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ABSTRACT ARTICLE HISTORY

In police planning, a territory is often divided into several patrol Received 5 October 2017
districts with balanced workloads, in order to repress crime and Accepted 14 September 2018
provide better police service. Conventionally, in this districting pro- KEYWORDS

blem, there is insufficient consideration of the impacts of street net- Police districts; street
works. In this study, we propose a street-network police districting network; workload balance;
problem (SNPDP) that explicitly uses streets as basic underlying units. tabu search; spatial

This model defines the workload as a combination of different attri- optimisation

butes and seeks an efficient and balanced design of districts. We also

develop an efficient heuristic to generate high-quality districting

plans in an acceptable time. The capability of the algorithm is

demonstrated in comparison to an exact linear programming solver

on simulated datasets. The SNPDP model is successfully implemen-

ted and tested in a case study in London, and the generated police

districts have different characteristics that are consistent with the

crime risk and land use distribution. Besides, we demonstrate that

SNPDP is superior to an aggregation grid-based model regarding the

solution quality. This model has the potential to generate street-

based districts with balanced workloads for other districting pro-

blems, such as school districting and health care districting.

1. Introduction

Districting is the problem of grouping small geographic areas into larger and contiguous
geographic clusters, in a way that the results meet the predefined planning criteria
(Kalcsics 2015). Depending on the context, districting is also called territory design,
territory alignment, zone design, sector design, spatially constrained clustering, or regio-
nalisation. Districting problems have been motivated by and applied to a large number of
fields, ranging from political districting of electoral areas (Vickrey 1961, Cirincione et al.
2000, Bozkaya et al. 2003), sales and service territory alignment (Hess and Samuels 1971,
Blais et al. 2003, Galvao et al. 2006), health care districting (Thomas 1979), school district-
ing (Clarke and Surkis 1968, Schoepfle and Church 1991, Caro et al. 2004), to police patrol
districting (Mitchell 1972, Curtin et al. 2005).

In the context of policing, the district design is motivated by various purposes,
including patrol planning, emergency response, reporting and demographic police
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research (Mitchell 1972, Sarac et al. 1999). In terms of patrol planning and emergency
response, one of the most relevant criteria is the workload balance, which ensures the
timeliness of emergency response and the effectiveness of patrol activities (Camacho-
Collados et al. 2015). In contrast, an uneven workload distribution would lead to an
imbalance in staffing, morale problems and span-of-control issues (Kistler 2009). In
particular, some districts are overstaffed while others are understaffed, and the officers
with excessive workload would easily become dissatisfied. For these reasons, some
police departments would redesign the division boundaries after a certain period to
equalise the workload (Kistler 2009).

Conventionally, the design of police districts is based on areal units, including grid
(Mitchell 1972, Bodily 1978, Carroll and Laurin 1981, Zhang and Brown 2013, Camacho-
Collados et al. 2015), census block (Liberatore and Camacho-Collados 2016) and r-district
(D’Amico et al. 2002), among others. However, there are several limitations associated
with these units. First, the grid structure is often selected by the planners and admin-
istrators, and the decision is empirical and arbitrary. The district configuration may be
sensitive to the unit type and unit size, which is an instance of the modifiable areal unit
problem (MAUP) (Openshaw and Taylor 1979, Openshaw 1984). More precisely, the
MAUP includes two components: the scale problem and the aggregation problem.
The scale problem is defined as the variation of results when the same areal data are
aggregated into larger areal units for analysis. In contrast, the aggregation problem
concerns the variations in results due to alternative units of analysis where the number
of units is constant. Second, areal units could intersect physical features (e.g. lakes) or
barriers (e.g. railway tracks), and could be not well connected on the street network.

The street segments represent a promising unit for the patrol sectors, as the street
structure fundamentally influences the human movement patterns. Recent findings in
criminology suggest that the street networks shape the long-term pattern of crimes
(Davies and Johnson 2015, Summers and Johnson 2017), as well as the short-term
dynamics of crime behaviours (Davies and Bishop 2013, Johnson and Bowers 2014).
These imply that street-based models are appropriate for the description and prediction
of crime risks (Rosser et al. 2017). Thus, the use of street networks in crime prevention
efforts, especially the design of patrol district, is well-motivated, and this has two
possible advantages: first, it may amplify the effect of targeted policing, and second, it
may enhance the usability of the patrol district and patrol plans. Despite these advan-
tages, few existing studies on police districting problem (PDP) have attempted to use
street segments as basic units.

In summary, while it is essentially important to incorporate the street network in the
PDP, there is a lack of police districting models that explicitly use street segments as
basic units. This study aims to explore the potential of street segments in the police
district design and to develop efficient methods for the large-sized PDPs.

Formulating and solving the street-based PDP may present new challenges. The first
challenge lies in the representation of streets in the policing context. Although several
methods exist that can represent street networks as graphs (Jiang and Claramunt 2004;
Porta et al. 2006b; Porta et al. 2006a), it is unclear which method is appropriate. Another
challenge is that a street-based PDP with a large number of street units is computa-
tionally demanding and hinders the use of the existing algorithms for PDP. This requires
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the development of efficient algorithms to generate high-quality districting plans in an
acceptable time.

