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PRIMAL-DUAL MIXED FINITE ELEMENT METHODS FOR THE
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Abstract. We consider primal-dual mixed finite element methods for the solution of the elliptic
Cauchy problem, or other related data assimilation problems. The method has a local conserva-
tion property. We derive a priori error estimates using known conditional stability estimates and
determine the minimal amount of weakly consistent stabilization and Tikhonov regularization that
yields optimal convergence for smooth exact solutions. The effect of perturbations in data is also
accounted for. A reduced version of the method, obtained by choosing a special stabilization of the
dual variable, can be viewed as a variant of the least squares mixed finite element method introduced
by Dardé, Hannukainen, and Hyvönen in [SIAM J. Numer. Anal., 51 (2013), pp. 2123–2148]. The
main difference is that our choice of regularization does not depend on auxiliary parameters, the
mesh size being the only asymptotic parameter. Finally, we show that the reduced method can
be used for defect correction iteration to determine the solution of the full method. The theory is
illustrated by some numerical examples.
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1. Introduction. Let Ω ∈ Rd, d ∈ {2, 3}, be a polygonal/polyhedral domain,
with boundary ∂Ω and outward pointing unit normal ν. We consider the following
elliptic Cauchy problem,

(1.1)
∇ · (A∇u) + µu = f +∇ · F in Ω,

u = g on Σ,
(A∇u) · ν = ψ on Σ,

where Σ ⊂ ∂Ω. The problem data are given by f ∈ L2(Ω), F ∈ [L2(Ω)]d, g ∈ H 1
2 (Σ),

ψ ∈ H− 1
2 (Σ), where H−

1
2 (Σ) denotes the dual of the space H

1
2
00(Σ), i.e., the functions

in H
1
2 (Σ) that vanish on ∂Σ. The physical coefficients are given by µ ∈ R and

the diffusivity matrix A ∈ Rd×d which is assumed to be symmetric positive definite.
Observe that the second term in the right-hand side is well-defined only in the weak
sense; see (1.2) below for the precise formulation. For the physical problem, the
function F will be assumed to be zero, but it will play a role for the numerical
analysis.

Contrary to a typical boundary value problem, the data g, ψ are available only
on the portion Σ of the domain boundary. Observe that on this portion, on the other
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hand, both the Dirichlet and the Neumann data are known. For simplicity we only
consider the case of unperturbed Dirichlet boundary conditions. We will assume that
ψ is some measured Neumann data, possibly with perturbations δψ. We also assume
that the unperturbed data have at least the additional regularity g ∈ H

3
2 (Σ) and

ψ ∈ H 1
2 (Σ) and that there exists a solution u ∈ H2(Ω) to (1.1) for the given f, ψ,

and g. The elliptic Cauchy problem is severely ill-posed [3] and even when a unique
solution u exists, small perturbations of data in the computational model can have a
strong impact on the result.

The computational approximation of ill-posed problems is a challenging topic.
Indeed the lack of stability of the physical model under study typically prompts
Tikhonov regularization on the continuous level [32, 38] in order to obtain a well-posed
problem, which then allows for standard approximation techniques to be applied. Al-
though convenient, this approach comes with the price of having to estimate both the
perturbation error induced by adding the regularization and the approximation error
due to discretization, in order to assess the quality of the solution. For early works on
finite element approximation of the elliptic Cauchy problem and ill-posed problems,
we refer to [30, 27, 26, 37].

Herein we will advocate a different approach based on discretization of the ill-
posed physical model in an optimization framework, followed by regularization of the
discrete problem. This primal-dual approach was first introduced by Burman in the
papers [11, 13, 12, 14], drawing on previous work by Bourgeois and Dardé on quasi-
reversibility methods [4, 5, 7, 8] and further developed for elliptic data assimilation
problems [16], for parabolic data reconstruction problems in [21, 18], and finally for
unique continuation for the Helmholtz equation [19]. For a related method using finite
element spaces with C1-regularity, see [23], and for methods designed for well-posed,
but indefinite problems, we refer to [9] and for second order elliptic problems in non-
divergence form, see [40] and [39]. Recently approaches similar to those discussed
in this work were proposed for the approximation of well-posed convection-diffusion
problems [28] or porous media flows [33].

The idea is to cast the ill-posed problem in the form of an optimization problem
under the constraint of the satisfaction of the partial differential equation, and look
for the solution of the discrete form of the partial differential equation that allows for
the best matching of the data. This problem is unstable also on the discrete level
and to improve the stability properties we use stabilization techniques known from
the theory of stabilized finite element methods. Typical stabilizers are least squares
penalty terms on fluctuations of discrete quantities over element faces, or Galerkin
least squares term on the residual, in the elements. Since both a forward and a dual
problem must be solved, this approach doubles the number of degrees of freedom in
the computation.

The objective of the present work is to revisit the primal-dual stabilized method
for the Cauchy problem but in the context of mixed finite element methods. This
means that we use one variable to discretize the flux variable and another for the
primal variable. In this framework, the primal stabilizer, that typically is based on
the penalization of fluctuations, can be formulated as the difference between the flux
variable and the flux evaluated using the primal variable. Our method is designed
by minimizing this fluctuation quantity under the constraint of the conservation law.
The use of the mixed finite element formulation allows us to choose discrete spaces
in such a way that the conservation law is satisfied exactly on each cell of the mesh.
The resulting system is large, but we show that a special choice of the adjoint stabi-
lizer allows for the elimination of the multiplier and a reduction of the system to a
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3482 ERIK BURMAN, MATS G. LARSON, AND LAURI OKSANEN

symmetric least squares formulation, at the price of exact local conservation. For the
reduced case local conservation is only satisfied asymptotically.

The reduced method is identified as a variant of the method proposed by Dardé,
Hannukainen, and Hyvönen in [24]. In this work the elliptic Cauchy problem was
considered and a discrete solution was sought using Raviart–Thomas finite elements
for the flux variable and standard Lagrange elements for the primal variable. Ad-
ditional stability was obtained through Tikhonov regularization on both the primal
and the flux variable. Contrary to [24], our choice of regularization does not depend
on auxiliary parameters, the mesh size being the only asymptotic parameter. This
allows us to carry out a complete analysis of the rate of convergence of the method.

The convergence analysis is based on known conditional stability estimates for
the elliptic Cauchy problem; see, e.g., [1]. We prove estimates for the mixed finite
element methods that in a certain sense can be considered optimal with respect to the
approximation order of the space, the stability properties of the ill-posed problem, and
perturbations in data. For the analysis using conditional stability estimates, we need
an a priori bound on the discrete solution. This naturally leads to the introduction of a
Tikhonov regularization on the primal variable. The dependence of the regularization
parameter on the mesh size is chosen so that optimal convergence is obtained for
unperturbed solutions, depending on the approximation order of the space and the
regularity of the exact solution. The analysis is illustrated with some numerical
examples.

1.1. The elliptic Cauchy problem. The problem (1.1) can be cast in weak
form by introducing the spaces

VΣ := {v ∈ H1(Ω) : v|Σ = g}

and, using Σ′ := ∂Ω \ Σ,

VΣ′ := {v ∈ H1(Ω) : v|Σ′ = 0}.

Note that the trace of v ∈ VΣ′ on Σ is a function in H
1
2
00(Σ). We also introduce the

bilinear forms

a(u, v) :=

∫
Ω

(−A∇u · ∇v + µuv) dx, l(v) :=

∫
Σ

ψv ds+

∫
Ω

fv dx+

∫
Ω

F · ∇v dx.

The weak formulation then reads find u ∈ VΣ such that

(1.2) a(u, v) = l(v) ∀v ∈ VΣ′ .

Observe that this problem is severely ill-posed (see, e.g., [3]). Moreover, if f and
ψ are chosen arbitrarily, it may fail to have a solution. We will assume below that we
have at our disposal perturbed data,

ψ̃ := ψ + δψ, δψ ∈ L2(Σ),

and
f̃ = f + δf, δf ∈ L2(Ω),

such that, in the unperturbed case (δψ = 0, δf = 0), there is a solution u ∈ H2(Ω)
of (1.2). We then arrive at the following perturbed problem, find u ∈ VΣ such that

a(u, v) = l̃(v) ∀v ∈ VΣ′ ,
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where the perturbed right-hand side is given by

l̃(v) :=

∫
Σ

ψ̃v ds+

∫
Ω

f̃v dx.

Here we have omitted the contribution from F since this term is assumed to be zero
for the physical problem. The problem posed with the perturbed data most likely
does not have a solution.

We define for k ≥ 0,

Hk
div,ψ := {q ∈ Hk(Ω) : ∇ · q ∈ Hk(Ω) and q · ν|Σ = ψ}.

We observe that for k = 0, q · ν|Σ is well-defined in H−
1
2 (Σ). Assuming f ∈ L2(Ω),

the flux variable p := A∇u is in Hdiv,ψ := H0
div,ψ. We will also write Hdiv = Hdiv,0.

For the finite element method we will use (1.1) written in mixed form, that is, find
u ∈ VΣ, p ∈ Hdiv,ψ such that

p−A∇u = 0 in Ω,(1.3)

∇ · p+ µu = f in Ω.(1.4)

The method that we will propose below will be based on minimizing the left-hand
side of (1.3) under the constraint of (1.4).

In the analysis below we will use the following notation for the L2-scalar products
and norms on ω ⊂ Rd and σ ⊂ Rd−1,

(u, v)ω :=

∫
ω

uv dx, with norm ‖u‖ω = (u, u)
1
2
ω

and

〈u, v〉σ :=

∫
σ

uv ds, with norm ‖u‖σ = 〈u, u〉
1
2
σ .

With some abuse of notation we will not distinguish between the norms of vector
valued and scalar quantities.

1.2. Stability properties of the Cauchy problem. The literature on the
stability properties of the elliptic Cauchy problem spans more than a hundred years;
see, for instance, [29, 35, 36, 2, 3, 1, 6]. The results known as quantitative unique
continuation or quantitative uniqueness are useful for numerical analysis. For our
analysis we will use the results in [1], and we refer the reader to this review paper by
Allessandrini and his coauthors for background on the analysis of the Cauchy problem.
To keep down the technical detail we will here present their main results in a simplified
form suitable for our analysis. In particular, we do not track the constants related to
the geometry of the domain. For the complete results, as well as full proofs, we refer
to [1]. First we introduce the following bounds on the data. Assume that there exist
η, ε > 0 such that

(1.5) ‖g‖H1/2(Σ) + ‖ψ‖H−1/2(Σ) ≤ η,

where we used the dual norm

‖ψ‖H−1/2(Σ) := sup
v∈VΣ′
v 6=0

〈ψ, v〉(VΣ′ )
′,VΣ′

‖v‖VΣ′
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and ‖f‖Ω + ‖F ‖Ω ≤ ε or, equivalently, the right-hand side l(v) of (1.2), satifies the
bound

(1.6) ‖l‖(VΣ′ )
′ ≤ ε.

