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Abstract

Background: In Alzheimer’s disease (AD), pathological changes may arise up to 20 years before the onset of
dementia. This pre-dementia window provides a unique opportunity for secondary prevention. However, exposing
non-demented subjects to putative therapies requires reliable biomarkers for subject selection, stratification, and
monitoring of treatment. Neuroimaging allows the detection of early pathological changes, and longitudinal
imaging can assess the effect of interventions on markers of molecular pathology and rates of neurodegeneration.
This is of particular importance in pre-dementia AD trials, where clinical outcomes have a limited ability to detect
treatment effects within the typical time frame of a clinical trial. We review available evidence for the use of
neuroimaging in clinical trials in pre-dementia AD. We appraise currently available imaging markers for subject
selection, stratification, outcome measures, and safety in the context of such populations.

Main body: Amyloid positron emission tomography (PET) is a validated in-vivo marker of fibrillar amyloid plaques.
It is appropriate for inclusion in trials targeting the amyloid pathway, as well as to monitor treatment target
engagement. Amyloid PET, however, has limited ability to stage the disease and does not perform well as a
prognostic marker within the time frame of a pre-dementia AD trial. Structural magnetic resonance imaging (MRI),
providing markers of neurodegeneration, can improve the identification of subjects at risk of imminent decline and
hence play a role in subject inclusion. Atrophy rates (either hippocampal or whole brain), which can be reliably
derived from structural MRI, are useful in tracking disease progression and have the potential to serve as outcome
measures. MRI can also be used to assess comorbid vascular pathology and define homogeneous groups for
inclusion or for subject stratification. Finally, MRI also plays an important role in trial safety monitoring, particularly
the identification of amyloid-related imaging abnormalities (ARIA). Tau PET to measure neurofibrillary tangle burden
is currently under development. Evidence to support the use of advanced MRI markers such as resting-state
functional MRI, arterial spin labelling, and diffusion tensor imaging in pre-dementia AD is preliminary and requires
further validation.

Conclusion: We propose a strategy for longitudinal imaging to track early signs of AD including quantitative
amyloid PET and yearly multiparametric MRI.
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Background
Alzheimer’s disease (AD) is the leading cause of dementia
worldwide and it is pathologically characterised by the de-
position of extracellular β-amyloid plaques and intracellular
neurofibrillary tangles of hyperphosphorylated tau proteins
[1]. Pathological changes may start up to 20 years before
the onset of symptoms [2–5]. To date, treatments have only
been approved for the dementia stage of the disease and
provide modest symptomatic benefit but no slowing of pro-
gression. A global research priority is to find therapies to
prevent or delay symptom onset and functional decline [6],
and a number of candidate agents have shown promise in
cell or animal models. Despite this, clinical trials of poten-
tial disease-modifying treatments have proven unsuccessful
thus far. This may be partly due to limitations of the treat-
ments (e.g. incorrect molecular target or inadequate target
engagement, dose, or duration). However, the failures could
also reflect inappropriate trial populations. Typically, trials
have recruited patients with mild to moderate dementia in
whom the disease process may be too advanced to be
amenable to treatment. An alternative approach is to treat
subjects at risk of AD dementia, which is the aim of sec-
ondary prevention—preventing neurodegeneration, cogni-
tive decline, and dementia [7, 8].
Research criteria from the International Working

Group (IWG) [9, 10] and the National Institute on
Ageing-Alzheimer Association (NIA-AA) [11–13]
propose the use of biomarkers to define pre-clinical AD
as the disease stage characterised by amyloid pathology,
with or without neurofibrillary tangles and/or features of
neurodegeneration, even in the absence of clinical mani-
festations. Mild cognitive impairment (MCI) is used to
denote an intermediate stage between normal cognition
and dementia in which subjects have objective cognitive
impairment in the absence of functional disability inter-
fering with daily activities. MCI with biomarker evidence
of AD has been termed prodromal AD under the IWG
criteria [9, 10] and MCI due to AD by the NIA-AA in
2011 [12], but the 2018 research framework does not
take into account syndromic diagnosis [11].
Non-demented subjects with evidence of amyloid path-
ology, i.e. subjects with AD without dementia [14], pro-
vide an opportunity for intervention prior to irreversible
neuronal loss. Designing trials for subjects in
pre-dementia stages of AD is greatly facilitated by the
ability to identify subjects at increased risk of cognitive
decline and progression to dementia. In the earliest
stage, neuropsychological testing to detect subtle cogni-
tive abnormalities in the absence of obvious symptoms
has some predictive value [15], but biomarkers that are
sensitive to underlying pathological change could further
increase prognostic accuracy. Ideally, early-stage bio-
markers should predict risk and likely timing of cogni-
tive decline and progression to dementia in a reliable,

non-invasive, and cost-effective manner. Secondly, trials
in non-demented subjects would benefit from bio-
markers that can monitor treatment effects and should
thus reflect disease progression, be sensitive to detect
pathologically significant changes over time and in re-
sponse to treatment, and be highly reproducible and reli-
able in a multi-centre setting. Neuroimaging techniques
have developed rapidly over the past decade and they
currently offer a comprehensive armamentarium that
can be employed to address this unmet need. Over and
above structural neuroimaging markers that are widely
available and used to support AD diagnosis at the de-
mentia stage, advances in imaging techniques allow the
detection and quantification of molecular, functional,
and structural brain changes that precede gross atrophy.
In this paper, we discuss the use of neuroimaging markers

in subject selection for inclusion or stratification in second-
ary prevention trials, their potential to serve as outcome
markers in trials, and for monitoring trial safety. The overall
aim is to devise a neuroimaging strategy that will maximise
the information required to enrol and monitor secondary
prevention trials in AD (including progression from MCI to
dementia). To identify potential imaging markers, a com-
prehensive review of the existing literature was performed.
Based on the evidence from the literature and the personal
experience of the authors, recommendations are centred
around three domains: 1) imaging markers for subject se-
lection and stratification; 2) imaging markers with potential
to be used as outcome measures in clinical trials; and 3) im-
aging markers for monitoring trial safety. The utility of lon-
gitudinal imaging as a run-in for clinical trials, identification
of exclusion criteria, and vascular comorbidity were also
taken into account.

Methods
Neuroimaging modalities: from molecular changes to
structural damage
The past two decades have seen major advances in neuro-
imaging. Different imaging modalities are now able to track
different aspects of the hypothesised pathological cascade
of events in AD in vivo [3] (Box 1, Figs. 1, and 2). Positron
emission tomography (PET) with amyloid-specific tracers,
and more recently also tau-binding ligands, can visualise
and quantify molecular pathology at an early stage. Alter-
ations in functional imaging biomarkers, reflecting early
synaptic dysfunction and neuronal injury, can be measured
with various PET and magnetic resonance imaging (MRI)
measures. Collectively, molecular and functional changes
may lead to synaptic loss, inflammation, white matter dam-
age, and neuronal cell death, eventually leading to macro-
scopic changes such as regional and global brain atrophy
seen on structural MRI. Increasing evidence demonstrates
that cerebrovascular changes have an additive effect on
neurodegeneration, accelerate cognitive decline and
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progression to dementia, and may even be part of the
pathological cascade of AD [16–18]; hence, we also address
MRI markers of vascular pathology.

