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Abstract. The relaxation of a system to a steady state is a central point of interest in many
attempts to advance control over the quantum world. In this paper, we consider control through
instantaneous Gaussian unitary operations on the ubiquitous lossy channel, and find locally
optimal conditions for the cooling and heating of a multimode Gaussian state subject to losses
and possibly thermal noise. This is done by isolating the parameters that encode entropy and
temperature and by deriving an equation for their evolution. This equation is in such a form that
it grants clear insight into how relaxation may be helped by instantaneous quantum control. It
is thus shown that squeezing is a crucial element in optimising the rate of change of entropic
properties under these channels. Exact relaxation times for heating and cooling are derived, up
to an arbitrarily small distance from the fixed point of the lossy channel with locally optimal
strategies. Keywords: Gaussian states, coherent control, open quantum systems
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1. Introduction

As quantum technologies advance, it has become increasingly important to understand the
dynamics of a system interacting with its environment. It is hoped that increased insight
into such setups will provide a more realistic notion of how to control and exploit quantum
behaviours. As well as considering the impact of the environment, one would also like
to allow for an external controller who may influence the evolution of the state of the
system. This beckons the introduction of open-loop quantum control theory, which is a
mathematical framework exploring how time-varying Hamiltonians drive dynamics in the
absence of feedback. Exploring these together in a particular scenario is the topic of this
study.

Quantum control theory of closed systems is a highly active area of research [1, 2, 3, 4, 5]
with its roots in the older field of mathematical control theory [6, 7, 8, 9]. Its introduction
to open systems has taken place in different contexts, including multilevel discrete systems
[10], systems with closed ‘feedback’ control [11], dissipating qubits [12] and in a drive to
understand ‘quantum speed limits’ [13]. The current paper explores open system control
theory for continuous variable quantum mechanics, and specifically for the class of Gaussian
states. These are ubiquitous in physics and serve as a good model for electromagnetic
radiation [14, 15, 16], optomechanical systems [17], trapped ions [18] and mesoscopic
massive systems seeking the ‘gravitational quantum regime’ [19, 20]. They are fundamental
in the study of continuous variable quantum information due to the ease with which they can
be described, and also the natural way in which noise may be introduced into the dynamical
equations. The evolution of Gaussian states in dissipative quantum channels has been explored
before and it is this literature that we build upon [21, 22].

If one models the environment as an infinite thermal bath coupled to the system through
a beam-splitter Hamiltonian, then the channel is known as lossy [23]. Lossy evolutions
can be described as either ‘heating’ or ‘cooling’, depending on whether the environment
has a higher or lower entropy than the initial state of the system. Here we consider the
case of n non-interacting bosonic modes, each coupled with a bosonic thermal environment
with the same temperature, undergoing such a lossy evolution. We then ask for the locally
optimal, open-loop control strategy to minimise the relaxation time to the steady state. In
other words, we wish to maximise the rate of change of the entropy toward the fixed point
of the dynamics. Control is considered in the idealised regime where only instantaneous
transformations which act impulsively on the system are allowed, in particular we restrict the
analysis to (possibly non-local) unitaries that are Gaussian preserving. The restriction to finite,
instantaneous controls (corresponding to control Hamiltonians proportional to delta functions
in time) is not a completely wild abstraction since experimental set-ups certainly exist where
a unitary manipulation will typically take nanoseconds, or tens of nanoseconds, while the
decoherence rates are in the order of 10− 103 kHz, so that the former may fairly be regarded
as instantaneous with respect to the time-scales on which the noise acts. In what follows, we
also disregard the possibility of any feedback on the quantum system. Let us anticipate that,
in the absence of specific constraints, the non-compact nature of the symplectic group allows
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for an arbitrarily high amount of squeezing to occur in these control operations. To make the
analysis more realistic and reduce infinities, this will be capped.

A central result of this study is showing that squeezing is the main parameter of interest
in the analysis of heating and cooling dynamics. A highly squeezed state is locally optimal
for minimising the relaxation time in a heating channel. Interestingly, squeezing can also
be used to drive the state away from the fixed point of a cooling channel. Conversely,
undoing the squeezing is shown to be locally optimal for cooling strategies, which is a point of
experimental interest. The minimum time it takes to reach the fixed point of the channel within
an arbitrarily small distance is derived in both cases. The analysis rests on the derivation of a
compact equation for the evolution of entropic quantities – Eq. (24) – whose variations might
also be applicable to the evolution of entanglement of Gaussian states under lossy channels,
as discussed in the conclusion.

2. Gaussian states

We begin with an outline of Gaussian states, referring to the introductions given in
Refs. [14, 24].

Let r̂ = (x̂1, p̂1, . . . , x̂n, p̂n)ᵀ be a vector of canonical operators such that [x̂j, p̂j] = iδjk,
where δjk is the Kronecker delta function. From this we find that [r̂, r̂ᵀ] = iΩ where

Ω =
n⊕
i=1

(
0 1

−1 0

)
. (1)

Quadratic Hamiltonians are defined as those that can be written as Ĥ = 1
2
r̂ᵀH r̂ + r̂ᵀa where

H is a 2n × 2n, real, symmetric matrix and a is a vector of real numbers. The set of
Gaussian states can be defined as the ground and thermal states of positive definite quadratic
Hamiltonians:

ρ̂G =
e−βĤ

Tr[e−βĤ ]
, (2)

where β is the inverse temperature of the state (we set Boltzmann’s constant kB = 1). Such
states are referred to as Gaussian due to their Wigner representation which takes a Gaussian
form. The Wigner representation immediately suggests that such states should be totally
specified by their first and second moments, defined respectively as

d = Tr[r̂ρ̂G], (3)

σ = Tr[{(r̂− d), (r̂− d)ᵀ}ρ̂G]. (4)

σ is the 2n×2n covariance matrix of the Gaussian state and {·, ·} denotes the anticommutator.
Evolution under quadratic Hamiltonians transforms Gaussian states into Gaussian states.