Theorem 1.1 (conditional stability of the Cauchy problem, local bound). As-
sume that u ∈ H1(Ω) is a solution to (1.2) with data satisfying (1.5) and (1.6).
Assume that the following a priori bound holds,

(1.7) ‖u‖Ω ≤ E0.

Let G ⊂ Ω be such that dist(G,Σ′) > 0. Then there exists a constant C > 0 and
τ ∈ (0, 1) depending only on the geometry of Ω and G such that

(1.8) ‖u‖G ≤ C(ε+ η)τ (E0 + ε+ η)(1−τ).

Observe that compared to [1, Theorem 1.7], we have omitted the assumption that
dist(G,Σ) is small. This is because estimates for u can be propagated in the interior
of Ω, at the cost of making the constants C and τ worse; see [1, section 5]. It is
important, however, that G does not touch Σ′. If it does, the optimal estimate is of
logarithmic type.

Theorem 1.2 (conditional stability of the Cauchy problem, global bound). As-
sume that u ∈ H1(Ω) is a solution to (1.2), with data satisfying (1.5) and (1.6).
Assume that the following a priori bound holds,

(1.9) ‖u‖H1(Ω) ≤ E.

Then there exists a constant C > 0 and τ ∈ (0, 1) depending only on the geometry of
Ω such that

(1.10) ‖u‖Ω ≤ C(E + ε+ η)ω

(
ε+ η

E + ε+ η

)
,

where ω : (0, 1)→ R+ satisfies

ω(t) ≤ 1

log(t−1)τ
for t < 1.

Remark 1.1. The practical utility of the above estimates is weakened by the lack
of knowledge of the exponent τ . As mentioned the above presentation of Theorem 1.1
is slightly simplified and a quantitative lower bound for τ is included in the original
paper; see [1, equation (1.37)]. Rather than quantifying the rate of convergence in
each computational configuration, the objective of the present work is to show that
the method will satisfy an error bound with the best rate allowed by the stability for
the given problem.

2. The mixed finite element framework. Let {T }h be a family of conform-
ing, quasi-uniform meshes consisting of shape regular simplices T = {K}. The index
h is the mesh parameter h, defined as the largest diameter of any element K in T .
For each simplex K we let nK be the outward pointing unit normal. We assume that
the boundary faces of T fit the zone Σ so that ∂Σ nowhere cuts through a boundary
face. The set of faces of the elements in T will be denoted by F and the set of faces
in F whose union coincides with Σ by FΣ.
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We introduce the space of functions in L2(Ω) that are piecewise polynomial of
order k on each element,

Xk
h := {xh ∈ L2(Ω) : xh|K ∈ Pk(K), ∀K ∈ T },

where Pk(K) denotes the set of polynomials of degree less than or equal to k on the
simplex K. We define the L2-projection πX,k : L2(Ω) 7→ Xk

h by πX,ky ∈ Xk
h such that

(πX,ky − y, vh)Ω = 0 ∀vh ∈ Xk
h .

The L2-projection on a face F of some simplex K ∈ T , will also be used in the
analysis. We define πF,l : L2(F ) 7→ Pl(F ) such that, for φ ∈ L2(F ), πF,lφ satisfies

〈φ− πF,lφ, ph〉F = 0 ∀ph ∈ Pl(F ).

For functions in Xk
h we introduce the broken norms,

(2.1) ‖x‖h :=

(∑
K∈T

‖x‖2K

) 1
2

and ‖x‖1,h :=
(
‖∇x‖2h + ‖h− 1

2πF,l[[x]]‖2F\FΣ

) 1
2

,

where ‖x‖2F :=
∑
F∈F ‖x‖2F and

[[u]]|F (x) :=

{
limε→0+(u(x− εnF )− u(x+ εnF )) for F ∈ Fi,
u(x) for F ∈ FΣ′ ,

where nF is a fixed unit normal to the face F and Fi is the set of interior faces.
Note that we do not need to define the jump on Σ. Also recall the discrete Poincaré
inequality [10],

‖x‖L2(Ω) . ‖x‖1,h ∀x ∈ Xk
h ,

which guarantees that the right expression of (2.1) is a norm. Here and below we use
the notation a . b for a ≤ Cb, where C is a constant independent of h. Occasionally,
we will also use the notation a ∼ b meaning a . b and b . a.

To formulate the method we write the standard H1-conforming finite element
space

Lkh := {vh ∈ H1(Ω) ∩Xk
h}.

For the primal variable it is convenient to introduce the spaces

V kg := {vh ∈ Lkh : vh = gh on Σ}, V k0 := {vh ∈ Lkh : vh = 0 on Σ}.

We let gh denote the nodal interpolant of g on the trace of functions in Vh on Σ, so
that defining the nodal interpolant ih : C0(Ω̄) 7→ Lkh, there holds ih : VΣ 7→ V kg . The

following approximation estimate is satisfied by ih; see, e.g., [25]. For v ∈ Hk+1(Ω)
there holds

(2.2) ‖v − ihv‖Ω + h‖∇(v − ihv)‖Ω . hk+1|v|Hk+1(Ω), k ≥ 1.

The flux variable will be approximated in the Raviart–Thomas space

RT l := {qh ∈ Hdiv(Ω) : qh|K ∈ Pl(K)d ⊕ x(Pl(K) \ Pl−1(K)) for all K ∈ T }
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with x ∈ Rd being the spatial variable, l ≥ 0, and P−1(K) ≡ ∅. We recall the
Raviart–Thomas interpolant Rh : Wdiv(Ω) 7→ RT l, where

Wdiv(Ω) := {w ∈ [Lp(Ω)]d;∇ ·w ∈ Ls(Ω), p > 2, s ≥ q, q−1 = p−1 + d−1}

and its approximation properties [25]. For q ∈ Hm
div(Ω), m ≥ 1, and Rhq ∈ RT l,

there holds

(2.3) ‖q −Rhq‖Ω + ‖∇ · (q −Rhq)‖Ω . hr(|∇ · q|Hr(Ω) + |q|Hr(Ω)),

where r = min(m, l + 1). Then assuming that the Neumann data ψ̃ are in L2(Σ),
we define the discretized Neumann boundary data by the L2-projection, for F ∈ Σ,
ψ̃h|F := πF,lψ̃. A space for the flux variable, with the satisfaction of the Neumann
condition built in, takes the form

Dl
ψ̃

:= {qh ∈ RT l : qh · ν = ψ̃h on Σ}, Dl
0 := {qh ∈ RT l : qh · ν = 0 on Σ}.

Given a function xh ∈ Xk
h we define a reconstruction ηh(xh) of the gradient of xh

in Dl
0. By the properties of the Raviart–Thomas element there exists ηh(xh) ∈ Dl

0

such that for all F ∈ F \ FΣ

(2.4) 〈ηh(xh) · nF , wh〉F =
〈
h−1
F [[xh]], wh

〉
F

for all wh ∈ Pl(F ),

where hF is the diameter of F , and if l ≥ 1, for all K ∈ T ,

(2.5) (ηh(xh), qh)K = −(∇xh, qh)K for all qh ∈ [Pl−1(K)]d.

The stability of ηh with respect to data is crucial in the analysis below and we therefore
prove it in a proposition.

Proposition 2.1. There exists a unique ηh ∈ Dl
0 such that (2.4)–(2.5) hold for

every face F ∈ F \ FΣ and every element in the mesh. Moreover ηh satisfies the
stability estimate

(2.6) ‖ηh‖Ω ≤ Cds(‖πX,l−1∇xh‖2h + ‖h− 1
2πF,l[[xh]]‖2F\FΣ

)
1
2 ;

here Cds > 0 is a constant depending only on the element shape regularity that will
appear in the constant of the stability estimate; see Proposition 2.2 below.

Proof. The unique existence of ηh is an immediate consequence of the definition
and unisolvence of the Raviart–Thomas space. Observe that the left-hand side of
(2.4)–(2.5) coincides exactly with the degrees of freedom defining the Raviart–Thomas
element.

For the stability estimate (2.6) we notice that since by definition πK,l−1ηh|K =
πK,l−1∇xh|K and ηh · nK |∂K = h−1

F πF,l[[xh]]|K it is enough to prove the estimate

‖ηh‖2K . ‖πK,l−1ηh‖2K + h‖ηh · nK‖2∂K .

To this end let K̂ be a fixed reference element. Then we have the bound

(2.7) ‖η̂h‖2K̂ . ‖πK̂,l−1η̂h‖
2
K̂

+ ‖η̂h · n̂K̂‖
2
∂K̂

by finite dimensionality and unisolvence of the Raviart–Thomas element.
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Next let Φ(x̂) = b + Bx̂ be an affine mapping such that Φ : K̂ → K is a
bijection and the determinant |B| of B is positive. Define the mappings w = ŵ ◦Φ−1

and q = |B|−1Bq̂ ◦ Φ−1. Then we have identities (q · nK , w)∂K = (q̂ · n̂K̂ , ŵ)∂K̂ ,

(∇ · q, w)K = (∇̂ · q̂, ŵ)K̂ , and (∇w, q)K = (∇̂ŵ, q̂)K̂ . Since B is a constant matrix

it follows that q ∈ [Pl−1(K)]d ⇐⇒ q̂ ∈ [Pl−1(K̂)]d and, thus, for q ∈ [Pl−1(K)]d we
have

(πK̂,l−1η̂h, q̂)K̂ = (∇̂ŵ, q̂)K̂ = (∇w, q)K = (πK,l−1∇w, q)K = (πK,l−1η, q)K .

Furthermore, we have the estimates

(2.8) ‖q‖2K . |B|−1‖B‖2‖q̂‖2
K̂
, ‖q̂‖2

K̂
. |B|‖B−1‖2‖q‖2K .

Moreover, denoting by (Φ|F̂ )′ the derivative of the restriction of Φ on a face F̂ of the

reference element K̂, and by |B|∂K the maximum of |(Φ|F̂ )′| over all the faces F̂ , it
holds that

(2.9) ‖q̂ · n̂K̂‖
2
∂K̂

. |B|∂K‖q · nK‖2∂K .

To verify (2.9) we note that

sup
ŵ∈L2(K̂)

(q̂ · n̂K , ŵ)∂K̂
‖ŵ‖∂K̂

= sup
w∈L2(K)

(q · nK , w)∂K
‖w‖∂K

‖w‖∂K
‖ŵ‖∂K̂

. max
F̂
|(Φ|F̂ )′|‖q · nK‖∂K .

