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Chiari-like Malformation (CM) and secondary syringomyelia (SM), as well as their

analogous human conditions, is a complex developmental condition associated with pain

and accompanying welfare concerns. CM/SM is diagnosed ever more frequently, thanks

in part to the increased availability of magnetic resonance imaging in veterinary medicine.

Research over the last two decades has focused primarily on its pathophysiology relating

to overcrowding of the cranial caudal fossa. More recent characterizations of CM/SM

include brachycephaly with osseous reduction and neural parenchymal displacement

involving the entire brain and craniocervical junction to include rostral flattening, olfactory

bulb rotation, increased height of the cranium, reduced cranial base with spheno-occipital

synchondrosis angulation, reduced supraoccipital and interparietal crest and rostral

displacement of the axis and atlas with increased odontoid angulation. The most shared

manifestation of CM is the development of fluid-filled pockets (syrinx, syringes) in the

spinal cord that can be readily quantified. Dogs with symptomatic CM without SM

have a reduced basioccipital bone, compensatory increased cranial fossa height with

displaced parenchyma whereby the cerebellum is invaginated beneath the occipital

lobes but without compromising cerebrospinal fluid channels enough to cause SM.

Thus, broadly defined, CM might be described as any distortion of the skull and

craniocervical junction which compromises the neural parenchyma and cerebrospinal

fluid circulation causing pain and/or SM. The etiology of CM is multifactorial, potentially

including genetically-influenced, breed-specific abnormalities in both skeletal and neural

components. Since causation between specific morphologic changes and SM or clinical

signs is unproven, CM might be more appropriately considered as a brachycephalic

obstructive CSF channel syndrome (BOCCS) rather than a single malformation.

Understanding the normal development of the brain, skull and craniocervical junction

is fundamental to identifying deviations which predispose to CM/SM. Here we review

its anatomical, embryological, bio-mechanical, and genetic underpinnings to update the

profession’s understanding of this condition and meaningfully inform future research to

diminish its welfare impact.

Keywords: Arnold Chiari malformation, occipital hypoplasia, craniocervical junction, craniovertebral junction

(CVJ), cerebrospinal fluid (CSF), brachycephaly, caudal occipital malformation syndrome (COMS)

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2018.00171
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2018.00171&domain=pdf&date_stamp=2018-07-27
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.knowler@surrey.ac.uk
https://doi.org/10.3389/fvets.2018.00171
https://www.frontiersin.org/articles/10.3389/fvets.2018.00171/full
http://loop.frontiersin.org/people/524178/overview
http://loop.frontiersin.org/people/551437/overview
http://loop.frontiersin.org/people/288496/overview


Knowler et al. Chiari and Syringomyelia Review

INTRODUCTION

Chiari-like malformation (CM), and secondary syringomyelia
(SM), is a painful inherited disorder common in brachycephalic
toy breed dogs (1–5). CM/SM was highlighted as a substantial
welfare concern by the Companion Animal Welfare Council

(6, 7) over a decade ago. Since then, improved knowledge
and understanding of the clinical and behavioral signs of the
condition have increased the public and veterinary profession’s
awareness of its prevalence and the need to differentiate clinical
CM/SM from normal non-pathogenic anatomical variations.
SM is a disorder of cerebrospinal fluid (CSF) circulation and,

in this review, confined to its dependent relationship to CM
(8, 9). However SM can be asymptomatic and in the Cavalier
King Charles Spaniel (CKCS) has a high prevalence (2, 3, 10).
CM alone can be symptomatic (11) and any definition of CM

should therefore take account of pathological abnormalities that
not only disrupt CSF flow in the spinal canal with resultant
syrinx formation but also cranial aberrations which can result in
clinical and behavioral signs of pain. Classical clinical signs of
SM in CKCS include phantom scratching which is a tendency
to scratch towards one shoulder or neck region without skin
contact (12) and shown to be related to a mid-cervical syrinx
with a transverse width greater than 4mm and/or extension
to the region of the superficial dorsal horn (13, 14). Dogs
with symptomatic SM may also present with neurological
deficits such as scoliosis, weakness and proprioceptive deficits
which reflect spinal cord damage from the expanding cavity.
Syrinx independent signs include vocalization, scratching or
rubbing of the facial region or ears, aversion to touch, spinal
pain, exercise intolerance, refusal /difficulty jumping stairs,
and sleep disruption are more likely to reflect CM (assuming
other causes of this signs ruled out) (13, 15). To compound
the complexity, clinical signs can be intermittent, have other
possible causes or overlooked by owners. Many of the signs
listed have been described and attributed to CM/SM in other
breeds (16–20).

