even more recent ∼ 6, 000 ya (Murray

et al., 2015). Similarly, the age of the derived allele at SNP rs74653330 was estimated

to ∼ 7, 000 ya (Murray et al., 2015). In addition to these two non-synonymous SNPs in
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OCA2, another non-synonymous SNP rs885479 in MC1R has also been shown to be asso-

ciated with lighter skin pigmentation in East Asians (Yamaguchi et al., 2012). Similar to

the rs1800414 OCA2 variant, the derived allele at MC1R shows higher frequency broadly

across East Asia (Figure 6.2) and strong signals of selection in East Asians (Hider et al.,

2013).

Figure 6.1: Distribution of allele frequencies for SNPs rs1800414 and rs74653330 at
OCA2 in East Asia. Pie-charts show the frequency for SNP rs1800414 in blue and
rs74653330 in orange, and the complement of those alleles frequencies in black. The de-
rived allele of SNP rs1800414 has high frequency in a broad East-Asian region, whereas the
derived allele of SNP rs74653330 is mainly restricted to northern East Asia. Reproduced
from Murray et al. (2015).

6.3 Materials and methods

6.3.1 Description of data

To study the convergent evolution of light skin pigmentation in Eurasia I used two different

datasets designed to encapsulate global patterns of human genetic diversity in relation to

Eurasia. The first dataset comprised one North Western European (CEU; Utah Residents

with Northern and Western European Ancestry), one East Asian (CHB; Han Chinese in

Beijing, China) and one West African (YRI; Yoruba in Ibadan, Nigeria) population from

the 1000 Genomes Project (1KG) Phase III data release (1000 Genomes Project Consor-

tium et al., 2015). This dataset was used to perform selection scans using three different

types of selection statistics (described in Section 6.3.2) on the European and East Asian

populations separately. The second dataset was used to explore the correlation between

allele frequencies at pigmentation loci with variation in solar radiation levels and contained
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Figure 6.2: Global allele frequency distribution of SNPs rs885479 at MC1R. Pie-charts
show the frequency of the derived allele in red. Based on the Human Genome Diversity
Project (HGDP) browser and adapted from Coop et al. (2009).

populations from several publicly available resources. This dataset included 10 populations

from Africa (Schlebusch et al., 2012; 1000 Genomes Project Consortium et al., 2015), 18

populations from Europe (1000 Genomes Project Consortium et al., 2015; Chacon-Duque

et al., 2018), 4 populations from North Africa and the Middle East (Chacon-Duque et

al., 2018), 20 populations from East, South and South East Asia (1000 Genomes Project

Consortium et al., 2015; Mallick et al., 2016; Mörseburg et al., 2016), 4 populations from

Siberia (Cardona et al., 2014) and 7 populations from the Americas (Eichstaedt et al.,

2014; 1000 Genomes Project Consortium et al., 2015; Chacon-Duque et al., 2018). This

dataset is described in detail in Table D.1. I detail the sources of the data, number of

individuals per population and geographic coordinates of the sampling locations.

6.3.1.1 Quality control

PLINK v1.9 (Chang et al., 2015) and VCFtools (Danecek et al., 2011) were used to per-

form quality control (QC) analyses on these datasets. For the first dataset, compromising

only populations from the 1KG Project, I filtered duplicated, non-biallelic, and/or SNPs

that were not polymorphic between the European (CEU), East Asian (CHB) and West

African (YRI) populations. This left a total of 8,304,740 SNPs, which were kept for all

subsequent analyses. The number of individuals for CEU, CHB and YRI were 99, 103 and

108, respectively. For the second dataset, SNPs and individuals with >5% missing data

were discarded. After performing LD pruning (– –indep-pairwise 50 5 2 ), the PLINK

inferred IBD coefficient (PI-HAT ) was calculated across all pairs of individuals within

each population. Individuals with a IBD higher than 0.125 (i.e. third degree relatives)

were removed. For the Siberians and Native Americans populations, I used the method-

ology described in Chacon-Duque et al. (2018), where individuals with more than 10%
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from the median IBD value were discarded. This is due to the lower effective population

size present in these populations compared to other included populations (Cardona et al.,

2014; Chacon-Duque et al., 2018), which can affect IBD estimates based on population

allele frequencies (Manichaikul et al., 2010). After these QC filters, a total of 609,005

SNPs were kept for all subsequent analyses. For both datasets only autosomal SNPs were

used.

6.3.1.2 ADMIXTURE analysis

To explore correlations between allele frequency and environmental variables it is impor-

tant to consider only indigenous (i.e. non-recently admixed) populations, in order to obtain

allele frequencies that reflect the allele frequency of the indigenous populations inhabiting

those areas. I therefore conducted an unsupervised ADMIXTURE analysis (Alexander

et al., 2009) applied to the LD pruned data at different K values. All individuals with

ancestry components derived from other major geographical region were discarded. Al-

though this ADMIXTURE analysis will not be able to discern sub-continental ancestries

within major geographical regions (i.e. migration movements within the same continent),

the inclusion of non-indigenous populations is expected to mask the signal of local adap-

tation, and therefore, should not lead to an increase in the false positive rate. After

removing these individuals, only populations with a minimum of 10 individuals were kept.

The final total number of individuals passing these criterion were 2,391 from 64 worldwide

populations (Table D.1).

6.3.2 Selection signals at skin pigmentation-associated genomic regions

I computed three selection statistics: the Population Branch Statistic (PBS) (Yi et al.,

2010), the integrated Haplotype Score (iHS) (Voight et al., 2006) and Tajima’s D (Tajima,

1989). PBS scores for CEU were computed using CHB and YRI as references and for CHB

using CEU and YRI as reference populations. Pairwise FST were estimated using Reynolds

equation (Reynolds et al., 1983) including only SNPs that were polymorphic in at least two

populations. The total number of SNPs with PBS scores in CHB and CEU was∼8,000,000.

I calculated iHS using the software selscan (Szpiech and Hernandez, 2014). Ancestral allele

states were retrieved from information present in the 1KG VCF files (AA [ancestral allele]

field). SNPs with no ancestral allele state were discarded. iHS was computed for SNPs

with derived allele frequencies >5% and < 95%. The HapMap (International HapMap

Consortium, 2003) GRCh37 genetic map was used to obtain genetic distances between

SNPs. SNPs where the extended haplotype homozygosity does not decay below 0.05

beyond 1Mb were also discarded. The final total number of SNPs in CEU and CHB

was ∼3,000,000. I calculated Tajima’s D using VCFtools on non-overlapping windows of

10kb and discarded windows that contained less than 5 SNPs. The final total number of

windows for CEU and CHB was ∼266,000.
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6.3.3 Enrichment analysis of selection signals at pigmentation-associated

genomic regions

To evaluate whether there is an enrichment of selection signals at gene regions with sug-

gestive evidence of association to pigmentation phenotypes (i.e. SNPs association P-value

< 10−5 based on the GWAS performed in Chapter 5) I used only PBS scores, as this

statistic contained the largest number of SNPs with a selection score (see above). I esti-

mated the maximum PBS score for SNPs in a ±2kb region (to potentially capture nearby

regulatory regions) around each gene based on the largest UCSC RefSeq gene transcript

retaining genes with at least 5 SNPs. I then contrasted the distribution of maximum

PBS at gene regions showing suggestive association with the distribution at gene regions

in the rest of the genome. The significance of difference between distributions was then

assessed using a one-sided Mann-Whitney U -test. Since the well-established SLC45A2,

OCA2, HERC2 and SLC24A5 pigmentation-associated gene regions have strong signals

of selection (McEvoy et al., 2006; Lamason et al., 2007; Norton et al., 2007; Sulem et al.,

2007; Miller et al., 2007; Coop et al., 2009; Pickrell et al., 2009), and therefore contain

very high PBS scores, I also repeated the enrichment analysis after excluding these gene

regions.

6.3.4 Using solar radiation data to identify pigmentation loci under se-

lection

To evaluate the possible correlation of allele frequencies at pigmentation genes with solar

radiation levels, I examined publicly available data for 64 indigenous population without

evidence of recent admixture (Table D.1). Surface solar radiation data was obtained from

the NASA Surface meteorology and Solar Energy Web site (https://eosweb.larc.nasa.gov/sse/)

in kWh/m2/day units. These data included annual solar radiation averages from July

1983 to June 2005 on a 1-degree resolution grid over the globe. Annual solar radiation

values were obtained for each population based on published coordinates for sampling

locations. In case of unpublished sampling location, I obtained this information directly

from the authors or used approximate coordinates, for example using the middle of the

city or town where the sampling was conducted. I used Bayenv2.0 (Günther and Coop,

2013) to estimate Bayes Factors (BFs) relating solar radiation to allele frequencies at the

pigmentation-associated SNPs. These BFs provide a measure of the increase in the fit of

allele frequencies to a linear regression model including solar radiation levels over a null

model including only population structure as a predictor (see Section 2.3.4). The null

model was constructed using a covariance matrix of allele frequencies between popula-

tions estimated from 10,000 random SNPs (not in LD) after 100,000 MCMC iterations.

These were visually inspected for unexpected low or high correlations and compared across

independent runs. As these were not qualitatively distinct from each other, the matrix

computed from the first run was used for the Bayenv2 analysis. In addition to BFs, I

also estimated Spearman’s rank correlation coefficient (ρ) based on normalized allele fre-

quencies as computed by Bayenv2.0. To assess significance, I ranked the SNPs based on

their BFs and absolute ρ dividing by the total number of values to obtain empirical P-
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values. The allele frequency at a SNP was only considered to be significantly associated

to solar radiation if both BF and ρ estimates were significant. As the effect of pigmen-

tation genes could differ between geographic regions, I also conducted separate analyses

for Africans, Western Eurasians (including Europeans, North Africans and Middle East-

erners), and Eastern Eurasians (including Eastern and Southern Asians, Siberians and

Oceanians). Table D.1 lists all the populations included for this analysis restricted by

major geographic areas.

6.3.5 Approximate Bayesian Computation (ABC) analysis

To estimate the selection coefficient and the time since the start of selection at the MFSD12

gene region, I used an Approximate Bayesian Computation (ABC) approach. The software

msms (Ewing and Hermisson, 2010) was used to perform coalescent-based simulations

modelling the demographic history of African, European and East Asian populations (for

details of the parameters of the demographic model used, see Jouganous et al. (2017)). I

assumed that the minor allele frequency at the time of selection was 1% in Europeans and

East Asians and zero in Africans (comparable to the frequency in CEU, CHB and YRI

from the 1KG Project). I performed 1,000,000 simulations of a 500kb genome segment

with a selected allele in the center, originating in East Asians. I assumed a uniform

distribution U[0 — 0.05] for the selection coefficient and a uniform distribution U[5,000

— 42,229 ya] for the starting time of selection. I then only retained simulations where the

selected allele was present at the end of the simulation. From the simulations I computed 9

summary statistics in a window of 200kb centered around the selected site: the nucleotide

diversity (π), Tajima’s D, Fu and Li’s D, Fu and Li’s F, H1, H2 and H2/H1 as measures

of haplotype diversity (Garud et al., 2015), FST between East Asians and Europeans,

FST between East Asians and Africans, and the derived allele frequency of the selected

variant. I used partial least squares (PLS) to identify the most informative statistics based

on a subset of 10,000 simulations (prior to PLS analysis, summary statistics were Box-

Cox transformed so that their minimum values were between 1 and 2). For parameter

inference I used the first 7 PLS components, as they carried the most information for each

parameter (estimated by the Root Mean Squared Error [RMSE]; Figure D.14). Estimation

of parameters was performed using the abc R package (Csilléry et al., 2012). I selected the

top 0.5% simulations based on the smallest Euclidean distance between the observed and

simulated summary statistics. From these quantities, I obtained the posterior probability

distributions for the selection coefficient and the time since selection, and recorded the

posterior median and the 95% credible intervals. I examined the accuracy of the ABC

parameter estimates using the Predicted Error (PE) (i.e. the mean square error divided

by the prior variance of the parameter) based on a leave-one-out cross-validation of 100

observations (Table D.2). Although other indices could have been employed to assess

the accuracy of the ABC estimation, such as the relative estimation bias (i.e., the bias

expressed a proportion of the true value) and the coverage of the 95% credible interval

(i.e., the percent of times where the true value was found within the 95% credible interval),

I note that PE estimates found here are similar to that of others obtained using a similar

set of summary statistics used to estimate the time since the start of selection and the
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selection coefficient (Deschamps et al., 2016).

6.4 Results

6.4.1 Selection has shaped the genetic diversity at pigmentation-associated

regions

To explore whether selection had broadly shaped genetic variation at skin pigmentation-

associated gene regions, I conducted an enrichment analysis of positive selection based

on PBS scores. This enrichment analysis was conducted using only PBS scores as they

provided the highest number of selection scores per SNP compared to the other two se-

lection statistics. The enrichment analysis contrasted the distribution of PBS scores at

regions showing at least suggestive association with skin pigmentation (i.e. those includ-

ing SNPs with associated P-values < 10−5 based on the GWAS conducted in Chapter 5)

against the distribution of PBS scores over the rest of the genome. The enrichment anal-

ysis showed significant signals of enrichment for skin pigmentation loci in the European

(P-value 6.14× 10−29) and East Asian populations (P-value 1.78× 10−14). This result is

consistent with a strong role of natural selection in shaping skin color in both Western

and Eastern Eurasians (Jablonski and Chaplin, 2000; Hider et al., 2013). Interestingly,

higher signals of enrichment for positive selection were found in the European popula-

tion. Although this could suggest higher selective pressure for pigmentation phenotypes

in Europeans, this result might also be explained by the slightly higher average European

ancestry present in the CANDELA sample (Figure C.1), and consequently higher power

to detect pigmentation loci affecting this population. Additionally, to test whether the

significant enrichment signals at these skin pigmentation loci were not mainly driven by

extremely high PBS scores at only a few gene regions, I repeated the enrichment analysis

after removing the SLC45A2, HERC2, OCA2 and SLC24A5 gene regions. Similarly to

the previous results, I found strong signals of enrichment of positive selection in Europeans

(P-value 4.5×10−27) and East Asians (P-value 8.26×10−14), although with slightly lower

significance as expected.

I next tested for signals of selection at the genome-wide associated gene regions (i.e.

those with associated P-values < 5× 10−8 based on the GWAS conducted in Chapter 5)

using a suite of three different selection statistics. The first selection statistic computed

was iHS, which measures the amount of extended haplotype homozygosity (EHH) at a

test SNP along the ancestral allele relative to the derived allele. This selection statistic

has strong power to detect recent selective sweeps, especially under a hard-sweep model

(Voight et al., 2006). High positive absolute values of iHS scores are indicative of strong

recent positive selection. The second selection statistic computed was Tajima’s D, a neu-

trality test that quantifies the reduction in diversity that can be associated with a selective

event. An excess of low frequency variants gives a negative Tajima’s D score that can be

indicative of positive selection. The third statistic, the PBS selection statistic, has strong

power to detect signals of positive selection by comparing allele frequency differences in

one population relative to two reference populations (Yi et al., 2010). High values of PBS
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scores can be indicative of a selective event.