Recall that we have assumed that the meshes are quasi-uniform. In particular,
they are shape regular, and therefore the diameter ρK of the largest ball in K satisfies
ρK ∼ h. The projection of this ball onto the plane containing a face F of K is a (d−1)-
dimensional ball of the same radius ρK . But this ball is contained in F and, therefore,
the volume of F is proportional to hd−1. This again implies that |B|∂K ∼ hd−1. Also,

‖B‖ . h, ‖B−1‖ . h−1, |B| ∼ hd.

Finally, using (2.7), (2.8), and (2.9) and the above geometric bounds we obtain

‖ηh‖2K . |B|−1‖B‖2‖η̂h‖2K̂
. |B|−1‖B‖2(‖πK̂,l−1η̂h‖

2
K̂

+ ‖η̂h · n̂K‖2∂K̂)

. |B|−1‖B‖2(|B|‖B−1‖2‖πK,l−1ηh‖2K + |B|∂K‖ηh · nK‖2∂K)

. ‖πK,l−1ηh‖2K + h‖ηh · nK‖2∂K .

To measure the effect of the perturbed data we introduce the corrector function
δp ∈ Dl

δψ,

(2.10) 〈δp · nF , ph〉F =

{
〈δψ, ph〉F for all ph ∈ Pl(F ) for F ∈ FΣ,
0 for all ph ∈ Pl(F ) for F ∈ F \ FΣ,

and if k ≥ 1, for any K ∈ T , (δp, qh)K = 0 for all qh ∈ [Pl−1(K)]d. For δp we may

also show the bound ‖δp‖Ω . h
1
2 ‖δψ‖Σ.

We will frequently use the following inverse and trace inequalities, for all v ∈
Pk(K),

(2.11) ‖∇v‖K . h−1‖v‖K
and, for all v ∈ H1(K),

(2.12) ‖v‖∂K . h−
1
2 ‖v‖K + h

1
2 ‖∇v‖K .

For a proof of (2.11) we refer to Ciarlet [22], and for (2.12) see, for instance, [34].
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3488 ERIK BURMAN, MATS G. LARSON, AND LAURI OKSANEN

2.1. Deriving finite element methods in an optimization framework.
The method to solve ill-posed problems proposed in [14] is based on discretization in
an optimization framework where some quantity is minimized under the constraint
of the partial differential equation. The quantity to be minimized is typically either
some least squares fit of data or some weakly consistent regularization term acting
on the discrete space, or both. Introducing the Lagrange multiplier space Wm :=
Xm
h , this problem then takes the form of finding the critical point of a Lagrangian
L : V kg ×Dl

ψ̃
×Wm → R defined by

(2.13) L[vh, qh, yh] :=
1

2
s[(vh, qh), (vh, qh)]− 1

2
s∗(yh, yh) + b(qh, vh, yh)− (f̃ , yh)Ω.

Here yh ∈Wm is the Lagrange multiplier, s(·, ·) denotes the primal stabilizer, s∗(·, ·)
the dual stabilizer, and b(·, ·) the bilinear form defining the partial differential equa-
tion, in our case the conservation law

b(qh, vh, yh) := (∇ · qh + µvh, yh)Ω.

As a first step to ensure that the kernel of the system is trivial we propose the primal
stabilizer

(2.14) s[(v, q), (v, q)] :=
1

2
‖A∇v − q‖2Ω + t(v, v),

where t(·, ·) is a symmetric positive semidefinite form related to Tikhonov regular-
ization. However here we will design t so that it is weakly consistent to the right
order. This should be compared to the jump of the gradient used in [11]. Observe
that in this case the first term of s forces ph and A∇uh to be close, connecting the
flux variable to the primal variable. In that way introducing an effect similar to the
penalty on the gradient of [11].

Computing the Euler–Lagrange equations of (2.13) we obtain the following linear
system. Find uh,ph, zh ∈ V kg ×Dl

ψ̃
×Wm such that

s[(uh,ph), (vh, qh)] + b(qh, vh, zh) = 0,(2.15)

b(ph, uh, wh)− (f̃ , wh)Ω − s∗(zh, wh) = 0(2.16)

for all vh, qh, wh ∈ V k0 × Dl
0 ×Wm. The system (2.15)–(2.16) is of the same form

as that proposed in [12, 14]. To ensure that the system is well-posed, the spaces
V kg × Dl

ψ̃
×Wm and the stabilizations t and s∗ must be carefully balanced. If we

restrict the discussion to k ≥ 1, k − 1 ≤ l ≤ k, and l ≤ m ≤ k, a stable system is
obtained by choosing

(2.17)

{
t(vh, vh) := 1

2µ
2h2‖(1− πW )vh‖2Ω + γTh

2k‖∇vh‖2Ω,
s∗(yh, yh) := γ∗ 1

2‖(1− πX,l−1)∇yh‖2Ω,

where πW : L2(Ω) 7→ Wm denotes the standard L2-projections on Wm. We also
define πX,−1 ≡ 0. Alternatively for any choice of k and l with m = max(k, l) one may
use the regularizing terms

(2.18)

{
t(vh, vh) := 1

2γTh
2k‖∇vh‖2Ω,

s∗(yh, yh) := 1
2‖yh‖

2
Ω.

We end this section by detailing some different choices of polynomial orders for the
spaces and associated stabilizers s, s∗, that result in stable and optimally convergent
methods.
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2.2. Inf-sup stable finite element formulation (stabilizer (2.17)). For
fixed k ≥ 1 take l = m = k, then the primal-dual method is stable with minimal
stabilization. It is obvious that for this choice the first term of t in (2.17) is always
zero as well as s∗, i.e., (2.17) reduces to t(vh, vh) := 1

2γTh
2k‖∇vh‖2Ω, s∗(yh, yh) ≡ 0.

As we shall see below, in the case k = 1, one may also take t(vh, vh) ≡ 0 and hence
completely eliminate the regularization. Considering (2.16) we see that for every cell
K ∈ Th we have by taking wh = χK , with χ denoting the characteristic function,

(2.19)

∫
∂K

ph · nK ds =

∫
K

(f − µuh) dx,

expressing the cellwise satisfaction of the conservation law. This method however has
a very large number of degrees of freedom and it is not obvious how to eliminate the
Lagrange multiplier in order to reduce the size of the system. Moreover the spaces are
not matched with respect to accuracy; optimal estimates are obtained also if l = k−1.

2.3. Well-balanced methods (stabilizer (2.17)). For fixed k ≥ 1 take l =
k − 1 and m = k, then as we shall see below, the primal and dual spaces are well-
balanced in the sense that they produce the same order of approximation error O(hk)
for a sufficiently smooth solution. Since V kg ⊂ Xm

h the first term of t in (2.17) is
zero. On the other hand with this choice of spaces the method is not inf-sup stable
for s∗ ≡ 0. The dual stabilizer in (2.17) is however completely local to each element.
In the case l = 0, the dual stabilizer (2.17) becomes

s∗(yh, yh) :=
1

2

∑
K∈T

‖∇yh‖2K .

Since s∗ is zero for constant functions the relation (2.19) still holds. Thanks to the
local character, all the degrees of freedom of the Lagrange multiplier, except the
cellwise average value, can be eliminated from the system using static condensation.

If we instead let l = m = k−1, we may take t defined by (2.17) and s∗ ≡ 0, which
results in an inf-sup stable well-balanced method. If µ = 0, the first term of t can be
omitted, i.e., t(vh, vh) := 1

2γTh
2k‖∇vh‖2Ω. This method can easily be analyzed using

the approach below and has a similar convergence order to the previous well-balanced
method.

2.4. Mixed L2-least squares finite element formulation (stabilizer
(2.18)). The choice of spaces and stabilizers proposed above lead to methods that
have optimal convergence properties up to physical stability and that satisfy the con-
servation law exactly on each cell. These properties however come at a price: the
number of degrees of freedom is large. Indeed compared to the method introduced in
[11], using a piecewise affine conforming approximation for both the primal and dual
variable the number of degrees of freedom increases at least by a factor of three if this
formulation is used. This large increase can be reduced to a factor of two by using
the dual stabilizer (2.18) as we shall see below, but the price is that local conserva-
tion only holds asymptotically. Here we may use any k ≥ 1 and any l ≥ 0 and take
m = max(k, l).

If we define s∗(zh, wh) := (zh, wh)Ω, as in (2.18), we immediately get from (2.16),
since m = max(k, l), that zh = ∇ · ph + µuh − f̃h, where f̃h is the L2-projection of f̃
onto Wm. Reinjecting this expression for zh into (2.15) and defining s by (2.14) with
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t as in (2.18), we obtain the equation find (uh,ph) ∈ V kg ×Dl
ψ̃

such that

(2.20) s[(uh,ph), (vh, qh)] + (µuh +∇ · ph, µvh +∇ · qh)Ω = (f̃ ,∇ · qh + µvh)Ω

for all (vh, qh) ∈ V k0 × Dl
0. This method, which coincides with the one proposed in

[24] up to Tikhonov regularization, can be derived directly from the minimization of
the following functional Jh : V kg ×Dl

ψ̃
→ R,

Jh(uh,ph) := s[(uh,ph), (uh,ph)] +

∫
Ω

(∇ · ph + µuh − f̃)2 dx.

There is one Tikhonov regularization term added in s, where the parameter γT is
independent of the mesh size. Our discrete method can now be written find (uh,ph) ∈
V kg ×Dl

ψ̃
, k ≥ 1, l ≥ 0, such that

(2.21) (uh,ph) = arg min
V kg ×Dlψ̃

Jh(uh,ph).

We conclude that the solution of (2.15)–(2.16) coincides with the minimizer of (2.21)
for the dual stabilizer of the left relation of (2.18). Compared to the method proposed
in [24] the regularization has been reduced to only one term. Indeed this term is all
that we need to prove optimal error estimates and its only role is to ensure a uniform
a priori estimate on the discrete solution in H1. As we shall see below, an iteration
based on the method (2.20) can be used to solve one of the previous, larger systems,
thus recovering the local conservation and optimal error estimates.

2.5. Stability and continuity of the forms. For the analysis we introduce
norms on VΣ ×Hdiv(Ω),

|||(v, q)|||−ζ :=
(
s[(v, q), (v, q)] + ‖hζ(∇ · q + µv)‖2Ω

) 1
2 ,

|||(v, q)|||] := |||(v, q)|||−ζ + µ‖v‖Ω + ‖h 1
2 q‖F + ‖q‖Ω,

where, depending on the choice of the spaces and stabilizers, either ζ = 0 or ζ = 1.
Using the approximation properties (2.2), (2.3) and the trace inequality (2.12) it is
straightforward to prove the following approximation result for the triple norms, we
omit the details,

(2.22) |||(v− ihv, q−Rhqh)|||] . hk‖u‖Hk+1(Ω) +hl+1(|q|Hl+1(Ω) + |∇ · q|Hl+1−ζ(Ω)).