Both terminology and definitions of canine CM and SM are
not only variable but, at times, controversial (21). Terms have
included: Arnold Chiari malformation as with the human analog;
occipital hypoplasia (OH) based on the reduced development
of the basi and supraoccipital bone (22); and caudal occipital
malformation syndrome (COMS) (23). Such names have resulted
in confusion and in 2006 an international veterinary working
group, invited by the UK Cavalier Club, were briefed to agree
a name in order to dispel confusion (24). The suffix “like” was
added to the human condition Chiari-I malformation because
dogs do not have cerebellar tonsils and the severity of the
condition is not dependent on the size of the cerebellar herniation
(25). Although the working group agreed the acronym as CM/SM
for Chiari-like malformation and secondary syringomyelia, CLM
has been used as an acronym for CM in some research
articles to distinguish it from the corresponding human
condition.

The canine definition of CM has evolved over the last decade
reflecting an increased understanding of its pathogenesis, and
is no longer considered simply a reduced caudal fossa with

an impacted and/or herniated cerebellum through the foramen
magnumwhich compromises CSF channels (4, 8, 26, 27). In 2011,
the British Veterinary Association (BVA)/Kennel Club (KC), as
part of the CM/SM health screening programme, define 3 grades
for CM (CM0-2) whereby the cerebellar morphology is assessed
as a measure of overcrowding of the caudal fossa: the cerebellum
in CM0 has a rounded shape with a high intensity signal on
T2-weighted images consistent with CSF between the caudal
cerebellar vermis and the foramenmagnum; CM1 the cerebellum
does not have a rounded shape, i.e., there is indentation by the
supraoccipital bone, but there is a signal consistent with CSF
between the caudal vermis and the foramen magnum, and CM2
the cerebellar vermis is impacted into or herniated through the
foramen magnum. This historic grading system defined by the
cerebellum does not relate to the severity of SM nor take account
of dogs without CM but with SM (10, 28, 29). For example, a
familial group of Griffon Bruxellois, with a rounded cerebellum
(CM0), had ventriculomegaly, heighted cranial fossa and SM
indicating disruption of CSF flow (29). Similarly, the description
of Chiari malformation in humans has morphed over time and
includes CM Type 0 with normally placed cerebellar tonsils
(21, 30). The human classification of SM has also changed over
time (25, 31) with advanced imaging techniques applied to CSF
circulation and it is possible that further phenotypic variations
for both SM and CMmay be revealed.

The variable association of cerebellar herniation and
craniocervical abnormalities with the occurrence and severity
of SM, described above, implies involvement of additional
anatomical abnormalities associated with CM. Indeed, recent
characterization of CM/SM embraces the entire brain and
not just the caudal cranial fossa and craniocervical junction
(bony structures surrounding the junction between the medulla
oblongata and spinal cord) (18, 27). The complexity of the
disorder is illustrated on a mid-sagittal T2-weighted image of
the brain of a CKCS with CM and SM highlighting the key
anatomical components (Figure 1). The relationship between
the significant traits associated with the cranial caudal fossa has
been summarized in Figure 2. These include (i) shortening of
the basicranium, (ii) spheno-occipital angulation, (iii) reduced
occipital crest and supraoccipital, (iv) rostral displacement
of the axis and atlas with increased odontoid angulation, (v)
displacement of neural parenchyma with compensatory increase
in cranial height, (vi) cerebellar herniation (11, 32). CKCS
may have one or more of the features which predispose to SM
which are typified by two scenarios depending on whether
brachycephalic anomalies predominates over craniocervical
deformities (32). Since the etiology of the syndrome has yet
to be fully elucidated, a broad definition of CM, supported in
this review, is a malformation of the skull and craniocervical

junction which compromises the neural parenchyma to cause

pain and/or disrupt CSF circulation which can result in SM. A
diagnostic challenge is recognizing the combination and extent of
the abnormalities associated with CM and SM. Histopathological
aspects of CM/SM in the spinal cord (33) and their relationship
with phantom scratching have been investigated (14), but further
research is required to establish the pathophysiology of the pain
associated with CM.
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FIGURE 1 | Mid-sagittal T2-weighted image of brain and cervical spinal cord of CKCS with CM and SM. Yellow arrows indicate generalized skeletal variances from

normal CKCS skull and cervical junction. Red arrows indicate displaced neural parenchyma.

ANATOMICAL ABNORMALITIES IN DOGS
WITH CM AND SECONDARY SM

A considerable body of research has been undertaken worldwide
to understand the relationship/s between CM and SM in
an attempt to elucidate the pathogenesis of SM in the dog.
Attention has focused on secondary SM rather than CM.
Various morphometric studies measured alterations in volume,
and/or linear dimensions and/or angles of the cranium and
craniocervical junction of dogs with and without CM/SM. The
conclusions of key studies summarized below reflect the depth
and breadth of investigations rather than a comprehensive
literature review on the morphometrics of CM/SM:

• Caudal fossa was reduced in dogs with SM (34–37).
• Cerebellar volume was greater in CKCS with CM/SM (38)

and abnormal in dogs with CM/SM (37, 39, 40) compared to
normal controls.