Search strategy and selection criteria
References for this review were identified by searching
the PubMed/Medline database in August 2017. Relevant

articles were identified using the following search terms
alone and in varying combinations: “amyloid PET”, “tau
PET”, “MRI”, “structural MRI”, “functional MRI”, “FDG
PET”, “fluorodeoxyglucose PET”, “TSPO PET”, “diffu-
sion tensor imaging”, “arterial spin labeling”, “magnetic
resonance spectroscopy”, “cognitively healthy”, “normal
cognition”, “mild cognitive impairment”, “subjective cog-
nitive decline”, “Alzheimer’s disease”. Papers published
in English were included. Further references were ob-
tained by screening references from retrieved articles
and on the basis of the personal knowledge of the au-
thors. In the case of topics already extensively covered in
the literature, as was often the case for MCI, a reference
article or review was selected by the authors. The final
selection of articles was based on relevance to the topics
covered in this review, as judged by the authors

Subject selection and stratification
Various planned and ongoing clinical trials for AD primarily
target the amyloid cascade, aiming at the removal of amyloid
plaques or prevention of misfolding of amyloid into the β
conformation [19]. We recommend that trials targeting the
amyloid pathway should include methods to recruit subjects
with evidence of an appropriate level of amyloid pathology.
Various PET tracers are capable of measuring and spatially
localising β-amyloid deposits. Alternatively, β-amyloid pep-
tides may be measured in cerebrospinal fluid (CSF). Studies
have demonstrated good concordance between CSF
β-amyloid 1–42 and amyloid PET measures, even though
these markers might represent different pools of amyloid in
the brain [20]. Several studies suggest that CSF β-amyloid
levels become abnormal prior to an amyloid PET signal [21–
23], making CSF markers more sensitive for the selection of
subjects in the earliest phases of amyloid accumulation.
The quantification of amyloid pathology with PET or in

CSF for screening purposes in non-demented subjects is ex-
pensive, invasive, and likely inefficient. Therefore, a
step-wise approach to subject inclusion is proposed (Fig. 3).
Using demographic, genetic, and other clinical data, sub-
jects may be screened for increased risk of amyloid path-
ology. In a recent study, the positive predictive value to
detect amyloid-positive subjects at the pre-clinical stage,
based on a combination of demographic information, apoli-
poprotein E (APOE) ɛ4 genotype, and neuropsychological
changes over 24 months, was 0.65, which was 60% higher
than the prevalence of amyloid in the cohort [24]. More-
over, plasma assays for β-amyloid have been recently devel-
oped, with preliminary evidence suggesting high
performance in predicting cerebral amyloid burden [25, 26].
The potential scalability of this method, its cost-benefit ra-
tio, and the minimal invasiveness make it a very promising
tool in clinical trials, which could be incorporated early in
the screening process. After screening for an increased
probability of amyloid positivity, subjects may first undergo

Box 1: Neuroimaging armamentarium

Molecular markers

Amyloid PET is a reliable in-vivo marker of β-amyloid plaque

load. The first amyloid-specific tracer, 11C Pittsburgh compound

B (PiB), was developed in 2004 and binds with high affinity to

fibrillary amyloid [200]. With the introduction of 18F-labelled

amyloid tracers (florbetapir, florbetaben, flutemetamol) which

obviate the need for on-site cyclotron and radiochemistry

facilities, amyloid PET has become more widely available [201].

Recently developed tau PET tracers have entered clinical testing

and might be used as a measure of tau pathology [51]. Tau PET

imaging recapitulates Braak stages in vivo, making tau PET a

possible measure of neurofibrillary pathology spread [54, 202].

Functional markers

PET imaging with 18F-fluorodeoxyglucose (FDG-PET) measures

cerebral glucose metabolism and is used in clinical practice for the

(differential) diagnosis of neurodegenerative disorders. Patients

with AD typically show hypo-metabolism in the posterior

cingulate and temporo-parietal cortices [56]. Arterial spin labelling

(ASL) is a non-invasive MRI technique for quantification of cerebral

blood flow. Cerebral blood flow is coupled to brain metabolism,

and reduced blood flow patterns may overlap with those of

glucose hypo-metabolism [60, 64]. Resting state functional MRI

(rs-fMRI) measures spontaneous brain function by examining inter-

regional coupling of low-frequency temporal oscillations in the

blood oxygenation level-dependent (BOLD) signal. Intrinsic brain

networks in AD mainly show decreased functional connectivity in

the default mode network [70].

Structural markers

Medial temporal atrophy visualised on MRI is the most established

imaging marker for AD at the dementia and MCI stages [203].

Using T1-weighted MRI, volumetric measures of structures such as

the hippocampus and entorhinal cortex can be reliably obtained

by automated segmentation. With higher resolution proton

density or T2 MRI, hippocampal subfields can be delineated to

further specify the location of atrophy [90]. Diffusion tensor

imaging (DTI) detects the diffusion of water molecules in neural

tissue reflecting white matter integrity [204]. In subjects with AD,

DTI abnormalities can be detected in the posterior regions, limbic

structures, and corpus callosum [106, 107].
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Fig. 2 MRI imaging biomarkers. Left: T1-weighted MRI (top) showing severe hippocampal atrophy and example of diffusion tensor imaging (DTI)
(bottom). Middle: example of functional imaging markers with arterial spin labelling (ASL) (top) and resting state functional magnetic resonance
imaging (rs-fMRI) (bottom). Right: imaging of vascular pathology with thalamus lacune on T2 (top; arrow) and white matter hyper-intensities on
fluid attenuated inversion recovery (FLAIR) (bottom)

Fig. 1 PET imaging biomarkers. Examples of normal (top) and abnormal (bottom) positron emission tomography (PET) imaging markers in three
different subjects. For all images, the warmer the colour, the more tracer binding. Left: amyloid PET with [18F]-flutemetamol. In the abnormal scan,
diffuse tracer binding to fibrillary amyloid can be observed. Middle: tau PET with [18F]-AV-1451. In the abnormal scan, tracer binding to tau can be
observed in the temporal lobes. Right: Fluorodeoxyglucose (FDG)-PET scan. In the abnormal scan, there is hypometabolism of the parietal lobes
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structural MRI which, combined with clinical informa-
tion, can be used to exclude subjects with incidental
findings that might interfere with the assessment of
clinical outcomes or with a high likelihood of having or
developing neurodegenerative diseases other than AD
(Additional file 1: Table S1). Imaging changes associ-
ated with other neurodegenerative disorders are, how-
ever, unlikely to be present in the early stages, which
may preclude the reliable exclusion of these subjects.

Structural and functional imaging markers can also be
used to identify subjects at risk of imminent cognitive de-
cline, which will be reviewed in the following paragraphs.
This is especially relevant for phase 3 trials in subjects with
pre-clinical AD targeting cognition as a primary outcome.
Enrichment of clinical trials targeting clinical end-points by
means of amyloid PET and/or MRI may reduce sample sizes
and costs, as shown in subjects with MCI [27, 28], but this
work needs to be extended to the pre-clinical phase. Table 1

Fig. 3 Step-wise approach for subject inclusion and testing. Information from clinical measurements (and, in the near future, possibly also
plasma) may be used to select subjects with an increased risk of amyloid pathology (screening). Provided there are no exclusion criteria,
molecular measurements of amyloid (or tau, depending on the treatment target) can be used to screen-in subjects for clinical trials. Finally,
imaging measures predicting imminent cognitive decline may be used for additionally enrichment. APOE apolipoprotein E, CSF cerebrospinal
fluid, MRI magnetic resonance imaging, PET positron emission tomography

Table 1 Summary of evidence for use of imaging markers for subject selection and as outcome measures in clinical trials in
pre-dementia Alzheimer’s disease

Imaging
technique

Pathological
specificity for
Alzheimer’s disease

Prediction of progression
in cognitively normal

Prediction of
progression
in MCI

Reproducibility Sensitivity
to change

Response
to treatment

Molecular Amyloid PET Strong Moderate Strong Good Moderate Established

Tau PET Preliminary evidence
with promising
results

Unknown Unknown Preliminary
evidence

Unknown Unknown

Functional ASL Moderate Weak Weak Moderate Preliminary
evidence

Preliminary evidence
for exercise
intervention

rs-fMRI Moderate Unknown Weak Moderate Preliminary
evidence

Preliminary evidence
for symptomatic
drugs

FDG-PET Moderate Moderate/good Strong Good Good Established for
symptomatic drugs

Structural T1:
Hippocampal
volume

Moderate Good; although long
follow-up is needed

Strong Good Good Established, although
few effective studies

T1: Cortical
atrophy

Moderate Moderate/good depending
on regions; long follow-up
is needed

Good Good Good Unknown

DTI Moderate Weak Moderate Moderate Unknown Unknown

AD Alzheimer’s disease, ASL arterial spin labelling, DTI diffusion tensor imaging, FDG fluorodeoxyglucose, MCI mild cognitive impairment, PET positron emission
tomography, rs-fMRI resting state functional magnetic resonance imaging
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summarises the available evidence for the use of different
imaging markers for subject selection in clinical trials.