The system (2.15)–(2.16) can be written in the compact form find (uh,ph, zh) ∈
V kg ×Dl

ψ̃
×Wm such that

(2.23) A[(uh,ph, zh), (vh, qh, wh)] = l(wh) ∀(vh, qh, yh) ∈ V k0 ×Dl
0 ×Wm,

where

A[(uh,ph, zh), (vh, qh, yh)]

:= b(qh, vh, zh) + b(ph, uh, yh)− s∗(zh, yh) + s[(uh,ph), (vh, qh)]

with s and s∗ given by (2.14) and (2.17), and the right-hand side given by

l(wh) := (f̃ , wh)Ω.
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We will also use the following compact notation for the reduced method (2.20): find
(uh,ph) ∈ V kg ×Dl

ψ̃
such that

(2.24) AR[(uh,ph, zh), (vh, qh, xh)] = lR(qh) ∀(vh, qh) ∈ V k0 ×Dl
0,

where

(2.25) AR[(uh,ph), (vh, qh)] := (∇ · ph + µuh,∇ · qh + µvh)Ω + s[(uh,ph), (vh, qh)]

with s defined by (2.14) and (2.18), and

lR(qh, vh) := (f̃ ,∇ · qh + µvh)Ω.

Observe that for the exact solution (u,p) there holds

(2.26) A[(u,p, 0), (vh, qh, wh)] = l(wh)− (δf, wh)Ω + t(u, vh)

and, similarly for the reduced method,

AR[(u,p), (vh, qh)] = lR(qh, vh)− (δf,∇ · qh + µvh)Ω + t(u, vh).

We will now prove a stability result that is the cornerstone of both the methods.
The method (2.23) requires an inf-sup argument and the symmetric method (2.24) is
coercive.

Proposition 2.2. For the formulation (2.23) with k− 1 ≤ l ≤ m and l ≤ m ≤ k
and, when l < m, γ∗ > 0 small enough, there exists α > 0 such that for all vh, qh, xh ∈
V k0 ×Dl

0 ×Wm there exists wh,yh, rh ∈ V k0 ×Dl
0 ×Wm such that

(2.27) α(|||(vh, qh)|||2−1 + ‖xh‖21,h) ≤ A[(vh, qh, xh), (wh,yh, rh)]

and

(2.28) |||(wh,yh)|||−1 + ‖rh‖1,h . |||(vh, qh)|||−1 + ‖xh‖1,h.

For the reduced method (2.24) the following coercivity holds. For all (v, q) ∈ H1(Ω)×
Hdiv(Ω)

(2.29) |||(v, q)|||20 = AR[(v, q), (v, q)].

Proof. The relation (2.29) is immediate by the definition of AR (2.25). We now
consider the first claim. Let ξh := h2(∇ · qh + µπW vh) ∈Wm. Then

b(qh, vh, ξh) = (∇ · qh + µvh, h
2(∇ · qh + µπW vh))Ω

≥ 1

2
‖h(∇ · qh + µvh)‖2Ω −

1

2
µ2h2‖(1− πW )vh‖2,

and using the Cauchy–Schwarz inequality, the stability of the L2-projection, and the
inverse inequality (2.11),

s∗(xh, xh − ξh) ≥ 1

2
s∗(xh, xh)− 1

2
γ∗Ci‖h(∇ · qh + µvh)‖2Ω.

It follows from the above bounds that assuming γ∗ < (2Ci)
−1 there holds

(2.30)
1

4
‖h(∇ · qh + µvh)‖2Ω + ‖A∇vh − qh‖2Ω +

1

2
t(vh, vh) +

1

2
s∗(xh, xh)

≤ A[(vh, qh, xh), (vh, qh,−xh + ξh)].
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We recall that when l < m, the dual stabilizer s∗ is defined by the second equation
of (2.17) and when l = m, s∗ ≡ 0.

To prove stability of the multiplier, that is, to obtain the term ‖xh‖1,h on the
left-hand side of (2.27), we consider the test function ηh = ηh(xh) as defined in
(2.4)–(2.5). It then follows by the definition of A that

A[(vh, qh, xh), (0,ηh, 0)] = (A∇vh − qh,−ηh)Ω + (∇ · ηh, xh)Ω.

Using elementwise integration by parts in the second term on the right-hand side
yields

(∇ · ηh, xh)Ω =
∑
K∈T

[〈ηh · nK , xh〉∂K − (ηh,∇xh)K ] .

For the second term of the right-hand side we obtain using (2.5),

−(ηh,∇xh)K ≥ ‖πX,l−1∇xh‖2K −
γ∗

4
‖(1− πX,l−1)∇xh‖2K −

1

γ∗
‖ηh‖2K .

Observe that by combining the contributions from the two neighboring elements shar-
ing a face F we have∑

K∈T
〈ηh · nK , xh〉∂K =

∑
F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F ,

where we used (2.4) and the fact that ηh · nK = 0 on Σ. Consequently,

A[(vh, qh, xh), (0, εηh, 0)]

≥ (A∇vh − qh,−εηh)Ω + ε‖πX,l−1∇xh‖2Ω

+ ε
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F −

γ∗

4
‖(1− πX,l−1)∇xh‖2Ω −

ε2

γ∗
‖ηh‖2Ω.

We obtain

A[(vh, qh, xh), (0, εηh, 0)]

≥ −1

4
‖A∇vh − qh‖2Ω − ε2

(
1 +

1

γ∗

)
‖ηh‖2Ω + ε‖πX,l−1∇xh‖2Ω

+ ε
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F

− γ∗

4
‖(1− πX,l−1)∇xh‖2Ω

≥ −1

4
‖A∇vh − qh‖2Ω −

γ∗

4
‖(1− πX,l−1)∇xh‖2Ω

+ ε(1− ε(1 + γ∗−1)C2
ds)

‖πX,l−1∇xh‖2Ω +
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F

 .

Here we used the stability (2.6) of ηh. Choosing ε = C−2
ds 2−1γ∗(1 +γ∗)−1 we see that

A[(vh, qh, xh), (0, εηh, 0)](2.31)

≥ −1

4
‖A∇vh − qh‖2Ω +

ε

2

‖πX,l−1∇xh‖2Ω +
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F


− γ∗

4
‖(1− πX,l−1)∇xh‖2Ω.
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By combining the bounds (2.30) and (2.31), and using that

‖xh‖1,h = ‖πX,l−1∇xh‖2Ω + ‖(1− πX,l−1)∇xh‖2Ω +
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F ,

we obtain

1

4
|||(vh, qh)|||2 +

1

4
min(ε, γ∗)‖xh‖21,h ≤ A[(vh, qh, xh), (vh, qh + εηh,−xh + ξh)],

which proves (2.27), with α = 1/2 min(1, ε, γ∗) and with the test partners wh =
vh, yh = qh + εηh, and rh = −xh + ξh.

For the second inequality (2.28), we observe that by the triangle inequality there
holds

|||(wh,yh)|||−1 + ‖rh‖1,h ≤ |||(vh, qh)|||−1 + ‖xh‖1,h + |||(0, εηh)|||−1 + ‖ξh‖1,h.

To bound the second to last term on the right-hand side, we use the inverse inequality

|||(0, εηh)|||−1 = ε(‖ηh‖Ω + ‖h∇ · ηh‖Ω) . ‖ηh‖Ω . ‖xh‖1,h.

Using an inverse inequality (2.11) and a trace inequality (2.12) in the last term of the
right-hand side, we obtain

‖ξh‖1,h . ‖h(∇ · qh + µvh)‖Ω + hµ‖(1− πW )vh‖Ω.

Since it follows that |||(wh,yh)|||−1 + ‖rh‖1,h . |||(vh, qh)|||−1 + ‖xh‖1,h the proof is
complete.

Using the previous result, we now show that the discrete solution will exist, re-
gardless of the choice of the parameter γT ≥ 0.

Proposition 2.3 (invertibility of system matrix). The linear system defined by
(2.23), with spaces and dual stabilizations as in Proposition 2.2, admits a unique
solution (uh,ph, zh) in V kg ×Dl

ψ̃
×Wm. The linear system defined by (2.24) admits

a unique solution (uh,ph) in V kg ×Dk
ψ̃

.

Proof. Since existence and uniqueness are equivalent for square, finite-dimensional
linear systems we only need to show uniqueness. We consider a difference (uh,p, zh) ∈
V k0 ×Dl

0 ×Wm of two solutions, and show that it is zero if

A[(uh,ph, zh), (vh, qh, xh)] = 0 ∀(vh, qh, xh) ∈ V k0 ×Dl
0 ×Wm.

By Proposition 2.2 there then holds,

α(|||(uh,ph)|||2−1 + ‖zh‖21,h) ≤ A[(uh,ph, zh), (wh,yh, rh)] = 0

and we immediately see that zh = 0. In the case γT > 0 the equation |||(uh,ph)|||2−1 =
0 implies the claim since we obtain ‖∇uh‖Ω = ‖ph‖Ω = 0 , and the conclusion follows
after noting that the H1-seminorm on V k0 is a norm by the Poincaré inequality.

Assume now that γT = 0. In this case the stability implies

‖A∇uh − ph‖2Ω + ‖∇ · ph + µuh‖2Ω = 0.

This means that A∇uh = ph and ∇ · ph + µuh = 0. As a consequence ∇ · (A∇uh) ∈
L2(Ω), uh|Σ = A∇uh · ν|Σ = 0 and

∇ · (A∇uh) + µuh = 0 in Ω.
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3494 ERIK BURMAN, MATS G. LARSON, AND LAURI OKSANEN

It follows that uh is a solution to the problem (1.2) with zero data. The stability
estimate (1.10) implies that the trivial solution uh = 0 is the unique solution of this
problem. It follows that uh = 0 and ph = 0. This proves the claim. The claimed
uniqueness for (2.24) is immediate due to the coercivity.

We end this section by proving the continuity of the forms A[·, ·].
Proposition 2.4. For all (v, q) ∈ H1(Ω)×Hdiv(Ω) and for all (wh,yh, wh) there

holds

(2.32) A[(v, q, 0), (wh,y, wh)] ≤ |||(v, q)|||] (|||(wh,yh)|||−1 + ‖wh‖1,h).