To overcome the challenges, in this study we develop an efficient and balanced
district design on urban street networks. First, we formulate a multi-criteria police
districting model that uses streets as basic units. The model incorporates several
relevant workload attributes and a trade-off between the average workload and the
workload balance among districts. Second, we propose an efficient heuristic method for
large-sized PDP by integrating a graph-partitioning algorithm and a tabu search
method. Third, we compare this model with an alternative model that aggregates the
patrol demand into a grid, and the results indicates that street-network police districting
problem (SNPDP) is superior to the aggregation model regarding the solution quality
and the district connectivity.

The paper is organised as follows: Section 2 describes a formulation of the SNPDP; in
Section 3, a two-step heuristic method is proposed to solve the SNPDP. In Section 4, an
alternative grid-based approach to solving the SNPDP is outlined. In Section 5, a case
study based on the London Borough of Camden is reported on, which demonstrates the
application and efficiency of the SNPDP. Finally, Section 6 discusses the advantages and
limitations of the proposed model and suggests future research directions.

2. A street-network police districting problem (SNPDP)

In this section, the SNPDP is introduced. The goal of this model is to partition the street
network, denoted by SN, into a given number, m, of patrol districts in the best possible
way. A solution of for SNPDP is denoted as D = {d,, d,, ..., dx,}. The workload of a district
is evaluated by a weighted sum of three attributes - crime risk, area size and diameter.
In this section, first, there is a discussion on how to represent the street network, then
the model constraints, workload attributes and objective functions are described. Finally,
an exact formulation of the SNPDP is presented, followed by a discussion on the
differences between SNPDP and the Police Patrol Area Covering (PPAC) model.

2.1. Street network representation

The first step in this model is to represent the street network as a graph. There are
several methods for obtaining such a representation, with varying theoretical and
mathematical implications, and the choice should depend on the task. One well-devel-
oped method, called the ‘dual’ network model, represents the roads as nodes, and
places links between any two nodes that share a junction (Jiang and Claramunt 2004,
Porta et al. 2006a). This representation allows for a street-oriented computational
analysis of the properties of an urban street network. As the PDP model in this study
focuses on the partition of the streets, this network representation is adopted. The
underlying street network is modelled by an undirected graph, G = (V, E), with V
corresponding to the named street links and E to the intersections of links (see Figure 1).

The distance between two streets, dist(j, j), in graph G is defined as the shortest
path distance between their midpoints (She et al. 2015). Accordingly, the distance
between all pairs of streets can be efficiently computed using the Floyd-Warshall
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Figure 1. Construction of the dual representation of a street network. This example shows a section
of the Camden network. (a) The original street network map, as obtained from Integrated Transport
Network dataset produced by Ordnance Survey. (b) Map zoomed to the section highlighted in red
and background map image removed. (c) Nodes placed at the midpoints of streets. (d) Links added
between all pairs of connected streets, with original street network removed.

algorithm (Floyd 1962). A different definition was adopted by Butsch et al. (2014),
which defined dist(i, j) as the minimum distance between their end nodes.

2.2, Districting constraints

Below, the two constraints that any feasible districting plan must satisfy are described.

2.2.1. Complete and exclusive assignment
The districts cannot overlap and must cover the entire patrol area. Moreover, each
district should be non-empty.

2.2.2. Contiguity
A district must contain basic units that are connected to each other within the district.
This implies that an officer cannot be assigned to a patrol sector that is composed of
two or more separate parts. Moreover, unconnected districts would lead to excessive
response time and inefficient resource deployment. In this study, the terms ‘contiguity’
and ‘connectivity’ are used interchangeably.

The contiguity constraint is satisfied in the methods for the SNPDP in two ways.
First, in the exact formulation, the contiguity constraint is designed by borrowing
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concepts from graph-partitioning. Specifically, the constraint is an extension of the
ordered-area assignment conditions that are developed to enforce contiguity in the
site design (Cova and Church 2000). Second, in the proposed heuristic, the initial
solutions are constructed by the graph-partitioning method, and are then modified
via iteratively moving a unit from one district to another, on condition that the
district contiguity is maintained.

2.3. Workload attribute

Here, three relevant workload attributes of a district are described, including risk, area size
and diameter. To be comparable, each attribute is formulated as a relative and dimension-
less ratio between 0 and 1. These attributes have been used to quantify the workload of a
police district by several previous research (Camacho-Collados et al. 2015, Liberatore and
Camacho-Collados 2016). The crime risk indicates the potential number of calls for service
in the district; the area attribute identifies the size of the territory that should be patrolled;
the diameter represents the maximum travelling distance within the district.

2.3.1. Risk

The future crime risk on a street can be estimated using historical data and a predictive
crime mapping approach (Rosser et al. 2017). The crime risk in a district, dg, is the sum of
the risks associated with the contained streets, and the risk measure, Ry, is expressed as
the ratio of the risk of di to the entire area risk, as Equation (8).

Some previous studies used the number of calls for service or incidents as an
attribute of workload (Kistler 2009). These attributes are similar with the crime risk.
As the crime risk in this study is based on the historical incidents and other factors,
it is a better indicator of the future workload than the pure number of incidents.
Therefore, the crime risk attribute is used here rather than the number of incidents.