Molecular imaging
Amyloid PET: predictor of decline?
Amyloid pathology measured with PET is an estab-
lished prognostic marker in subjects with MCI (sensi-
tivity 82% (95% confidence interval (CI) 74–88) and
specificity 56% (95% CI 49–64) to distinguish stable
MCI patients from those who progress to dementia)
[29]. In cognitively normal subjects, amyloid positivity
has been associated with an increased risk of cognitive
decline and progression to dementia in several longitu-
dinal studies [30–41], although studies with sufficiently
long follow-up and large sets of data to establish the
exact risk are required [40–43] (Table 2). The method

of choice to classify subjects as amyloid-positive or
amyloid-negative remains a matter of debate (Box 2).
Recent evidence has also suggested that amyloid pla-
ques might follow consistent deposition patterns in dif-
ferent regions of the brain, making it possible to stage
amyloid pathology [44]. Although the relationship be-
tween amyloid positivity and later cognitive decline in
cognitively normal subjects has been established, it has
been suggested that the rate at which this occurs de-
pends on the presence of neurodegeneration [45, 46].
Amyloid positivity is also consistently associated with
increased brain atrophy rates in cognitively normal sub-
jects (Additional file 1: Table S2). Hence, amyloid path-
ology is a necessary factor to assess whether an
individual will decline due to AD pathology but is not
sufficient to stage disease, or to predict when and how

Table 2 Prediction of cognitive decline using amyloid PET in cognitively normal subjects

Reference Study design Tracer Main outcome

Cohort Size Follow-up Mean age

Donohue
et al.,
2017 [40]

ADNI N = 445 Median
3.1 years

74 Various tracers
or CSF

Aβ+: worse mean scores after 4 years on Preclinical
Alzheimer Cognitive Composite score,
MMSE and CDR-SB.

Petersen
et al.,
2016 [39]

Mayo Clinic Study
of Aging

N = 564 Median
2.5 years

78 PiB Aβ+: increased rate of cognitive decline in various
cognitive domains and progression to MCI.

Vemuri et al.,
2015 [38]

Mayo Clinic Study
of Aging

N = 393 Mean
2.7 years

78 PiB Aβ+: increased rate of cognitive decline compared
to Aβ–.

Lim et al.,
2012 [34]

AIBL N = 141 18 months 76 PiB Aβ+: greater cognitive decline on working memory
and verbal and visual episodic memory.

Lim et al.,
2014 [35, 73]

AIBL N = 320 36 months 70 Various tracers Aβ+: greater cognitive decline on verbal and visual
episodic memory.

Rowe et al.,
2013 [41]

AIBL N = 183 36 months 72 PiB Aβ+: predictor of progression to MCI/dementia (OR
4.8).

Kawas et al.,
2013 [36]

90+ study N = 13 Median
1.5 years

94 Florbetapir Aβ+: steeper declines on most cognitive tests,
particularly global cognitive measures.

Doraiswamy
et al.,
2014 [37]

AV45-A11 study.

Multi-site, USA

N = 69 36 months 70 Florbetapir Aβ+: greater decline on ADAS-Cog, digit-symbol-
substitution test, verbal fluency test and CDR-SB.

Villemagne
et al.,
2011 [147]

Austin Health Memory
Disorder Clinic and
Melbourne Aging Study

N = 32 Mean
20 months

73 PiB Aβ high: 16% conversion rate to MCI by 20 months
Aβ high: 25% conversion rate to MCI by 3 years
Aβ low: 1 subject developed MCI

Storandt
et al.,
2009 [31]

Washington University
ADRC

N = 135 Up to 19 years.
pre-PET

75 PiB Increased cognitive decline in episodic and working
memory in amyloid positive subjects (cognition
measured before PET scan).

Morris et al.,
2009 [30]

Washington University N = 159 Mean 2.4 years 71.5 PiB Higher mean cortical binding potential values
predicted progression to AD (HR 4.85, 1.22–19.01).

Mormino
et al.,
2014 [46]

Harvard Aging Brain
Study

N = 166 Median
2.1 years

74 PiB Cognitive decline over time was observed only in
cognitively healthy individuals who were Aβ+ and
had evidence of neurodegeneration.

Resnick
et al.,
2010 [32]

Baltimore Longitudinal
Study of Aging

N = 57 Mean 10.8 years 78.7 PiB Aβ high: greater decline in mental status and verbal
learning and memory, but not visual memory.
Significant associations in frontal and lateral
temporal regions.

Aβ+/− amyloid positive/negative, AD Alzheimer’s disease, ADAS-cog Alzheimer’s Disease Assessment Scale-cognitive subscale, ADNI Alzheimer’s Disease
Neuroimaging Initiative, ADRC Alzheimer’s Disease Research Center, AIBL Australian Imaging, Biomarker and Lifestyle study, CDR-SB Clinical Dementia Rating sum
of boxes, CSF cerebrospinal fluid, HR hazard ratio, MCI mild cognitive impairment, MMSE Mini-Mental State Examination, OR odds ratio, PET positron emission
tomography, PiB Pittsburgh compound B

ten Kate et al. Alzheimer's Research & Therapy          (2018) 10:112 Page 6 of 21



fast the decline will occur, since the timing depends on
the rate of neurodegeneration [41, 46–48].

Tau PET: novel biomarker of neurofibrillary pathology
The deposition of neurofibrillary tangles of hyper-phos-
phorylated and aggregated tau proteins presents with
an anatomical distribution mirroring that of neuronal
loss and is more closely related in time and magnitude
to clinical symptoms than amyloid pathology [3, 49,
50]. Tau PET tracers have been recently developed, and
while clinical validation remains limited to date [51]
the field is rapidly evolving. The development of tau
tracers has been challenging given the intracellular

localisation of tau, the relatively low concentrations,
and multiple isoforms [51, 52]. The first tau tracers
have off-target binding in the basal ganglia and choroid
plexus [52]. More recently developed tracers might
offer better technical characteristics, including the ab-
sence of intra-parenchymal off-target binding in these
regions [53].
Since neurofibrillary tangles are more closely related

to the onset of symptoms than amyloid, tau PET might
be used in the future to identify subjects who are at ele-
vated risk of imminent clinical decline. There are not yet
any published prospective longitudinal studies on the
predictive value of tau PET on cognitive decline, but it is
expected that this area will evolve quickly in the next
few years. One study has shown that increased
tau-tracer binding in the entorhinal and hippocampal re-
gions was associated with a worse prior longitudinal de-
cline in global cognition and episodic memory measures
[54]. Another study showed that, in the cognitively nor-
mal elderly, high amyloid and neocortical tau measured
with PET was associated with posterior cingulate hypo-
metabolism, which is turn was associated with future
cognitive decline [55]. Tau PET may also be valuable as
an inclusion criterion (screen-in) or as a means to segre-
gate participants (e.g. on the basis of tau load or degree
of spread) or as an outcome measure (prevention of tau
spread or signal increase), especially for trials specifically
targeting tau pathology.