The second moment encodes all entropic and entanglement properties and so we restrict our
attention, here and in the rest of the paper, to ignore the first moments. In this case it is possible
to consider d = 0 in both the state and the quadratic Hamiltonian transformation. Once this is
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done the transformations generated by the remaining Hamiltonians, and their combinations,
form the symplectic group Sp(2n,R). This is the set of 2n× 2n matrices S such that

SΩSᵀ = Ω. (5)

Covariance matrices transform under a finite dimensional representation of the symplectic
group by conjugation,

σ → SσSᵀ. (6)

3. Open Diffusive dynamics

The details of Markovian evolution for Gaussian states are presented in Refs. [14, 22] where,
following a standard approach in quantum optics, the weak coupling to an infinite bath is
replaced with the coupling to a finite number of continuously refreshed environmental modes.
This coupling is provided by the Hamiltonian,

HC =

(
0 C

Cᵀ 0

)
. (7)

The evolution of the Gaussian state has a representation in terms of the associated covariance
matrix which takes the form

σ̇ = Aσ + σAᵀ +D, (8)

where
A =

1

2
ΩCΩCᵀ and D = ΩCσBC

ᵀΩᵀ, (9)

with σB denoting the bath covariance matrix.
Lossy channels occur by setting the coupling Hamiltonian to induce a swapping of field

excitations between the system and the bath. We focus on the case of n non-interacting
bosonic modes, each coupled with a bosonic thermal environment via an individual exchange
Hamiltonian of the form:

ĤC =
√
η(âb̂† + â†b̂), (10)

where â denotes the annihilation operator of the system and b̂ the annihilation operator of
the bath mode. This is equivalent to setting C =

√
ηΩ which in turn sets A = −ηI/2 and

D = ησB. We set the state of the bath as σB = χI where χ = 2N̄ + 1 and N̄ is the average
photon number in each bath mode. We assume that the n thermal baths have the same N̄ ,
i.e. the same temperature. Rescaling the time parameter by η, the relaxation rate of the lossy
channel, we arrive at

σ̇ = −σ + χI, (11)

which represents the free, lossy evolution of the Gaussian state with solution

σ = χI + (σ(0)− χI)e−t. (12)

Eq. (11) will be used extensively in the rest of the paper as we explore the evolution of some
important parameters of σ.
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4. Symplectic invariants

An n-mode covariance matrix has n(2n + 1) free parameters that compose its information
content. n of these parameters have the special status of being invariant under symplectic
transformations and so play a unique role in describing the state. These symplectic invariants
are important in that they encode the entropy of the state, relating to its temperature and
mode frequency [25, 26]. We will explore two different ways of representing these invariants
allowing the derivation of a new equation from Eq. (11) that isolates their evolution. This
analysis will clear the route to an understanding of entropy evolution and will provide a
platform on which to introduce control.

There is no unique way to define the symplectic invariants but the collection most
commonly considered is the set of symplectic eigenvalues, expressible through Williamson’s
theorem [24, 27]. This states that any 2n-dimensional, real, symmetric, positive-definite
matrix, for instance σ, may be decomposed as

σ = SWSᵀ, (13)

where

W =
n⊕
i=1

νiI2, (14)

and I2 is the 2× 2 identity matrix, W > 0 and S ∈ Sp(2n,R). The elements of W are unique
up to reordering. Furthermore the uncertainty principle on σ ensures that νi ≥ 1 [24]. The
parameters νi are the symplectic eigenvalues which can also be calculated as moduli of the
eigenvalues of Ωσ.

Any function of symplectic invariants is also a symplectic invariant. Consider the kth
elementary symmetric function of the eigenvalues λi of some m × m matrix X , defined as
[28]

ϑk[X] :=
∑
E∈Emk

∏
j∈E

λj, (15)

where the sum runs over all the possible k-subsets E ∈ Emk of the first m natural integers.
More explicitly,

E ∈ Emk ⊂ P (Nm) iff |E| = k, (16)

where Nm = {1, . . . ,m}, P (·) denotes the power set and we put ϑ0[X] := 1. As an example,
for a matrix X with eigenvalues {λ1, λ2, λ3, λ4},

ϑ3[X] = λ1λ2λ3 + λ1λ3λ4 + λ1λ2λ4 + λ2λ3λ4. (17)

Following Ref. [29] this allows for the definition of a new set of symplectic invariants of
σ, given by ϑ2k[Ωσ] and related to the symplectic eigenvalues via

ϑ2k[Ωσ] =
∑
E∈Enk

∏
j∈E

ν2
j . (18)
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The elementary symmetric functions of odd order vanish in this case because of the alternating
signs of the eigenvalues of Ωσ. Both the set of symplectic eigenvalues and this new set contain
the entropic information of the state.

To further our analysis of these new invariants we recall some basic linear algebra [28].
Consider an m ×m matrix X and delete the same m − r rows and columns. The remaining
r × r submatrix is known as a principal submatrix of X . The determinant of a principal
submatrix is known as a principal minor. Given the characteristic polynomial

∑m
k=0 ckλ

m−k

of X , where c0 = 1, we have that

ck[X] = (−1)k
∑

(all k × k principal minors),

ϑk[X] =
∑

(all k × k principal minors).
(19)

Noting that c2k[X] ≡ ϑ2k[X] we see that the study of principal minors and characteristic
polynomial coefficients gives a new way to express and understand the symplectic invariants
of a covariance matrix. In fact there is a way to recursively generate ck[X] using Fadeev-Le
Verrier recursion.

Theorem 1 (Fadeev-Le Verrier recursion [30, 31, 32]). LetX be anm×m real matrix. Let its
characteristic polynomial be written det(X − λI) =

∑m
k=0 ckλ

m−k with c0 = 1. It is possible
to calculate the coefficients of the polynomial via the recursive formula,

ck[X] = −1

k

k−1∑
i=0

Tr[Xk−i]ci[X]. (20)

This recursive generation of ck[X] will be the guide to stripping Eq. (11) to only consider
the evolution of the invariants. Before stating this evolution equation it is necessary to spend
a little more time on notation, defining

ϑ̄i2k[Ωσ] :=
∑
E∈En,i

k

∏
j∈E

ν2
j , (21)

where
E ∈ En,ik ⊂ P (Nn \ {i}) iff |E| = k. (22)

This new object acts as a sort of reduced ϑ2k[Ωσ] where we remove the terms involving the ith
symplectic eigenvalue. Again we define ϑ̄i0[Ωσ] := 1. To illustrate this new function consider
some covariance matrix σ with symplectic eigenvalues {ν1, ν2, ν3, ν4}. Here, we would have

ϑ̄2
4[Ωσ] = ν2

1ν
2
3 + ν2

1ν
2
4 + ν2

3ν
2
4 . (23)

Using Fadeev-Le Verrier recursion to express the characteristic polynomial coefficients
and their link to symplectic eigenvalues we are able to derive an evolution equation for these
invariants under the open diffusive dynamical equation, Eq. (11).