2.3.2. Area

The area factor quantifies the size of the territory that an officer should patrol. The area
measure, Ay, is defined as the ratio of the total length of streets in the district, d, to the
entire network, as in Equation (9).

2.3.3. Diameter
During patrolling, officers have to travel within districts to ensure security and respond to
calls for service. Intuitively, a considerable (average or maximum) internal travel distance
makes a district challenging to patrol. Therefore, it is favourable to reduce the day-to-day
travel distance within districts. Here, the diameter measure is adopted to represent the
maximum internal travel distance within a district, or the travel distance in the worst case.
The diameter of a district is defined as the maximum distance between any pair of
points in it. It approximates the maximum distance an officer has to travel in the case of
a call for service. The diameter measure, Dmty, is the ratio of the district diameter to the
diameter of the entire graph, as in Equation (10).
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2.4. Objective function

The workload is a convex combination of the three relevant attributes. The weights can
be determined according to the preferences of police experts. Given the weights, the
district workload, Ly, can be computed using Equation (11).

The objective of the SNPDP is to generate districting plans that are both efficient and
balanced. First, a districting plan is said to be efficient if the average workload is low.
Second, a districting plan is perfectly balanced if the workloads of all districts are equal.
As perfectly balanced districts cannot always be achieved, a common measure of work-
load balance is to use the mean absolute deviation of the workloads.

Both the workload average and deviation should be minimised so as to achieve a
good districting plan. However, there might be a trade-off between these two objec-
tives, meaning that improving on one objective may worsen the other. For example, a
decrease in the workload deviation could lead to a higher average workload. Hence, two
objectives are combined via a convex combination, as in Equation (1). This objective
allows the experts to express their preferences concerning the two objectives and
examine the trade-off between them. As these two objectives can have different scales,
the trade-off between them and the a value should be carefully determined. By varying
the coefficient a, a range of different models between efficiency (a = 1) and balance
(a = 0) can be obtained.

Another way to optimise these two objectives is to treat balance as a hard constraint
and to minimise the workload average in the objective function (Salazar-Aguilar et al.
2011). In this formulation, the workload of each district is required to lie between a given
lower and upper bound, and the bounds are determined by workload average and a
tolerance parameter. This approach is not adopted in this study, as this study is focused
on minimising the workload average and deviation simultaneously.

2.5. An exact formulation
Here, an exact mixed integer programming (MIP) formulation for the SNPDP is provided:

Parameters:
n = number of basic units;
i, j = index of basic units; | = set of basic units, / = {1,...,n};
m = number of districts;
k = index of district; K = set of districts, K = {1, ..., m};
¢ = index of contiguity order, c € {0, ..., g}, g = n 1.

W 1, if units i and j are adjacent to each other, with i,j € | and i#j
v 0, otherwise

N; = {jlw; = 1}, thesetofunitsthatareadjacenttouniti
r; = theriskofuniti
a; = the area of uniti

djj = the shortest distance between units i and j
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Wt = the weight of an atttribute att in the workload, 0 < wty < 1, att € {A,R,Dmt}
Ly = the workload of district k, k € {1,...,m}

a = the coefficient of the workload average in the objective function,0 < a <1

Decision variables:

— 1, if both units i and j belong to district k, with i<j
ik = 0, otherwise;

ke _ 1, if unit i is assigned to district k in order ¢
P 0, otherwise;

Minimise m
AD
obj—az’” k (1—0)72":‘ k )
m
Subject to n
Zx}‘°:1Vk—1, . m; 2)
i=1
m 9
ZZX}“:W’I:L N (3)
k=1 ¢=0
X< Ni=1, L mV k=1, mVc=1,...q; @)
JEN;
g g
e > D X+ X —Vij=1,. . nli<iV k=1,...,m (5)
c=0 c=0
q
tge < Y XVij=1,...,nli<i¥ k=1,....,m (6)
c=0
q
tie < > XVij=1,...,nli<jiVk=1,...,m (7)
c=0
Rkiz7:1 g Oxlkcr’ (8)
ZI 1I’,
Ak ZI 1 (c] OX/ a' (9)
Zl:l ai
”}?X{ta'kdfj}
Dmty = ——— (10)
max{d; }
Lx = WtgRy + WtaAx + Wtpm:DmtyNk =1,....m (1m
Zjn;1 L
m
L;
ADy >me1 LY k=1,...,m (13)
X e{0,1}Vi=1,....m;Vk=1,... m;¥c=0,...,q; (14)

tix € {0,1}Vij=1,...,nli<;Vk=1,....m (15)
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This model is formulated as a minimisation problem with an objective function in Equation
(1), and the two terms represent the workload average and average workload deviation
respectively. They are merged into one single value by a weight, a.

Constraint Equation (2) establishes that a district, k, should be non-empty and have
exactly one root unit. A root unit for a district has a contiguity order of 0. Constraint
Equation (3) requires that each unit should be assigned to exactly one district and one
contiguity order. Constraint Equation (4) enforces that a unit, i, can be assigned to a
district, k, with order c if and only if a unit j exists in the neighbourhood of i, and that j is
assigned to district k in order (c — 1).