In agreement with previous analyses I found strong evidence of selection at many skin

pigmentation-associated gene regions(Figure D.1 — D.13). In the European population

strongest selection signals were observed at the SLC45A2, TYR/GRM5, OCA2/HERC2

and SLC24A5 gene regions for at least one selection statistics. All of these gene regions

have been previously reported to be under selection in European or European admixed

populations (McEvoy et al., 2006; Voight et al., 2006; Sabeti et al., 2007; Coop et al.,

2009; Pickrell et al., 2009; Beleza et al., 2013b; Wilde et al., 2014; Mathieson et al., 2015;

Field et al., 2016b; Mathieson et al., 2018). In the East Asian population strongest signals

of selection were observed at the OCA2/HERC2, MC1R, and MFSD12 gene regions, all

of which have been previously reported (Norton et al., 2007; Alonso et al., 2008; Hider

et al., 2013; Jonnalagadda et al., 2017), with the exception of MFSD12. As expected,

and based on the convergence of lighter skin pigmentation in Eurasia, different variants

within these pigmentation loci seem to have been under selection in Europeans and East

Asians (Table 6.1). Five variants (rs16891982 [SLC45A2 ], rs7118677 [GRM5 ], rs4778249

[HERC2 ] and rs1426654 [SLC24A5 ]) show signals of selection only in Europeans and

three variants (rs4778219 [HERC2 ], rs885479 [MC1R] and rs2240751 [MFSD12 ]) show

signals of selection only in East Asians. It is also important to note that in many of the

pigmentation-associated regions, the associated SNPs do not show the strongest signals of

selection, which suggests that selection may have acted on other nearby SNPs.
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Table 6.1: Signals of selection at skin pigmentation genome-wide associated pigmentation SNPs. iHS, Tajima’s D and PBS were
computed at each index SNPs in CEU and CHB populations from the 1000 Genome Project. P-values were calculated by an outlier approach by
ranking all the scores genome-wide and dividing by the number of values in the distribution, taking the upper tail for absolute value of iHS and PBS
and the lower tail for Tajima’s D. SNPs with empirical P-values lower than 0.05 are shown in bold. Missing values indicate instances where the selection
statistic could not be computed at a SNP (see Section 6.3.2).

CEU CHB

Region Gene SNP abs(iHS) (P-value) Tajima’s D (P-value) PBS (P-value) abs(iHS) (P-value) Tajima’s D (P-value) PBS (P-value)

5p13 SLC45A2 rs16891982 - -2.47 (1.13E-03) 3.64 (3.61E-07) - 0.51 (7.47E-01) 0.00 (1.00E+00)

6p25 IRF4 rs12203592 0.37 (6.89E-01) -0.59 (3.12E-01) - - 0.12 (6.26E-01) -

10q26 EMX2 rs11198112 0.64 (4.90E-01) 0.13 (6.18E-01) 0.00 (1.00E+00) 0.60 (5.21E-01) 0.33 (6.93E-01) 0.00 (6.62E-01)

11q14 GRM5 rs7118677 1.08 (2.50E-01) 0.40 (7.08E-01) 0.31 (2.68E-02) 1.11 (2.43E-01) 0.89 (8.39E-01) 0.00 (1.00E+00)

11q14 TYR rs1042602 1.65 (8.79E-02) 0.25 (6.58E-01) - - 0.43 (7.23E-01) -

11q14 TYR rs1126809 0.47 (6.10E-01) -1.19 (1.43E-01) - - -0.77 (2.84E-01) -

15q13 HERC2 rs4778219 - 0.48 (7.33E-01) 0.10 (1.54E-01) - -1.29 (1.46E-01) 1.27 (1.71E-04)

15q13 OCA2 rs1800407 0.27 (7.73E-01) 0.13 (6.18E-01) 0.08 (2.01E-01) - 1.06 (8.72E-01) 0.00 (1.00E+00)

15q13 OCA2 rs1800404 0.75 (4.22E-01) 0.13 (6.18E-01) 0.71 (1.50E-03) 3.45 (3.54E-03) 1.06 (8.72E-01) 0.00 (1.00E+00)

15q13 HERC2 rs12913832 3.16 (6.18E-03) -2.20 (8.88E-03) - - -1.95 (4.02E-02) -

15q13 HERC2 rs4778249 - -2.04 (1.87E-02) 0.02 (4.04E-01) - -1.19 (1.71E-01) 0.00 (1.00E+00)

15q21 SLC24A5 rs1426654 - -1.94 (2.67E-02) 3.87 (2.41E-07) - -1.40 (1.24E-01) 0.00 (1.00E+00)

16q24 MC1R rs885479 - -0.03 (5.19E-01) 0.00 (1.00E+00) 0.12 (8.99E-01) 0.24 (6.66E-01) 0.83 (2.07E-03)

19p13 MFSD12 rs2240751 - -0.78 (2.52E-01) 0.00 (1.00E+00) 0.70 (4.55E-01) -1.71 (7.13E-02) 0.50 (1.37E-02)
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6.4.2 Loci underlying local adaptation through solar radiation exposure

Selection for variation in skin pigmentation has been proposed to relate to adaptation

to patterns of solar radiation (Section 1.5.2). Consistently, a correlation between allele

frequencies at certain skin-pigmentation associated SNPs with solar radiation levels has

been reported in the Human Genome Diversity Project (HGDP) population panel (Han-

cock et al., 2008; Coop et al., 2010; Hancock et al., 2011). I re-evaluated this correlation

for SNPs associated to skin pigmentation phenotypes in a dataset I compiled including 64

indigenous populations from around the world. Allele frequencies at four SNPs showed a

significant correlation with solar radiation (Table 6.2). I replicated three reported associ-

ations (rs12913832 and rs1800404 in OCA2/HERC2 gene region and rs885479 in MC1R)

(Hancock et al., 2008; Coop et al., 2010; Hancock et al., 2011). The fourth is rs2240751

(MFSD12 ), which showed a strong correlation with solar radiation in Eastern Eurasia

(log10(BF)=2.32, P-value = 0.004; ρ =-0.28, P-value = 0.047) (Figure 6.4).
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Table 6.2: Correlation between allele frequency at skin pigmentation associated loci and solar radiation. Allele frequency correlations
between the derived allele frequency of the associated SNPs and solar radiation was tested using Bayenv2.0. For each SNP I estimated a Bayes Factor
(BF) and Spearman’s rank correlation coefficient (rho). SNPs not present in the extended worldwide populations dataset (Table D.1) or that were
fixed in a geographical region were not included in the analysis. Significant SNPs for both the BF and rho’s are in bold.

Worldwide Western Eurasia Eastern Eurasia

Region Gene SNP log10(BF) (P) rho (P) log10(BF) (P) rho (P) log10(BF) (P) rho (P)

5p13 SLC45A2 rs16891982 - - - - - -

6p25 IRF4 rs12203592 -0.87 (0.807) -0.02 (0.834) -0.30 (0.085) -0.26 (0.025) -0.71 (0.826) 0.04 (0.757)

10q26 EMX2 rs11198112 -0.80 (0.566) 0.04 (0.642) -0.69 (0.295) -0.11 (0.339) -0.66 (0.703) 0.10 (0.496)

11q14 GRM5 rs7118677 - - - - - -

11q14 TYR rs1042602 -0.80 (0.592) -0.05 (0.527) -0.76 (0.368) -0.07 (0.568) -0.54 (0.473) -0.03 (0.798)

11q14 TYR rs1126809 - - - - - -

15q13 HERC2 rs4778219 - - - - - -

15q13 OCA2 rs1800407 -0.49 (0.194) 0.09 (0.279) -0.90 (0.672) -0.03 (0.818) -0.78 (0.968) 0.06 (0.663)

15q13 OCA2 rs1800404 3.12 (0.002) -0.22 (0.019) -0.78 (0.406) 0.00 (0.985) 1.48 (0.017) -0.30 (0.029)

15q13 HERC2 rs12913832 12.66 (0.001) -0.39 (0.001) 9.40 (0.001) -0.36 (0.003) -0.40 (0.324) -0.10 (0.461)

15q13 HERC2 rs4778249 - - - - - -

15q21 SLC24A5 rs1426654 - - - - - -

16q24 MC1R rs885479 0.29 (0.029) -0.14 (0.111) 0.25 (0.017) -0.19 (0.113) 1.97 (0.009) -0.29 (0.033)

19p13 MFSD12 rs2240751 0.49 (0.016) -0.14 (0.116) -0.53 (0.172) -0.05 (0.692) 2.32 (0.004) -0.28 (0.047)
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6.4.3 MFSD12 is a novel candidate gene for the convergent evolution

of lighter skin pigmentation in East Asians

Considering the evidence for selection in the MFSD12 region, I estimated the time since

the start of selection (T ) and the selection coefficient (s) for this region using an Ap-

proximate Bayesian Computation (ABC) approach in the CHB population from the 1KG

Project (Figure 6.3). I obtained a median estimate for the selection coefficient of 1.15%

(95% Credible Interval 0.08%—4.4%) and a median age for the start of selection of 10,834

ya (95% Credible Interval of 5,266—33,801 ya). Additionally, I also estimated the joint

posterior distributions of the starting time of selection (T ) and the selection coefficient

(s) (Figure D.15). The joint maximum a posteriori (MAP) for the selection coefficient

(s) was equal to 0.139 and for the starting time of selection (T ) was equal to 8,508 ya,

similar to the marginal posterior distributions obtained for each parameter. These results,

thus further suggest that MFSD12 has been under selection in East Asians, and that the

the start of selection probably occurred long after the split from the ancestral population

shared with Europeans.

Figure 6.3: Estimation of the start of selection and selection coefficient at
MFSD12 gene region. Prior and posterior distributions are represented as red and
black line, respectively. Note that the priors are not uniformly distributed as I only used
simulations where the selected allele was still present at the end of the simulation. From
Adhikari & Mendoza-Revilla et al. (2018).

6.5 Discussion

Overall the analyses presented in this chapter support the convergent evolution of lighter

skin pigmentation in Eurasia. Whilst an initial selection event for lighter skin pigmentation

probably happened in the common ancestral population shared by Europeans and East

Asians, it seems that the lightening of skin pigmentation also occurred independently in

these populations after their divergence. In Europe, functionally important derived vari-

ants in the gene regions SLC45A2, TYR/GRM5, OCA2/HERC2 and SLC24A5 seem to

have contributed to the evolution of lighter skin pigmentation, whereas in East Asia, func-
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tionally variants in the genes regions OCA2, MC1R and MFSD12 seem to have contributed

to lighter skin pigmentation. It is important to note that the gene regions assessed here

are a follow-up investigation of the skin pigmentation associated loci described in Chapter

5 and therefore do not represent all known skin pigmentation associated loci. Nonetheless,

many of the associated variants and gene regions analysed here collectively contribute to

large variation in skin pigmentation between Europeans and East Asians, and therefore

can be used to explore the convergent evolution of this trait.

Consistent with the adaptive importance of skin pigmentation in human populations,

the associated genomic regions showed strong signals of selection in European and East

Asian populations for at least one of the selection statistics (Figure D.1 — D.13 and Ta-

ble 6.1). An idealized scenario of positive selection would result in high values of iHS

and PBS and significantly negative Tajima’s D. Encouragingly, these was observed at the

OCA2/HERC2 gene region (Figure D.1) in both populations. Possible reasons why se-

lection signals were mostly exclusive to one selection statistic however, may be related to

the power of each selection statistic, which is affected by the nature of the selection event,

such as the age and strength of the selected variant, as well as the pre-existing variation

in the genomic region (Sabeti et al., 2006; Oleksyk et al., 2010). To my knowledge, this

is the first time that MFSD12 has been reported to be under positive selection in East

Asians and I therefore explored the evolutionary history of this gene region.

The correlation between the derived allele frequency of the associated variant at

MFSD12 and solar radiation suggests that the distribution of this variant has been (at

least partly) shaped by solar radiation in Eastern Eurasia (Figure 6.4B and C). This result

is in agreement with previous reports showing a correlation between the allele frequen-

cies at certain skin pigmentation associated loci and solar radiation (Coop et al., 2009;

Hancock et al., 2011). Although rs2240751 represents a strong candidate locus, I cannot

discard that selection targeted another variant. Indeed, the PBS analysis at this region

shows that many other variants (possibly in high LD with rs2240751) may also have been

targeted by strong selection (Figure 6.4A).

The inference of the start of selection and selection coefficient using ABC contained

large confidence intervals and as such, point estimates should be taken with caution. The

point estimate for the time of selection at MFSD12 was estimated to be around 10,834 ya.

Interestingly, two other SNPs in OCA2 that confer lighter skin pigmentation exclusively

in East Asia, are thought to have evolved around the same time. Murray et al. (2015) esti-

mated the age of the derived variant of rs74653330 and rs1800414 to have evolved around

7,000 and 6,000 ya, respectively. The estimated date for rs1800414 however, is slightly

younger than a previous estimate at around 11,000 ya (Chen et al., 2015). Although,

these studies did not estimate the onset of selection of these variants, the younger age of

these alleles implies that the selection event at OCA2 in East Asians probably occurred

long after their split from Europeans. It would be interesting to test whether the age and

onset of selection of rs885479 variant at MC1R, that also confers lighter skin pigmentation
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Figure 6.4: Evidence for selection in the MFSD12 gene region. A) PBS scores
in the 1000 Genomes CHB sample for SNPs across the region (index SNP rs2240751 is
highlighted in purple and the horizontal line represents the 95th percentile threshold). B)
Plot of the derived allele frequency at rs2240751 against mean annual solar radiation in
Easter Eurasian populations. C) Allele frequencies at rs2240751 in 64 indigenous popu-
lations from across the world, mapped onto solar radiation. Pies charts are centered at
the approximate geographic location of each population with the derived allele frequency
represented in blue. From Adhikari & Mendoza-Revilla et al. (2018).

178



Chapter 6. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

in East Asians, is similar to these estimated dates. In European populations, selection

of SLC45A2 and SLC24A5 have been estimated to have occurred within the last 11,000

to 19,000 ya (Beleza et al., 2013b). These more recent dates have been interpreted as a

refinement of the vitamin D hypothesis for lighter skin pigmentation (Mathieson et al.,

2015; Stoneking, 2016). It has been suggested that perhaps the varied diet of early hunter-

gatherers would have provided a sufficient supply of vitamin D, and that only after the

Neolithic revolution, that was coupled with a poorer diet and increased use of clothes and

shelter, insufficient vitamin D would have become an important selective pressure (Math-

ieson et al., 2015; Stoneking, 2016). Interestingly, ancient DNA studies in early Europeans

have provided further insight into this hypothesis. While the derived allele at SLC45A2,

that is associated to lighter skin pigmentation, is absent in European hunter-gatherers,

this variant was found in larger frequency in Anatolian farmers from Europe (Mathieson

et al., 2015). Given that the estimates for lighter skin pigmentation in East Asia have

also probably occurred after the advent of agriculture in East Asia (Higham, 2002), it

would be interesting to test whether a similar scenario prompted selection for lighter skin

in Eastern Eurasia. Studies on ancient DNA would be needed to address this hypothesis.