Functional imaging
Altered brain glucose metabolism: fluorodeoxyglucose-PET
Patients with AD dementia show characteristic patterns
of glucose hypometabolism measured with fluorodeox-
yglucose (FDG)-PET, which are also predictive of pro-
gression to dementia in subjects with MCI [29, 56, 57].
Moreover, FDG-PET demonstrates a high negative
predictive value for progression to AD dementia in
subjects with MCI [57]. In cognitively normal subjects,
baseline lateral temporo-parietal and posterior
cingulate-precuneus hypometabolism can predict clin-
ical progression to MCI or dementia with accuracies in
the range of 70–80% [58, 59]. Hence, FDG-PET has
some potential to be used as a marker for trial inclu-
sion or stratification, although changes in cognitively
normal subjects are very subtle and thresholds for ab-
normality are not established.

Reduced cerebral blood flow: arterial spin labelling
Arterial spin labelling (ASL) can detect changes in cere-
bral blood flow in patients with MCI and AD dementia
[60, 61]. Only two studies have investigated the predict-
ive value of ASL measures on clinical progression. In
subjects with MCI, baseline hypoperfusion in the right
inferior parietal cortex, middle frontal cortex, and

Box 2: cut-offs for imaging biomarker abnormality

Subject selection on the basis of imaging markers requires the

definition of criteria for inclusion. These may involve visual reads

and/or pre-defined thresholds for quantitative measures to classify

markers as either normal or abnormal. In clinical practice, some

imaging markers are commonly interpreted by visual inspection

(e.g. atrophy on MRI or amyloid PET), but (semi-)quantitative

methods have been suggested to provide more sensitive readouts

[5]. The definition of cut-off scores for quantitative imaging

markers remains a topic of active research and is dependent on

the type of marker, the acquisition method, its intended use, and

the relative requirement to maximise sensitivity or specificity [205,

206]. A frequently applied strategy for quantitative markers

involves taking the 10th or 90th percentile (depending on the

imaging biomarker) of either a normal reference population or an

AD dementia cohort. Alternatively, thresholds may be based on an

optimal separation of cognitively normal subjects from dementia

patients [206].

In recent studies on ageing, lower thresholds for amyloid

pathology than those used to separate cognitively normal from

AD dementia patients have been proposed [5, 41]. While

screening subjects for inclusion in clinical trials, it might be

beneficial to also identify subjects with sub-threshold amyloid

deposition, as many might have progressed to supra-threshold

levels and be in the phase of rapid amyloid accumulation by

the time an intervention study commences [4, 140]. This would

allow the best window of opportunity for secondary prevention.

It may be valuable to stratify sub-populations based on their

amyloid burden into those clearly negative for amyloid

pathology, sub-threshold amyloid pathology, and clearly

abnormal amyloid burden, rather than dichotomise them into

negative/positive categories. It has been suggested that staging

of amyloid pathology might be possible, but further

investigation is required to assess the feasibility of this [44].
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precuneus was associated with cognitive decline [62]. In
cognitively normal subjects, reduced blood flow in the
posterior cingulate cortex was associated with the de-
velopment of subtle neuropsychological deficits, and
discriminated subjects with cognitive decline from
stable subjects with a sensitivity of 59% and a specifi-
city of 65% [63]. More research is needed on the pre-
dictive value of ASL, as well as standardisation of
processing streams and establishment of cut-offs for
abnormality, before it can be used as an inclusion cri-
terion in clinical trials.
Blood flow is closely coupled to brain glucose me-

tabolism and hence ASL could potentially offer an
MRI-based alternative to FDG-PET, although further
research is needed [60, 64, 65]. The early frames of
dynamically acquired amyloid PET images also pro-
vide information about cerebral blood flow [66].
These early frames also strongly correlate with the
metabolic profiles obtained using FDG-PET [67–69].
Using the early frames of an amyloid PET as a func-
tional measure, rather than a separate FDG-PET,
avoids additional patient burden in terms of radiation
or separate visits. However, it does require scanning
immediately following tracer injection (Box 3).

Changes in functional connectivity: resting state functional
MRI
Subjects with AD dementia may show decreased brain
connectivity [70]. Evidence of early disruption of con-
nectivity measures in the pre-clinical stage is emerging,
although with conflicting results [71–75]. There is a
paucity of evidence on the predictive value of resting
state functional MRI (rs-fMRI) for clinical progression.
Only studies in MCI have been performed, with mixed
findings which may be due to differences in processing
streams and end-points [76–79]. Although rs-fMRI has
potential, larger studies are needed to identify sensitive
rs-fMRI markers and to define normative values. At this
stage, rs-fMRI is not recommended as an inclusion cri-
terion for trials.

Structural imaging
Medial temporal lobe atrophy: a role in the pre-clinical phase?
Structural MRI provides in-vivo measures of global and
regional brain volumes, such as the hippocampus and
entorhinal cortex. Medial temporal lobe atrophy is a
consistent finding in patients with AD dementia and
can aid in the prediction of time to clinical progression
in amyloid-positive subjects with MCI [80, 81].
Population-based studies have shown that hippocampal
volume and hippocampal atrophy rates can predict fu-
ture cognitive decline in cognitively normal subjects
during long follow-up periods, in the order of 5–
10 years [82–84] (Table 3). Recent data showed that
cognitively normal subjects with hippocampal atrophy
and positive amyloid PET were at risk of cognitive de-
cline, whereas subjects with low hippocampal volume
but negative for amyloid pathology were not, over a
median follow-up of 6 years [85]. Importantly, regional
brain volumes derived from structural MRI vary with
age, head size, and scanner type in the absence of
known pathology [86]. Defining cut-offs for abnormal-
ity using cross-sectional volumes should be corrected
for these confounds. Due to large inter-individual
variation in cross-sectional measures of hippocampal
volume, also within the diagnostic group [87], the
intra-individual rate of hippocampal volume loss over
time has attracted growing interest as this approach ne-
gates the effects of inter-individual variability. A
meta-analysis found an average rate of atrophy per year
of 4.7% (95% CI 3.9–5.4) in AD dementia and 1.4%
(95% CI 0.5–2.3) in healthy ageing, resulting in an aver-
age 3% difference in atrophy per year [88]. These find-
ings highlight the advantage of having a trial-readiness
cohort in which longitudinal imaging data can be used
to provide more accurate change measures to improve
subject selection strategies for clinical trials.
The European Medicines Agency has officially quali-

fied hippocampal volume as an enrichment biomarker

Box 3: Quantification of amyloid load from PET

Quantification of amyloid load from PET images can be

performed with different types of measurements. The most

commonly used parameter is the integrated signal in target-rich

cortical regions compared with a target-poor region such as the

cerebellum, subcortical white matter or pons, also referred to as

the standardised uptake value ratio (SUVr). SUVr can be derived

from static scans, typically a 20-minute acquisition 1 h after

injection, when uptake of the tracer has plateaued. The choice of

target regions of interest and reference regions for normalisation

has led to a wide range of published SUVr cut-off values for

subject amyloid status classification. Amyloid load can also be

quantified more specifically with binding potential values or

distribution volume ratios, which are derived from kinetic

modelling. This requires a longer acquisition time, with dynamic

scanning from the moment of tracer injection until the plateau

phase. Due to the lower variability, lower sensitivity to flow, and

ability to measure subtle longitudinal changes, fully quantitative

measurements may be preferred over SUVr [150, 207]. Further

research is needed to establish whether dynamic, rather than

static, amyloid PET imaging is operationally practical and cost-

effective for determining true binding potential in early proof-of-

concept trials aiming to slow the rate of amyloid accumulation.
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for inclusion in clinical trials in subjects with MCI [89],
and subsequent work has demonstrated that selection of
subjects with smaller hippocampi will likely reduce the
overall cost of a trial in amnestic MCI [28]. This work
requires extension to even earlier disease stages.
Within the hippocampus, different sub-fields can

be distinguished using high-resolution MRI sequences
which may provide additional information beyond
hippocampal volume [90]. Several studies have shown
that CA1 specifically, and to a lesser extent also sub-
iculum atrophy, is present at a very early stage of
AD since it could be detected in cognitively normal
individuals that later developed MCI or AD dementia
[84, 91–93].
Decreased entorhinal cortex volume may also be a

predictor of cognitive decline [84, 94]. In a grouped
sample of non-demented subjects (comprising cogni-
tively normal and MCI subjects), baseline entorhinal
cortex volume and rate of atrophy were predictors
for dementia, whereas baseline hippocampal volume
and atrophy rates were not when controlling for
entorhinal cortex volume [94]. Similarly, a reduced
volume of the anteromedial temporal cortex has
been found to be associated with the development of
MCI or AD dementia in cognitively normal subjects
[95]. Although a measurable decrease in entorhinal
cortex thickness may precede changes in hippocam-
pal and amygdala volume by several years [96],
measurement error will hamper implementation in
large multi-centre studies.