Theorem 2. For σ evolving under σ̇ = −σ + χI, the evolution of the symplectic invariants,
defined by ϑ2k[Ωσ], obeys

ϑ̇2k[Ωσ] = −2kϑ2k[Ωσ] + χTr[SVkS
ᵀ], (24)
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where σ = SWSᵀ by the Williamson decomposition and

Vk =
n⊕
i=1

(
νiϑ̄

i
2(k−1)[Ωσ]

)
I2. (25)

Proof See Appendix A.

Eq. (24) directly reveals the evolution of the n invariants under Eq. (11), meaning that
we are able to focus on the parameters that interest us and ignoring the 2n2 remaining ones.

Open loop control refers to the enactment of predetermined operations without feedback
on a quantum state, which would typically be unitary. The importance of the symplectic
group is that it is the Gaussian analogue of the unitary group, in that the elements do not
alter the entropic, or Gaussian, properties of the state. We consider symplectic control acting
instantaneously at a given time in the evolution, allowing the alteration of S on the right hand
side of Eq. (24). Notice that this represents an impulsive action altering the state by a finite
amount at a certain time and not a term generated by a Hamiltonian proportional to a step
function in time (the S in Eq. (24) is a time-dependent property of the evolving state). This is
with the aim of optimising the rate of the change of ϑ2k, where the argument of ϑ2k is assumed
to be Ωσ unless otherwise stated.

Note that S is defined via the Williamson decomposition of σ and so both terms on the
right hand side of Eq. (24) could be affected by its alteration. The first term, however, is
a symplectic invariant and so no amount of manipulation will alter its value. However, the
second term does vary with S and so if, at a given point in the evolution, we alter it then this
term will change. Maximising or minimising the value of the trace term is therefore the route
towards locally optimising the rate of change of ϑ2k. In Sec. 5 we find that this optimisation
will allow for the study of decoupled dynamics where each mode evolves independently. This
drastically simplifies the analysis and allows for the optimal relaxation times for heating and
cooling. We will show that squeezing is the key parameter that alters this term in Eq. (24).

Notice also that all possible initial Gaussian states are allowed in our treatment, since all
physical covariance matrices admit a Williamson decomposition in terms of some symplectic
S.

5. Heating and cooling

Eq. (24) shows that varying S to alter the trace term is the required action to optimise the
rate of change of ϑ2k. First we derive the symplectic matrix that will maximise or minimise
this term and then we turn our attention to the dynamics that this optimisation invokes. This
latter analysis will provide locally optimal heating and cooling times for the evolution of the
channel under symplectic control.

5.1. Trace optimisation

To explore the optimisation of the trace term in Eq. (24) we first require an understanding
of the singular value decomposition of symplectic matrices. Any symplectic matrix may
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be decomposed as S = R1ZR2 where R1, R2 ∈ OSp(2n,R) = O(2n) ∩ Sp(2n,R)

and Z = diag(z1, 1/z1, . . . zn, 1/zn). The elements of OSp(2n,R) correspond to ‘passive’
elements in the lab such as phase shifters and beam splitters. The Z component encodes the
squeezing element of the transformation. Any symplectic that is singular value decomposed
such thatZ 6= I is referred to as ‘active’. Using this decomposition will allow us to deconstruct
and understand the trace term of Eq. (24).

For generality and brevity of notation we will consider a trace term of the form Tr[SY Sᵀ]

where Y =
⊕n

i=1 yiI2, with yi positive, and S ∈ Sp(2n,R). Note that the elements of Z are
unbounded and closely related to the energy required to enact the operation. Therefore the full
optimisation will be done over the set Sp(2n,R), defined as the restriction of the symplectic
group to elements with maximum singular value zi for each mode. This encapsulates the
reasonable assumption that the energy that may be employed in each mode, rather than the
sum of the energies, is bounded.

Proposition 1. The supremum of the trace term over the set Sp(2n,R) is given by

sup
S∈Sp(2n,R)

Tr[SY Sᵀ] =
n∑
i=1

2ζ+
z̄i
yi, (26)

where ζ±z := z2±1/z2

2
, z̄i is the maximum local squeezing allowed on mode i, ordered such that

z̄1 ≥ . . . z̄n, and y1 ≥ . . . ≥ yn. The infimum is given by Tr[Y ].

Proof The singular value decomposition provides

Tr[SY Sᵀ] = Tr[R1ZR2Y R
ᵀ
2ZR

T
1 ]

= Tr[Z2R2Y R
ᵀ
2].

(27)

It is possible to change to a basis in which the symplectic form becomes Ω →

(
0n In
−In 0n

)
,

where 0n denotes the n× n zero matrix and In the n× n identity matrix. This is a commonly
used basis in Gaussian state theory and is enacted with

Pkl =

{
1, k ≤ n, l = 2k − 1,

1, k > n, l = 2(k − n)
(28)

acting by similarity on the components of the trace term [16]. After enacting this we will then
consider a further similarity transformation with

Q =
1√
2

(
In iIn
In −iIn

)
. (29)

This transforms symplectics into a basis which highlights the isomorphism between
OSp(2n,R) and U(n), as will become clear. Acting on each matrix in the trace by P and
then Q we find that the transformation of Z2 gives

Z2′ := (QP )Z2(QP )−1 =

(
Γ+ Γ−

Γ− Γ+

)
, (30)
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where Γ±(z) := diag(ζ±z1 , . . . , ζ
±
zn). Y transforms as

Y ′ := (QP )Y (QP )−1 =

(
Υ 0n
0n Υ

)
, (31)

where Υ = diag(y1, . . . , yn) and R2 transforms as

R′2 := (QP )R2(QP )−1 =

(
U∗ 0n
0n U

)
,

Rᵀ′
2 := (QP )Rᵀ

2(QP )−1 =

(
Uᵀ 0n
0n U∗ᵀ

)
,

(32)

where U is some general unitary matrix. Note that ∗ here denote the complex and not the
Hermitian conjugate. Altogether