The estimate of the selection coefficient for MFSD12 is best viewed in the context

of estimates for other pigmentation loci. Beleza et al. (2013) estimated the selection

coefficient of KITLG (rs642742 G allele) in Europe and East Asia to be 0.02, whereas

the coefficients for SLC45A2 (rs16891982 G allele) and SLC24A5 (rs1426654 A allele)

were estimated to 0.04 and 0.08, respectively. López et al. (2014) estimated the selec-

tion coefficient of SLC45A2 (rs16891982 G allele) to 0.01 to 0.02 in a Southern European

population. Similarly, using an ancient DNA forward simulation approach restricted to

European populations, Wilde et al. (2014) estimated the selection coefficient of SLC45A2

(rs16891982 G allele), TYR (rs1042602 A allele) and HERC2 (rs12913832 G allele) as

0.03, 0.026 and 0.036, respectively. The selection coefficient that I estimated for MFSD12

thus lies at the lower end of those estimated for other pigmentation genes that appear

to have been under selection. This result is in line with the relatively weaker phenotypic

effect of MFSD12, relative to genes such as SLC45A2 and SLC24A5 (Figure C.6).

6.6 Summary

In this chapter I provided evidence that a novel variant at MFSD12 probably played a

role in shaping lighter skin pigmentation in East Asians but not in Europeans. I further

showed that the distribution of the derived allele frequency of this variant seemed to have

been affected by the solar radiation intensity in East Asia, supporting the role of natural

selection in shaping skin pigmentation variation. Finally, I inferred that MFSD12 was

under selection in East Asians probably after their split from Europeans.
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Chapter 7

Conclusions

In this thesis I have provided new insights into human adaptive history in the Americas

and discovered novel variants associated to pigmentation phenotypes trough a GWAS in

a large sample of admixed Latin Americans.

In Chapter 1 I described what is currently known about the demographic and adaptive

history Native and admixed Latin American populations. I also described the evolutionary

history of pigmentation variation in humans and the key genetic factors influencing this

phenotypic trait. Finally, I outlined the rationale and scientific basis of GWAS and high-

lighted the significance of including underrepresented populations in genetic association

studies.

In Chapter 2 I described relevant methods to detect signatures of selection using

genome-wide data including allele frequency differentiation and haplotype-based meth-

ods. I also described methods that use external data such as environmental data in order

to understand the potential adaptive pressures driving the selection signal, as well as

methods that use genetic association data to detect instances of polygenic adaptation. In

addition, I described the methodological aspects of GWAS and different methods used to

account for population structure.

In Chapter 3 I conducted a genome-wide scan of selection in Native Americans and

provided important candidate genes that I hypothesized were likely beneficial in the an-

central population of Native Americans in Beringia, prior to their entry into the American

continent, particularly in relation to diet. I also showed that some of the top selected

variants are found in several Arctic populations, consistent with a shared adaptive event.

In this chapter I also explored instances of local adaptation in Native Americans using a

large sample of admixed Latin Americans from the CANDELA cohort that derive most

of their ancestry from distinct Native American groups. Among the strongest candidate

regions of selection are immune-related genes that probably resulted from an adaptation

to local pathogens in the Americas or to diseases brought after European contact. I also

reported selection signals at genes with an important adaptive interest that have been

previously reported in other Native American populations and other human populations

highlighting the utility of this approach.

In Chapter 4 I conducted a genome-wide scan of selection post-admixture in five Latin

American populations from the CANDELA sample. I presented a novel statistical model

aimed at detecting signals of selection post-admixture by identifying larger than expected

changes in allele frequency as expected from an admixture event. I showed that there was
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a strong selective event in the Peruvian sample at a genomic region associated with glucose

metabolism. However, I showed that it is likely that this signal was driven by the use of

inaccurate Native American ancestral reference populations and that the selection signal

was likely driven by a selection event that occurred in the Native American population that

contributed most of the Native American ancestry to the Peruvian sample. In addition, I

also detected a strong increase in African ancestry at the MHC locus in the Chilean and

Mexican populations. The genes at MHC involved in infectious disease resistance might

have been selected due to diseases brought from the Old World after European contact.

In Chapter 5 I reported novel variants associated to skin and eye pigmentation in

admixed Latin Americans. The novel reported genomic regions show evidence of be-

ing related to various aspects of pigmentation biology and, as such, represent important

candidate genes that should be followed up by functional analysis. More generally, these

results also highlighted the complex genetic architecture of pigmentation variation in Latin

Americans as shown through the independent genetic effect of different genetic variants at

different genomic regions as well as within genomic regions. The results also demonstrated

the greater statistical power obtained by using sensible continuous color models compared

to ordinal categories that represent an oversimplification of the truly continuous nature of

human pigmentation variation. Finally, I also reported a novel variant associated to skin

pigmentation in the MFSD12 gene, which represents a potential East Asian and Native

American specific skin pigmentation locus.

In Chapter 6 I investigated the convergent evolution of lighter skin pigmentation

in western and eastern Eurasians by applying different selection statistics at the skin

pigmentation-associated loci reported in Chapter 5. I reported strong signals of selection

at most of the pigmentation-associated regions, with one of the strongest signals among

the novel loci being observed in the MFSD12 gene region. I showed that the present

geographic distribution of the novel SNP at MFSD12 has probably been influenced by ex-

posure to solar radiation in eastern Eurasia. In addition, I also showed that the genomic

diversity at this locus is compatible with a scenario of convergent adaptation for lighter

skin pigmentation in east Asia, and that this selection event probably occurred long after

the divergence from Europeans.

7.1 Future directions and significance in studies of human

adaptation

Determining how much of the genome is influenced by adaptive selection, and in turn

identifying the particular genomic regions targeted by selection has long been and is still

of great interest in the field of populations genetics (Haldane, 1957; Kimura et al., 1968;

Smith, 1968; Felsenstein, 1971; Kimura and Ohta, 1971; Kreitman, 1983; Tajima, 1989;

McDonald and Kreitman, 1991; Wall et al., 2002; Fay et al., 2002; Sabeti et al., 2002b;

Bustamante et al., 2005; Sabeti et al., 2007; Pritchard et al., 2010; Hernandez et al.,

2011b; Messer and Petrov, 2013; Sheehan and Song, 2016b; Schrider and Kern, 2017b).

The explosion of genomic data in the past few decades has allowed the field to swiftly

move from a mainly theoretical field (with sparse data) towards a hypothesis-generating
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field, driven through empirical observation using large scale genomic data (Schrider and

Kern, 2018; Kern and Hahn, 2018). Here, I focus on the future direction of studies aimed

at detecting selection, particularly in humans, in the light of the vast volume of genetic

data available today. Importantly, establishing a complete picture of human adaptation

will remain challenging for (at least) three reasons: i) robustly identifying genomic regions

under selection as well as the putative selected alleles, ii) establishing the phenotypes that

selection is acting upon and iii) determining the environmental pressure driving inferred

selection. I will address each of these issues in turn.

Identifying genomic regions under selection

Given the ever-increasing availability of modern human genomic data, there has been

increased focus on using and developing methods that exploit the high-dimensionality of

genomic data to detect signals of adaptive selection, notable amongst these, machine learn-

ing (ML) approaches (Pavlidis et al., 2010; Lin et al., 2011a; Ronen et al., 2013; Pybus

et al., 2015; Schrider and Kern, 2016; Sheehan and Song, 2016a; Flagel et al., 2018; Sugden

et al., 2018). Importantly, because the majority of ML applications have been through

supervised learning (i.e. when data for the true response value [or label] is known), train-

ing sets have been exclusively generated through simulations (Schrider and Kern, 2018).

Thus, a detailed description of human demographic history will remain of fundamental

importance to identifying loci under selection and pinpointing when and in which popula-

tions selection occurred. In this regard, recent methods that can jointly estimate selection

and demography (Li and Stephan, 2006; Sheehan and Song, 2016b) are an important way

forward, as well as selection methods that are robust to demographic misspecifications

(Schrider and Kern, 2016). Additionally, not only the increasing amount of genomic data,

but approaches that exploit new types of genomic data — for example, those including

ancient DNA (aDNA) — are likely to provide a more accurate view of the mode and

tempo of adaptive selection. For the most part, genomic signatures of adaptive selection

have been usually obtained from modern genomic data, and as such, represent an indirect

approach to detect past selection events. By including past allele frequency estimates,

obtained from ancient human populations, new studies have been able to detect adaptive

selection by analysing samples from populations before and after an adaptive event, in-

cluding the putative selected alleles (Mathieson et al., 2015), make direct estimation of

selection coefficients for loci involved in a particular adaptive phenotypes of interest, such

as pigmentation (Wilde et al., 2014), and to determine the influence of positive selective

sweeps in the evolutionary history of different human populations (Key et al., 2016). In

addition, recent studies based on comparison of modern humans with archaic hominins

have found evidence of adaptive introgression in several genes (Huerta-Sánchez et al., 2014;

Vernot and Akey, 2014; Sankararaman et al., 2014; Racimo et al., 2015; Deschamps et al.,

2016; Vernot et al., 2016; Dannemann et al., 2017; Dannemann and Kelso, 2017; Racimo

et al., 2017; Browning et al., 2018), with future studies likely providing a better view

of the origin and evolution of these putative adaptive variants (Wolf and Akey, 2018).

Given the ever-increasing amount of aDNA constantly being generated (Callaway, 2018),
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coupled with improvements in sequencing technologies to allow for the retrieval of DNA

from remains up to several thousand of years old (Orlando et al., 2013), aDNA studies are

likely to become ever more important contributors to studies of human adaptation. Fi-

nally, there is now a growing realization that other types of mutations besides SNPs, may

be underlying adaptive events. Examples include instances of selection at copy-number

variants in humans (Perry et al., 2007; Schrider et al., 2013) and insertion of transpos-

able elements (Daborn et al., 2002; Schlenke and Begun, 2004; González et al., 2008), and

even large inversions (Kolaczkowski et al., 2011; Cheng et al., 2012; Kirkpatrick and Kern,

2012; Reinhardt et al., 2014) in other organisms. New sequencing technologies that enable

long-range haplotype retrieval would constitute a major important advance to elucidating

the role of other type of variants in human adaptation.

Establishing the phenotypes that selection has acted upon

Previous studies of adaptive selection have produced an extensive list of putatively se-

lected genomic regions, genes and variants. However, this extensive list is in sharp contrast

with the few functionally validated examples of genetic adaptation with a strong candi-

date genomic region and a convincing explanation for the adaptive phenotype (Pritchard

et al., 2010; Hernandez et al., 2011a; Rodŕıguez et al., 2014; Brown, 2012; Pavlidis et al.,

2012; Fan et al., 2016). Recent studies that make use of the large amount of GWAS data

for many quantitative phenotypes and diseases are starting to assess whether the genetic

variants associated with a phenotype have been under selection (Berg et al., 2017; Guo

et al., 2018; Racimo et al., 2018a). Large sampling efforts, such as the UK BioBank, which

includes detailed information on many traits including lifestyle, diet and environmental

exposures, are likely to greatly contribute to these type of studies of human adapta-

tion. Additionally, novel methods that allow indentification of the putative causal variant

(also known as fine-mapping) are of increasing importance as they will likely discover

biologically meaningful variation (Akbari et al., 2018; Szpak et al., 2018). Nonetheless,

establishing a case for adaptation will ultimately necessitate a combination of genomic and

functional evidence. Necessarily, the focus of studies of adaptation will be required to move

from candidate variant discovery to fine-mapping of the candidate genomic region, and

most importantly, to the biological understanding of their adaptive significance through

functional validation. Importantly, further breakthroughs from genomic annotation and

genomic manipulation technology (e.g. through CRISPR/Cas9 technology (Jinek et al.,

2012)) are likely to become one of the biggest contributors to produce more compelling

explanation for adaptation of a relevant phenotype in humans.

Determining the environmental pressure driving the selection

Perhaps the most challenging aspect to establishing a complete picture of human adap-

tation will be to identifying the environmental pressures driving selection. Approaches

that correlate allele-frequency data with environmental variables or other variables known

to cause a strong selective pressure (such as pathogens) are likely to greatly contribute
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to our understanding of the selective pressures imposed on humans (Coop et al., 2009;

Fumagalli et al., 2011; Günther and Coop, 2013). Nonetheless, as vast amounts of aDNA

over broad geographic and temporal scales increases, approaches that integrate genomic

samples from populations before, during and after adaptive events, are likely to better

elucidate key selective pressures in human populations.

7.2 Future directions and significance in GWAS

Over the last years, GWAS have delivered a remarkable set of discoveries in human genet-

ics (Visscher et al., 2017). Undoubtedly GWAS will remain an important experimental

design in human genetic studies that will increase our knowledge of complex phenotypes,

the biological underpinnings of disease, and help towards translational outcomes for dis-

eases treatment and prevention. In this section I address some of the current and future

challenges of GWAS and their future directions. I do not attempt to summarise every

challenge, but rather draw out some important themes.

Ensure greater sample diversity in GWAS

A recurrent and worrying challenge is to incorporate a much broader ensemble of human

populations in GWAS. The majority of GWAS so far have been carried out in European

derived populations, and the only significant growth in non-European populations in re-

cent years has been due to an increase in the number of samples of Asian origins (Need

and Goldstein, 2009; Bustamante et al., 2011; Petrovski and Goldstein, 2016; Popejoy

and Fullerton, 2016). Poor representation of different populations will fail to capture

the full genetic diversity of human populations and will therefore provide only a biased

view of which variants are relevant for future genomic medicine studies. Studying under-

represented populations are likely to ensure novel findings and provide new insights into

the genetic architecture of complex phenotypes, and thus will represent a cost-effective ap-

proach. This will be especially relevant in Africans, as these populations have more genetic

and often more phenotypic diversity that increases statistical power. Moreover, lower LD

genomic blocks in Africans means there is a greater chance for better fine-mapping resolu-

tion to pinpoint casual variants (Martin et al., 2018). In addition, recent studies have also

questioned the transferability of existing study results to other human populations, par-

ticularly regarding the construction of Polygenic Risk Scores (PRS) (Vilhjálmsson et al.,

2015; Martin et al., 2017a; Akiyama et al., 2017; Li et al., 2017; Ware et al., 2017). Im-

portantly, this bias may hinder the development of precision medicine and thus could not

benefit the populations which currently have the greatest health disparities (Bustamante

et al., 2011). While developing new methods that will help even the transferability of PRS,

for example by considering LD within and between populations as shown by Vilhjálmsson

et al. (2015) represents an important way forward, the best way to even out genetic pre-

diction power in human populations will be by producing similar-sized GWAS of relevant

phenotypes in these populations.
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Biobanking

Large genomic biobanks are also, and will become, an ever more important component

for GWAS. By amassing detailed information on many traits including lifestyle, diet and

environmental exposure, together with genomic data, biobanks look set to better establish

the heritable component of common and complex phenotypes and diseases. Importantly,

for diseases with very low prevalence, the discovery of variants is limited by the sample

size and thus, large-scale biobanks will likely play a crucial role in detecting these type

of variants, given that it takes many years to accumulate sample sizes big enough to en-

sure high enough statistical power. Further, as sample sizes increase, it is expected that

variants with smaller effects will also be discovered. Additionally, given the amount of

detailed information on environmental data, new studies based on biobank data are likely

to shed further light on the interactions between genetic variants and many different en-

vironmental risk factors. Importantly, the wide range of ancestries of the individuals in

these large cohorts will likely emerge as a recurrent challenge, as well as as optimizing

statistical power and computational efficiency on biobank-based GWAS (Bycroft et al.,

2017; Loh et al., 2018).