Constraint Equations (5), (6) and (7) select the pairwise distance that must be
considered for calculating the diameter of any distance. Therefore, the binary variable
tix = 1, if and only if both units i and j are assigned to district k, regardless of the order
they are assigned in.

Constraint Equations (8), (9) and (10) define the workload attributes, including risk,
area and diameter. Constraint (11) defines the workload of a district, k, as the linear
combination of three attributes. Constraint Equations (12) and (13) describe the absolute
difference, ADy, between the workload of district k and the average workload as the
maximum of their differences. Constraint Equations (14) and (15) guarantee that both x,f“
and tj are binary variables.

This formulation of the SNPDP model is computationally complicated. It has
3 (mn? — mn) variables and 4m + n +3mn(n — 1) constraints, which quickly make the
model intractable as the number of units and districts increase.

2.6. Difference between the SNPDP and PPAC model

It is worth clarifying the differences between the SNPDP and the PPAC model (Curtin
et al. 2010). The PPAC model optimises the delineation of police sectors by assigning the
existing beats to new sectors, following two steps. First, the optimal locations of the
sector centres are identified by maximising the number of historical incidents that are
within the acceptable service distance of a sector centre. Second, the sector boundaries
are determined by assigning the beats to new sectors based on the incidents served by
the sector centres.

The SNPDP is different from the PPAC model in several aspects. First, the
problem definition is different. While the PPAC model seeks the maximal coverage
of historical incidents, the SNPDP aims at a district design with a low average and
deviation of the workload. Second, the basic units are different. In the PPAC, beat
centroids are used as candidate locations for sector centres, and new sectors are
generated by assigning the beats in an optimal way. In comparison, the SNPDP
uses streets as the basic units for police districts, the output being a partition of
the street network into several districts. Third, the role of the street network is
different. In the PPAC, the optimal coverage is based on the street-network dis-
tance between sector centres and historical incidents. In the SNPDP, the function of
the street network is two-fold: the streets comprise the model units and the net-
work distance between the units is used.
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3. The heuristic method for SNPDP

In this section, we first review the existing methods for districting problems, and then
propose an efficient two-step heuristic method for PDP.

3.1. Existing methods for districting problems

The existing methods for districting problems can be classified into two broad optimisation
categories, namely exact methods and heuristic methods. The exact methods aim to identify
a provable best solution such that no better solution exists. Common exact methods include
enumeration and linear or MIP. One of the main challenges in using MIP for districting
problems is to find an effective strategy for incorporating spatial contiguity constraint
(Duque et al. 2007). Unfortunately, there are practical limitations associated with the exact
methods, meaning that they are only applicable to small-sized problems. The reason is that
most districting problems are NP-hard (Garey and Johnson 1979), indicating that the
computational cost normally increases rapidly with the problem size.

In contrast, heuristics methods provide an efficient approach to overcoming the
restrictions of an exact method. A heuristic is often an ad hoc, rule-of-thumb, or general
approach that tackles the problem approximately (Tong et al. 2009). A variety of
heuristics have been developed and used, including tabu search, simulated annealing,
genetic algorithms, neural networks, among others (Blum and Roli 2003). Some heur-
istics, such as tabu search, have the advantages of searching the solution space effi-
ciently and being able to escape from local optimal solutions. Therefore, we will use the
heuristic methods to solve the SNPDP.

Among others, tabu search has proven to be one of the most used heuristic options
when addressing districting problems. Tabu search accepts an initial feasible solution and
iteratively modify the solution while searching for improvements in the objective function.
Because of the capacity for escaping local optimal solution by allowing non-improving
moves, tabu search methods have good performances in tackling districting problems.
They have been applied in political districting (Bozkaya et al. 2003, Ricca and Simeone
2008), zone design (Openshaw and Rao 1995), home care districting (Blais et al. 2003), and
the max-p-regions problem (Duque et al. 2012, She et al. 2017). Therefore, tabu search can
be utilised to tackle the PDP, and this possibility is to be explored in this section.

3.2. GP-TS heuristic method for PDP

The problem discussed in Section 3 poses enormous computational challenges, espe-
cially when the problem size is large. Here, a two-step heuristic method for the PDP is
proposed that considers the workload balance among districts.

This is partly inspired by the Random-Greedy-and-Tabu-Search (RG-TS) heuristic
(Camacho-Collados et al. 2015, Liberatore and Camacho-Collados 2016), which is pro-
posed for PDPs based on grids and census blocks. It consists of two steps — RG and TS. In
the RG step, a districting solution is produced by randomly selecting a node for each
district and expanding the districts in a greedy way, while keeping their contiguity. In
the TS step, the initial solutions are improved by a tabu search.
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Although the RG-TS proves efficient for PDPs based on grids and census blocks, it is
inefficient for large-sized problems. In the RG step, the initial solution expands gradually
to involve a new unit in one step, which is slow for a large problem. Moreover, the
original tabu search procedure is also slow for a large problem.