Tr[Z2R2Y R
ᵀ
2] = Tr[Z2′R′2Y

′Rᵀ′
2 ] = Tr[Γ+U∗ΥUᵀ] + Tr[Γ+UΥU∗ᵀ] = 2αᵀPβ , (33)

where α(z) is a vector of the diagonal elements of Γ+(z) and β is a vector of the diagonal
elements of Υ. Pij = |Uij|2 making it a general unistochastic matrix, which is a subset of the
bistochastic matrices [33]. Bistochastic matrices are those that have have non-negative entries
and whose rows and columns sum to 1. It will suffice to show that, for the supremum case (at
z fixed),

sup
Xbistochastic

αᵀXβ = α↓ᵀβ↓. (34)

and for the infimum case that

inf
Xbistochastic

αᵀXβ = α↑ᵀβ↓. (35)

because all permutations matrices are unistochastic [33]. Note that ↓ refers to rewriting the
elements of the vector in descending order and the reverse for ↑. This is shown in Ref. [34]
and the proof is reproduced in Appendix B. In the supremum case we further have to take the
maximum over zi which is set at z̄i. Similarly, the infimum taken over zi is zi = 1. These two
situations provide the final result stated in Eq. (26).

Thus we see that the maximisation of the trace term is found by setting S = Z̄ =

diag(z̄1, 1/z̄1, . . . z̄n, 1/z̄n) for the maximum squeezing value. The minimum is obtained by
setting S = I. Note that neither of these provide the unique maximum or minimum. We
could just as well maximise by setting S = RZ̄ for some R ∈ OSp(2n,R) and Z̄ maximum.
Minimisation will occur for any S = R. Proposition 1 shows that the instantaneous control
must either squeeze or unsqueeze depending on the desired effect.

5.2. Two-mode example

Let us now apply our findings to the iconic case of an initial two-mode squeezed state, such
as the output of a degenerate parametric down conversion process, or the state that would
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result by driving an optomechanical set-up on a blue sideband, characterised by the following
covariance matrix [14, 16]:

σ = γ


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 , (36)

with γ ≥ 1. The parameter γ allows us to range from pure states (for γ = 1) to mixed states,
with entropy growing for increasing γ. The parameter r is sometimes referred to as the ‘two-
mode squeezing parameter’ and, in a sense, quantifies the correlations between the two modes
in this class of states. In practice, r is determined by the strength of parametric interaction
between the two modes and by the interaction time, if one assumes the state to be generated
unitarily from the vacuum. In the following, we will assume the realistic value r = 0.4.

To fix ideas, let us consider in what follows a loss rate of 100 KHz, and a χ parameter
equal to 1.000013, corresponding to the thermal noise at room temperature experienced by a
mode of visible radiation at 450 THz (a noisier situation could be construed but, as we shall
see, this typical optical circumstances will suffice to illustrate our methods). For simplicity,
we will quantify the evolution of the entropy of the relaxing states %t through their purity
µ = Tr[%2

t ] which, for Gaussian states, turns out to be a function of the invariant ϑ4[Ωσ] alone
(which is just the determinant of σ): µ = 1/

√
ϑ4[Ωσ] [14]. The steady-state purity with

parameters set as above is 0.99997.
The analytic optimisation expressed by Theorem 2 and Proposition 1 may now be

applied to compare the uncontrolled lossy relaxation of the initial states given above with
the relaxation of optimally adjusted states under instantaneous, symplectic control.

In the case of cooling, for γ = 2 (such that the purity of the initial state is 0.25), the
optimal strategy to speed up relaxation is to undo the two-mode squeezing operation and let
the vacuum state evolve through the channel. This allows one to attain a purity of 0.9 after
30 µs, as opposed to the 35 µs required by the uncontrolled evolution; similarly, a purity of
0.99 is reached after 53 µs, as opposed to the 59 µs of the uncontrolled evolution (clearly, the
asymptotic purity is never perfectly reached, so one must resort to thresholds).

Let us now turn our attention to heating by setting γ = 1 (perfectly pure initial state).
Then, the fastest relaxation strategy would be to undo the two-mode squeezing of the initial
state and apply maximum single-mode squeezing, as per Theorem 2 and Proposition 1. In
order to avoid the introduction of arbitrary maximum squeezing parameters (that would, in a
lab, be dictated by specific technical constraints), let us just contrast the uncontrolled evolution
of the initial pure two-mode squeezed state with the evolution of an initial vacuum state,
obtained by unitarily undoing the initial two-mode squeezing: This will provide us with a
spectacular demonstration of the effect of squeezing on relaxation dynamics. In mathematical
terms, the difference between the two cases is captured by the trace term in Eq. (24), for n = 2

and k = 2, which corresponds to the evolution of the determinant of a two-mode covariance
matrix. In the case of heating, relaxation is hastened by an increase in the trace term: hence,
whilst an initial vacuum state takes about 40 µs to relax (to the significant digits reported
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above), the initial two-mode squeezed state takes as little as 4× 10−4 µs! It can be shown that
an instantaneous symplectic applied at this point would then be capable of stabilising not only
the purity, but the whole covariance matrix (and hence the state) to the steady-state values.
Such a symplectic is the one that enacts the Williamson decomposition of the covariance
matrix and can be efficiently evaluated with standard methods. To give a quantitative idea of
the effect of such control on the fly, let us add that the determinant of the initial two-mode
squeezed state would, without it, overshoot the asymptotic determinant after 4 × 10−4 µs,
reach a maximum (corresponding, in this instance, to a minimum purity of 0.855633 at 7 µs),
and then readjust to the steady state after a total time of about 140 µs.