The value of sequencing data

The majority of current GWAS are still largely based on SNP arrays and complemented

by genomic imputation. Although this methodology has proved successful, it is becom-

ing clear that many individual populations carry their own rare variants that can only

be reliable imputed by combining reference samples with sequence data from these local

populations. This has been recently exemplified by using population-specific reference in

an association study of Anabaptist (Hou et al., 2017) and Ashkenazi Jewish populations

(Rivas et al., 2018). Nonetheless, it is clear that ultimately Whole Exome Sequencing

(WES) and Whole Genome Sequencing (WGS) techonologies of large cohorts will be rou-

tinely created and used for GWAS. WES association studies will likely become a popular

approach in human genetics, especially for testing for association of rare coding variants

that are not queried in SNP arrays. This will also be especially important for Mendelian

disorders as these are underpinned by variation at the coding level. The proteins affected

by these rare mutations could provide important potential drug targets. Additionally,

WES and WGS will not only be important for the discovery of novel loci, but also to fine-

map variants at novel and previously reported loci. An important additional challenge for

sequence-based GWAS will be to step up computational resources.

Integration of data

Finally, perhaps the greatest efforts will have to be into discovering the biological func-

tion of the many thousands of variants identified by past and new GWAS. Integrating the

results from the associated variants with functional genomic data from relevant tissues

and cell types at multi-omics levels (i.e. at the transcriptome, proteome and epigenome
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levels), has the potential to lead to a refined understanding of the biological mechanisms

underpinning complex phenotypes including disease etiology. A transition from initial

genomic region discovery, to fine-mapping of casual variants and experimental functional

validation, will be needed using a combination of in silico, in vitro and in vivo methods to

ultimately further the translational path, and in the case of diseases, to potentially novel

therapeutics and prevention strategies.
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Cario-André, M., Pain, C., Gauthier, Y., Casoli, V. and Taieb, A. In vivo and in vitro

evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment

Cell Res, 19(5):434–42, Oct 2006. doi: 10.1111/j.1600-0749.2006.00326.x.

Carr, I.M. and Markham, A.F. Molecular genetic analysis of the human sorbitol dehydro-

genase gene. Mamm Genome, 6(9):645–52, Sep 1995.

Carvajal-Carmona, L.G., Soto, I.D., Pineda, N., Ort́ız-Barrientos, D., Duque, C., Ospina-

Duque, J., McCarthy, M., Montoya, P., Alvarez, V.M., Bedoya, G. et al. Strong

amerind/white sex bias and a possible sephardic contribution among the founders of

a population in northwest colombia. The American Journal of Human Genetics, 67(5):

1287–1295, 2000.

195

https://www.biorxiv.org/content/early/2017/07/20/166298
https://www.biorxiv.org/content/early/2017/07/20/166298


Section Bibliography

Carvajal-Carmona, L.G., Ophoff, R., Hartiala, J., Molina, J., Leon, P., Ospina, J., Bedoya,

G., Freimer, N., Ruiz-Linares, A. et al. Genetic demography of antioquia (colombia)

and the central valley of costa rica. Human genetics, 112(5-6):534–541, 2003.

Cavalli-Sforza, L.L. Human diversity. In Proc. 12th Int. Congr. Genet, volume 2, pages

405–416, 1969.

Cavalli-Sforza, L.L. Population structure and human evolution. Proc. R. Soc. Lond. B,

164(995):362–379, 1966.

Chacon-Duque, J.C., Adhikari, K., Fuentes-Guajardo, M., Mendoza-Revilla, J., Acuna-

Alonzo, V., Barquera Lozano, R., Quinto-Sanchez, M., Gomez-Valdes, J., Everardo Mar-

tinez, P., Villamil-Ramirez, H. et al. Latin americans show wide-spread converso an-

cestry and the imprint of local native ancestry on physical appearance. bioRxiv, 2018.

doi: 10.1101/252155. URL https://www.biorxiv.org/content/early/2018/01/23/

252155.

Chahal, H.S., Wu, W., Ransohoff, K.J., Yang, L., Hedlin, H., Desai, M., Lin, Y., Dai,

H.J., Qureshi, A.A., Li, W.Q. et al. Genome-wide association study identifies 14 novel

risk alleles associated with basal cell carcinoma. Nat Commun, 7:12510, Aug 2016. doi:

10.1038/ncomms12510.

Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M. and Lee, J.J. Second-

generation plink: rising to the challenge of larger and richer datasets. Gigascience, 4:7,

2015. doi: 10.1186/s13742-015-0047-8.

Chang, Y.C., Chang, L.Y., Chang, T.J., Jiang, Y.D., Lee, K.C., Kuo, S.S., Lee, W.J.

and Chuang, L.M. The associations of lpin1 gene expression in adipose tissue with

metabolic phenotypes in the chinese population. Obesity (Silver Spring), 18(1):7–12,

Jan 2010. doi: 10.1038/oby.2009.198.

Chaplin, G. Geographic distribution of environmental factors influencing human skin

coloration. Am J Phys Anthropol, 125(3):292–302, Nov 2004. doi: 10.1002/ajpa.10263.

Chapman, J.M., Cooper, J.D., Todd, J.A. and Clayton, D.G. Detecting disease associa-

tions due to linkage disequilibrium using haplotype tags: a class of tests and the deter-

minants of statistical power. Hum Hered, 56(1-3):18–31, 2003. doi: 10.1159/000073729.

Charlesworth, D., Charlesworth, B. and Morgan, M.T. The pattern of neutral molecular

variation under the background selection model. Genetics, 141(4):1619–32, Dec 1995.

Chen, H., Hey, J. and Slatkin, M. A hidden markov model for investigating recent positive

selection through haplotype structure. Theor Popul Biol, 99:18–30, Feb 2015. doi:

10.1016/j.tpb.2014.11.001.

Cheng, C., White, B.J., Kamdem, C., Mockaitis, K., Costantini, C., Hahn, M.W. and

Besansky, N.J. Ecological genomics of anopheles gambiae along a latitudinal cline: a

population-resequencing approach. Genetics, 190(4):1417–1432, 2012.

196

https://www.biorxiv.org/content/early/2018/01/23/252155
https://www.biorxiv.org/content/early/2018/01/23/252155


Bibliography

Cheng, C.J., Lin, Y.C., Tsai, M.T., Chen, C.S., Hsieh, M.C., Chen, C.L. and Yang, R.B.

Scube2 suppresses breast tumor cell proliferation and confers a favorable prognosis in

invasive breast cancer. Cancer Res, 69(8):3634–41, Apr 2009. doi: 10.1158/0008-5472.

CAN-08-3615.

Chiang, P.W., Spector, E. and Scheuerle, A. A case of asian indian oca3 patient. American

Journal of Medical Genetics Part A, 149(7):1578–1580, 2009.

Clark, P., Stark, A.E., Walsh, R.J., Jardine, R. and Martin, N.G. A twin study of skin

reflectance. Ann Hum Biol, 8(6):529–41, 1981.

Concha, G., Nermell, B. and Vahter, M. Spatial and temporal variations in arsenic expo-

sure via drinking-water in northern argentina. J Health Popul Nutr, 24(3):317–26, Sep

2006.

Cook, A.L., Chen, W., Thurber, A.E., Smit, D.J., Smith, A.G., Bladen, T.G., Brown,

D.L., Duffy, D.L., Pastorino, L., Bianchi-Scarra, G. et al. Analysis of cultured hu-

man melanocytes based on polymorphisms within the slc45a2/matp, slc24a5/nckx5, and

oca2/p loci. J Invest Dermatol, 129(2):392–405, Feb 2009. doi: 10.1038/jid.2008.211.

Cook, N.D. and Lovell, W.G. Secret judgments of God: Old world disease in colonial

Spanish America, volume 205. University of Oklahoma Press, 2001.

Coop, G., Pickrell, J.K., Novembre, J., Kudaravalli, S., Li, J., Absher, D., Myers, R.M.,

Cavalli-Sforza, L.L., Feldman, M.W. and Pritchard, J.K. The role of geography in

human adaptation. PLoS genetics, 5(6):e1000500, 2009.

Coop, G., Witonsky, D., Di Rienzo, A. and Pritchard, J.K. Using environmental correla-

tions to identify loci underlying local adaptation. Genetics, 185(4):1411–23, Aug 2010.

doi: 10.1534/genetics.110.114819.

Corona, E., Chen, R., Sikora, M., Morgan, A.A., Patel, C.J., Ramesh, A., Bustamante,

C.D. and Butte, A.J. Analysis of the genetic basis of disease in the context of worldwide

human relationships and migration. PLoS Genet, 9(5):e1003447, May 2013. doi: 10.

1371/journal.pgen.1003447.

Cossrow, N. and Falkner, B. Race/ethnic issues in obesity and obesity-related comorbidi-

ties. The Journal of Clinical Endocrinology & Metabolism, 89(6):2590–2594, 2004.

Crawford, J.E., Amaru, R., Song, J., Julian, C.G., Racimo, F., Cheng, J.Y., Guo, X.,

Yao, J., Ambale-Venkatesh, B., Lima, J.A. et al. Natural selection on genes related

to cardiovascular health in high-altitude adapted andeans. Am J Hum Genet, 101(5):

752–767, Nov 2017a. doi: 10.1016/j.ajhg.2017.09.023.

Crawford, N.G., Kelly, D.E., Hansen, M.E.B., Beltrame, M.H., Fan, S., Bowman, S.L.,

Jewett, E., Ranciaro, A., Thompson, S., Lo, Y. et al. Loci associated with skin

pigmentation identified in african populations. Science, 358(6365), 11 2017b. doi:

10.1126/science.aan8433.

197



Section Bibliography

Crosby, A.W. Virgin soil epidemics as a factor in the aboriginal depopulation in america.

The William and Mary Quarterly: A Magazine of Early American History, pages 289–

299, 1976.
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Blanco, A., Contreras, P., Cruz Dávalos, D., Reyes, O., San Roman, M. et al. Genomic

insights into the origin and diversification of late maritime hunter-gatherers from the

chilean patagonia. Proc Natl Acad Sci U S A, 115(17):E4006–E4012, Apr 2018. doi:

10.1073/pnas.1715688115.

De Mita, S., Thuillet, A.C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J. and Vigouroux,

Y. Detecting selection along environmental gradients: analysis of eight methods and

their effectiveness for outbreeding and selfing populations. Mol Ecol, 22(5):1383–99,

Mar 2013. doi: 10.1111/mec.12182.

DeBruyne, J.P., Weaver, D.R. and Reppert, S.M. Clock and npas2 have overlapping roles

in the suprachiasmatic circadian clock. Nat Neurosci, 10(5):543–5, May 2007. doi:

10.1038/nn1884.

Del Marmol, V. and Beermann, F. Tyrosinase and related proteins in mammalian pig-

mentation. FEBS letters, 381(3):165–168, 1996.

Delaneau, O., Zagury, J.F. and Marchini, J. Improved whole-chromosome phasing for

disease and population genetic studies. Nat Methods, 10(1):5–6, Jan 2013. doi: 10.

1038/nmeth.2307.

Denevan, W.M. The native population of the Americas in 1492. Univ of Wisconsin Press,

1992.

Deng, L., Ruiz-Linares, A., Xu, S. and Wang, S. Ancestry variation and footprints of

natural selection along the genome in latin american populations. Sci Rep, 6:21766, Feb

2016. doi: 10.1038/srep21766.

Deschamps, M., Laval, G., Fagny, M., Itan, Y., Abel, L., Casanova, J.L., Patin, E. and

Quintana-Murci, L. Genomic signatures of selective pressures and introgression from

archaic hominins at human innate immunity genes. Am J Hum Genet, 98(1):5–21, Jan

2016. doi: 10.1016/j.ajhg.2015.11.014.

Devlin, B. and Roeder, K. Genomic control for association studies. Biometrics, 55(4):

997–1004, 1999.

Dillehay, T.D. and Collins, M.B. Early cultural evidence from monte verde in chile. Nature,

332(6160):150, 1988.

Dilthey, A.T., Gourraud, P.A., Mentzer, A.J., Cereb, N., Iqbal, Z. and McVean, G. High-

accuracy hla type inference from whole-genome sequencing data using population refer-

ence graphs. PLoS Comput Biol, 12(10):e1005151, Oct 2016. doi: 10.1371/journal.pcbi.

1005151.

Dobyns, H.F. Disease transfer at contact. Annual Review of Anthropology, 22(1):273–291,

1993.

199



Section Bibliography

D’Orazio, J.A., Nobuhisa, T., Cui, R., Arya, M., Spry, M., Wakamatsu, K., Igras, V.,

Kunisada, T., Granter, S.R., Nishimura, E.K. et al. Topical drug rescue strategy and

skin protection based on the role of mc1r in uv-induced tanning. Nature, 443(7109):

340–4, Sep 2006. doi: 10.1038/nature05098.

Du, J. and Fisher, D.E. Identification of aim-1 as the underwhite mouse mutant and its

transcriptional regulation by mitf. J Biol Chem, 277(1):402–6, Jan 2002. doi: 10.1074/

jbc.M110229200.

Duffy, D.L., Box, N.F., Chen, W., Palmer, J.S., Montgomery, G.W., James, M.R.,

Hayward, N.K., Martin, N.G. and Sturm, R.A. Interactive effects of mc1r and

oca2 on melanoma risk phenotypes. Hum Mol Genet, 13(4):447–61, Feb 2004. doi:

10.1093/hmg/ddh043.

Duffy, J. Epidemics in Colonial America. Kennikat Press, 1972. ISBN 9780804616645.

URL https://books.google.fr/books?id=Px30RAAACAAJ.

Duke, J.L., Lind, C., Mackiewicz, K., Ferriola, D., Papazoglou, A., Gasiewski, A., Heron,

S., Huynh, A., McLaughlin, L., Rogers, M. et al. Determining performance character-

istics of an ngs-based hla typing method for clinical applications. HLA, 87(3):141–52,

Mar 2016. doi: 10.1111/tan.12736.

Dunlap, J.C., Loros, J.J. and DeCoursey, P.J. Chronobiology: biological timekeeping.

Sinauer Associates, 2004.

Eaton, K., Edwards, M., Krithika, S., Cook, G., Norton, H. and Parra, E.J. Associ-

ation study confirms the role of two oca2 polymorphisms in normal skin pigmenta-

tion variation in east asian populations. Am J Hum Biol, 27(4):520–5, 2015. doi:

10.1002/ajhb.22678.