Here, we propose an efficient heuristic Graph-Partition-and-Tabu-Search (GP-TS) to
approximately solve the SNPDP. First, a graph-partitioning method is used to generate a
set of feasible solutions, and second, the solutions are improved using an efficient TS
procedure.

In the GP step, the Karlsruhe Fast Flow Partitioner Evolutionary algorithm (KaFFPaE)
(Sanders & Schulz 2012) is used to generate the initial partition of the area. The KaFFPaE
is a distributed evolutionary algorithm for tackling the graph-partitioning problem, and
it is well-suited for the SNPDP for the following reasons. First, it enforces the contiguity
of each district by imposing a penalty on incontiguous partitions. Second, KaFFPaE can
generate a balanced partition, in which the maximum block (or district) weight is
constrained to (1 + ¢) times the average block weight, and the block number and
deviation tolerance (¢) are provided by the user. Moreover, KaFFPaE includes a random
component, meaning that it can generate a set of feasible and varying solutions to
guarantee substantial exploration of the solution space. However, KaFFPaE only accepts
node attributes as inputs, and it is unable to implement a district diameter. Therefore, it
is used to generate balanced districts only regarding the area and risk.

The second step uses a TS algorithm to improve the solutions. The TS algorithm
iteratively modifies the current solution by moving a node from one district to a
neighbouring district, in the hope of finding a better solution. The advantage of the
TS lies in its ability to avoid local optimality by putting the recently visited solutions in
the tabu list (‘tabu’ meaning forbidden). In each iteration, the best move is chosen if it
outperforms the best solution ever explored. Otherwise, the best non-tabu move is
chosen. The TS terminates when any of three criteria are met: (1) the running time
exceeds the predefined maximum time; (2) no improvement over the current solution is
found and (3) all moves are tabu; the number of iterations since the last improvement
over the best solution exceeds the threshold.

As the TS involves numerous times of evaluating a new solution, it is extremely slow
for large problems. Here, the efficiency of the TS is improved by introducing two new
features: a fast delta evaluation for new solutions, and rapid identification of feasible
moves, as explained below.

Delta evaluation is a technique used in evaluating a modified solution quickly. As the
modification involves only one or two districts, the delta evaluation updates only the
attribute of the affected districts, which makes it more efficient than a complete
evaluation following the definitions. The cost of the delta evaluation is the storage of
the attributes of each district in the current solution. In each iteration of the TS, delta
evaluation is used to evaluate all feasible moves.

A move generates a feasible solution if it does not disconnect any district. Since a
move involves an origin district and a destination district, this condition means that both
districts must not be disconnected by the move. According to Ricca and Simeone (2008),
the migrating node: (a) must be adjacent to a node in the destination district and (b)
must not be a cut-node for the origin district. A brute force method to identify all
feasible moves would test every possible move and the connectivity of the two involved
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districts, which is very inefficient. Here, a fast identification of feasible moves is pro-
posed. To test condition (a) efficiently, for a given district, the boundary is the subset of
nodes that are adjacent to a node in a different district. In this implementation, the
boundary of a district is stored and dynamically updated. In order to test condition (b)
efficiently, for a migrating node x, a subgraph of the origin district is constructed that
comprises the first- and second-order neighbours of x. Clearly, x is not a cut-node of the
origin district if and only if either this subgraph is connected or the graph of the origin
district excluding x is connected, and the test can stop if the subgraph is connected.
Since the subgraph is small, and the typical urban street network is well connected, the
subgraph is very likely to be connected, resulting in considerable time savings by
avoiding testing the entire district.

4. A grid-based aggregation model of the SNPDP

This section presents an alternative grid-based approach to generating a street-based
districting plan, and this approach is used for evaluating the original SNPDP model.
Specifically, this approach initially aggregates the policing workload into grids, and then
solves a grid-based PDP, ultimately transforming the solution to the street network. This
approach may be advantageous in practice, as it can generate street-based districts
using the existing formulations and algorithms for the grid-based districting problem.
Moreover, this approach alleviates the computational cost as the grid-based PDP has
fewer units. However, it leads to the aggregation error in location models (Francis et al.
2009), when the original demands are replaced by aggregate demands.

This approach is illustrated in Figure 2. In the first step, a spatial grid is created, which
consists of uniform square cells of a predefined size. The grid uses the Rook’s neighbour-
hood relation, in which any two cells that share a boundary line are neighbours. The
distance between two neighbouring cells is equal to the cell size. Each cell is intersected
with the street network, and its area size (or crime risk) is set as the sum of the
intersections with the streets. The cells with no intersections with the network are
removed from the grid.

(a) (b) (c)

Figure 2. The illustration of the aggregation model for producing street-based districts (n = 6,
m = 3). (a) The street network is overlaid with a spatial grid. The dots represent the street midpoints.
(b) Cells with no intersections with streets are removed. A grid-based PDP is formulated and solved.
(c) The grid solution is transformed into a street solution. The blue and red districts are unconnected.
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In the second step, a grid-based districting problem is formulated, in a similar way to
that of the SNPDP in Section 3, except that the units represent cells. This problem is
solved by the GP-TS heuristic proposed in Section 3.