5.3. Decoupling

Proposition 1, in conjunction with Eq. (24), allows us to understand the dynamics of ϑ2k when
S is controlled to be optimal at a given moment of time. In the optimal limit, either maximal
or minimal, the value of S must be either Z̄ or I. Using Williamson’s theorem, as stated
earlier, Eq. (11) may be rewritten as

d(SWSᵀ)

dt
= −SWSᵀ + χI. (37)

If we enact a control to set S = Z or S = I at a given time then this equation will decouple
so that it suffices to consider single mode evolution, as explored in Ref. [21]. For the single
mode case Eq. (24) becomes

ϑ̇2 = −2ϑ2 + 2χζ+
zi
νi, (38)

where νi refers to the symplectic eigenvalue of the decoupled mode i, zi is its squeezing value
obtained from the singular value decomposition and ζ+

zi
is defined in Proposition 1. Note

that in the optimal maximal limit zi → zi and in the minimal limit zi = 1. We may talk
about maximising or minimising the rate of change of ϑ2 by considering different limits of zi.
Recalling that ϑ2 = ν2

i we see that Eq. (38) is equivalent to

ν̇i + νi − χζ+
zi

= 0, (39)

which has solution
νi(t) = χζ+

zi
+
(
νi0 − χζ+

zi

)
e−t, (40)

where νi0 is the initial value of the decoupled mode νi. The value of νi directly determines
the entropy of the Gaussian state which for a single mode is defined as [35]

κ(νi) :=
νi + 1

2
ln

[
νi + 1

2

]
− νi − 1

2
ln

[
νi − 1

2

]
. (41)

κ monotonically increases with νi and so, for a single mode, νi is a good entropy measure,
being equal to one for pure states and greater than one for mixed states. Gaussian states have
an associated temperature encoded in β, and each mode has an associated mode frequency ωi.
The value of νi depends on the product of these two parameters via [36]

νi =
1 + e−βωi

1− e−βωi
. (42)
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If we fix ωi then νi monotonically increases with the temperature, thus we refer to rising νi as
heating and lowering νi as cooling.

The fixed point of the evolution in Eq. (12) is at νi = χ. The time to reach this point
diverges, hence we must fix a distance within which we are satisfied that we have arrived close
enough to the target. Take this to be

|νi − χ| < ε. (43)

The case νi0 < χ means that the channel is heating. The optimal strategy in this case
is to increase the squeezing of each of the decoupled modes as much as possible. In other
words, we choose zi = z̄i for all modes and the minimum amount of time for all to come
within distance ε of the fixed point is

Theat = sup
νi0,z̄i

ln

[
χζ+

z̄i − νi0
χ(ζ+

z̄i − 1) + ε

]
. (44)

Note that this time is in general finite and goes to zero for large values of z̄i (i.e., ζ+
z̄i large).

Furthermore it is possible to set ε = 0 and so we are able to reach exactly the fixed point in an
infinitesimal amount of time for z̄i →∞ and a finite time for finite z̄i.

The case νi0 > χ means that the channel is cooling. In this case we optimally set zi = 1

for all the decoupled modes. The minimum amount of time to come within distance ε of the
fixed point of the dynamics is

Tcool = sup
νi0

ln

[
νi0 − χ

ε

]
. (45)

Tcool diverges for ε = 0 and so to reach the true fixed point still requires an infinite amount
of time. However, in most cases it suffices to cause the state to come arbitrarily close to
the thermal state of the bath. We see that in order to minimise the time to achieve this it is
necessary to reduce the mode squeezing to zero, explicitly we wish to reduce the squeezing
measure ξ = max eig[SᵀS]−1 to zero. This ‘unsqueezing’ will need to be enacted to optimise
cooling.

As it is shown in Appendix C, our analysis reproduces the results of Ref. [21] for the
special case of an unsqueezed bath and a single mode system. Referring to equations from
Ref. [21] with primes it is easy to show that Theat coincides with T heat

fast (Eq. (67’)) and Tcool

with T cool
fast (Eq. (63’)) provided that ε ' 2

√
χ2 − 1

√
ε′.

Furthermore we note that optimal control can prevent a cooling channel from ever
decreasing the temperature of the state if it is sufficiently, periodically squeezed. This can
be seen by noting that νi increases under Eq. (39) when νi < χζ+

zi
even when νi > χ, as seen

in Fig. 1.
We would like to compare Theat and Tcool with the free relaxation time of the state, in the

absence of control. Computing this for a system of n modes would require solving Eq. (12)
with some analogue of Eq. (43), which is not easy to achieve analytically. Ref. [21], however,
provides results for the relaxation of single-mode Gaussian states and so a comparison can be
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Figure 1. Showing the solution of Eq. (40) for ν0 = 5, χ = 1 and two different values of z,
the initial squeezing value. z = 3 means the entropy always decreases where as a higher level
of squeezing, z = 4 induces an initial increase of entropy.

made in this regime. As shown in Appendix C, the free decoherence time for a single mode
can be written as:

Tfree = ln

[
1

ε

√
(χ− ν0ζ+

z0
)2 + ν2

0(ζ+2
z0
− 1)

(χ2 − 1)

(χ2 + 1)

]
, (46)

where z0 is the initial squeezing of the mode. For the case when a single mode is involved,
therefore, we can draw exactly the same conclusions as in Ref. [21]. In particular, for
vanishing tolerable errors, we get that the advantage of quantum control appears negligible
if the channel is cooling while it allows for an exponential speed-up with respect to the
uncontrolled dynamics for heating channels. This former statement is somehow reminiscent
of the third law of thermodynamics according to which zero temperature is unattainable in
finite time [37]. One can also study a measure of performance of the control procedure for
the worst case scenario of possible initial conditions and obtain the same results discussed in
Ref. [21].

Therefore we see that squeezing and heating are intrinsically related. Squeezing itself
does not affect the temperature of the state but under a lossy channel it is the key factor in
increasing or decreasing its rate of change, here shown for any number of modes.

6. Conclusion and Discussion

The number of degrees of freedom for an n-mode Gaussian state scales polynomially in n.
Therefore when we consider the evolution of such a state it is important that we isolate the
parameters that are most relevant. The information encoded in the n symplectically invariant
parameters allows one to extract the key property of entropy. In this paper we derived an
equation for the evolution of such invariants and calculated the locally optimal rates for
heating and cooling under a lossy channel. We have shown that among the time-optimal
control schemes, one involves decoupling the dynamics into single modes. From here optimal
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cooling and heating come about by respectively unsqueezing and squeezing the decoupled
modes. As a result of the decoupling, one can extend the single-mode analysis of [21] to any
number of degrees of freedom, which represents our main result. We have demonstrated that
on the one hand heating can be accomplished arbitrarily well via optimal symplectic control
in an arbitrarily short time if enough squeezing is allowed while, on the other hand, controlled
cooling cannot be achieved equally well and fast as heating.