Atrophy markers beyond the hippocampal region
Besides medial temporal atrophy, other brain regions
that typically show atrophy in AD dementia patients
may have (additional) predictive value for decline in
early disease stages. Several unbiased whole-brain
voxel-based studies have found an AD-like pattern of
more atrophied regions (involving the temporal neocor-
tex, posterior cingulate, and orbitofrontal cortex in
addition to the medial temporal lobe) in cognitively nor-
mal subjects up to a decade before the onset of dementia
[97, 98]. More recently, software to reliably quantify cor-
tical thickness in regions throughout the brain has be-
come widely available. Reduced cortical thickness in the
entorhinal, inferior, and middle temporal structures,
where tau neurofibrillary tangles are most prominent
prior to the emergence of cognitive symptoms, were
proposed as an AD signature of atrophy, and these re-
gions were associated with cognitive decline in cogni-
tively normal subjects [99]. By comparing cortical
thickness in patients with AD dementia with cognitively
normal subjects, another group also identified a set of
so-called “AD-signature regions” comprising precuneus
and other parietal and frontal regions in addition to the
inferior and medial temporal cortex [100]. Atrophy in
these AD-signature regions could aid in the prediction
of cognitive decline in cognitively normal subjects [100],
although the medial temporal lobe cortex thickness may
be a stronger predictor of clinical progression [101].
Other groups employing similar strategies have also
found that cortical thickness in varying regions can aid

Table 3 Predictive value of hippocampal measures for cognitive decline in cognitively normal subjects

Reference Study design Measurement type Main outcome

Cohort Size Follow-
up

Mean
age

Burnham et al.,
2016 [85]

AIBL N = 573 6 years 73 Hippocampal volume Subjects with low hippocampal volume and
evidence of amyloid pathology showed faster
cognitive decline compared with subjects with
normal biomarkers. Subjects with only decreased
hippocampal volume in the absence of amyloid
pathology did not show significant decline
compared to the normal biomarker group

den Heijer
et al., 2010 [83]

Rotterdam study
(population-based)

N = 518 8 years 73–79 Hippocampal
atrophy rate

Hippocampal atrophy rates predict cognitive
decline in healthy subjects (HR 1.6, 1.2–2.3).

den Heijer
et al., 2006 [82]

Rotterdam study
(population-based)

N = 511 6 years 73–79 Hippocampal volume Hippocampal volume associated with risk
of dementia (HR 3.0, 2.0–4.6).

Martin et al.,
2010 [84]

University of
Kentucky
AD Centre

N = 71 5 years 78–84 Hippocampal and
subregions volume;
entorhinal cortex
volume

Greater atrophy in hippocampus (head and body)
and entorhinal cortex in subjects converting to
MCI. AUC 0.87 for hippocampal head, 0.84 for
hippocampal body, 0.79 for entorhinal cortex.

Stoub et al.,
2005 [94]

Rush Alzheimer’s
Disease Center
(Chicago, USA)

N = 58
(CN and MCI together)

5 years 80 Hippocampal volume
and atrophy rates;
entorhinal cortex
volume and
atrophy rates

Baseline entorhinal and slope of decline were
predictors for AD. Baseline hippocampal volume
and atrophy rates were not (after controlling for
entorhinal cortex).

AD Alzheimer’s disease, AIBL Australian Imaging, Biomarker and Lifestyle study, AUC area under the curve, CN cognitively normal, MCI mild
cognitive impairment, HR hazard ratio
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in predicting cognitive decline in cognitively normal
subjects [102, 103]. A recent study showed that the rates
of 3-year grey matter volume changes in areas of the
episodic memory network mirrored accelerated decline
in episodic memory ability in pre-clinical AD [104].
Medial temporal lobe atrophy is typical of AD and is

commonly associated with an amnestic presentation.
Atypical variants of AD also exist with different cogni-
tive profiles (pre-dominance of non-memory symptoms)
and variations in atrophy patterns [105]. The extent to
which atrophy corresponding to these variants is detect-
able in pre-clinical phases of the disease remains un-
known. Tracking atrophy in association with cortices in
addition to medial temporal lobe structures may help in
identifying or filtering for atypical subtypes of AD.

White matter tissue integrity: diffusion tensor imaging
Alterations to white matter microstructure as measured
with diffusion tensor imaging (DTI) can be detected in
patients with AD dementia [106, 107], and subtle
changes might already be observed in the pre-clinical
stage [108, 109]. In cognitively normal subjects, reduc-
tions in fractional anisotropy in the fornix [110] and pre-
cuneus [111] may predict progression to MCI. A study
in elderly subjects with small vessel disease found an in-
creased risk of dementia after 5-year follow-up associ-
ated with increased hippocampal mean diffusivity [112].
Studies in patients with MCI have shown that predictive
values for cognitive decline are often higher (above 75%)
in single-centre studies compared with multi-centre
studies [113–117]. More research into standardisation of
DTI acquisition and processing streams is necessary be-
fore DTI can be used for subject selection or stratifica-
tion in multi-centre clinical trials.

Neuroimaging specificity in the pre-dementia phase
Differential diagnosis
To use imaging biomarkers for trial enrichment in
pre-dementia stages, they should ideally not only predict
future cognitive decline but also be specific for the
underlying disease that is being targeted. Molecular
markers measuring protein aggregates in the brain may
be the most specific for Alzheimer’s pathology. However,
amyloid pathology can also occur in Lewy body demen-
tia (DLB) [118], and at advancing age in the absence of
imminent cognitive decline. Tau pathology is also seen
in DLB and MAPT mutation carriers [119], traumatic
brain injury [120], and normal ageing [121], although de-
position patterns and binding of tau PET ligands may be
different. Atrophy of the medial temporal lobe can be
seen in various neurodegenerative diseases, as well as in
vascular dementia [122–125], although the patterns of
loss within the medial temporal lobe may help distin-
guish AD from other diseases [126]. Conversely,

concordance between imaging markers and cognition
may erroneously seem discordant, with more educated
subjects showing preserved cognition in the presence of
extensive brain pathology, a concept that has been
termed cognitive reserve [127].

Combining neuroimaging and other biomarkers
The above-mentioned studies highlight that to date
there is no single biomarker fully specific for predicting
imminent cognitive decline due to AD in non-demented
subjects. There is increasing interest in using more than
one biomarker for enrichment, and in such circum-
stances these can be applied either sequentially or in
combination [28, 128, 129]. A statistical model can be
developed in which multiple (imaging and non-imaging)
biomarkers, along with demographic variables, baseline
cognitive status, and APOE ɛ4 carrier status, can be used
to identify subjects at risk of clinical progression for in-
clusion in trials. Cost-effectiveness should also be
assessed here in which the additional costs, time, and
burden of acquiring additional biomarkers are weighed
against the added predictive value. Some work has been
done on this topic for trials in MCI [28, 29], but this
needs to be extended to the pre-clinical phase.