For all (v, q), (w,y) ∈ H1(Ω)×Hdiv(Ω) there holds

(2.33) AR[(v, q), (w,y)] ≤ |||(v, q)|||0 |||(w,y)|||0.

Proof. The inequality (2.32) follows by first using the Cauchy–Schwarz inequality
in the symmetric part of the formulation,

s[(v, q), (wh,y)] ≤ s[(v, q), (v, q)]
1
2 s[(wh,y), (wh,y)]

1
2 .

In the remaining term we use the divergence formula elementwise to obtain

(∇ · q + µv,wh)Ω =
∑
K∈T

(q,∇wh)K +
∑
F∈F
〈q · nF , [[wh]]〉F + (µv,wh)Ω.

The inequality now follows by applying the Cauchy–Schwarz inequality termwise with
suitable scaling in h. The inequality (2.33) on the other hand is immediate by applying
the Cauchy–Schwarz inequality to the form AR that is completely symmetric in this
case.

3. Error estimates using conditional stability. In this section we will prove
error estimates that give, for unperturbed data, an optimal convergence order with
respect to the approximation and stability properties of the problem. We also quantify
the effect of perturbations in data and the resulting possible growth of error under
refinement. Throughout this section we assume that spaces and parameters in the
methods are chosen so that Proposition 2.2 holds.

Proposition 3.1 (estimate of residuals). Assume that (u,p) is the solution
to (1.2), where p = A∇u and consider either (uh,ph, zh) the solution of (2.23) or
(uh,ph) the solution of (2.24). Then there holds

|||(u− uh,p− ph)|||−ζ + ζ‖zh‖1,h . Cuh
k + Cph

l+1 + ‖δf‖Ω + h−
1
2 +ζ‖δψ‖Σ

with ζ = 1 for the method (2.23) and ζ = 0 for the method (2.24). Here

Cu := |u|Hk+1(Ω) + γ
1
2

T ‖u‖H1(Ω), Cp := ‖∇ · p‖Hl+1−ζ(Ω) + ‖p‖Hl+1(Ω).

Proof. We write the errors in the primal and flux variable,

e = u− uh and ξ = p− ph.

Using the nodal interpolant ihu and the Raviart–Thomas interpolant Rhp we decom-
pose the error in the interpolation error eπ := u− ihu, ξπ = p−Rhp and the discrete
error, eh = ihu−uh ∈ V k0 , ξh = Rhp+δp−ph ∈ Dl

0, where δp is defined by equation

D
ow

nl
oa

de
d 

01
/1

8/
19

 to
 1

28
.4

1.
35

.1
50

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRIMAL-DUAL MIXED FINITE ELEMENT METHODS 3495

(2.10). Observe that since e = eπ+eh and ξ = ξπ+ξh−δp, by the triangle inequality
there holds

(3.1) |||(e, ξ)|||−ζ ≤ |||(eπ, ξπ)|||−ζ + |||(eh, ξh)|||−ζ + |||(0, δp)|||−ζ .

We begin with method (2.23), ζ = 1. Since eh ∈ V k0 and ξh ∈ Dl
0 we may

apply the stability result of Proposition 2.2. Therefore there exists (wh,yh, rh) ∈
V k0 ×Dl

0 ×Wm such that

α(|||(eh, ξh)|||2−1 + ‖zh‖21,h) ≤ A[(eh, ξh, zh), (wh,yh, rh)],

and also (2.28) holds. Now by (2.26),

A[(eh, ξh, zh), (wh,yh, rh)]

= A[(ihu,Rhp, 0), (wh,yh, rh)] +A[(0, δp, 0), (wh,yh, rh)]

−A[(uh,ph, zh), (wh,yh, rh)]

= A[(ihu,Rhp, 0), (wh,yh, rh)]− (δp, A∇wh − yh)Ω + (∇ · δp, rh)− (f, rh)Ω

− (δf, rh)Ω

= A[(ihu− u,Rhp− p, 0), (wh,yh, rh)]︸ ︷︷ ︸
I

− (δp, A∇wh − yh)Ω︸ ︷︷ ︸
II

+ (∇ · δp, rh)Ω︸ ︷︷ ︸
III

− (δf, rh)Ω︸ ︷︷ ︸
IV

+ t(u,wh)︸ ︷︷ ︸
V

= I + II + III + IV + V.

We now bound the five terms. By the continuity (2.32) there holds

I ≤ |||(ihu− u,Rhp− p)|||](|||(wh,yh)|||−1 + ‖rh‖1,h).

An application of the Cauchy–Schwarz inequality leads to

II ≤ ‖δp‖Ω|||(wh,yh)|||−1.

Finally an elementwise application of the divergence theorem followed by the Cauchy–
Schwarz inequality leads to

III ≤ |||(0, δp)|||]‖rh‖1,h.

By applying the Poincaré inequality for broken H1-spaces [10] we have for term IV ,

IV . ‖δf‖Ω‖rh‖1,h.

Finally, by the Cauchy–Schwarz inequality, using that m ≥ k − 1 and the standard
approximation estimates for the L2-projection we have

V ≤ (µhk+1|u|Hk+1(Ω) + γ
1
2

T h
k|u|H1(Ω))|||(wh, 0)|||−1.

By (2.28) we obtain

α(|||(eh, ξh)|||−1 + ‖zh‖1,h)

. |||(ihu− u,Rhp− p)|||] + γ
1
2

T h
k|u|H1(Ω) + |||(0, δp)|||] + ‖δf‖Ω.
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Since the first term on the right-hand side is bounded by (2.22) it only remains to
show that

|||(0, δp)|||] . h
1
2 ‖δψ‖Σ.

This relation can be proven by the trace inequality and the inverse inequality followed
by the properties of the Raviart–Thomas element,

|||(0, δp)|||] = ‖h 1
2 δp‖F + 2‖δp‖Ω + ‖h∇ · δp‖Ω . ‖h 1

2 δψ‖Σ + ‖δp‖Ω . ‖h 1
2 δψ‖Σ.

Applying (2.22) and |||(0, δp)|||−1 ≤ |||(0, δp)|||] the claim follows from (3.1).
Let us now turn to method (2.24), ζ = 0. This case is similar to the previous one,

but simpler since it relies on the coercivity (2.29). Starting from (3.1) we see that
using previous results, there only remains to treat the discrete error term. By (2.29)
there holds

|||(eh, ξh)|||20 ≤ AR[(eh, ξh), (eh, ξh)].

Repeating the previous consistency argument, but this time with AR we obtain

AR[(eh, ξh), (eh, ξh)]

= AR[(ihu,Rhp), (eh, ξh)] +AR[(0, δp), (eh, ξh)]−AR[(uh,ph), (eh, ξh)]

= AR[(ihu,Rhp), (eh, ξh)]− (δp, A∇eh − ξh)Ω + (∇ · δp,∇ · ξh + µeh)Ω

− (f,∇ · ξh + µeh)Ω − (δf,∇ · ξh + µeh)Ω

= AR[(ihu− u,Rhp− p), (eh, ξh)]− (δp, A∇eh − ξh)Ω

+ (∇ · δp,∇ · ξh + µeh)Ω︸ ︷︷ ︸
∗

−(δf,∇ · ξh + µeh)Ω + γT (h2k∇u,∇eh)Ω.

The only term we need to consider this time is the one marked ∗. All the other
terms are handled similarly as before, but this time using (2.33) and recalling that
ζ = 0 in (2.22). For the term marked ∗ we cannot use the divergence formula since
the multiplier has been eliminated. Instead we proceed with the Cauchy–Schwarz
inequality followed by the inverse inequality (2.11) and the properties of δp,

(∇ · δp,∇ · ξh + µeh)Ω ≤ ‖∇ · δp‖Ω|||(eh, ξh)|||0 . ‖h− 1
2 δψ‖Σ|||(eh, ξh)|||0.

The claim then follows in the same way as before.

Remark 3.1. To balance the estimate of Proposition 3.1 we want to balance the
orders O(hk) and O(hl+1) to obtain an economical scheme, implying that l = k − 1.
But we should also balance the regularity requirements, recalling that p = A∇u,
leading to k + 1 = l + 3 − ζ. We see that this can only be balanced for ζ = 1. We
conclude that the only method that balances both the convergence orders and the
regularities of the different terms is the one discussed in section 2.3, i.e., the one given
by (2.23).

Corollary 3.1 (a priori estimate for the H1-error). Suppose that γT > 0.
Under the same assumptions as for Proposition 3.1 there holds

‖u− uh‖H1(Ω) . γ
− 1

2

T (Cu + Cph
l+1−k + h−k‖δf‖Ω + h−

1
2−k+ζ‖δψ‖Σ),

where Cu and Cp are defined in Proposition 3.1.
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Proof. By the definition of the triple norm there holds

γ
1
2

T h
k‖∇(u− uh)‖Ω . Cuh

k + Cph
l+1 + ‖δf‖Ω + h−

1
2 +ζ‖δψ‖Σ.

Then divide through by γ
1
2

T h
k and apply Poincaré’s inequality.

Remark 3.2. In the lowest order case, k = 1, if A is the identity matrix, the a
priori bound can be achieved also for γT = 0.

Indeed observe that, with eh = ihu− uh and ξh = Rhp+ δp− ph we have, using
the Poincaré inequality on discrete spaces,

‖h∇eh‖Ω . ‖h 1
2 [[∇eh · n]]‖F\FΣ

+ ‖h 1
2∇eh · n‖Σ + ‖h− 1

2 eh‖Σ︸ ︷︷ ︸
=0

. ‖h 1
2 [[∇eh · n− ξh · n]]‖F\FΣ

+ ‖h 1
2 (∇eh · n− ξh · n︸ ︷︷ ︸

=0

)‖Σ

. ‖∇eh − ξh‖Ω.

Then we proceed as in Corollary 3.1.

Proposition 3.2 (estimates of boundary data in natural norms). Assume that
(u,p), p = A∇u, is the solution to (1.2) and (uh,ph) the solution of (2.21). Then
the following bound holds for the error in the approximation of the boundary data:

‖u− uh‖
H

1
2 (Σ)

+ ‖ψ − ph · ν‖H− 1
2 (Σ)

. ‖δψ‖Σ + ‖u− ihu‖
H

1
2 (Σ)

+ h
1
2 ‖ψ − ψh‖Σ

. ‖δψ‖Σ + hk|u|Hk+1(Ω).

Proof. Since we have assumed that the Dirichlet data are unperturbed and we
have defined uh|Σ = gh = ihu|Σ, it follows using (2.2) that

‖u− uh‖
H

1
2 (Σ)

= ‖u− ihu‖
H

1
2 (Σ)

. ‖u− ihu‖H1(Ω) . hk|u|Hk+1(Ω).