This analysis rested on the derivation of Eq. (24) but the techniques required can also
provide insight into a property that is not a symplectic invariant: entanglement. The positivity
of the partial transpose is necessary for the separability of a bipartite p + q mode state, and
sufficient if either p or q is equal to 1 [38, 14]. Separability is equivalent to the condition that
σ̃ = TσT obeys the uncertainty relation

σ̃ + iΩ ≥ 0, (47)

where T =
⊕p

1 σz ⊕
⊕q

1 I2, where the Pauli matrix σz = diag(1,−1). This condition is
equivalent to the smallest symplectic eigenvalue of σ̃ being greater than or equal to 1 which
in turn gives the separability condition [38]

Σ̃ :=

p+q∑
k=0

(−1)p+q+kϑ2k[Ωσ̃] ≥ 0. (48)

T acts by similarity and is symmetric meaning that σ̃ remains positive definite, implying that
it also has a Williamson decomposition: σ̃ = S̃W̃ S̃ᵀ. Furthermore it obeys ˙̃σ = T σ̇T =

−σ̃ + χI since T is time invariant. This allows us to mimic the full analysis of Appendix A
providing

˙̃Σ =
n∑
k=1

(−1)n+k
(
− 2kϑ2k[Ωσ̃] + χTr[S̃ṼkS̃

ᵀ]
)
, (49)

where p+q = n and Ṽk has the same definition as before except for the symplectic eigenvalues
of σ̃. This provides us with an evolution equation for an entanglement measure of the p + q

mode system, directly from the analysis employed to derive Eq. (24). The difference here,
however is that ϑ2k[Ωσ̃] is not a symplectic invariant and so further analysis will require more
sophistication.

This paper brought together techniques from linear algebra to explore the evolution of
multimode Gaussian states evolving under lossy channels. As exemplified by the calculation
concerning entanglement, sketched above, such techniques may be extended to provide wider
analytical insight. We restricted ourselves to the specific question of finding locally optimal
cooling, or heating, for states undergoing lossy channel evolution. This has been answered
and shown to be intrinsically related to squeezing. We showed that the study of locally optimal
trajectories can be explored using decoupled dynamics and so the single mode case provides
the lower bound on the relaxation time.
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Appendix A. Evolution of symplectic invariants

Appendix A.1. Recursive formulas

Reiterating Eq. (11) the evolution of our system obeys

σ̇ = −σ + χI. (A.1)

Using this and the Taylor expansion in dt we obtain

c2k[Ωσ(t+ dt)] ' c2k[Ω(σ + σ̇dt)] = c2k[Ωσ − dtΩσ + χΩdt] = c2k[F +Gdt], (A.2)

where F := (1− dt)Ωσ and G := χΩ.

Lemma 1. The Taylor expansion of the following trace term to first order is

Tr[(F +Gdt)2k−i] '

{
Tr[F 2k−i] + (2k − i)dtTr[F 2k−i−1G], i even,

0, i odd.
(A.3)

Proof Expanding (F +Gdt)2k−i to first order in dt we obtain a single term of the form F 2k−i

and (2k− i) terms of the form F aGdtF b where a+ b = 2k− i− 1. The cyclicity of the trace
allows us to reorder these elements to obtain Tr[F 2k−i] + (2k − i)dtTr[F 2k−i−1G] + o(dt).
Now it remains to show that to first order this expression is zero for i odd.

It suffices to show that

Tr[F 2n+1] = 0, n ∈ N, (A.4)

Tr[F 2nG] = 0, n ∈ N. (A.5)

To prove Eq. (A.4) we use the invariance of the trace under cyclic permutations and transposes
giving

Tr[(Ωσ)2n+1] = Tr
[(

(Ωσ)2n+1
)ᵀ]

= (−1)2n+1Tr[(σΩ)2n+1] = −Tr[(Ωσ)2n+1] = 0,

where we used Ωᵀ = −Ω. Eq. (A.5) is found using a similar argument. Putting these together
we prove the proposition.

Recall the recursive definition for the coefficients of the characteristic function given in
Sec. 4:

ck[X] =
−1

k

k−1∑
i=0

Tr[Xk−i]ci[X]. (A.6)

Recalling that c2k[·] ≡ ϑ2k[·] we change notation to start considering these symmetric
functions. Using the recursive formula and Lemma 1 we see that

ϑ2k[F +Gdt] =
−1

2k

k−1∑
i=0

Tr[(F +Gdt)2(k−i)]ϑ2i[F +Gdt]. (A.7)
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Lemma 2. Taylor expanding ϑ2k[F +Gdt] we arrive at

ϑ2k[F +Gdt] = ϑ2k[F ]− dt
k−1∑
i=0

Tr[(Ωσ)2(k−i)−1G]ϑ2i[F ] + o(dt). (A.8)

Proof From Eq. (A.7) we can explicitly show that

ϑ0[F +Gdt] = 1, ϑ2[F +Gdt] = ϑ2[F ]− dtTr[γG] , (A.9)

where we define γ := Ωσ for brevity in the proceeding proof and where we have also used
Lemma 1. From here we will proceed with an inductive proof. We assume that Eq. (A.8)
holds for some k and then show that if this is true then it holds for k + 1.

Using Eq. (A.7) we may write the expansion out for k+ 1 and then use Lemma 1 and the
definition of F to arrive at

ϑ2(k+1)[F +Gdt] =
−1

2(k + 1)

k∑
i=0

(
(1− 2(k + 1− i)dt) Tr[γ2(k+1−i)]

+ 2(k + 1− i)dtTr[γ2(k+1−i)−1G]
)
ϑ2i[F +Gdt].

(A.10)

Substituting Eq. (A.8) into Eq. (A.10) we extract the first two terms that look like they would
fulfill the proof plus a final one that we would hence like to show is zero:

ϑ2(k+1)[F +Gdt] = ϑ2(k+1)[F ]− dt
k∑
i=0

Tr[γ2(k+1−i)−1G]ϑ2i[F ]

+
dt

2(k + 1)

k∑
i=1

(
Tr[γ2(k+1−i)]

i−1∑
j=0

Tr[γ2(i−j)−1G]ϑ2j[F ] + 2iTr[γ2(k+1−i)−1G]ϑ2i[F ]

)
.