Vascular comorbidity: a partner in crime
Vascular pathology: a catalyst of cognitive decline
A plethora of vascular pathology can be detected with MRI
[130]. White matter hyper-intensities on T2-weighted MRI
and fluid attenuated inversion recovery (FLAIR) are consid-
ered to reflect small-vessel ischemic damage in the brain.
Alternative mechanisms include blood-brain barrier dys-
function, failed interstitial fluid drainage, and processes
causing ischaemic damage [130]. Even white matter that ap-
pears “normal” on FLAIR may show abnormalities on DTI
and blood-brain barrier measures [131]. Regardless of the
exact mechanism(s), white matter hyper-intensities repre-
sent tissue disruption and contribute to cognitive dysfunc-
tion independently of neurodegenerative mechanisms [16].
Population-based studies show a causal relationship be-
tween the extent of white matter hyper-intensities and the
future risk of cognitive decline, including AD dementia
[17]. White matter hyper-intensities can be assessed
using visual rating scales [132, 133] or quantified using
dedicated software.
Cerebral microbleeds are small areas of hemosiderin de-

position that can be visualised as dot-like hypo-intensities
on T2* and even better on (three-dimensional)
susceptibility-weighted imaging (SWI) [130]. Microbleeds
are thought to be caused by damage to small vessel walls
due to hypertensive lipohyalinosis, fibrinoid necrosis,
amyloid angiopathy, or a combination of these processes.
These lesions increase with the burden of other small ves-
sel disease features and are frequently detected in subjects
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with MCI and AD dementia [134]. In a population-based
study, the presence of multiple microbleeds was associated
with future decline on various cognitive domains and an
increased risk of dementia, including the AD type [135].
Another study in cognitively normal subjects also demon-
strated an association between the presence of multiple
microbleeds and decline in executive functioning [136].

Vascular pathology in clinical trials: when to exclude?
When participants fulfil diagnostic criteria for vascular
dementia [137], they are typically excluded from clinical
trials in AD. To secure subjects with a high likelihood of
Alzheimer-only pathology, many studies exclude subjects
with varying amounts of vascular burden. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI), for
example, excluded all subjects with infarcts and multiple
or strategic lacunes, whereas in clinical practice many
AD patients have a variable amount of vascular path-
ology, and vascular lesions may catalyse the expression
of cognitive impairment [39]. Current practice in clinical
trials varies and no consensus to date has been reached
to evaluate cases of mixed pathology. Excluding all cere-
brovascular pathology in trials may be prudent in early
(phase 1 and 2) studies which aim to establish proof of
principle for specific AD pathway interventions. In phase
3 trials, it has been argued that enrolled subjects should
reflect normal clinical practice. A more realistic ap-
proach would be to exclude only those with severe cere-
brovascular pathology and to look at effect modification
by vascular comorbidity in a pre-defined subgroup ana-
lysis. The presence of cerebrovascular disease increases
strongly with advancing age [17] and is thus a more
likely comorbidity alongside amyloid and tau in elderly
subjects. Young subjects with abnormal molecular
markers may have more pure forms of AD pathology.

Imaging as an outcome measure in trials
In secondary prevention trials targeting pre-dementia
AD it may be challenging to meet clinical end-points
(e.g. progression to dementia) with reasonable sample
sizes and duration of treatment, especially in the
pre-clinical phase [138]. Therefore, there is an urgent
need for outcome markers that reflect slowing or pre-
vention of disease progression. The choice of imaging
marker to be used as the outcome may depend on the
treatment target. An imaging measure as a (secondary)
outcome in multi-centre trials needs to be highly repro-
ducible, standardised across scanning platforms (instru-
ment and tracer), sensitive to change over time, and able
to detect treatment effects (whether target engagement,
efficacy, or safety). From a practical perspective, imaging
biomarkers should be operationally straightforward to
deploy in multi-centre studies, with low costs compared
with (less effective) alternatives. Available evidence on

these technical features of the neuroimaging measures
will be discussed in the next paragraphs and is sum-
marised in Table 1.
For official surrogacy qualification by regulatory agen-

cies, an imaging marker should also demonstrate an as-
sociation with clinical progression, such that any effects
of the treatment on the marker predict clinical benefit of
the therapy [139]. Currently, there is not enough evi-
dence for any imaging marker to qualify as a primary
outcome measure in trials.

Molecular imaging
Amyloid PET
For therapies targeting the amyloid cascade, amyloid
PET provides an opportunity to assess target engage-
ment. Rates of amyloid deposition on PET are in the
order of 1–3% per year in cognitively normal subjects,
with higher rates in subjects with increased amyloid
loads at baseline and in APOE ɛ4 carriers [2, 33, 47,
140–143]. Some studies have suggested an inverted
U-shaped curve of amyloid accumulation dependent on
baseline amyloid loads, with the highest accumulation
rates in subjects with intermediate (but above normal
positivity thresholds) amyloid load at baseline and lowest
rates in subjects without any amyloid or those with high-
est amyloid loads [2, 4, 140]. These potential non-linear
rates should be considered when planning interventional
trials as they may be relevant for sample size calculations
and assessment of intervention effects. For example,
subjects with high (plateau phase) amyloid burden will
not further accumulate amyloid, which might make it
more difficult to observe treatment-related effects [144].
There are limited published data on the variability and

standardisation of amyloid PET in multi-centre studies
[145], although practical experience is being gained in
current phase 3 trials [146]. There is more knowledge
and experience from FDG-PET studies, which have been
used for a longer time. Standardisation by means of
phantom scanning and local calibration of scanners is
mandatory for interpretation of data from multi-centre
settings. Procedural control at imaging sites must ensure
consistent and adequate scanner quality assurance, sub-
ject preparation, and camera placement and acquisition
and reconstruction parameters. Test-retest variability for
18F-based amyloid tracers is generally good (in the order
of 1–5%) [147–149]. However, in longitudinal studies,
pathological changes and ageing can present additional
variability beyond the tracer and system variance.
Intra-subject variability can be high due to factors such
as progressive deterioration in the subject’s ability to re-
main still and managing subject movement during scan
acquisition [145]. Moreover, changes in blood flow asso-
ciated with disease progression or in response to therapy
over the course of the study could confound

ten Kate et al. Alzheimer's Research & Therapy          (2018) 10:112 Page 11 of 21



measurements relying on the standardised uptake value
ratio (SUVr) [150] (Box 3). Optimisation of reference re-
gions, better management of technical factors, dynamic
scanning, or correction for perfusion changes should re-
duce such within-subject variability and allow more ac-
curate determination of change in brain amyloid burden.
Subject-related factors such as patient movement and
changes in blood flow are likely to be less prominent in
trials in pre-clinical populations.
Several clinical trials have already used amyloid PET as

an end-point in patients with mild to moderate AD de-
mentia [146, 151]. Interestingly, in the recent phase 1 study
of the monoclonal antibody aducanumab, clinical effects
seemed to be more pronounced in subjects with greater re-
duction of amyloid plaques on PET, measured with SUVr
[152]. It is not yet clear how much removal of amyloid is
needed for a meaningful change in amyloid PET.

Tau PET
Tau PET tracers and data are emerging, but current imple-
mentation is limited based on costs, availability, standard-
isation, and specificity of tracers. Emerging data on novel
tau tracers indicate that the signal-to-noise ratio of some
tracers in AD is good and that the test-retest performance
is robust (test-retest variability 1–4%) [153]. Preliminary
data on longitudinal patterns of tau accumulation in symp-
tomatic AD have recently been published, showing hetero-
geneous longitudinal changes between subjects [154].
Recent evidence in cognitively normal subjects suggests that
rates of tau accumulation are in the order of 0.5% per year
in amyloid-positive subjects, while there was no tau accu-
mulation in the cognitively normal group without amyloid
[155]. The use of tau PET as an outcome marker in trials
will face similar challenges as amyloid PET, and may be of
particular relevance in trials specifically targeting tau accu-
mulation. Further development is encouraged, as therapies
targeting tau pathology are entering clinical trials [156].