Recalling that ph · ν|Σ = ψ̃h we may write, with ψh the L2-projection of ψ such that
ψh|F = πF,lψ,〈
ψ − ψ̃h, v

〉
Σ

= 〈ψ − ψh, v〉Σ +
〈
ψh − ψ̃h, v

〉
Σ
. 〈ψ − ψh, v − vh〉Σ + | 〈δψ, vh〉Σ |.

We now choose vh so that vh|F = πF,lv. Using the stability of the L2 projection,

bounds for v ∈ H1(Σ), interpolation, and the density of H1(Σ) in H
1
2 (Σ) we have

that for v ∈ H 1
2 (Σ) with ‖v‖

H
1
2 (Σ)

= 1 there holds

‖v − vh‖Σ . h
1
2 ‖v‖

H
1
2 (Σ)

. h
1
2 .

After bounding the perturbation term using the Cauchy–Schwarz, inequality, duality,
and the approximation of the L2-projection

| 〈δψ, vh − v〉Σ |+ | 〈δψ, v〉Σ | . ‖δψ‖H− 1
2 (Σ)

+ h
1
2 ‖δψ‖Σ,

it follows form the above relations that for ‖v‖
H

1
2 (Σ)

= 1,

〈ψ − ph · ν, v〉Σ . h
1
2 ‖ψ − ψh‖Σ + ‖δψ‖Σ.
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Note that by definition of the L2-projection, and recalling that A is constant and
A∇ihu · ν|F ∈ Pl(F ),

‖ψ − ψh‖Σ ≤ ‖A∇u · ν −A∇ihu · ν‖Σ . hk−
1
2 |u|Hk+1(Ω).

The last inequality followed by an application of (2.12) on all the boundary faces in
Σ followed by (2.2). Combining the above bounds completes the proof.

For the error analysis we must construct a function in H1(Ω) such that both
boundary conditions can be estimated simultaneously in natural norms and which is
close enough to uh in terms of the residual terms estimated in Proposition 3.1. For
the construction we follow the arguments of [15].

Proposition 3.3. Let (uh,ph) be the solution of (2.23). Then for some h0 > 0,
for all h < h0 there exists ũh such that ũh|Σ = uh|Σ and

‖A∇ũh − ph‖H− 1
2 (Σ)

+ h−1‖ũh − uh‖Ω + ‖∇(ũh − uh)‖Ω . ‖A∇uh − ph‖Ω.

Proof. We decompose Σ in disjoint, shape regular, elements {F̃} with diameter
O(h). With each element F̃ we associate a bulk patch P̃ that extends O(h) into Ω,
∂P̃ ∩ Σ = F̃ . On each patch we will define a function ϕF̃ ∈ H1

0 (P̃ ) such that

(3.2)

∫
F̃

A∇ϕF̃ · ν ds =

∫
F̃

ds =: measd−1(F̃ )

and

(3.3) h−1‖ϕF̃ ‖P̃ + ‖∇ϕF̃ ‖P̃ . h
d
2 .

Under the condition that h is small enough we may take ϕF̃ ∈ V 1
h,0. An example of

construction of the {ϕF̃ }F̃ is given in the appendix. We introduce the projection on

constant functions on F̃ , πF̃ : L2(F̃ ) 7→ R defined by πF̃ v := measd−1(F̃ )−1
∫
F̃
v ds.

Then consider uF̃ := πF̃ (ph −A∇uh · ν) and define

ũh := uh +
∑
F̃

uF̃ϕF̃ .

It then follows by the definition of ũh and an inverse inequality that

h−2‖ũh − uh‖2Ω + ‖∇(ũh − uh)‖2Ω
.
∑
F̃

u2
F̃
h−2‖ϕF̃ ‖

2
P̃

.
∑
F̃

h1−dhd‖A∇uh · ν − ph‖2F̃ . ‖A∇uh · ν − ph‖2Ω.

(3.4)

For the second inequality we used (3.3) and |uF̃ | ≤ h
1−d

2 ‖A∇uh · ν − ph‖F̃ and for

the third we applied the trace inequality (2.12) to every element face in each F̃ . The
bound of the flux on Σ is shown observing that by the definition of the uF̃ and ϕF̃ ,

for any v ∈ H 1
2 with ‖v‖

H
1
2 (Σ)

= 1,

〈A∇ũh − ph, v〉Σ = 〈A∇ũh − ph, v − vh〉Σ . h
1
2 ‖A∇ũh − ph‖Σ.
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Here vh is the piecewise constant function such that vhj|F̃ = πF̃ v. We conclude by
applying once again the trace inequality (2.12) on every face in Σ and using a triangle
inequality and arguments similar to those used in (3.4), showing that

h
1
2 ‖A∇ũh − ph‖Σ . ‖A∇uh − ph‖Ω +

∑
F̃

u2
F̃
h−2‖ϕ‖2

P̃

 1
2

. ‖A∇uh − ph‖Ω.

Theorem 3.1 (conditional error estimates). Assume that (u,p) is the solution
to (1.2) with u ∈ H1(Ω) ∩ Hk+1(Ω) and p = A∇u, (uh,ph) either the solution of
(2.23) (case ζ = 1) with regularizing term given by (2.17) and k ≥ 1, k − 1 ≤ l ≤ k,
m ≥ l, or the solution of (2.24) (case ζ = 0). Assume also that the hypothesis of

Theorems 1.1 and 1.2 are satisfied and that h < min(h0, γ
− 1

2k

T ), where h0 is the bound
from Proposition 3.3. Then there holds for all G as defined in Theorem 1.1, for some
τ ∈ (0, 1),

(3.5) ‖u− uh‖G . (1 + γ
1
2

T )τCE h
τk,

where

(3.6) CE ≡ CE(u, δf, δψ, h) . γ
− 1

2

T (Cu + Cph
l+1−k + h−k‖δf‖Ω + h−

1
2−k+ ζ

2 ‖δψ‖Σ)

with Cu and Cp defined in Proposition 3.1. The following global estimate also holds
for some τ ∈ (0, 1),

(3.7) ‖u− uh‖Ω . CE
1

| log((1 + γ
1
2

T )hk)|τ
.

Proof. First observe that recalling the function ũh from Proposition 3.3

(3.8) ‖u− uh‖L2(G) . ‖u− ũh‖L2(G) + h‖A∇uh − ph‖Ω.

Since the second term is bounded in Proposition 3.1 we only need to bound the first
term of the right-hand side. To this end we will use that the error ẽ := u − ũh is a
solution to (1.2) for the data ψ = A∇ẽ · ν|Σ and g = ẽ|Σ and f, F also depending on
ẽ, that will be part of the right-hand side l(v) specified below (3.10). Observe that
using Propositions 3.2 and 3.3

(3.9) ‖ẽ‖
H

1
2 (Σ)

+ ‖A∇ẽ · ν‖
H−

1
2 (Σ)

. ‖δψ‖Σ + hk|u|Hk+1(Ω).

Injecting ẽ in the weak formulation we see that for all v ∈ VΣ′ ,

a(ẽ, v) = a(uh − ũh, v) + a(e, v),

where e = u− uh. Defining also the finite element residual, for all v ∈ VΣ′ ,

a(e, v) = −(A∇e,∇v)Ω + (µe, v)Ω

= (ξ −A∇e,∇v)Ω + (∇ · ξ + µe, v)Ω − 〈ξ · ν, v〉Σ
=: 〈r(e, ξ), v〉(VΣ′ )

′,VΣ′

and comparing with (1.2), we may write the right-hand side

(3.10) l(v) = a(uh − ũh, v) + 〈r(e, ξ), v〉(VΣ′ )
′,VΣ′

.
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It remains to prove (1.6). To this end we show the following bound

‖l(v)‖(VΣ′ )
′ . |||(e, ξ)|||−ζ + ‖zh‖1,h + ‖ξ · ν‖

H−
1
2 (Σ)

+ ‖δf‖Ω,

where ζ = 1 for the method (2.23) and ζ = 0 for the method (2.24). Indeed, we can
combine this bound with that of (3.9), and apply the stability estimates in Theorems
1.1 and 1.2 to the error ẽ, resulting in the claim. First we use the Cauchy–Schwarz
inequality on a(uh − ũh, v) followed by the bound of Proposition 3.3 leading to

a(uh − ũh, v) . ‖uh − ũh‖H1(Ω),

‖v‖H1(Ω) . ‖A∇uh − ph‖Ω‖v‖H1(Ω) ≤ |||(e, ξ)|||−ζ‖v‖H1(Ω).

When ζ = 1 and the method (2.23) is considered, we can apply the orthogonality
in the second term of the right-hand side of (3.10). Choosing vh ∈ Wm to be the
elementwise L2-projection of v we obtain

(∇ · ξ + µe, v)Ω = (∇ · ξ + µe, v − vh)Ω + s∗(zh, vh)− (δf, vh)Ω.

Using the approximation properties of the L2-projection it follows that

(∇ · ξ + µe, v)Ω . (‖h(∇ · ξ + ce)‖Ω + ‖δf‖Ω + ‖zh‖1,h)‖v‖H1(Ω).

Here we used also the fact that s∗(zh, vh) . C‖zh‖1,h‖∇vh‖h . ‖zh‖1,h‖v‖H1(Ω).
In case ζ = 0 the bound of the volume integral term is immediate by the Cauchy–

Schwarz inequality,

(ξ −A∇e,∇v)Ω + (∇ · ξ + µe, v)Ω ≤ (‖A∇e− ξ‖2Ω + ‖∇ · ξ + µe‖2Ω)
1
2 ‖v‖H1(Ω)

≤ |||(e, ξ)|||0‖v‖H1(Ω).

For the boundary term we proceed using duality followed by the trace inequality

〈ξ · ν, v〉Σ ≤ ‖ξ · ν‖H− 1
2 (Σ)
‖v‖

H
1
2 (Σ)

. ‖ξ · ν‖
H−

1
2 (Σ)
‖v‖H1(Ω).

Collecting these bounds we obtain, with the two cases distinguished by ζ,

− (A∇e− ξ,∇v)Ω + (∇ · ξ + µe, v)Ω − 〈ξ · ν, v〉Σ
. (|||(e, ξ)|||−ζ + ζ‖zh‖1,h + ζ‖δf‖Ω + ‖ξ · ν‖

H−
1
2 (Σ)

)‖v‖H1(Ω).