(A.11)
Dropping (2(k+1))−1 we proceed to examine the final piece, referring to it as L, and rewriting
it as

L =dt

{k−1∑
i=1

Tr[γ2(k−i)]
i−1∑
j=0

Tr[γ2(i−j)−1G]ϑ2j[F] +
k−1∑
i=1

2iTr[γ2(k−i)−1G]ϑ2i[F]

}
. (A.12)

Note that we have relabelled k as k − 1 to shorten the expression but it will not alter the
analysis. The dt at the front reminds us that everything should be expanded to zeroeth order
inside the sum. To prove the lemma it is necessary to show that L ≡ 0.

Expanding ϑ2i[F ] to introduce another sum we arrive at

L =dt
k−1∑
i=1

i−1∑
j=0

(
Tr[γ2(k−i)]Tr[γ2(i−j)−1G]− Tr[γ2(k−i)−1G]Tr[γ2(i−j)]

)
ϑ2j[F ]. (A.13)

From here note that for a general sum with elements Yij we have

k−1∑
i=1

i−1∑
j=0

Yij =
k−2∑
j=0

k−1∑
i=j+1

Yij =
1

2

k−2∑
j=0

k−j−2∑
i′=0

Yi′+j+1,j +
1

2

k−2∑
j=0

k−j−2∑
i′′=0

Yk−i′′−1,j, (A.14)
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where i′ = i − (j + 1) and i′′ = k − i′ − j − 2. The first equality of Eq. (A.14) can be seen
with observation. The second involves a redefinition of the sums where we split them into
two halves and then redefine the labels such that one is descending whilst the other ascends.
When such a summation redefinition is applied to Eq. (A.13) it will be clear that L ≡ 0.

Thus we prove that if ϑ2k[F+Gdt] is given in Eq. (A.8) then this also holds for k → k+1.
From Eq. (A.9) we see that it is true for k = 1 and so, inductively it is true for all k. To write
it in the form stated one must replace γ with Ωσ.

Lemma 3. Taylor expanding ϑ2k[F ] using F := (1− dt)Ωσ we find that

ϑ2k[F ] = (1− 2kdt)ϑ2k[Ωσ]. (A.15)

Proof Expanding out the recursive formula and again defining γ := Ωσ we get a product of
sums of the form

ϑ2k[F ] =

[
−1

2k

k−1∑
i1=0

(
1− 2(k − i1)dt

)][−1

2i1

i1−1∑
i2=0

(
1− 2(i1 − i2)dt

)]
. . .

. . .

[
−1

2ik−1

ik−1−1∑
ik=0

(
1− 2(ik−1 − ik)dt

)]
Tr[γ2(k−i)] . . .Tr[γ2(ik−1−ik)].

(A.16)

By only keeping terms that are less than second order in dt we get a smaller sum

(1− 2k)ϑ2k[Ωσ] +X (A.17)

X consists of the remaining terms which come in pairs. Take for instance the first pair which
is generated by choosing the +2i1dt coefficient in the first line of Eq. (A.16), with everything
else at zeroeth order, and secondly the −2i1dt coefficient in the second line, with everything
else at zeroeth order. The pairs will each cancel to become zero. The final piece comes
without a partner but has coefficient ik = 0, and so does not contribute. Therefore X ≡ 0 and
the lemma is proven.

Lemma 4. Using the previous two Taylor expansions we may write the rate of change of ϑ2k

as

ϑ̇2k[Ωσ] =− 2kϑ2k[Ωσ]− χ
k−1∑
i=0

Tr[(Ωσ)2(k−i)−1Ω]ϑ2i[Ωσ]. (A.18)

Proof The first Taylor expansion came from Lemma 2 stating that

ϑ2k[F +Gdt] ' ϑ2k[F ]− dt
k−1∑
i=0

Tr[F 2(k−i)−1G]ϑ2i[F ].

Using Lemma 3 and the same reasoning as in Eq. (A.2) we rewrite the above as

ϑ2k[Ωσ(t+ dt)]− ϑ2k[Ωσ] ' −2kdtϑ2k[Ωσ]− dt
k−1∑
i=0

Tr[(Ωσ)2(k−i)−1G]ϑ2i[Ωσ].

Dividing through by dt we prove the proposition, recalling that G := χΩ.
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Appendix A.2. Telescoping the series

Eq. (A.18) provides a differential equation describing the rate of change of ϑ2k. We now work
towards a simplification of this equation using Williamson’s theorem [27, 24] and noticing
that the series ‘telescopes’ to provide a simpler form.

Given Williamson decomposition, σ = SWSᵀ, as described earlier, and the symplectic
property: SᵀΩS = Ω, we may rewrite the trace term that appears in the sum of Eq. (A.18):

Tr[(Ωσ)2k−1Ω] = Tr[

2k−1︷ ︸︸ ︷
ΩSWSᵀ . . .ΩSWSᵀ Ω] = −Tr[S

2k−2︷ ︸︸ ︷
WSᵀΩS . . .WSᵀΩSWSᵀ]

= −Tr[S

2k−2︷ ︸︸ ︷
WΩ . . .WΩWSᵀ] = −Tr[SW 2k−2Ω2k−2WSᵀ]

= (−1)kTr[SW 2k−1Sᵀ].

where we used (WΩ)2 = W 2Ω2, Ω2 = −I as well as cyclic properties of the trace. Thus
Eq. (A.18) becomes

ϑ̇2k[Ωσ] =− 2kϑ2k[Ωσ]− χ
k−1∑
i=0

(−1)k−iTr[SW 2(k−i)−1Sᵀ]ϑ2i[Ωσ]. (A.19)

Using definitions given in Sec. 4 we may now prove the theorem stated in the main body:

Theorem 2. For σ evolving under σ̇ = −σ + χI, the evolution of the symplectic invariants,
defined by ϑ2k[Ωσ], obeys

ϑ̇2k[Ωσ] = −2kϑ2k[Ωσ] + χTr[SVkS
ᵀ], (A.20)

where

Vk =
n⊕
i=1

(
νiϑ̄

i
2(k−1)[Ωσ]

)
I2. (A.21)