Functional imaging
FDG-PET
Several studies have examined the potential of FDG-PET
as an outcome marker in clinical trials. FDG-PET mea-
sures show good reproducibility across scanners and in
multi-centre settings, provided there is prior harmonisa-
tion across sites [157]. Older studies have estimated that
to measure a reduction of 25% in progression with a
power of 80% in an MCI population, 800–1200 subjects
are required per arm [158]. When optimising acquisition
procedures and analysis methods in multi-centre studies,
the number of subjects needed decreases considerably, to
about 200 subjects per arm [158, 159]. No sample size es-
timates are available yet for pre-clinical populations.
FDG-PET has already been used as imaging end-point in
several clinical trials in subjects with AD dementia [151],

but with the advent of amyloid tracers has become less at-
tractive as multiple (fluorinated) PET tracers would in-
crease the radiation dose. Early-frame dynamic amyloid
PET and ASL provide possible alternatives [60, 64, 67–69].

Arterial spin labelling
Some studies have started to use ASL as secondary out-
come measures in trials investigating the effects of physical
exercise on cognitive decline, but these have not yet been
published (e.g. PACE-2 study [160]). Cerebral blood flow
might be affected by the administration of therapeutical
agents, but the power of ASL in detecting these changes
still remains to be assessed. Quantifying cerebral blood
flow from ASL techniques is not trivial since the
signal-to-noise ratio is generally low and the measurement
is influenced by various factors such as bolus arrival time,
arterial input function, underlying kinetics, and static tissue
parameters such as blood equilibrium magnetisation, in
addition to subject factors such as age and disease. These
underlying physiological variables may also themselves be
altered in AD. In single-centre and single-vendor studies,
the reproducibility of ASL measures is high [161, 162] but
the differences between implementations of ASL sequences
by scanner vendors are substantial [163]. Guidelines for
the performance of ASL in clinical settings have been
established [164] but are yet to be validated in multi-centre
trials. Together with recent research focusing on standar-
dising ASL measures across vendors [165], this will facili-
tate the use of ASL in multi-centre settings in the future.
Nevertheless, ASL measures remain extremely sensitive to
small changes in acquisition parameters, rendering it diffi-
cult at present to use in longitudinal settings where soft-
ware updates may result in such parameter changes [165].

Resting state functional MRI
Test-retest reliability and across-scanner reproducibility
of resting state functional networks have been estab-
lished [166]. Recent large-scale studies have started to
address multi-site harmonisation issues for longitudinal
studies [167, 168]. Despite efforts to standardise the
method, fMRI is susceptible to different sources of vari-
ability including physiological noise, head movement,
and analytical methods which require further optimisa-
tion [169]. Due to harmonisation issues in longitudinal
and multi-centre settings, we suggest that rs-fMRI mea-
sures can at present only serve as an exploratory out-
come measure in trials. rs-fMRI has already been used
as a secondary outcome measure in clinical trials in sub-
jects with AD dementia, and treatment-related effects
were found on the default mode network over a 3- to
6-month time period [170, 171]. rs-fMRI is currently
also being used in multi-centre clinical trials in cogni-
tively normal subjects at increased risk of AD (e.g. the
A4 trial [8]).
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Structural imaging
Grey matter atrophy
Patients with AD dementia show a pattern of widespread
cerebral atrophy. Measures of global cortical atrophy
have been used as an outcome marker in clinical trials
in MCI and AD dementia (e.g. [172–174]). Besides glo-
bal measures, regional changes can also be examined.
Regional changes in different brain regions will likely re-
late more or less strongly to changes in different cogni-
tive instruments, depending on the cognitive domains
they subserve [175].
Hippocampal atrophy rates are a good candidate to

serve as an outcome marker in multi-centre clinical tri-
als, as long as standardisation of image acquisition be-
tween centres, consistent within-subject scanner
acquisition, and uniform post-processing methods are
performed. Test-retest reliability of repeated manual and
automated hippocampal measurements from the same
scanner is usually high (test-retest variability 1–4%)
[176, 177], but some algorithms are more robust than
others [178]. Efforts to standardise the measurement of
hippocampal volumetry in multi-centre studies have
been undertaken and it is now standard practice for tri-
als to employ single algorithms and centralised analysis
[89, 179]. With the establishment of the Harmonised
Protocol for hippocampal segmentation, there is a new
gold standard against which automated measurement
may be validated [180]. Variability between scanners
using the same acquisition protocol and measurement
algorithm is low [176]. However, the agreement in terms
of absolute volumes varies with acquisition protocols
and field strength. For example, change in voxel size can
lead to systematic errors in the range of 5% for hippo-
campal volume [181]. Methods to correct for these vari-
abilities are being investigated [86].
Using data from the Australian Imaging, Biomarker

and Lifestyle (AIBL) study, a sample size of 384 subjects
per arm was estimated to be needed to detect 25% slow-
ing of hippocampal atrophy rates over 18 months in

subjects with pre-clinical AD with a power of 80% [182].
These numbers will be larger when taking into account
atrophy occurring with normal ageing, which should be
considered [183]. Measures of hippocampal atrophy
rates have already been used as (secondary) end-points
in various clinical trials in MCI and mild AD dementia,
with varying results [151].

Diffusion tensor imaging
To date, there is little evidence for the use of DTI mea-
sures in (multi-centre) clinical trials. Several studies have
pointed to the variability of DTI measurements in
multi-centre studies and the need for extensive site har-
monisation and calibration prior to starting [184–186].
More work is needed on the optimisation of DTI mea-
surements in multi-centre settings, which is now being
addressed [187]. So far, longitudinal DTI measures have
only sparsely been used as (secondary) outcomes in clin-
ical trials [188].

Monitoring of side-effects
Amyloid-related imaging abnormalities
MRI scans play an important role in safety monitoring dur-
ing clinical trials. An issue of particular importance in the
Alzheimer’s field is the occurrence of amyloid-related im-
aging abnormalities (ARIA) that have emerged in several
anti-amyloid immunotherapy trials [189], although ARIA
also occurs spontaneously—including in placebo arms
[190]. ARIA consists of ARIA-E (parenchymal oedema or
sulcal effusion) with signal hyper-intensities on FLAIR,
and ARIA-H (cerebral microbleeds or superficial siderosis)
with hypo-intensity due to hemosiderin on T2*-weighted
or susceptibility-sensitive pulse sequences (Fig. 4). Ad-
equate training for radiological reads is recommended for
both ARIA-E and ARIA-H to ensure reliable detection of
subtle cases and to maximise consistency between raters
[191]. Severity of ARIA-E can be rated using dedicated rat-
ing scales [192]. Central assessment of the images is

Fig. 4 Amyloid-related imaging abnormalities. Example of ARIA-E on FLAIR with sulcal effusion (left) and ARIA-H with multiple microbleeds
(middle) and superficial siderosis (right) on T2* images
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recommended to guarantee quality control and to minim-
ise differences in visual inspection and quantification.
The detection of ARIA-H is dependent on the pulse se-

quence contrast mechanism and parameters (e.g. echo
time and slice thickness) as well as field strength [189].
The reported prevalence of microbleeds in AD dementia
subjects ranges from 18% at 1 T to 71% at 7 T [193]. Since
the presence of cerebral microbleeds confers a risk for fu-
ture haemorrhage and development of ARIA, many trials
limit the number of microbleeds at entry and monitor de-
velopment of new microbleeds during the trial. A key con-
sideration in the management of emergent ARIA cases
during a trial is whether any clinical symptoms are associ-
ated with the radiological observations.
In pre-clinical AD populations, the baseline incidence

and the frequency of spontaneous emergent ARIA is less
well characterised than in clinically demented subjects,
although one study observed a lower incidence than in
MCI and AD dementia populations [194]. Although sev-
eral large randomised clinical trials in pre-clinical AD
populations have recently commenced, the ARIA find-
ings are not yet available to the wider community.