In the third step, the districting solution on grids is transformed into a solution on the
street network, by assigning each street to the district in which the midpoint of the
street is located. Although each grid-based district is connected, the generated network-
based districts are not guaranteed to be contiguous. The network-based districts can be
refined to become contiguous, but here no post-treatments are conducted, as the
objective is to compare the efficiency of the SNPDP against the aggregation models,
and the post-treatment may interfere the comparison.

The cell size influences both the computational demand of all the steps and the
quality of the final solution. In particular, it has a three-fold effect. First, it affects the
assignment of the attributes of the streets to the cells. A small size implies a large
number of cells and thus increases the computational cost of the intersection. Second, it
affects the computational cost of solving the grid-based PDP. Similarly, the smaller the
cell size, the higher computational demand. Third, it influences the quality of the final
solution. At a finer scale, it is more likely to achieve a high-quality solution. Because of
the manifold effect, the cell size should be carefully tested and selected.

This aggregation model results in an aggregation error, as the original street units are
replaced by grids. Here, a straightforward measure to evaluate the aggregation error
from the grid-based model is proposed. The measure is the relative gap from the
solution, D/, by the aggregation model to the solution, D, by the SNPDP, as follows:

0bj(D’) — obj(D)

obj(D) x 100% (16)

gap(%) =
The gap is positive if the solution from the SNPDP outperforms that of the aggregation
model. A gap close to 0 would indicate an insignificant difference between the two
models.

5. Experiments

In this section, we demonstrate the solution quality of the proposed heuristic on several
simulated SNPDP datasets, and then illustrate the problem-solving capability and the
scalability of the SNPDP model and the heuristic in a case study in the Camden borough
of London. The algorithms were implemented in Java 1.8, and were tested on a machine
with two i7-4790 Intel CPUs and 32.0 GB DDR3 memory. GUROBI (version 7.5.2) is a
commercial optimisation software package that was utilised to obtain the optimal or
suboptimal objective value of the MIP formulation.

5.1. Optimality analysis

Here, we compare the solutions of the GP-TS with the solutions generated by GUROBI
on a set of simulated datasets. We use a number of instances that are extracted from the
Camden street network, with different numbers of units (n = 20, 25, 30, 50, 100, 200) and
districts (m = 3-7). The Camden street network is introduced in Section 5.2. Each
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instance was generated by randomly selecting a node as the seed and gradually
expanding the graph using the breadth-first search until the desired instance size is
reached. The computational complexity of the SNPDP has been discussed in Section 3,
and the above problem sizes were selected to guarantee that at least some of the
instances could be solved optimally within the 7-day time limit for GUROBI.

The experimental settings were as follows: for the parameters in the SNPDP, equal
weights were adopted for both the workload function (11) and the objective function
(1), meaning that wtg, wts, and wtp,: were set to 0.333, and a was set to 0.5. For each
instance, GP-TS was conducted for 10 runs, and, in each run, the maximum computation
time of tabu search was set to 0.5 h, which was a trade-off between solution quality and
computation time. Hence, the time limit of GP-TS was approximately 5 h. Two para-
meters of TS, namely tabu length (i.e. size of the tabu list) and max iteration (i.e.
maximum iteration since the last improvement), were both set to the number of units.
It was noted that, in all experiments, the TS did not terminate until the maximum
runtime had elapsed. The combination of GP and GUROBI was also experimented, in
which the GP solutions was used as the initial solution and input to GUROBI. This leads
to the same result and similar computation efficiency as the pure GUROBI solver.

Table 1 shows the results of the instances using 20, 25, 30 units, as GUROBI failed to
identify feasible solutions for the other instances within the time limit. The benchmark
solution is the best solution by GUROBI. The gap (%) is the relative quality of the solution
from the heuristic compared to that of the benchmark solution.

__obj value by heuristic — obj value of benchmark
N obj value of benchmark

gap(%)

As indicated in Table 1, GUROBI identified the optimal solutions for 15 problems, and
the GP-TS found the optimal solutions for 11 of them. Note that for large-sized
problems (e.g. n = 30 and m = 6 or 7), the solution time needed by GP-TS was 5 h,
which is significantly less than the time required by GUROBI. For all the problems in
Table 1, the best gap and average gap are within 10% (with one exception), implying

Table 1. Computational results on the simulated instances using GUROBI and the GP-TS.

GUROBI GP-TS
n m Solution time (h) Objective value Optimal? Best gap (%) Average gap (%)
20 3 0.00 0.18749 Y 0.00 0.00
20 4 0.06 0.1478 Y 0.00 0.00
20 5 0.26 0.1204 Y 6.28 6.28
20 6 0.25 0.0917 Y 0.00 0.00
20 7 5.46 0.0846 Y 0.00 0.00
25 3 0.03 0.1871 Y 0.00 0.00
25 4 0.04 0.1397 Y 0.00 0.00
25 5 0.24 0.1082 Y 12.80 12.80
25 6 11.27 0.1003 Y 0.89 0.89
25 7 15.59 0.0828 Y 0.00 11.55
30 3 0.46 0.1890 Y 418 418
30 4 430 0.1477 Y 0.00 2.51
30 5 1.66 0.1153 Y 0.00 0.00
30 6 62.36 0.0986 Y 0.00 0.00
30 7 120.87 0.0872 Y 0.00 1.23
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that most of the solutions found by the GP-TS are fairly close to the benchmark
solutions. In addition, for problems with more than 30 units (not shown in Table 1),
while GUROBI failed to find a feasible solution within 24 h, the GP-TS was capable of
deriving a solution in a short time. This highlights the capability of the GP-TS to identify
high-quality solutions in an acceptable time.