Eden, E., Navon, R., Steinfeld, I., Lipson, D. and Yakhini, Z. Gorilla: a tool for discovery

and visualization of enriched go terms in ranked gene lists. BMC Bioinformatics, 10:

48, Feb 2009. doi: 10.1186/1471-2105-10-48.

Edwards, M., Bigham, A., Tan, J., Li, S., Gozdzik, A., Ross, K., Jin, L. and Parra,

E.J. Association of the oca2 polymorphism his615arg with melanin content in east

asian populations: further evidence of convergent evolution of skin pigmentation. PLoS

Genet, 6(3):e1000867, Mar 2010. doi: 10.1371/journal.pgen.1000867.

Edwards, M., Cha, D., Krithika, S., Johnson, M., Cook, G. and Parra, E.J. Iris pig-

mentation as a quantitative trait: variation in populations of european, east asian and

south asian ancestry and association with candidate gene polymorphisms. Pigment Cell

Melanoma Res, 29(2):141–62, Mar 2016. doi: 10.1111/pcmr.12435.

Eichstaedt, C.A., Antão, T., Pagani, L., Cardona, A., Kivisild, T. and Mormina, M. The

andean adaptive toolkit to counteract high altitude maladaptation: genome-wide and

phenotypic analysis of the collas. PLoS One, 9(3):e93314, 2014. doi: 10.1371/journal.

pone.0093314.

200

https://books.google.fr/books?id=Px30RAAACAAJ


Bibliography

Eichstaedt, C.A., Antão, T., Cardona, A., Pagani, L., Kivisild, T. and Mormina, M.

Genetic and phenotypic differentiation of an andean intermediate altitude population.

Physiol Rep, 3(5), May 2015a. doi: 10.14814/phy2.12376.

Eichstaedt, C.A., Antao, T., Cardona, A., Pagani, L., Kivisild, T. and Mormina, M.

Positive selection of as3mt to arsenic water in andean populations. Mutat Res, 780:

97–102, Oct 2015b. doi: 10.1016/j.mrfmmm.2015.07.007.

Elks, C.E., Perry, J.R.B., Sulem, P., Chasman, D.I., Franceschini, N., He, C., Lunetta,

K.L., Visser, J.A., Byrne, E.M., Cousminer, D.L. et al. Thirty new loci for age at

menarche identified by a meta-analysis of genome-wide association studies. Nat Genet,

42(12):1077–85, Dec 2010. doi: 10.1038/ng.714.

Endler, J.A. Natural and sexual selection on color patterns in poeciliid fishes. Environ-

mental biology of Fishes, 9(2):173–190, 1983.

Eng, M.Y., Luczak, S.E. and Wall, T.L. Aldh2, adh1b, and adh1c genotypes in asians: a

literature review. Alcohol Res Health, 30(1):22–7, 2007.

Engström, K.S., Hossain, M.B., Lauss, M., Ahmed, S., Raqib, R., Vahter, M. and Broberg,

K. Efficient arsenic metabolism–the as3mt haplotype is associated with dna methylation

and expression of multiple genes around as3mt. PLoS One, 8(1):e53732, 2013. doi:

10.1371/journal.pone.0053732.

Eriksson, N., Macpherson, J.M., Tung, J.Y., Hon, L.S., Naughton, B., Saxonov, S., Avey,

L., Wojcicki, A., Pe’er, I. and Mountain, J. Web-based, participant-driven studies yield

novel genetic associations for common traits. PLoS Genet, 6(6):e1000993, Jun 2010.

doi: 10.1371/journal.pgen.1000993.

Ettinger, N.A., Duggal, P., Braz, R.F.S., Nascimento, E.T., Beaty, T.H., Jeronimo,

S.M.B., Pearson, R.D., Blackwell, J.M., Moreno, L. and Wilson, M.E. Genetic ad-

mixture in brazilians exposed to infection with leishmania chagasi. Ann Hum Genet, 73

(Pt 3):304–13, May 2009. doi: 10.1111/j.1469-1809.2009.00510.x.

Ewing, G. and Hermisson, J. Msms: a coalescent simulation program including recombi-

nation, demographic structure and selection at a single locus. Bioinformatics, 26(16):

2064–5, Aug 2010. doi: 10.1093/bioinformatics/btq322.

Fagundes, N.J., Ray, N., Beaumont, M., Neuenschwander, S., Salzano, F.M., Bonatto,

S.L. and Excoffier, L. Statistical evaluation of alternative models of human evolution.

Proceedings of the National Academy of Sciences, 104(45):17614–17619, 2007.

Falconer, D.S. Introduction to quantitative genetics. Oliver And Boyd; Edinburgh; London,

1960.

Falush, D., Stephens, M. and Pritchard, J.K. Inference of population structure using

multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164

(4):1567–87, Aug 2003.

201



Section Bibliography

Fan, S., Hansen, M.E.B., Lo, Y. and Tishkoff, S.A. Going global by adapting local: A

review of recent human adaptation. Science, 354(6308):54–59, 10 2016. doi: 10.1126/

science.aaf5098.

Farh, K.K.H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W.J., Beik, S., Shoresh,

N., Whitton, H., Ryan, R.J.H., Shishkin, A.A. et al. Genetic and epigenetic fine mapping

of causal autoimmune disease variants. Nature, 518(7539):337–43, Feb 2015. doi: 10.

1038/nature13835.

Fay, J.C., Wyckoff, G.J. and Wu, C.I. Testing the neutral theory of molecular evolution

with genomic data from drosophila. Nature, 415(6875):1024, 2002.

Fehren-Schmitz, L. and Georges, L. Ancient dna reveals selection acting on genes asso-

ciated with hypoxia response in pre-columbian peruvian highlanders in the last 8500

years. Sci Rep, 6:23485, Mar 2016. doi: 10.1038/srep23485.

Felsenstein, J. On the biological significance of the cost of gene substitution. The American

Naturalist, 105(941):1–11, 1971.

Ferrer-Admetlla, A., Liang, M., Korneliussen, T. and Nielsen, R. On detecting incomplete

soft or hard selective sweeps using haplotype structure. Mol Biol Evol, 31(5):1275–91,

May 2014. doi: 10.1093/molbev/msu077.

Field, Y., Boyle, E.A., Telis, N., Gao, Z., Gaulton, K.J., Golan, D., Yengo, L., Rocheleau,

G., Froguel, P., McCarthy, M.I. et al. Detection of human adaptation during the past

2000 years. Science, 354(6313):760–764, 11 2016a. doi: 10.1126/science.aag0776.

Field, Y., Boyle, E.A., Telis, N., Gao, Z., Gaulton, K.J., Golan, D., Yengo, L., Rocheleau,

G., Froguel, P., McCarthy, M.I. et al. Detection of human adaptation during the past

2000 years. Science, page aag0776, 2016b.

Fields, S.L. Pestilence and headcolds: Encountering illness in colonial Mexico. University

of California, Davis, 2004.

Flagel, L., Brandvain, Y.J. and Schrider, D.R. The unreasonable effectiveness of convo-

lutional neural networks in population genetic inference. bioRxiv, 2018. doi: 10.1101/

336073. URL https://www.biorxiv.org/content/early/2018/05/31/336073.

Fleming, A. and Copp, A.J. Embryonic folate metabolism and mouse neural tube defects.

Science, 280(5372):2107–2109, 1998.

Foll, M., Gaggiotti, O.E., Daub, J.T., Vatsiou, A. and Excoffier, L. Widespread signals of

convergent adaptation to high altitude in asia and america. Am J Hum Genet, 95(4):

394–407, Oct 2014. doi: 10.1016/j.ajhg.2014.09.002.

Fox, C.S., Liu, Y., White, C.C., Feitosa, M., Smith, A.V., Heard-Costa, N., Lohman,

K., GIANT Consortium, MAGIC Consortium, GLGC Consortium et al. Genome-wide

association for abdominal subcutaneous and visceral adipose reveals a novel locus for

visceral fat in women. PLoS Genet, 8(5):e1002695, 2012. doi: 10.1371/journal.pgen.

1002695.

202

https://www.biorxiv.org/content/early/2018/05/31/336073


Bibliography

Fraser, H.B. Gene expression drives local adaptation in humans. Genome Res, 23(7):

1089–96, Jul 2013. doi: 10.1101/gr.152710.112.

Frayn, K.N. Adipose tissue as a buffer for daily lipid flux. Diabetologia, 45(9):1201–10,

Sep 2002. doi: 10.1007/s00125-002-0873-y.

Frichot, E., Schoville, S.D., Bouchard, G. and François, O. Testing for associations between

loci and environmental gradients using latent factor mixed models. Molecular biology

and evolution, 30(7):1687–1699, 2013.

Frodsham, A.J. and Hill, A.V.S. Genetics of infectious diseases. Hum Mol Genet, 13 Spec

No 2:R187–94, Oct 2004. doi: 10.1093/hmg/ddh225.

Frost, P. European hair and eye color: a case of frequency-dependent sexual selection?

Evolution and Human Behavior, 27(2):85–103, 2006.

Frost, P. Human skin-color sexual dimorphism: a test of the sexual selection hypothesis.

American journal of physical anthropology, 133(1):779–780, 2007.

Frudakis, T., Thomas, M., Gaskin, Z., Venkateswarlu, K., Chandra, K.S., Ginjupalli,

S., Gunturi, S., Natrajan, S., Ponnuswamy, V.K. and Ponnuswamy, K.N. Sequences

associated with human iris pigmentation. Genetics, 165(4):2071–83, Dec 2003.

Fry, R.C., Navasumrit, P., Valiathan, C., Svensson, J.P., Hogan, B.J., Luo, M., Bhat-

tacharya, S., Kandjanapa, K., Soontararuks, S., Nookabkaew, S. et al. Activation of

inflammation/nf-kappab signaling in infants born to arsenic-exposed mothers. PLoS

Genet, 3(11):e207, Nov 2007. doi: 10.1371/journal.pgen.0030207.

Fujimoto, A., Ohashi, J., Nishida, N., Miyagawa, T., Morishita, Y., Tsunoda, T., Kimura,

R. and Tokunaga, K. A replication study confirmed the edar gene to be a major

contributor to population differentiation regarding head hair thickness in asia. Hum

Genet, 124(2):179–85, Sep 2008. doi: 10.1007/s00439-008-0537-1.

Fumagalli, M., Sironi, M., Pozzoli, U., Ferrer-Admetlla, A., Ferrer-Admettla, A., Pattini,

L. and Nielsen, R. Signatures of environmental genetic adaptation pinpoint pathogens

as the main selective pressure through human evolution. PLoS Genet, 7(11):e1002355,

Nov 2011. doi: 10.1371/journal.pgen.1002355.

Fumagalli, M., Moltke, I., Grarup, N., Racimo, F., Bjerregaard, P., Jørgensen, M.E.,

Korneliussen, T.S., Gerbault, P., Skotte, L., Linneberg, A. et al. Greenlandic inuit

show genetic signatures of diet and climate adaptation. Science, 349(6254):1343–7, Sep

2015. doi: 10.1126/science.aab2319.

Gallego Romero, I., Basu Mallick, C., Liebert, A., Crivellaro, F., Chaubey, G., Itan, Y.,

Metspalu, M., Eaaswarkhanth, M., Pitchappan, R., Villems, R. et al. Herders of indian

and european cattle share their predominant allele for lactase persistence. Mol Biol

Evol, 29(1):249–60, Jan 2012. doi: 10.1093/molbev/msr190.

Gamerman, D. and Lopes, H.F. Markov chain Monte Carlo: stochastic simulation for

Bayesian inference. Chapman and Hall/CRC, 2006.

203



Section Bibliography
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Mariat, D., Taourit, S. and Guérin, G. A mutation in the matp gene causes the cream

coat colour in the horse. Genet Sel Evol, 35(1):119–33, 2003. doi: 10.1051/gse:2002039.

Marigorta, U.M. and Navarro, A. High trans-ethnic replicability of gwas results implies

common causal variants. PLoS genetics, 9(6):e1003566, 2013.

Marouli, E., Graff, M., Medina-Gomez, C., Lo, K.S., Wood, A.R., Kjaer, T.R., Fine,

R.S., Lu, Y., Schurmann, C., Highland, H.M. et al. Rare and low-frequency coding

variants alter human adult height. Nature, 542(7640):186–190, 02 2017. doi: 10.1038/

nature21039.
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Mallick, S., Olalde, I., Broomandkhoshbacht, N., Candilio, F., Cheronet, O. et al. The

genomic history of southeastern europe. Nature, 555(7695):197–203, Mar 2018. doi:

10.1038/nature25778.

Matsuda, A., Suzuki, Y., Honda, G., Muramatsu, S., Matsuzaki, O., Nagano, Y., Doi, T.,

Shimotohno, K., Harada, T., Nishida, E. et al. Large-scale identification and characteri-

zation of human genes that activate nf-kappab and mapk signaling pathways. Oncogene,

22(21):3307–18, May 2003. doi: 10.1038/sj.onc.1206406.

Matsushita, S. and Higuchi, S. Review: Use of asian samples in genetic research of alcohol

use disorders: Genetic variation of alcohol metabolizing enzymes and the effects of

acetaldehyde. Am J Addict, 26(5):469–476, Aug 2017. doi: 10.1111/ajad.12477.

Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H.,

Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J. et al. Systematic localization of

common disease-associated variation in regulatory dna. Science, 337(6099):1190–5, Sep

2012. doi: 10.1126/science.1222794.
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Jay, F., Prüfer, K., de Filippo, C. et al. A high-coverage genome sequence from an

archaic denisovan individual. Science, 338(6104):222–6, Oct 2012. doi: 10.1126/science.

1224344.

Miller, C.T., Beleza, S., Pollen, A.A., Schluter, D., Kittles, R.A., Shriver, M.D. and

Kingsley, D.M. cis-regulatory changes in kit ligand expression and parallel evolution

of pigmentation in sticklebacks and humans. Cell, 131(6):1179–89, Dec 2007. doi:

10.1016/j.cell.2007.10.055.

Mitchell-Olds, T., Willis, J.H. and Goldstein, D.B. Which evolutionary processes influence

natural genetic variation for phenotypic traits? Nat Rev Genet, 8(11):845–56, Nov 2007.

doi: 10.1038/nrg2207.

Moltke, I., Fumagalli, M., Korneliussen, T.S., Crawford, J.E., Bjerregaard, P., Jørgensen,

M.E., Grarup, N., Gulløv, H.C., Linneberg, A., Pedersen, O. et al. Uncovering the

genetic history of the present-day greenlandic population. Am J Hum Genet, 96(1):

54–69, Jan 2015. doi: 10.1016/j.ajhg.2014.11.012.

Moore, L.G., Hershey, D.W., Jahnigen, D. and Bowes, Jr, W. The incidence of pregnancy-

induced hypertension is increased among colorado residents at high altitude. Am J

Obstet Gynecol, 144(4):423–9, Oct 1982.

Moore, L.G., Shriver, M., Bemis, L., Hickler, B., Wilson, M., Brutsaert, T., Parra, E. and

Vargas, E. Maternal adaptation to high-altitude pregnancy: an experiment of nature–a

review. Placenta, 25 Suppl A:S60–71, Apr 2004. doi: 10.1016/j.placenta.2004.01.008.