Regulatory perspective
In 2011, following observations in the bapineuzumab tri-
als [195] and recommendations from an Alzheimer’s As-
sociation Round Table workgroup [189], the US Food
and Drug Administration (FDA) requested the adoption
of ARIA-based exclusion and discontinuation criteria for
amyloid-targeting therapies. These limited the enrolment
to subjects with at most four microbleeds at baseline
and defined minimum acquisition standards. Since that
time, for non-amyloid targeting mechanisms or if the
ARIA risk for a particular compound or mechanism has
been discharged in earlier trials, these criteria have been
relaxed in some trials. Nevertheless, these recommenda-
tions have become a de facto standard. Systematic data
collection and comparison between 2D-T2* and more
sensitive sequences (e.g. 3D susceptibility-weighted im-
aging) is lacking. A well-controlled head-to-head com-
parison of the above T2* sequence prescription with a
more sensitive alternative sequence would further the
field’s understanding of ARIA prevalence and evolution
in the natural history and provide data to help establish
meaningful and comparable cut-off criteria for these al-
ternative sequences early in the disease course.

Conclusions and practical implementation
Neuroimaging allows visualisation of many aspects of the
pathological cascade of AD, including the presence of
(pre-clinical) molecular pathology and downstream func-
tional and structural markers of neurodegeneration before
the onset of dementia. Information derived from imaging
can aid in identifying non-demented subjects with an

increased risk of future cognitive decline and disease pro-
gression to be included in secondary prevention trials.
Combining information on underlying Alzheimer’s path-
ology from amyloid PET (or CSF) with markers of neuro-
degeneration from structural MRI (or FDG-PET) provides
the optimal strategy to identify subjects who are at highest
risk of cognitive decline within the typical time frame of a
clinical trial. Advanced functional and structural imaging
techniques to predict cognitive decline at a pre-dementia
stage hold promise but await further research and valid-
ation. Neuroimaging can help to characterise subjects in
terms of comorbidities (e.g. cerebrovascular disease) or to
define more homogeneous subgroups that can be used for
stratification. Neuroimaging can also serve as a (second-
ary) outcome marker in trials. Amyloid PET can be used
to assess target engagement for pharmacological com-
pounds targeting the amyloid cascade, and structural im-
aging (or FDG-PET) can be used to assess possible
treatment effects on neurodegeneration. Finally, imaging
is crucial for monitoring safety and potential side effects,
such as ARIA, during trials.
Trials in non-demented subjects are greatly facilitated

by the establishment of a cohort of well-phenotyped sub-
jects that can be included in clinical trials. This is an ap-
proach that has been taken by the European Prevention
for Alzheimer’s Dementia (EPAD; http://ep-ad.org/) study
[196]. Within EPAD, subjects at elevated risk for AD are
identified from various parent cohorts throughout Europe
and enrolled into a longitudinal observational cohort study
to serve as a trial-readiness cohort for proof-of-concept
intervention studies. In addition to screening subjects, this
trial-readiness cohort also provides an opportunity to
apply run-in designs in which pre-trial longitudinal im-
aging can be used to determine within-subject rates of
change, which increases the statistical power to detect
treatment effects and reduces required sample sizes [197].
There are no formal guidelines on the use of neuroim-

aging measures in such trial-readiness cohorts of
non-demented subjects. Some experience has been gath-
ered through longitudinal imaging from multi-centre
studies with large cohorts such as ADNI, with a strong
focus on the MCI and dementia stages, and more re-
cently with the AIBL study, with a focus on cognitively
normal subjects [198, 199]. In ADNI, the imaging proto-
col initially included structural MRI and a subgroup with
amyloid PET, and was later complemented by FDG-PET
and advanced MR techniques such as ASL, DTI, and
rs-fMRI in ADNI-2. Subjects in ADNI-3 also undergo
tau PET. In AIBL, the imaging protocol includes struc-
tural MRI and amyloid PET. Based on the literature
reviewed in this paper, experience gained in other
studies, and practical considerations, neuroimaging rec-
ommendations for the EPAD longitudinal cohort study
have been formulated (Table 4). These recommendations
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are based on a combination of desired information rich-
ness, patient burden, stratification capabilities, and
provision of run-in data for trials. The recommended
core imaging protocol for the EPAD longitudinal cohort
study consists of yearly MRI scans including isotropic
3D-T1 and 3D-FLAIR sequences, as well as a short
2D-T2W and 2D-T2* sequence to assess neurodegenera-
tive and vascular pathology. Advanced sequences such
as 3D-T2*/SWI, DTI, ASL, and rs-fMRI will be acquired
in subsets of patients depending on site interest and ex-
perience with acquisition methodology. Centralised as-
sessment of the scans will be performed to guarantee
quality control and maximise consistency in visual rating
scales and quantification. All subjects in EPAD will
undergo lumbar puncture to assess amyloid pathology in
CSF. A large subgroup will also undergo amyloid PET,
financed through the sister project Amyloid Imaging to
Prevent AD (AMYPAD; http://amypad.eu/). Amyloid
PET was prioritised as molecular imaging based on its
potential to confirm and localise amyloid pathology, its
broad availability and standardisation, and given that the
initial molecular targets in upcoming proof-of-concept
trials will likely address the amyloid pathway. Static
amyloid PET imaging is currently the most common ap-
proach in clinical trials. Dynamic imaging, however, may
be preferable to determine the true binding potential ra-
ther than an SUVr that may be biased by the choice of
the reference region and flow effects. This argument be-
comes more relevant for longitudinal imaging where

changes can be small and in treatment trials where flow
alterations may occur. In addition, data from the initial
uptake of the tracer can be used as a proxy to measure
cerebral blood flow. As FDG-PET would add an additional
radiation dose, it has not been included in the EPAD im-
aging protocol. While tau PET imaging is emerging,
current implementation is limited due to costs, availability,
and lack of standardisation. Development and accessibility
of tau PET is encouraged as a potentially more proximate
biomarker and predictor of disease progression and as
therapies targeting tau enter clinical trials.

Additional file

Additional file 1: Table S1. Incidental findings on MRI. Table S2. Effect
of amyloid on longitudinal MRI measures in cognitively normal subjects.
(PDF 107 kb)
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Table 4 Imaging recommendations for EPAD longitudinal cohort study

Imaging technique Baseline Baseline use Follow-up Follow-up use Measures

3D T1 Standard Exclusion criteria
Volumetric analysis
Visual rating pathology
Identify increased risk
of decline

Annually New incidental findings
Atrophy rates
Track visual pathology
Identify increased risk
of decline

Volumetric analysis: brain structures
Visual: lacunes, atrophy

3D FLAIR Standard Exclusion criteria
Volumetric analysis
Visual rating pathology
Subject stratification

Annually New incidental findings
Track visual pathology

Volumetric analysis: white matter hyperintensities
Visual: lacunes, white matter hyperintensities, ARIA

2D-T2 Standard Exclusion criteria
Visual rating pathology

Annually New incidental findings
Track visual pathology

Visual: lacunes, perivascular spaces, ARIA

2D-T2*
3D-T2*/ SWI

Standard
Optional

Exclusion criteria
Visual rating pathology

Annually New incidental findings
Track visual pathology

Visual: microbleeds and superficial siderosis

DTI Optional Exploratory analysis Optional
2-year

Changes in measures Axial and radial diffusivity

ASL Optional Exploratory analysis Optional
2-year

Changes in measures Whole brain and regional perfusion

rs-fMRI Optional Exploratory analysis Optional
2-year

Changes in measures Connectivity measures

Amyloid PET
(static and dynamic)

Optional Inclusion criteria Optional Changes in measures Visual: amyloid positive
Quantitative measures of
amyloid pathology
Dynamic scanning: perfusion measures

ARIA Amyloid-related imaging abnormalities, ASL arterial spin labelling, DTI diffusion tensor imaging, EPAD European Prevention for Alzheimer’s Dementia,
FLAIR fluid attenuated inversion recovery, PET positron emission tomography, rs-fMRI resting state functional magnetic resonance imaging
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