We conclude that by Propositions 3.1, 3.2, and 3.3 there holds

(3.11)

‖l(v)‖(VΣ′ )
′ . ‖uh − ũh‖H1(Ω) + ‖r(e, ξ)‖(VΣ′ )

′

. |||(e, ξ)|||−ζ + ζ‖zh‖1,h + ζ‖δf‖Ω + ‖ξ · ν‖
H−

1
2 (Σ)

. Cuh
k + Cph

l+1 + ‖δf‖Ω + h−
1
2 + ζ

2 ‖δψ‖Σ.

Here (and below) we use that h
1
2 ‖ψ − ψh‖Σ . hk|u|Hk+1(Ω) . Cuh

k to absorb the
boundary error contribution. We are now in position to prove the error estimate using
Theorems 1.1 and 1.2. To simplify the notation, we write CE = CE(u, δf, δψ, h). First
note that the error ẽ is a solution to the problem (1.2) with the right-hand side defined
by (3.10). By (3.9) the inequality (1.5) is satisfied with

η . ‖δψ‖Σ + hk‖u‖Hk+1(Ω).
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By (3.11) the inequality (1.6) holds with

ε . γ
1
2

TCEh
k.

The a priori bounds (1.7) and (1.9) follow from Corollary 3.1 with

E0 ≤ E . CE .

We then observe that, assuming h < γ
− 1

2k

T ,

E0 + ε+ η . CE , ε+ η . (1 + γ
1
2

T )CEh
k.

Applying these bounds in (1.8) we obtain a bound for the first term on the right-hand
side of (3.8),

‖u− ũh‖L2(G) . (1 + γ
1
2

T )τCE h
τk

leading to the local error bound (3.5). The global error bound (3.7) is obtained by
inserting the above bounds on E, ε, and η into (1.10).

Remark 3.3. Observe that from the definition of CE it follows that the bound
makes sense only when h−k‖δf‖Ω + h−

1
2−k+ ζ

2 ‖δψ‖Σ is small compared to |u|Hk+1(Ω).

Remark 3.4. An identical argument leads to corresponding local estimates in the
H1-norm under the assumption of similar stability estimates as in the L2-norm. Al-
though not readily available in the literature, such estimates can be obtained following
the proof of [1, Theorem 1.7] but using [19, Corollary 3] instead of [1, Theorem 5.1].
The estimates will typically have the same form as those in the L2-norm, which is ex-
pected to be sharp since no adjoint argument is available to improve the convergence
in the L2-norm. In the numerical section we will see that depending on the geometry
of the Cauchy problem, the L2-norm can perform better than the H1-norm errors,
but that this does not hold in general.

4. Iterative solution of the inf-sup stable system. Clearly the elimination
of the dual variable is an important gain compared to the original constrained system,
in particular, since the resulting system is symmetric, positive definite, and therefore
can be solved using the conjugate gradient method. We will here assume that m =
max(k, l) and show how the reduced method can be used to solve the full system in
an iterative procedure, which allows one to recover the conservation properties and
error estimates of the full system while only solving the linear system associated with
the reduced system. The idea is to use the Euler–Lagrange equations with the dual
stabilizer (2.18), which leads to the mixed least squares method, but consider the
dual stabilizer as a perturbation that is eliminated through iteration. The iterative
scheme takes the form let z0

h = 0, compute for κ = 0, 1, 2, 3, 4 . . . : given zκh find
(uκ+1
h ,pκ+1

h , zκ+1
h ) ∈ V kg ×Dl

ψ̃
×Wm such that

s[(uκ+1
h ,pκ+1

h ), (vh, qh)] + b(qh, vh, z
κ+1
h ) = 0,(4.1)

b(pκ+1
h , uκ+1

h , wh)− s∗(zκ+1
h , wh) = (f, wh)Ω − s∗(zκh , wh)(4.2)

for all V k0 ×Dl
0 ×Wm, where s and s∗ is defined by (2.14) and (2.18). Observe that

(4.1)–(4.2) decouples into the two equations:
1. Given zκh ∈Wm, find (uκ+1

h ,pκ+1
h ) ∈ V kg ×Dl

ψ̃
such that

AR[(uκ+1
h ,pκ+1

h ), (vh, qh)] = lR(vh, qh)− (zκh ,∇ · qh + µvh)Ω

for all (vκ+1
h , qκ+1

h ) ∈ V k0 ×Dl
0.
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2. Given (uκ+1
h ,pκ+1

h , zκh) ∈ V kg ×Dl
ψ̃

, zκ+1
h = zκh −∇ · ph + µuh.

Clearly if the iteration converges, the resulting discrete solution solves the inf-sup
stable formulation for which s∗ ≡ 0. We will now prove the convergence of the scheme.

Proposition 4.1. Assume that γT > 0. Letting κ → ∞ in (4.1)–(4.2), then
(uκh,p

κ
h, z

κ
h)→ (uh,ph, zh), is the solution to (2.15)–(2.16) with s∗ ≡ 0.

Proof. By linearity it is enough to prove that (uκh,p
κ
h, z

κ
h) goes to zero if f ≡

0, g ≡ 0, ψ ≡ 0 in (4.1)–(4.2). By taking vh = uκ+1
h , qh = pκ+1

h , and wh = −zκ+1
h

and summing over κ ∈ 0, . . . n− 1 we obtain

n−1∑
κ=0

(
s[(uκ+1

h ,pκ+1
h ), (uκ+1

h ,pκ+1
h )] + s∗(zκ+1

h − zkh, zκ+1
h )

)
= 0

and therefore using the telescoping sum

1

2
‖znh‖2Ω +

n−1∑
κ=0

(
s[(uκ+1

h ,pκ+1
h ), (uκ+1

h ,pκ+1
h )] +

1

2
‖zκ+1
h − zκh‖2Ω

)
=

1

2
‖z0
h‖2Ω.

It follows that

‖A∇uκh − pκh‖Ω + γT ‖hk∇uκh‖Ω + ‖zκ+1
h − zκh‖Ω → 0 when k →∞.

Observe that for γT > 0 this implies (by Poincaré’s inequality) that uh = limκ→0 u
κ
h =

0 and ph = limκ→0 p
κ
h = 0. Using Theorem 2.2 we then conclude that zκ → 0.

Remark 4.1. If k = 1 and A is the identity, the conclusion of Proposition 4.1
holds also for γT = 0. To see this recall the discussion after Remark 3.2 implying that

‖h∇uκh‖Ω . ‖∇uκh − pκh‖Ω.

The consequence is that uh = limκ→0 u
κ
h = 0 as before.

5. Numerical example. As a numerical illustration of the theory we consider
the original Cauchy problem discussed by Hadamard. In (1.1) let A = I, µ = 0,
f = 0, Ω := (0, π)× (0, 1), Σ := {x ∈ (0, π); y = 0}, and

(5.1) ψn := −bn sin(nx).

It is then straightforward to verify that

un = bnn
−1 sin(nx) sinh(ny)

solves (1.1). An example of the exact solution for n = 5 is given in Figure 1. One
may easily show that the choice bn = n−p, p > 0 leads to ψn → 0 uniformly as
n → ∞, whereas, for any y > 0, un(x, y) blows up. Stability can only be obtained
conditionally, under the assumption that ‖un‖H1(Ω) < E for some E > 0, leading to
the relations (1.8) and (1.10).

We choose bn := 1 in (5.1) and impose Cauchy data on x ∈ (0, π), y = 0. For
the lateral boundaries we will consider two cases. First the one above where Cauchy
data are imposed on the lower boundary only (case 1). Then we consider the case
where Cauchy boundary conditions are imposed also on x = 0 and x = π, y ∈ (0, 1)
(case 2). That is, on x = 0 we impose u = 0, ∇u(0, y) · n = −bn sinh(ny), and, on
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Fig. 1. Left: example of computational mesh, Right: carpet plot of exact solution for n = 5.

x = π, ∇u(π, y) · n = bn cos(nπ) sinh(ny) (case 2). Then the boundary conditions are
unknown only on y = 1.

With these data we then solve the resulting Cauchy problem (1.1). We study the
error in the relative (semi)norms,

|u− uh|Hs(ωi)
|u|Hs(ωi

, i = 1, 2, s = 0, 1,

where ω1 = Ω and ω2 = (0.2∗π, 0.8∗π)×(0, 1/2). In the graphics below, errors in the
L2-norm will be marked with circle markers “◦” and the error in the relative H1-semi-
norm with square markers “�.” The case i = 1 will be indicated with filled markers,
whereas the markers for i = 2 are not filled. All computations below were performed
using the package FreeFEM++ [31]. We implemented the formulation (2.23) with the
spaces k = 1, 2, l = m = k − 1, resulting in an inf-sup stable method that only needs
a Tikhonov-type term in the case k = 2. We considered increasingly oscillating data
with ψ = ψn, n = 1, and n = 5. To set the regularization parameter γT we performed
a series of computations on a mesh with 240×80 elements and unperturbed data. We
then chose the first γT for which the influence of the regularizing term was visible in
the form of increasing error. The resulting parameter was 10−4 for k = 2. Observe
that for k = 1 the regularization can be set to zero and we therefore used the same
regularization for k = 1 and k = 2. To minimize the influence of the mesh structure
we used Union Jack meshes, an example is given in Figure 1 (left panel). We used
the iterative method of section 4 to solve the linear system and obtained convergence
to 10−6 on the L2-norm of the increment after less than five iterations in all cases.
The reduced system was solved using a direct solver.

5.1. Case 1 (unperturbed data). In Figure 2 we show errors plotted against
mesh size of computations performed on a sequence of structured meshes for the
configuration of case 1. In the left graphic n = 1, k = 1 was used, in the middle graphic
n = 1, k = 2 was used, and in the rightmost graphic we present the results for n = 5,
k = 2. The case n = 5, k = 1 is not reported, since on the meshes considered no error
quantity was below 45%. In all cases the global errors have very poor convergence,
possibly only logarithmic as predicted by (1.10) of Theorem 3.1, or at best O(h

1
2 ). In

the left panel (n = 1, k = 1) we observe a convergence of approximately O(h0.65) (on
the final refinement) for the local L2 and H1 errors, corresponding to τ = 0.65 in (3.5)
of Theorem 3.1. In the middle graphic (n = 1, k = 2) we see that the use of higher

order approximation spaces yields a convergence order of approximately O(h
3
2 ) which
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Fig. 2. Relative error against mesh size. From left to right: (n = 1, k = 1), (n = 1, k = 2), and
(n = 5, k = 5). Square markers indicate H1-seminorm errors, circle markers indicate L2-errors,
filled markers indicate global errors, and not filled markers indicate local errors. Reference lines:
double dash double dot y = O(h0.5), dotted line y = O(h), dash double dot y = O(h1.5), and dashed
dot y = O(h3).
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0.00001
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10
-7
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0.001
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0.0001

0.001
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Fig. 3. Relative error against mesh size. From left to right: (n = 1, k = 1), (n = 1, k = 2), and
(n = 5, k = 5). Square markers indicate H1-seminorm errors, circle markers indicate L2-errors,
filled markers indicate global errors, and not filled markers indicate local errors. Dotted reference
lines: y = O(h), dashed y = O(h2), and dashed dot y = O(h3).

is slightly more than is predicted by Theorem 3.1, O(hτk) = O(h1.3), if τ = 0.65.
Also in this case the H1 and L2-norms have similar performances. Finally in the
right graphics (n = 5, k = 2) we observe superconvergence of the local quantities
on the initial refinement levels. Observe the scale on the y-axis compared with the
computations for n = 1. Indeed this more difficult case produces relative errors that
are larger by several orders of magnitude. In the last refinement the order of reduction
in the local H1-error appears to be O(h) and that in the local L2-error O(h

3
2 ).