Moreno-Estrada, A., Gravel, S., Zakharia, F., McCauley, J.L., Byrnes, J.K., Gignoux,

C.R., Ortiz-Tello, P.A., Mart́ınez, R.J., Hedges, D.J., Morris, R.W. et al. Reconstructing

the population genetic history of the caribbean. PLoS Genet, 9(11):e1003925, Nov 2013.

doi: 10.1371/journal.pgen.1003925.

220



Bibliography

Moreno-Estrada, A., Gignoux, C.R., Fernández-López, J.C., Zakharia, F., Sikora, M.,
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Borrón, J.C. The melanocortin-1 receptor carboxyl terminal pentapeptide is essential

for mc1r function and expression on the cell surface. Peptides, 26(10):1848–57, Oct

2005. doi: 10.1016/j.peptides.2004.11.030.

232



Bibliography

Sanjak, J.S., Sidorenko, J., Robinson, M.R., Thornton, K.R. and Visscher, P.M. Evidence

of directional and stabilizing selection in contemporary humans. Proc Natl Acad Sci U

S A, 115(1):151–156, Jan 2018. doi: 10.1073/pnas.1707227114.

Sankararaman, S., Sridhar, S., Kimmel, G. and Halperin, E. Estimating local ancestry in

admixed populations. Am J Hum Genet, 82(2):290–303, Feb 2008. doi: 10.1016/j.ajhg.

2007.09.022.

Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., Kelso, J., Pääbo, S., Patterson,
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Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E. et al. New genetic loci link

adipose and insulin biology to body fat distribution. Nature, 518(7538):187–196, Feb

2015. doi: 10.1038/nature14132.

Sibai, B.M. Thrombophilia and severe preeclampsia: time to screen and treat in future

pregnancies? Hypertension, 46(6):1252–3, Dec 2005. doi: 10.1161/01.HYP.0000188904.

47575.7e.

Simons, Y.B., Turchin, M.C., Pritchard, J.K. and Sella, G. The deleterious mutation

load is insensitive to recent population history. Nat Genet, 46(3):220–4, Mar 2014. doi:

10.1038/ng.2896.

Skoglund, P. and Reich, D. A genomic view of the peopling of the americas. Curr Opin

Genet Dev, 41:27–35, Dec 2016. doi: 10.1016/j.gde.2016.06.016.

Skoglund, P., Mallick, S., Bortolini, M.C., Chennagiri, N., Hünemeier, T., Petzl-Erler,

M.L., Salzano, F.M., Patterson, N. and Reich, D. Genetic evidence for two founding pop-

ulations of the americas. Nature, 525(7567):104–8, Sep 2015. doi: 10.1038/nature14895.

Skotte, L., Korneliussen, T.S. and Albrechtsen, A. Estimating individual admixture pro-

portions from next generation sequencing data. Genetics, 195(3):693–702, Nov 2013.

doi: 10.1534/genetics.113.154138.

Slatkin, M. Gene flow and selection in a cline. Genetics, 75(4):733–756, 1973.

Slominski, A., Wortsman, J., Plonka, P.M., Schallreuter, K.U., Paus, R. and Tobin, D.J.

Hair follicle pigmentation. Journal of Investigative Dermatology, 124(1):13–21, 2005.

Smith, J.M. and Haigh, J. The hitch-hiking effect of a favourable gene. Genet Res, 23(1):

23–35, Feb 1974.

Smith, J.M. “haldane’s dilemma” and the rate of evolution. Nature, 219(5159):1114, 1968.

Smith, M.W. and O’Brien, S.J. Mapping by admixture linkage disequilibrium: ad-

vances, limitations and guidelines. Nat Rev Genet, 6(8):623–32, Aug 2005. doi:

10.1038/nrg1657.

Soejima, M. and Koda, Y. Population differences of two coding snps in pigmentation-

related genes slc24a5 and slc45a2. International journal of legal medicine, 121(1):36–39,

2007.

235



Section Bibliography

Sohail, M., Maier, R.M., Ganna, A., Bloemendal, A., Martin, A.R., Turchin, M.C., Chi-

ang, C.W.K., Hirschhorn, J.N., Daly, M.J., Patterson, N. et al. Signals of polygenic

adaptation on height have been overestimated due to uncorrected population struc-

ture in genome-wide association studies. bioRxiv, 2018. doi: 10.1101/355057. URL

https://www.biorxiv.org/content/early/2018/07/09/355057.

Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M. and Smoller, J.W. Pleiotropy in

complex traits: challenges and strategies. Nat Rev Genet, 14(7):483–95, Jul 2013. doi:

10.1038/nrg3461.

Song, Q., Li, C., Feng, X., Yu, A., Tang, H., Peng, Z. and Wang, X. Decreased expression

of scube2 is associated with progression and prognosis in colorectal cancer. Oncol Rep,

33(4):1956–64, Apr 2015. doi: 10.3892/or.2015.3790.

Speed, D., Hemani, G., Johnson, M.R. and Balding, D.J. Improved heritability estimation

from genome-wide snps. Am J Hum Genet, 91(6):1011–21, Dec 2012. doi: 10.1016/j.

ajhg.2012.10.010.

Spencer, C.C.A., Su, Z., Donnelly, P. and Marchini, J. Designing genome-wide association

studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet,

5(5):e1000477, May 2009. doi: 10.1371/journal.pgen.1000477.

Staels, B. When the clock stops ticking, metabolic syndrome explodes. Nat Med, 12(1):

54–5; discussion 55, Jan 2006. doi: 10.1038/nm0106-54.

Stearns, S.C., Byars, S.G., Govindaraju, D.R. and Ewbank, D. Measuring selection in

contemporary human populations. Nat Rev Genet, 11(9):611–22, Sep 2010. doi: 10.

1038/nrg2831.

Stephan, W. Signatures of positive selection: from selective sweeps at individual loci to

subtle allele frequency changes in polygenic adaptation. Molecular ecology, 25(1):79–88,

2016.

Stokowski, R.P., Pant, P.V.K., Dadd, T., Fereday, A., Hinds, D.A., Jarman, C., Filsell,

W., Ginger, R.S., Green, M.R., van der Ouderaa, F.J. et al. A genomewide association

study of skin pigmentation in a south asian population. Am J Hum Genet, 81(6):

1119–32, Dec 2007. doi: 10.1086/522235.

Stoneking, M. An introduction to molecular anthropology. John Wiley & Sons, 2016.

Stram, D.O. Design, analysis, and interpretation of genome-wide association scans.

Springer, 2016.

Stranger, B.E., Stahl, E.A. and Raj, T. Progress and promise of genome-wide association

studies for human complex trait genetics. Genetics, 187(2):367–83, Feb 2011. doi:

10.1534/genetics.110.120907.

Sturm, R.A. Molecular genetics of human pigmentation diversity. Hum Mol Genet, 18

(R1):R9–17, Apr 2009. doi: 10.1093/hmg/ddp003.

236

https://www.biorxiv.org/content/early/2018/07/09/355057


Bibliography

Sturm, R.A. and Frudakis, T.N. Eye colour: portals into pigmentation genes and ancestry.

Trends Genet, 20(8):327–32, Aug 2004. doi: 10.1016/j.tig.2004.06.010.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,

Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

Proc Natl Acad Sci U S A, 102(43):15545–50, Oct 2005. doi: 10.1073/pnas.0506580102.

Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. and Mesirov, J.P. Gsea-p: a desktop

application for gene set enrichment analysis. Bioinformatics, 23(23):3251–3, Dec 2007.

doi: 10.1093/bioinformatics/btm369.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott,

P., Green, J., Landray, M. et al. Uk biobank: an open access resource for identifying

the causes of a wide range of complex diseases of middle and old age. PLoS Med, 12(3):

e1001779, Mar 2015. doi: 10.1371/journal.pmed.1001779.

Sugden, L.A., Atkinson, E.G., Fischer, A.P., Rong, S., Henn, B.M. and Ramachandran,

S. Localization of adaptive variants in human genomes using averaged one-dependence

estimation. Nat Commun, 9(1):703, Feb 2018. doi: 10.1038/s41467-018-03100-7.

Sulem, P., Gudbjartsson, D.F., Stacey, S.N., Helgason, A., Rafnar, T., Magnusson, K.P.,

Manolescu, A., Karason, A., Palsson, A., Thorleifsson, G. et al. Genetic determinants

of hair, eye and skin pigmentation in europeans. Nat Genet, 39(12):1443–52, Dec 2007.

doi: 10.1038/ng.2007.13.

Sulem, P., Gudbjartsson, D.F., Stacey, S.N., Helgason, A., Rafnar, T., Jakobsdottir, M.,

Steinberg, S., Gudjonsson, S.A., Palsson, A., Thorleifsson, G. et al. Two newly identified

genetic determinants of pigmentation in europeans. Nat Genet, 40(7):835–7, Jul 2008.

doi: 10.1038/ng.160.

Sumi, D. and Himeno, S. Role of arsenic (+ 3 oxidation state) methyltransferase in

arsenic metabolism and toxicity. Biological and Pharmaceutical Bulletin, 35(11):1870–

1875, 2012.

Sun, H.J., Rathinasabapathi, B., Wu, B., Luo, J., Pu, L.P. and Ma, L.Q. Arsenic and

selenium toxicity and their interactive effects in humans. Environment International,

69:148–158, 2014.

Suviolahti, E., Reue, K., Cantor, R.M., Phan, J., Gentile, M., Naukkarinen, J., Soro-

Paavonen, A., Oksanen, L., Kaprio, J., Rissanen, A. et al. Cross-species analyses impli-

cate lipin 1 involvement in human glucose metabolism. Hum Mol Genet, 15(3):377–86,

Feb 2006. doi: 10.1093/hmg/ddi448.
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Table A.1: Worldwide populations used to assess the geographic distribution
of the top selected SNPs.

Population Country of origin Major geographical region Sample size Source (reference)

ESN Nigeria Africa 95 1000 Genomes Project

GuiGhanaKgal Botswana Africa 14 Schlebusch et al. 2012

GWD Gambia Africa 111 1000 Genomes Project

Juhoansi Namibia Africa 15 Schlebusch et al. 2012

Khwe Namibia Africa 14 Schlebusch et al. 2012

LWK Kenya Africa 73 1000 Genomes Project

MSL Sierra Leone Africa 69 1000 Genomes Project

Bantu South Africa Africa 19 Schlebusch et al. 2012

Xun Angola Africa 19 Schlebusch et al. 2012

YRI Nigeria Africa 101 1000 Genomes Project

Aymara Bolivia Americas 13 Chacon-Duque et al. 2018

Colla Argentina Americas 11 Eichstaedt et al. 2014

Embera Colombia Americas 14 Chacon-Duque et al. 2018

Mixe Mexico Americas 16 Chacon-Duque et al. 2018

Nahua Mexico Americas 17 Chacon-Duque et al. 2018

Quechua Peru/Bolivia Americas 11 Chacon-Duque et al. 2018

Wichi Argentina Americas 15 Eichstaedt et al. 2014

CHB China Asia (Eastern Eurasia) 103 1000 Genomes Project

CHS-FuJian China Asia (Eastern Eurasia) 25 1000 Genomes Project

CHS-HuNan China Asia (Eastern Eurasia) 59 1000 Genomes Project

CHS China Asia (Eastern Eurasia) 13 1000 Genomes Project

JPT Japan Asia (Eastern Eurasia) 104 1000 Genomes Project

Papuan Papua New Guinea Asia (Eastern Eurasia) 15 Simons Genome Diversity Project

BEB Bangladesh Asia (Eastern Eurasia) 83 1000 Genomes Project

GIH India Asia (Eastern Eurasia) 96 1000 Genomes Project

ITU India Asia (Eastern Eurasia) 98 1000 Genomes Project

PJL Pakistan Asia (Eastern Eurasia) 86 1000 Genomes Project

STU Sri Lanka Asia (Eastern Eurasia) 95 1000 Genomes Project

Bajo Indonesia Asia (Eastern Eurasia) 31 Moerseburg et al. 2016

Burmese Myanmar Asia (Eastern Eurasia) 20 Moerseburg et al. 2016

CDX China Asia (Eastern Eurasia) 82 1000 Genomes Project

. . . continued on next page. . .
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. . . continued from previous page . . .

Population Country of origin Major geographical region Sample size Source (reference)

Dusun Brunei Asia (Eastern Eurasia) 20 Moerseburg et al. 2016

Igorot Phillippines Asia (Eastern Eurasia) 21 Moerseburg et al. 2016

KHV Vietnam Asia (Eastern Eurasia) 98 1000 Genomes Project

Lebbo Indonesia Asia (Eastern Eurasia) 15 Moerseburg et al. 2016

Malay Singapore Asia (Eastern Eurasia) 25 Moerseburg et al. 2016

Murut Brunei Asia (Eastern Eurasia) 17 Moerseburg et al. 2016

Vietnamese Vietnam Asia (Eastern Eurasia) 18 Moerseburg et al. 2016

Evenki Russia Asia (Eastern Eurasia) 16 Carmona et al. 2014

Even Russia Asia (Eastern Eurasia) 14 Carmona et al. 2014

Koryak Russia Asia (Eastern Eurasia) 15 Carmona et al. 2014

Eskimo Russia Asia (Eastern Eurasia) 10 Carmona et al. 2014

CEU USA Europe (Western Eurasia) 91 1000 Genomes Project

FIN Finland Europe (Western Eurasia) 99 1000 Genomes Project

France France Europe (Western Eurasia) 10 Chacon-Duque et al. 2018

Cornwall UK Europe (Western Eurasia) 29 1000 Genomes Project

Kent UK Europe (Western Eurasia) 31 1000 Genomes Project

Orkney UK Europe (Western Eurasia) 21 1000 Genomes Project

Germany Germany Europe (Western Eurasia) 10 Chacon-Duque et al. 2018

Catilla y Leon Spain Europe (Western Eurasia) 12 1000 Genomes Project

Catalunya Spain Europe (Western Eurasia) 10 1000 Genomes Project

Valencia Spain Europe (Western Eurasia) 14 1000 Genomes Project

Portugal (Central) Portugal Europe (Western Eurasia) 11 Chacon-Duque et al. 2018

Portugal (North) Portugal Europe (Western Eurasia) 13 Chacon-Duque et al. 2018

Portugal (South) Portugal Europe (Western Eurasia) 12 Chacon-Duque et al. 2018

Andalucia Spain Europe (Western Eurasia) 15 Chacon-Duque et al. 2018

Basque Spain Europe (Western Eurasia) 14 Chacon-Duque et al. 2018

Canary Island Spain Europe (Western Eurasia) 14 Chacon-Duque et al. 2018

Spanish (Central) Spain Europe (Western Eurasia) 15 Chacon-Duque et al. 2018

TSI Italy Europe (Western Eurasia) 106 1000 Genomes Project

Jordan Jordania Europe (Western Eurasia) 15 Chacon-Duque et al. 2018

Libya Libya Europe (Western Eurasia) 15 Chacon-Duque et al. 2018

Morocco Morocco Europe (Western Eurasia) 14 Chacon-Duque et al. 2018

Tunisia Tunisia Europe (Western Eurasia) 14 Chacon-Duque et al. 2018
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Table A.2: Significantly enriched Gene Ontology (GO) categories based on the ranking of the maximum PBS score of gene regions in 168 Native
Americans (P-value < 0.01, FDR q-value < 0.1, enrichment score > 5.)