5.2. The London Borough of Camden

Camden, a borough in northwest Inner London, is policed by the Metropolitan Police
Service (MPS). The total area of Camden is 21.8 km? and the total street length is
347.0 km. Recently, the MPS has been implementing and testing a street-level predictive
policing system. By integrating street-level crime risk prediction into the design of patrol
districts, the SNPDP model has practical implications and would improve the efficiency
of policing operations.

In this study, the Integrated Transport Network data was provided by Ordnance Survey
via its MasterMap product (Ordnance Survey 2015). This borough includes 5575 street
segments, with an average length of 62 m, the maximum 800 m and 82% of the lengths
less than 100 m. Although link segmentation (that divides the links into approximately equal
size) is common in network-based analysis (Xie and Yan 2008, Yamada and Thill 2010), it was
not conducted as part of this study, as equal link size is not required for the districting task,
and most of the streets have acceptable lengths. The street-level crime risk data was
computed using the network-time kernel density estimation model (Rosser et al. 2017)
and the historical burglary crime records (Figure 3). Figure 4 shows the Corine land cover

Legend

Predicted burglary risk
1
2

—3

—

0 05 1 2 Kilometres Contains Ordnance Survey Data

N . @Crown copyright and database rights 2015

Figure 3. The predicted burglary crime risk in Camden. Levels of 1-4 denote the crime risk from low
to high.
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Figure 4. The 2012 Corine land cover map of Camden.

map of Camden (Cole et al. 2015), which is used to interpret the characteristics of different
patrol districts.

5.3. Results and discussion

In the case study, first, the GP-TS and RG-TS were used to produce districts in Camden,
and their efficiency and solution quality were compared. Second, the best districting
solution was focused on, and the characteristics of each district were interpreted. Third,
the aggregate grid-based model was formulated, using different cell sizes, and the
aggregation error was discussed. Finally, it was demonstrated how to achieve the
different degrees of trade-offs between efficiency and balance in the SNPDP.

The configuration of the TS is the same as for the optimality analysis. Similar to the
optimality analysis, wtg, wts and wtpy,: are set to 0.333, and a is set to 0.5. In operations,
the weight values would be determined by the practitioners and experts. The number of
districts is set to six so that each district is of moderate size.

Table 2 shows the computational results from the GP-TS and RG-TS for the SNPDP in
Camden. To produce an initial solution, the GP and RG procedure took 30 and 298 s,
respectively, meaning that the GP is considerably more efficient than the RG. The best
and the average objective values obtained by GP-TS are significantly superior to those
by RG-TS. The results demonstrate the advantages of GP-TS over RG-TS for large
problems.
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Table 2. Computational results of GP-TS and RG-TS for the SNPDP in Camden.

Time to generate an initial solution (s) Best objective value Average objective value
GP-TS 30.0 0.128 0.133
RG-TS 298 0.138 0.151

Figure 5 shows the district map with the best districting plan, and Table 3 presents
the values of the attributes and workloads for each district. The six districts have
different characteristics, which are dependent on the ambient crime risk and land use
types. In south Camden, the dominant land cover is ‘Continuous urban fabric’, meaning
that more than 80% of the total surface is covered by buildings, roads and artificially
surfaced areas. This part is largely used for education, transport and business.
Accordingly, Districts 1 and 2 in this area have the larger accumulative street length
than the other districts. In contrast, the north Camden is dominated by ‘Green urban

Legend
District
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N . @Crown copyright and database rights 2015

Figure 5. The best districting solution for Camden.

Table 3. A summary of the best solution using GP-TS.

District No. of streets Area Risk Diameter Workload
1 1121 0.192 0.152 0.394 0.246
2 1110 0.181 0.131 0.339 0.217
3 965 0.159 0.196 0.383 0.246
4 682 0.132 0.118 0.549 0.267
5 847 0.165 0.260 0.339 0.255
6 850 0.170 0.142 0.426 0.246
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areas’ and ‘Sport and leisure facilities’, and this is where the large green space,
Hampstead Heath, is situated. Consequently, District 4 includes sparse streets and has
the largest diameter. Moreover, in northwest Camden, District 5 features the highest
crime risk score, which can be explained by a cluster of high crime risk streets (see
Figure 3). The different signatures of the districts may have practical implications for
targeted policing.

Moreover, the SNPDP was compared against the aggregation models in generating
districting plan on streets. In the aggregation models, varying cell sizes were selected,
including 100, 150, 200 and 250 m, in order to study the effects of cell size. These cell
sizes were chosen to reflect a reasonable patrol unit for police, and they are on the same
scale as a case study on crime hotspot prediction in the same region (Adepeju et al. 2016).
For each cell size, the grid-based districting problem was formulated and solved by the GP-
TS heuristic to produce 10 solutions, which were then transformed to form street solutions.