5.2. Case 2 (unperturbed data). In Figure 3 we show errors plotted against
mesh size of computations performed on a sequence of structured meshes for the
configuration of case 2. In the left graphic n = 1, k = 1 was used, in the middle
graphic n = 1, k = 2 was used, and in the rightmost graphic we present the results
for n = 5, k = 2. The case n = 5, k = 1 is not reported, since on the meshes
considerd no error quantity was below 25%. The stabilizing effect of the larger Σ-
boundary domain compared to that of case 1 is clearly visible. We see that when
n = 1 the H1 and L2 errors converge with the optimal orders O(hk) and O(hk+1),
respectively, both for local and for global quantities. For n = 5, k = 2, we are
clearly in the preasymptotic regime (note the scale on the y-axis). All quantities
here yield similar relative errors and all converge with the rate h3. On the finest
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Fig. 4. Relative error against mesh size. Neumann data with 4% random perturbation. Per-
turbed quantities plotted with dashed lines. Left: case 1 (k = 1, n = 1). Middle: case 1 (k = 2, n = 1).
Right: case 2 (k = 2, n = 1).

meshes in the middle plot we see that the error grows in the last two refinements.
This is attributed to the amplification of roundoff errors. Clearly there is a strong
“pollution” effect of the Cauchy problem when the exact solution has oscillations. In
neither configuration does the low order method return acceptable approximations
for the case n = 5. It appears that, similarly as for the Helmholtz equation, using a
higher order approximation leads to a method that is more robust in handling this
phenomenon.

6. Data with random perturbations. In Figure 4 we consider a similar com-
putation with perturbed data. Instead of ψ we here use ψ̃ = (1 + δurand)ψn. Here
urand is a finite element function where each degree of freedom has been set randomly
to a value in [0, 1] and δ = 0.04. Curves associated with perturbed data are dashed
with markers similar to the unperturbed case. In the left plot we give the conver-
gence for case 1 with n = 1 and k = 1. We only give the result for the local L2-error
(the other quantities had similar or lower error growth) and compare the perturbed
and unperturbed results. We observe that the maximum growth of the error under
refinement is approximately O(h−0.2) (indicated by the solid line without markers),
to be compared with the predicted O(h−0.35) of Theorem 3.1. In the middle plot we
consider case 1 with n = 1, k = 2. We observe that under perturbations of data the
error in the local L2-norm is comparable to that of the piecewise linear case. The
local quantites have a similar behavior to the case k = 1, whereas the global error
quantities here exhibit strong error growth under refinement. The solid line without
markers illustrates O(h−

3
2 ) growth. Since the unperturbed global errors have an error

reduction of approximately O(h
1
2 ) (cf. dash dash dot dot reference line), the maxi-

mum loss of O(h−2) predicted by theory is realized here. The local errors exhibit
stagnation, or moderate growth under refinement, indicating a loss of approximately
O(h−

3
2 ), which is slightly better than predicted by theory. In the right plot we con-

sider case 2 with k = 2 and n = 5. Here we first see a reduction of the error similar to
that for unperturbed data, indicating that the discretization error initially is larger
than the perturbation error. Then the error in all quantities grow, with a maximum
growth of O(h−1) (indicated by solid line without markers), before stagnating. The
growth for the local L2-error is slightly lower.

Finally we observe that in formula (3.6) the L2-norm of the noise on ψ, ‖δψ‖Σ
is balanced by h−k (when ζ = 1). It follows that (3.5) should hold independent of
the perturbation provided ‖δψ‖Σ(h) = O(hk). We investigate this in two problems
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Fig. 5. Relative error against mesh size. All curves represent local L2-errors, with different
strength of perturbations in data. The full lines represent unperturbed data. Left: (n = 1, k = 1),
‖δψ‖Σ = O(hs), dashed line s = 1/2, dash dotted line s = 1. Right: (k = 2, n = 5), ‖δψ‖Σ = O(hs),
dashed line s = 1, dash dotted line s = 2.

in Figure 5. In the left graphic we revisit the case 1 with n = 1 and k = 1; in this
case the perturbed data were chosen to be ψ̃ = ψ1 + δupertψ5 with δ = δ0h

s. The
constant factor δ0 was chosen to minimize the difference in the error on the coarsest
mesh. The full line is the curve of the local L2-error in the unperturbed case. The
dash-dot line (with markers) corresponds to s = 1. In this case the perturbed data
first cause stagnation, but do not seem to affect convergence on finer meshes, as
predicted by theory. The upper, dashed, curve corresponds to s = 1/2; here we see
that convergence is strongly affected. First the error grows (upper dash-dot line with
no markers O(h−0.5)) but appears to stagnate on finer meshes, also in accordance

with (3.6). It follows that the convergence was affected by the O(h
1
2 ) perturbation,

but not by the O(h) perturbation implying that (3.6) is sharp. In the right graphic we
consider case 2, with n = 5 and k = 2. A perturbation of order δ = δ0h

s, s = 1, 2, is
added to the Neumann data, ψ̃ = (1+δupert)ψ5. The case s = 1 is represented by the
dashed line and s = 2 by the dash dotted line. We see that the curve correpsonding
to s = 2 coincides with that of the unperturbed solution whereas that in the curve
for which s = 1 the perturbation clearly has influenced the order of convergence. We
conclude that for both these cases the exponent of the perturbation growth in (3.6)
is reasonably sharp.

7. Conclusion. We have derived error estimates for a primal-dual mixed finite
element method applied to the elliptic Cauchy problem. The results are optimal with
respect to the approximation orders of the finite element spaces and the stability of the
ill-posed problem. The effect of perturbations in data are quantified in the estimates
and shown to be sharp in numerical examples.

Introducing a special dual stabilizer we reduce the scheme to a least squares
mixed method for which the number of degrees of freedom is significantly smaller,
the system matrix is symmetric, but the exact local flux conservation is lost. This
method satisfies similar estimates, but the results require slightly more regularity of
the source term and have slightly worse sensitivity to perturbed data. We then showed
that the reduced method can be used in an iterative method to solve the full primal-
dual formulation, thus recovering local conservation. The estimates show that if the
exact solution is smooth the use of high order approximation can pay off. However the
amplification of perturbations in data is also stronger with increased approximation
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order. In numerical experiments we observed the enhanced convergence for high
order approximation and also a strong effect from the configuration of Σ on the
problem stability. Indeed if only a small portion of the boundary has unknown data
we recover similar convergence orders as for a well-posed problem. The increased
accuracy obtained from the high order approximation is particularly important for
problems where the exact solution has strong oscillations (n = 5 above). Here in
particular it is more important than the increased sensitivity to perturbations and
high order approximation clearly pays off, but this is expected to be the case in
general for problems where perturbations are known to be small. Finally we point
out the method presented herein also can be applied to inverse problems subject to
the Helmholtz equation, such as those discussed in [19] or the convection-diffusion
equation, as recently discussed in [20, 17].

Appendix. Here we will show how to construct the function ϕ satisfying (3.2)–
(3.3). Let λmin(A) and λmax(A) denote the smallest and largest eigenvalues of the
matrix A. Assume, without loss of generality, that no F̃ has a corner of the domain
through its interior. For a patch F̃ let NF̃ denote the set of elements with one face

entirely in F̃ , i.e., not touching the boundary of F̃ . Let NP̃ be the union of the
elements NF̃ and their interior neighbors, that is, any element K such that K∩Σ = ∅
and K ∩ K ′ 6= ∅ for some K ′ ∈ NF̃ . We also introduce the set N∂F̃ of elements in

NF̃ with a neighbor that intersects ∂F̃ . We define the patch P̃ := ∪K∈NP̃ . Now let

ϕ̃ ∈ V 1
0 such that ϕ̃|∂P̃ = 0 and ϕ̃(xP ) = 1 for any interior vertex xP in P̃ . It follows

that ‖∇ϕ̃‖2
P̃
. hd−2. We will first prove, using shape regularity and the properties of

A, that provided diam(F̃ )/h is large enough (but independent of h) there exists c0,
independent of h, such that

(7.1) c0h
−1 ≤ measd−1(F̃ )−1

∫
F̃

A∇ϕ̃ · ν ds =: Θ(A, ϕ̃).

Here we used that, for any element in NF̃ \ N∂F̃ , A∇ϕ̃ · ν ≥ λmin(A)|∇ϕ̃| with

h−1 . |∇ϕ̃| on the face intersecting F̃ :∫
F̃

A∇ϕ̃ · ν ds =
∑

K∈N∂F̃

∫
∂K∩F̃

A∇ϕ̃ · ν ds+
∑

K∈NF̃ \N∂F̃

∫
∂K∩F̃

A∇ϕ̃ · ν ds

≥ −
∑

K∈N∂F̃

λmax(A)cmaxh
−1hd−1 +

∑
K∈NF̃ \N∂F̃

λmin(A)cminh
−1hd−1,

where cmin and cmax only depend on the shape regularity of the elements. Observing
that card(N∂F̃ ) = O(h2−d) and card(NNF̃ \N∂F̃ ) = O(h1−d) we see that the second

sum dominates the first for diam(F̃ )/h large enough. This concludes the proof of
(7.1).

Define ϕF̃ := ϕ̃/Θ(A, ϕ̃). By construction∫
F̃

A∇ϕF̃ · ν ds = measd−1(F̃ ).

Consider now the H1-seminorm of ϕF̃ on P̃ ,

(7.2) ‖∇ϕF̃ ‖P̃ = ‖∇ϕ̃‖P̃ /(c0h
−1)2 . (hd−2/(c0h

−1)2)−
1
2 . h

d
2 .

Using a Poincaré inequality we have ‖ϕF̃ ‖P̃ . h‖∇ϕF̃ ‖P̃ which together with (7.2)
yields the desired bound (3.3).
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