GO Term Description P-value FDR q-value Enrichment Genes

GO:0007156 Homophilic cell adhesion 1.63E-14 2.24E-10 10.27 PCDHGA7, PCDHGA6, PCDHGA10, PCDHGA9,

via plasma membrane adhesion PCDHGA3, PCDHGB4, PCDHGA2, PCDHGA5,

molecules PCDHGA4, PCDHGA1, PCDHGA12, PCDHGB3,

PCDHGA8, PCDHGB2, PCDHGB1, PCDHGA11,

PCDHGC4, PCDHGB7, PCDHGB6, PCDHGB5,

PCDHGC3, PCDHGC5

GO:0098742 Cell-cell adhesion 7.25E-13 4.98E-09 7.65 PCDHGA7, PCDHGA6, PCDHGA10, PCDHGA9,

via plasma-membrane adhesion PCDHGA3, PCDHGB4, PCDHGA2, PCDHGA5,

molecules PCDHGA4, PCDHGA1, PCDHGA12, PCDHGB3,

PCDHGA8, PCDHGB2, PCDHGB1, PCDHGA11,

PCDHGC4, PCDHGB7, PCDHGB6, PCDHGB5,

PCDHGC3, PCDHGC5

GO:0007399 nervous system development 3.96E-10 1.82E-06 5.64 PCDHGA7, PCDHGA6, PCDHGA10, PCDHGA9,

PCDHGA3, PCDHGB4, PCDHGA2, PCDHGA5,

PCDHGA4, PCDHGA1, PCDHGA12, PCDHGB3,

PCDHGA8, PCDHGB2, PCDHGB1, PCDHGA11,

PCDHGC4, PCDHGB7, PCDHGB6, PCDHGB5,

PCDHGC3, PCDHGC5
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Table A.3: Significantly enriched Gene Ontology (GO) categories based on the ranking of the maximum PBS score of gene regions in the Andean
Native American population (P-value < 0.01, FDR q-value < 0.1, enrichment score > 5.)

GO Term Description P-value FDR q-value Enrichment Genes

GO:0052696 Flavonoid glucuronidation 2.93E-14 2.16E-10 37.48 UGT1A3,UGT1A1,UGT1A4,UGT1A6,UGT1A5,

UGT1A8,UGT1A7,UGT1A10,UGT1A9

GO:0052697 Xenobiotic glucuronidation 2.93E-14 4.31E-10 37.48 UGT1A3,UGT1A1,UGT1A4,UGT1A6,UGT1A5,

UGT1A8,UGT1A7,UGT1A10,UGT1A9

GO:0009812 Flavonoid metabolic process 3.63E-11 1.78E-07 25.95 UGT1A3,UGT1A1,UGT1A4,UGT1A6,UGT1A5,

UGT1A8,UGT1A7,UGT1A10,UGT1A9

GO:0052695 Cellular glucuronidation 1.11E-10 4.08E-07 24.09 UGT1A3,UGT1A1,UGT1A4,UGT1A6,UGT1A5,

UGT1A8,UGT1A7,UGT1A10,UGT1A9

GO:0019585 Glucuronate metabolic process 1.70E-10 4.16E-07 19.73 UGT1A3,UGT1A1,SORD,UGT1A4,UGT1A6,

UGT1A5,UGT1A8,UGT1A7,UGT1A10,UGT1A9

GO:0006063 Uronic acid metabolic process 1.70E-10 4.99E-07 19.73 UGT1A3,UGT1A1,SORD,UGT1A4,UGT1A6,

UGT1A5,UGT1A8,UGT1A7,UGT1A10,UGT1A9

GO:0006805 Xenobiotic metabolic process 3.14E-07 5.77E-04 5.88 MARC1,AS3MT,CYB5B,AADAC,UGT1A6,

UGT1A5,UGT1A8,UGT1A7,UGT1A10,UGT1A3,

UGT1A1,UGT1A4,EPHX1,GGT1,CYP1B1,UGT1A9

GO:0051552 Flavone metabolic process 2.93E-07 6.16E-04 31.23 UGT1A1,UGT1A8,UGT1A7,UGT1A10,UGT1A9
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Figure A.1: Correlation between maximum and mean PBS score at each gene
region. The spearman rank correlation (rho) was used to assess the correlation between
the maximum and mean PBS score at each gene region in A) Native Americans, B)
Meso-American Native Americans, C) Andean Native Americans and D) Mapuche Native
Americans. The positive correlation indicates that the highest scoring SNP is a good
representative of the selection pattern in a gene.
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Appendix A. Detecting signatures of selection in Native Americans

Figure A.2: Distribution of anthropometric phenotypes in the CANDELA
sample.
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Figure A.3: Distribution of anthropometric phenotypes in Mexican volunteers
from the CANDELA sample.
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Appendix A. Detecting signatures of selection in Native Americans

Figure A.4: Principal Component Analysis (PCA) of admixed Mexican indi-
viduals from the CANDELA sample.
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Figure A.5: Principal Component Analysis (PCA) of admixed Mexican indi-
viduals from the CANDELA sample.
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Appendix A. Detecting signatures of selection in Native Americans

Figure A.6: Correlation between selection statistics. Spearman correlation
coefficient (rho) was computed between the four selection statistics computed
in 168 Native Americans.
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Figure A.7: Worldwide allele frequencies of the top PBS SNPs detected in
Native Americans.The allele frequencies are estimated from 2,391 unrelated individuals
collated from several public databases. The colors of the bars reflect the geographic
origin of the populations for which the allele frequencies were estimated: Africa (green),
Europe (blue), Middle East and North Africa (brown), South Asia (pink), East Asia
(purple), South East Asia (orange), Siberian(grey), America (red) and Oceania (yellow).
The number of individuals in each population (N) is given next to the population name
and the derived allele frequency is shown at the top of each bar.

258



Appendix B

Detecting signals of selection

post-admixture in Latin

Americans

259



Section

Figure B.1: Principal Component Analysis (PCA) of admixed Latin American
individuals and continental reference panels. Each individual is represented as a
point colored by country of origin. Abbreviations: NAM, Native Americans; IBS, Span-
ish Southern Europeans; YRI, West Africans; BRA, Brazilians from CANDELA; CHL,
Chileans from CANDELA; COL, Colombians from CANDELA; CLM, Colombians from
1000 Genomes Project; MEX, Mexicans from CANDELA; MXL, Mexicans from 1000
Genomes Project; PER, Peruvians from CANDELA; PEL, Peruvians from 1000 Genomes
Project.
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Table C.1: Features of the CANDELA sample.

Total Total Colombia Brazil Chile Mexico Peru

Sample size 6357 1507 651 1745 1207 1247

Percentage 100 23.7 10.2 27.5 19 19.6

% Female 54 55.9 68.5 39.6 60.3 58.4

Age (years)

Min 18 18 18 18 18 18

Mean 24.2 24 25.8 25.2 24.4 22.2

Max 45 40 45 45 44 44

S.D. 5.7 5.3 6.3 5.8 5.6 5.2

Age, for Males (years)

Min 18 18 18 18 18 18

Mean 24.9 24.7 25.8 25.3 25.1 23

Max 45 40 45 45 44 44

S.D. 5.7 5.5 6.4 5.5 5.6 5.7

Age, for Females (years)

Min 18 18 18 18 18 18

Mean 23.8 23.5 25.4 25.2 24 21.6

Max 45 40 44 45 41 42

S.D. 5.7 5 4.2 6.2 4.7 4.7
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Appendix C. Genetic determinants of pigmentation in Latin Americans

Table C.2: Inflation factor and Tail statistic for pigmentation phenotypes.

Trait TS Lambda

Skin pigmentation (MI) 0.08 1.11

Hair color (categorical) 0.04 1.05

Eye color (categorical) 0.05 1.07

L (Brightness) 0.05 1.07

C (Saturation) 0.03 1.04

cosH (Hue) 0.05 1.05
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Table C.3: Proportion of trait variation explained by each genome-wide associated SNP.

Skin Hair Eye

Region Candidate gene SNP MI Categorical Categorical L (Brightness) C (Saturation) cos(H) (Hue)

1q32 DSTYK rs3795556 0.02 0 0 0.1 0.45 0.02

5p13 SLC45A2 rs16891982 6.07 3.78 0.87 0.89 0.4 0.24

6p25 IRF4 rs12203592 0.44 0.71 0.64 0.73 0.17 0.07

9p23 TYRP1 rs10809826 0.13 0.06 0.54 0.85 0.48 0.11

10q26 EMX2 rs11198112 0.48 0 0.01 0.01 0 0.01

11q14 GRM5 rs7118677 0.45 0.3 0 0 0.01 0.01

11q14 TYR rs1042602 0.46 0.3 0 0.01 0.07 0

11q14 TYR rs1126809 0.44 0.28 0.2 0.28 0.05 0.19

15q13 OCA2 rs4778219 0 0 0.05 0.04 0 0.03

15q13 OCA2 rs1800407 0.41 0.05 0.09 0.04 0.44 0.35

15q13 OCA2 rs1800404 0.52 0.1 0.61 1.01 0.38 0.07

15q13 HERC2 rs12913832 0.9 5.95 25.64 26.74 0.4 6.35

15q13 HERC2 rs4778249 0.27 0.14 0.56 1.15 0.98 0.01

15q21 SLC24A5 rs1426654 6.57 1.01 1.51 2.8 3.19 0.01

16q24 MC1R rs885479 0.33 0.05 0 0 0 0

19p13 MFSD12 rs2240751 0.53 0 0.01 0 0.04 0

20q13 WFDC5 rs17422688 0.01 0 0 0.02 0 0.52

22q12 MPST rs5756492 0.1 0 0.07 0.09 0.45 0.03

264



A
p

p
en

d
ix

C
.

G
en

etic
d

eterm
in

an
ts

of
p

igm
en

tation
in

L
atin

A
m

erican
s

Table C.4: Unconditional GWAS P-values for each genome-wide associated SNPs.

Skin Hair Eye

Region Candidate gene SNP MI Categorical Categorical L (Brightness) C (Saturation) cos(H) (Hue)

1q32 DSTYK rs3795556 0.7 0 0.2 2.2 7 0.6

5p13 SLC45A2 rs16891982 116.9 65.2 14.9 16.4 7.8 3.7

6p25 IRF4 rs12203592 9.5 12.7 11.9 13.5 2.9 1.3

9p23 TYRP1 rs10809826 3 1.5 10 15.3 7.7 1.9

10q26 EMX2 rs11198112 9.4 0.2 0.4 0.3 0.1 0.3

11q14 GRM5 rs7118677 8.9 5.5 0.2 0.1 0.3 0.3

11q14 TYR rs1042602 9 5.6 0.1 0.4 1.4 0.1

11q14 TYR rs1126809 8.6 5.2 3.9 5.3 1.1 3.1

15q13 OCA2 rs4778219 0.1 0.1 1.3 1 0.2 0.7

15q13 OCA2 rs1800407 8.2 1.3 2 1.1 6.9 5.3

15q13 OCA2 rs1800404 10.3 2.2 10.9 18.3 9.5 1.4

15q13 HERC2 rs12913832 17 104.1 200 200 6.2 91.9

15q13 HERC2 rs4778249 5.6 2.9 9.9 19.6 14.4 0.3

15q21 SLC24A5 rs1426654 129.8 18 26 49.1 44.2 0.4

16q24 MC1R rs885479 6.7 1.3 0.3 0 0.1 0

19p13 MFSD12 rs2240751 10.3 0.1 0.5 0 0.9 0

20q13 WFDC5 rs17422688 0.3 0.2 0.1 0.7 0 7.5

22q12 MPST rs5756492 2.3 0 1.6 2 6.9 0.8
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Table C.5: Allele frequencies of the genome-wide associated SNPs in world-
wide populations. CEU, IBS, CHB and YRI allele frequencies were retrieved from the
1000 Genomes Project. Allele frequencies for Native Americans are based on a subset of
individuals from Ruiz-Linares et al. (2014).

Region SNP Anc/Der CEU IBS CHB YRI NAM CAN

1q32 rs3795556 T/C 0.23 0.26 0.41 0.36 0.42 0.33

5p13 rs16891982 C/G 0.98 0.82 0.01 0 0.03 0.49

6p25 rs12203592 C/T 0.16 0.13 0 0 0 0.07

9p23 rs10809826 C/G 0.62 0.56 0.01 0.06 0.03 0.29

10q26 rs11198112 C/T 0.17 0.14 0.14 0.17 0.19 0.16

11q14 rs7118677 G/T 0.67 0.74 0.33 0.21 0.05 0.4

11q14 rs1042602 C/A 0.4 0.39 0 0 0.01 0.25

11q14 rs1126809 G/A 0.25 0.29 0 0 0 0.11

15q13 rs4778219 T/C 0.88 0.8 0.11 0.84 0.64 0.75

15q13 rs1800407 C/T 0.08 0.1 0 0 0 0.05

15q13 rs1800404 C/T 0.82 0.73 0.39 0.07 0.31 0.58

15q13 rs12913832 A/G 0.77 0.32 0 0 0.03 0.23

15q13 rs4778249 T/A 0.98 0.98 0.98 0.28 1 0.97

15q21 rs1426654 G/A 1 1 0.03 0.01 0.02 0.56

16q24 rs885479 G/A 0.08 0.02 0.64 0 0.69 0.34

19p13 rs2240751 A/G 0.01 0 0.4 0 0.3 0.19

20q13 rs17422688 G/A 0.15 0.2 0.01 0 0 0.08

22q12 rs5756492 G/A 0.29 0.35 0.54 0.28 0.26 0.26
Abbreviations: Anc, Ancestral; Der, Derived. CAN, CANDELA sample.
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Appendix C. Genetic determinants of pigmentation in Latin Americans

Figure C.1: Continental ancestry in the CANDELA sample. Ancestry values
were estimated from a set of LD pruned SNPs via supervised ADMIXTURE analysis for
K = 3 and K = 4. References populations from African, European, East Asian and
Native American groups were chosen from the 1000 Genomes Project and selected Native
Americans populations as described in Adhikari et al., 2016. Individual barplots for each
country are shown. European, African, Native American, and East Asian ancestry is
represented as light blue, orage, light green and grey colors. Individuals are sorted by
European ancestry. From Adhikari & Mendoza-Revilla et al. (2018).
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Figure C.2: Distribution of Melanin Index variability in the CANDELA sam-
ple. Measurements across the two arms were compared for each individual to assess the
variability of the Melanin Index (MI). The absolute difference of the MI for an individual
was taken as a measurement of variability. The distribution showed a maximum of 8 MI
units. Median and quantiles are shown as a purple and black dotted lines. From Adhikari
& Mendoza-Revilla et al. (2018).
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Appendix C. Genetic determinants of pigmentation in Latin Americans

Figure C.3: Continental ancestry in the CANDELA sample Principal components
were extracted from an LD-pruned SNP dataset. The proportion of variance explained by
each PC is shown. From Adhikari & Mendoza-Revilla et al. (2018).
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Figure C.4: GWAS quantile-quantile (QQ) plots of pigmentation phenotypes.
From Adhikari & Mendoza-Revilla et al. (2018).
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Appendix C. Genetic determinants of pigmentation in Latin Americans

Figure C.5: Genomic annotation in the 10q26 intergenic region around SNP
rs11198112. A UCSC genome-browser screenshot for the 10q26 genomic region around
SNP rs11198112. SNP rs11198112 is included in the binding site for the Early B-cell factor
(EBF1) transcription factor. Additionally, this region shows enriched PhyloP and GERP
conversvation scores. Full view (upper panel) and zoomed in view (lower panel) are shown
below. From Adhikari & Mendoza-Revilla et al. (2018).
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Figure C.6: Phenotypic effects (regression beta coefficients) and derived allele
frequencies for the associated SNPs to pigmentation phenotypes in the CAN-
DELA sample. a) Pigmentation phenotypes are shown at the top, with illustrative color
ranges. Beta coefficients have been standardized to facilitate comparison across traits.
Positive betas are shown in green and negative betas in blue (with color intensity reflect-
ing beta values as indicated on the scale to the right). Significant betas are marked with
a cross (×). In b) allele frequencies are shown for the CEU, IBS CHB and YRI samples
from the 1KG, the CANDELA samples and selected Native Americans as described in
the text. On the right is shown the color scale used to represent allele frequencies. From
Adhikari & Mendoza-Revilla et al. (2018).
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Table D.1: Worldwide populations included in the correlation analysis between
allele frequency at skin pigmentation associated loci and solar radiation.