Table 4 compares the results of SNPDP and the aggregation models using varying cell
sizes. The best solution from the previous SNPDP experiments was considered as the
benchmark. The unit number (i.e. problem size) of the districting problem decreases
dramatically as the cell size increases. As a smaller districting problem has fewer feasible
moves to test in each iteration, the average number of iterations by the TS increases with
the decrease of problem size, given the same computation time. For all cell sizes, none of
the street solutions that are directly transformed from the grid solutions is contiguous. The
relative gap from the street districting solutions to the benchmark solution is computed.
The quality of the best solution decreases as the cell size increases, indicating that a small
cell size leads to a small aggregation error. The best solution obtained by the model of
100-metre cell size is close to that by SNPDP, with a gap of 1.68%. On average, solutions
obtained by SNPDP are better than the aggregation models, except for the model of 100-
metre cell size. However, the aggregation model requires several extra steps of data pre-
processing and solution transformation. The results confirm that the best solution of the
SNPDP outperforms those of the aggregation models.

Furthermore, different degrees of trade-offs between efficiency (a = 1) and balance
(a = 0) in SNPDP can be achieved via varying the weight coefficient a. To evaluate the
balance in a districting solution, two measures are used: first, the average deviation,

AvgDev, is defined as AvgDev :M, which is the second term in Equation (1);
second, the maximum deviation, MaxDev, is defined as: MaxDev = max ADy. The anno-
1<

k<m
tations are consistent with Equations (1)-(15). A smaller value of AvgDev or MaxDev
implies the more balanced workload distribution in the solution.
Experiments were conducted with the a ranging from 0.1 to 0.9 with a step length of
0.1. Table 5 shows how the workload average and deviation in the best solution change

Table 4. Computational results of two modelling approaches with varying cell size.

Unit Average no. of iterations No. of contiguous street Average gap  Best gap
Cell size (m) number by TS solutions (%) (%)
Street 5575 1943 10 418 0.00
100 1946 4779 0 2.73 1.68
150 944 17,384 0 791 6.44
200 562 48,901 0 10.32 6.88
250 373 83,340 0 9.30 8.11
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Table 5. Results of workload average and deviation in the best solution using different a values.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Objective value 0.0270  0.0526 0.0770  0.1032  0.1279  0.1513  0.1735  0.1956  0.2177
Average workload ~ 0.2630  0.2629 0.2512  0.2507  0.2461 0.2401 0.2400 0.2399  0.2399
AvgDev (1072 0.0752  0.00077  0.2386  0.4882 09734 18115 1.8459  1.8328 1.7791
MaxDev (107 0.2257  0.00148  0.7139  1.4591 29066 54215 55142 54249 53219

with a. Obviously, the workload average decreases steadily with the increase of a, while
the AvgDev and MaxDex increases steadily with the increasing a, when the a is smaller
than 0.7. The results shows the ability of the SNPDP model to achieve varying degrees of
trade-offs between the two objectives.

6. Conclusions

In this study, the SNPDP model is proposed. This is a novel approach to incorporating
the street network structure and street-level predictive crime risk into the design of
police districts. This model is multi-criteria-based, in that the objectives include the
efficiency and balance of the district workload, and the workload is a combination of
the crime risk, area size and district diameter.

To efficiently solve large cases of the SNPDP, a combined heuristic Graph-Partition-Tabu-
Search was developed. In comparison with solutions found by an exact solver (GUROBI),
the GP-TS is capable of producing high-quality solutions quickly for the SNPDP.

The SNPDP model was successfully tested in the case study of Camden, generating
efficient and balanced patrol districts. The results confirm the advantages of the GP-TS
over an existing heuristic RP-TS, with respect to the computation time and solution
quality. Moreover, the superior capability of the SNPDP model is supported by compar-
ison with an aggregation grid-based model, in terms of solution quality. The different
characteristics of the patrol districts can be identified through a combination of the
crime risk distribution and the land use map, and the results can guide the planning of
policing strategy.

Putting a street-based district design into police operations has both several advan-
tages and certain limitations. The main advantage is that it incorporates the street
network and the street-level predictive crime risk, and ensures a workload balance.
Moreover, each district is guaranteed to be well connected in the street network.
Therefore, it is expected to enhance the efficiency of patrol planning and emergency
response. However, several limitations exist regarding the incorporation of census data
and police activities that occur off the streets. First, as the street segments are incom-
patible with the current census units (e.g. census block, output area), it is difficult to
carry out demographic research in a district consisting of streets. Second, while most of
the police activities take place on the street or near the street, there are situations in
which police deviate from the street network, such as carrying out tasks in an area, such
as a large green space, that has no streets.

This study opens up avenues for future research. First, this study proposes street-
based and grid-based models to solve districting problems with edge demands, and
offers a simple approach to comparing the solution quality. It would be useful to
compare the two models systematically, and to quantify the associated aggregation
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errors. Second, the street-based district design could be improved in certain ways so as
to incorporate census data and off-street police activities. One possible approach would
be to transform the districts into area-based districts, whilst preserving the workload
balance and the connectivity of the new districts.
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