Proof Beginning with the final term of Eq. (A.19) and dropping the χ factor we may take the
sum inside the trace to give

k−1∑
i=0

(−1)k+1(−1)iTr[SW 2(k−i)−1Sᵀ]ϑ2i = Tr

[
S

k−1∑
i=0

(−1)k+1(−1)iW 2(k−i)−1ϑ2iS
ᵀ

]
,

(A.22)
which allows us to consider the internal sum before tracing. Recalling that the diagonal
elements of W occur in pairs we only need to consider n symplectic eigenvalues denoted
νq, q = 1, . . . , n. The ith term of the sum in Eq. (A.22) takes the form

(−1)k+1(−1)i

(
ν2(k−i)+1
q ϑ̄q2(i−1) + ν2(k−i)−1

q ϑ̄q2i

)
, (A.23)

and the i+ 1th takes the form

(−1)k+1(−1)i+1

(
ν2(k−i)−1
q ϑ̄q2i + ν2(k−i)−3

q ϑ̄q2(i+1)

)
. (A.24)
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Recall that ϑ̄ba is a sort of reduced symplectic invariant which is similar to ϑa but where
we remove all terms involving the bth symplectic eigenvalue. By splitting up Eq. (A.22) to
consider each νq individually and also by spltting each ith term we see that telescoping is
going to occur. This is the situation when the latter piece of the ith term cancels the former
term of the i + 1th term. Noting that this cancellation is going to occur between Eq. (A.23)
and Eq. (A.24) we should be left with the very first and last pieces of the entire series. The
first piece is equal to zero and so we are just left with the final term

(−1)k+1(−1)k−1νqϑ̄
q
2(k−1) = νqϑ̄

q
2(k−1), (A.25)

and therefore the expressions of Eq. (A.22) are equal to Tr [SVkS
ᵀ] where

Vk =
n⊕
i=1

(
νiϑ̄

i
2(k−1)[Ωσ]

)
I2. (A.26)

Appendix B. Bistochastic limits

Here, we prove an optimisation result regarding bistochastic matrices. We begin with the
reiteration of the notation that, for some vector v, v↓ denotes a new vector of elements of v
written in descending order. v↑ is similar but for ascending order.

Lemma 5. Let α and β be two real vectors of length m. The supremum of the following inner
product is given by

sup
Xbistochastic

αᵀXβ = α↓ᵀβ↓. (B.1)

and the infimum by
inf

Xbistochastic
αᵀXβ = α↑ᵀβ↓. (B.2)

Proof Taken from Ref. [34]. We begin with a consideration of the supremum and then turn
our attention to the infimum. The permutation matrices form a subset of the bistochastic
matrices and so we may alter X to make α and β descending. Then we fix X to some specific
bistochastic matrix to define

χ := α↓ᵀXβ↓ ≡
m∑

i,j=1

aibjXij, (B.3)

where ai and bi are the elements of α↓ and β↓ respectively. Consider X 6= I. Let k be the
smallest index i such thatXii 6= 1. Note that for i < k, Xii = 1 and thereforeXij = 0 if i < k

and i 6= j, or if j < k and i 6= j. Since Xkk < 1, then for some l > k, Xkl > 0. Likewise, for
some p > k, Xpk > 0. These imply that Xpl 6= 1.
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The inequalities above mean that we can choose ε > 0 such that the matrix X ′ is
bistochastic where

X ′kk = Xkk + ε,

X ′kl = Xkl − ε,
X ′pk = Xpk − ε,
X ′pl = Xpl + ε,

and X ′ij = Xij in all other cases. Now define

χ′ =
∑
i,j=1

aibjX
′
ij. (B.4)

Recalling that l > k and p > k, so that ak < ap and bk < bl,

χ′ − χ = ε(akbk − akbl − ambk + ambl) = ε(ak − am)(bk − bl) ≥ 0, (B.5)

which means that the term
∑
aibjXij is not decreased. ε may be chosen to reduce an off-

diagonal term in X to zero without affecting the bistochasticity of X and without decreasing
the value of χ′ − χ. As this process is iterated X may be brought to identity I without
decreasing χ, achieving its maximum value.

The argument for the infimum is completely analogous except we begin by considering

χ := α↑ᵀXβ↓ ≡
m∑

i,j=1

cibjXij, (B.6)

where ci are the elements of α↑. The analysis is similar except that we will be considering
χ′ − χ ≤ 0, and so transforming X into I does not increase the value of χ. Thus we find
X = I again but for the situation where the vectors are oppositely ordered.

Appendix C. The case of a single mode

Here we compare Theat and Tcool with T heat
fast , T cool

fast and Tfree derived in Ref. [21] for the case
of a single mode coupled to an unsqueezed bath. For clarity, equations quoted from Ref. [21]
will be primed. Both papers begin with Eq. (8) which allows us to identify

γ ↔ η, M1 = M2 ↔ 0, µ↔ 1/ν, (C.1)

with symbols from Ref. [21] on the left and ours on the right. Eqs. (38’)-(39’) show the fixed
point of the dynamics to be

rfp = 0, µfp ↔ 1/χ. (C.2)

Using Eq. (33’) and noting that Tr(σ) = 2νζ+
z we identify

cosh 2r ↔ ζ+
z (C.3)
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and maximal squeezing in cosh 2rM ↔ ζ+
z̄ , while for the initial conditions we identify

µ0 ↔ 1/ν0, cosh 2r0 ↔ ζ+
z0
, (C.4)

where z0 is the initial squeezing value. Ref. [21] uses the fidelity Eqs. (50’)-(51’) for the
tolerable error while we use Eq. (43). To avoid confusion, we rename ε′ the allowed error
in Eq. (50’). In particular, we can rewrite Eqs. (50’) and (66’) for the heating and cooling
cases, respectively, as µTh/Tc ↔ 1

χ

[
1(+/−)2

√
ε′

χ

√
χ2 − 1

]
. With all of the above taken into

account, it is then very easy to verify that Eq. (67’) and Eq. (63’) coincide with our optimal
times for decoupled modes, i.e. that

T heat
fast ↔ Theat, T cool

fast ↔ Tcool (C.5)

provided that ε ' 2
√
χ2 − 1

√
ε′. Finally, the free decoherence time Eq. (54’) is translated as

Eq. (46).
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