Population Country of origin Major geographical region Sample size Longitude Latitude Solar radiation Source (reference)

ESN Nigeria Africa 95 5.61 6.33 4.81 1000 Genomes Project

GuiGhanaKgal Botswana Africa 14 26.00 -22.00 5.85 Schlebusch et al. 2012

GWD Gambia Africa 111 -16.32 13.24 5.56 1000 Genomes Project

Juhoansi Namibia Africa 15 18.00 -18.00 6.03 Schlebusch et al. 2012

Khwe Namibia Africa 14 19.00 -13.00 5.58 Schlebusch et al. 2012

LWK Kenya Africa 73 34.77 0.62 5.91 1000 Genomes Project

MSL Sierra Leone Africa 69 -10.69 8.21 5.14 1000 Genomes Project

Bantu South Africa Africa 19 27.00 -22.00 5.8 Schlebusch et al. 2012

Xun Angola Africa 19 15.00 -13.00 5.65 Schlebusch et al. 2012

YRI Nigeria Africa 101 3.94 7.38 4.89 1000 Genomes Project

Aymara Bolivia Americas 13 -68.20 -16.50 5.3 Chacon-Duque et al. 2018

Colla Argentina Americas 11 -66.32 -24.23 6.2 Eichstaedt et al. 2014

Embera Colombia Americas 14 -76.00 7.00 4.31 Chacon-Duque et al. 2018

Mixe Mexico Americas 16 -96.58 16.95 5.26 Chacon-Duque et al. 2018

Nahua Mexico Americas 17 -99.08 17.63 6.05 Chacon-Duque et al. 2018

Quechua Peru/Bolivia Americas 11 -72.00 -13.50 5.34 Chacon-Duque et al. 2018

Wichi Argentina Americas 15 -64.10 -23.22 4.6 Eichstaedt et al. 2014

CHB China Asia (Eastern Eurasia) 103 116.40 39.91 4.4 1000 Genomes Project

CHS-FuJian China Asia (Eastern Eurasia) 25 118.12 25.49 3.63 1000 Genomes Project

CHS-HuNan China Asia (Eastern Eurasia) 59 111.65 27.54 3.29 1000 Genomes Project

CHS China Asia (Eastern Eurasia) 13 114.00 32.30 3.83 1000 Genomes Project

JPT Japan Asia (Eastern Eurasia) 104 138.09 35.81 3.63 1000 Genomes Project

Papuan Papua New Guinea Asia (Eastern Eurasia) 15 143.00 -4.00 4.91 Simons Genome Diversity Project

BEB Bangladesh Asia (Eastern Eurasia) 83 90.41 23.81 4.65 1000 Genomes Project

GIH India Asia (Eastern Eurasia) 96 71.00 23.16 5.16 1000 Genomes Project

ITU India Asia (Eastern Eurasia) 98 79.14 17.88 5.17 1000 Genomes Project

PJL Pakistan Asia (Eastern Eurasia) 86 74.35 31.56 5.33 1000 Genomes Project

STU Sri Lanka Asia (Eastern Eurasia) 95 80.77 7.59 5.34 1000 Genomes Project

Bajo Indonesia Asia (Eastern Eurasia) 31 122.52 -4.00 5.5 Moerseburg et al. 2016

Burmese Myanmar Asia (Eastern Eurasia) 20 96.60 21.63 4.78 Moerseburg et al. 2016

CDX China Asia (Eastern Eurasia) 82 100.82 22.02 4.61 1000 Genomes Project

. . . continued on next page. . .
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. . . continued from previous page . . .

Population Country of origin Major geographical region Sample size Longitude Latitude Solar radiation Source (reference)

Dusun Brunei Asia (Eastern Eurasia) 20 114.68 4.64 5.65 Moerseburg et al. 2016

Igorot Phillippines Asia (Eastern Eurasia) 21 121.27 16.57 4.67 Moerseburg et al. 2016

KHV Vietnam Asia (Eastern Eurasia) 98 106.65 10.81 5.14 1000 Genomes Project

Lebbo Indonesia Asia (Eastern Eurasia) 15 117.28 1.45 4.8 Moerseburg et al. 2016

Malay Singapore Asia (Eastern Eurasia) 25 103.86 1.35 4.49 Moerseburg et al. 2016

Murut Brunei Asia (Eastern Eurasia) 17 115.17 4.61 5.65 Moerseburg et al. 2016

Vietnamese Vietnam Asia (Eastern Eurasia) 18 108.41 14.48 4.56 Moerseburg et al. 2016

Evenki Russia Asia (Eastern Eurasia) 16 92.88 56.01 3.06 Carmona et al. 2014

Even Russia Asia (Eastern Eurasia) 14 151.29 59.58 2.82 Carmona et al. 2014

Koryak Russia Asia (Eastern Eurasia) 15 159.23 62.03 2.61 Carmona et al. 2014

Eskimo Russia Asia (Eastern Eurasia) 10 -173.05 64.68 2.34 Carmona et al. 2014

CEU USA Europe (Western Eurasia) 91 6.00 52.00 2.69 1000 Genomes Project

FIN Finland Europe (Western Eurasia) 99 24.94 60.17 2.73 1000 Genomes Project

France France Europe (Western Eurasia) 10 2.00 46.00 3.34 Chacon-Duque et al. 2018

Cornwall UK Europe (Western Eurasia) 29 -4.78 50.47 3.11 1000 Genomes Project

Kent UK Europe (Western Eurasia) 31 0.84 51.22 2.81 1000 Genomes Project

Orkney UK Europe (Western Eurasia) 21 -3.28 58.79 2.53 1000 Genomes Project

Germany Germany Europe (Western Eurasia) 10 10.64 51.11 2.71 Chacon-Duque et al. 2018

Catilla y Leon Spain Europe (Western Eurasia) 12 -4.73 41.65 4.06 1000 Genomes Project

Catalunya Spain Europe (Western Eurasia) 10 2.93 41.95 4.11 1000 Genomes Project

Valencia Spain Europe (Western Eurasia) 14 -0.50 39.47 4.98 1000 Genomes Project

Portugal (Central) Portugal Europe (Western Eurasia) 11 -8.19 39.57 4.32 Chacon-Duque et al. 2018

Portugal (North) Portugal Europe (Western Eurasia) 13 -8.59 41.15 4.35 Chacon-Duque et al. 2018

Portugal (South) Portugal Europe (Western Eurasia) 12 -7.92 37.02 4.88 Chacon-Duque et al. 2018

Andalucia Spain Europe (Western Eurasia) 15 -4.81 37.54 4.78 Chacon-Duque et al. 2018

Basque Spain Europe (Western Eurasia) 14 0.00 43.00 3.71 Chacon-Duque et al. 2018

Canary Island Spain Europe (Western Eurasia) 14 -16.31 28.49 5.4 Chacon-Duque et al. 2018

Spanish (Central) Spain Europe (Western Eurasia) 15 -3.69 40.40 4.4 Chacon-Duque et al. 2018

TSI Italy Europe (Western Eurasia) 106 11.06 43.50 3.91 1000 Genomes Project

Jordan Jordania Europe (Western Eurasia) 15 35.94 31.95 5.17 Chacon-Duque et al. 2018

Libya Libya Europe (Western Eurasia) 15 17.55 27.00 5.89 Chacon-Duque et al. 2018

Morocco Morocco Europe (Western Eurasia) 14 -8.01 31.63 5.24 Chacon-Duque et al. 2018

Tunisia Tunisia Europe (Western Eurasia) 14 10.18 36.81 4.95 Chacon-Duque et al. 2018
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Table D.2: The estimated Predictive Error using the median point estimate
based on a cross-validation sample of 100. The estimates were insensitive to differ-
ence tolerance rates.

Acceptance rate Selection time (T) Selection coefficient (s)

0.001 0.33 0.61

0.005 0.34 0.62

0.01 0.35 0.62

0.05 0.46 0.65
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Appendix D. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

Figure D.1: Selection scans around candidate gene SLC45A2 at SNP
rs16891982 in Eurasian populations. iHS score distributions in CHB and CEU (first
panel). Tajima’s D score distribution in CHB and CEU (second panel). PBS score dis-
tribution in CHB and CEU (third panel). The 95th percentile threshold is shown with
a horizontal dashed black line and additionally the 5th for Tajima’s D. If present, the
genome-wide associated SNP at the region is highlighted in purple and its position repre-
sented with a dashed vertical line. UCSC RefSeq genes and genomic coordinates (fourth
panel). From Adhikari & Mendoza-Revilla et al. (2018).

277



Section

Figure D.2: Selection scans around candidate gene IRF4 in Eurasian popula-
tions. iHS score distributions in CHB and CEU (first panel). Tajima’s D score distribu-
tion in CHB and CEU (second panel). PBS score distribution in CHB and CEU (third
panel). The 95th percentile threshold is shown with a horizontal dashed black line and ad-
ditionally the 5th for Tajima’s D. If present, the genome-wide associated SNP at the region
is highlighted in purple and its position represented with a dashed vertical line. UCSC
RefSeq genes and genomic coordinates (fourth panel). From Adhikari & Mendoza-Revilla
et al. (2018).
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Appendix D. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

Figure D.3: Selection scans around candidate gene EMX2 at SNP rs11198112
in Eurasian populations. iHS score distributions in CHB and CEU (first panel).
Tajima’s D score distribution in CHB and CEU (second panel). PBS score distribution
in CHB and CEU (third panel). The 95th percentile threshold is shown with a horizontal
dashed black line and additionally the 5th for Tajima’s D. If present, the genome-wide
associated SNP at the region is highlighted in purple and its position represented with a
dashed vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From
Adhikari & Mendoza-Revilla et al. (2018).
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Figure D.4: Selection scans around candidate gene TYR at SNP rs1042602 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Appendix D. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

Figure D.5: Selection scans around candidate gene TYR at SNP rs1126809 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Figure D.6: Selection scans around candidate gene GRM5 at SNP rs7118677 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Appendix D. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

Figure D.7: Selection scans around candidate gene OCA2 at SNP rs1800404 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Figure D.8: Selection scans around candidate gene OCA2 at SNP rs1800407 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Appendix D. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

Figure D.9: Selection scans around candidate gene OCA2 at SNP rs4778219 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Figure D.10: Selection scans around candidate gene HERC2 at SNP
rs12913832 in Eurasian populations. iHS score distributions in CHB and CEU (first
panel). Tajima’s D score distribution in CHB and CEU (second panel). PBS score dis-
tribution in CHB and CEU (third panel). The 95th percentile threshold is shown with
a horizontal dashed black line and additionally the 5th for Tajima’s D. If present, the
genome-wide associated SNP at the region is highlighted in purple and its position repre-
sented with a dashed vertical line. UCSC RefSeq genes and genomic coordinates (fourth
panel). From Adhikari & Mendoza-Revilla et al. (2018).
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Figure D.11: Selection scans around candidate gene SLC24A5 at SNP
rs1426654 in Eurasian populations. iHS score distributions in CHB and CEU (first
panel). Tajima’s D score distribution in CHB and CEU (second panel). PBS score dis-
tribution in CHB and CEU (third panel). The 95th percentile threshold is shown with
a horizontal dashed black line and additionally the 5th for Tajima’s D. If present, the
genome-wide associated SNP at the region is highlighted in purple and its position repre-
sented with a dashed vertical line. UCSC RefSeq genes and genomic coordinates (fourth
panel). From Adhikari & Mendoza-Revilla et al. (2018).
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Figure D.12: Selection scans around candidate gene MC1R at SNP rs885479 in
Eurasian populations. iHS score distributions in CHB and CEU (first panel). Tajima’s
D score distribution in CHB and CEU (second panel). PBS score distribution in CHB
and CEU (third panel). The 95th percentile threshold is shown with a horizontal dashed
black line and additionally the 5th for Tajima’s D. If present, the genome-wide associated
SNP at the region is highlighted in purple and its position represented with a dashed
vertical line. UCSC RefSeq genes and genomic coordinates (fourth panel). From Adhikari
& Mendoza-Revilla et al. (2018).
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Figure D.13: Selection scans around candidate gene MFSD12 at SNP
rs2240751 in Eurasian populations. iHS score distributions in CHB and CEU (first
panel). Tajima’s D score distribution in CHB and CEU (second panel). PBS score dis-
tribution in CHB and CEU (third panel). The 95th percentile threshold is shown with
a horizontal dashed black line and additionally the 5th for Tajima’s D. If present, the
genome-wide associated SNP at the region is highlighted in purple and its position repre-
sented with a dashed vertical line. UCSC RefSeq genes and genomic coordinates (fourth
panel). From Adhikari & Mendoza-Revilla et al. (2018).
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Figure D.14: RMSE plots. Information contained within each PLS component for
the starting time of selection (left) and selection coefficient (right). From Adhikari &
Mendoza-Revilla et al. (2018).
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Appendix D. Exploring the convergent evolution of lighter skin pigmentation in Eurasia

Figure D.15: Joint estimation of the starting time of selection (T) and selection
coefficient (s) at the MFSD12 gene region. Joint inference of the starting time of
selection (T) and selection coefficient (s) was done using an ABC approach. The white,
yellow, and red colors mark areas of high, moderate, and low joint density, respectively.
The black cross indicates the joint maximum a posteriori (MAP at s=0.139 and T=8,508
years ago. From Adhikari & Mendoza-Revilla et al. (2018).
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