• There was no correlation between severity of cerebellar
herniation and neurological signs (39).

• There was amismatch or rearrangement of neural parenchyma
with SM-affected dogs (29, 35, 41, 42).

• SM-affected young dogs developed more severe clinical signs
and syringes that enlarge over time (43–45).

• There was no difference in volumetric measurement of the
neural parenchyma with changes in head position during
MRI but there was a significant difference between the
cerebellar herniation and CSF space between the cerebellum
and brainstem which was larger in the flexed position (46).

• Venous sinus volume in the caudal cranial fossa is reduced
in CKCS with CM/SM compared to dogs with CM (47)
and the skull base is reduced, with narrowing of the jugular
foramina which theoretically could increase intracranial
venous pressure and impair CSF absorption (18, 48).

• CSF flow was impeded in dogs with CM/SM (26) and this
could lead to a mismatch in the timing of arterial and CSF
pulse waves predisposing to SM (49).

• Maximum syrinx width was the strongest predictor of pain,
phantom scratching and scoliosis in dogs with SM. Both pain
and syrinx size were positively correlated with syrinxes located
in the dorsal half of the spinal cord (50, 51).

• Craniocervical junction abnormalities did not predict
development or worsening clinical signs of SM but
may contribute to them. These included atlantooccipital
overlapping (52), atlantoaxial bands (53), and medullary
elevation (54).

• The presence of a CSF flow void in the mesencephalic
aqueduct associated with ventricular enlargement and SM
in dogs suggests CSF turburlence and possibly reduced
intracranial compliance (55).

It is not surprising that any incongruities between the capacity
of the skull and brain size is considered a disorder associated
with brachycephaly and miniaturization (Toy dog breeds).
However, the extent to which these two risk factors contribute
to the morphological abnormalities associated with CM
and secondary SM has not been fully investigated. Toy
breed dogs that have been reported with SM secondary
to CM include Cavalier King Charles spaniels (CKCS),
King Charles spaniels, Griffon Bruxellois, Affenpinschers,
Yorkshire terriers, French bulldogs, Havanese, Chihuahuas,
Pomeranians, Boston terriers, Maltese dogs, Yorkshire terrier,
Papillons, miniature Dachshunds, Shih Tzu, Bichon Frisé
and several cross breeds (23, 56). Despite considerable
variation in skull shape and body weight, these breeds are
accepted as being small in size but not all are recognized in
the dog world as brachycephalic with obviously shortened
craniofacial bones.
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FIGURE 2 | Schematic framework of selected CM traits (red lines) and “normal” traits (blue lines) to illustrate underlying anatomical differences in the caudal cranium

and cranial cervical vertebrae. The red (SM affected) lines are superimposed on those for representing normal (blue) and aligned along the skull base at fixed point “*”,

the dorsum of spheno-occipital synchondrosis. The basisphenoid, possibly the presphenoid, is flexed dorso-caudally (“sphenoid flexure”). The cranial cervical

vertebrae are more rostral, with the odontoid process, angled ventrally with medullary elevation (“cervical flexure”).

Brachycephaly
Brachycephalic dogs are increasingly popular (57) and
unfortunately also increasing are the health problems associated
with this conformational change (58). Brachycephaly comes
from theGreek ‘brakhus’ meaning ‘short’ and ‘cephalus’ Latinized
form of the Greek Kεφαλoς (Kephalos), derived from κεφαλη

(kephale) meaning ‘head’. It is classically associated with
airway compromise as extreme brachycephalic breeds have
facial skeleton foreshortening due to maxillary hypogenesis
often with airorhynchy (retroflexion on the neurocranial axis).
This results in conformation changes to the airways which
are associated with breathing problems. Affected dogs also
have brain changes including ventral olfactory bulb rotation,
and virtual abolition of the frontal sinuses (59–63). However
brachycephaly, as defined by cephalic or cranial index, occurs
without facial foreshortening in the dog. Cephalic index
is an anthropometric parameter utilizing head length and
breadth which is used to categorize human head shape and
in the investigation of disease states such as craniosynostosis,
hydrocephalous and microcephaly (64) which have increased
cephalic index. It is calculated as the ratio of the maximum
width of the human fetal head × 100 divided by its maximum
length (65). This was modified by Evans (66) to classify dog
heads into dolichocephalic, mesaticephalic and brachycephalic.
The width of the skull was defined as the widest interzygomatic
arch distance (66, 67). By comparison craniofacial index
(the muzzle length divided by the cranial length) is used
to assess facial foreshortening in extreme brachycephalic
dogs (59). Increased cranial index has been demonstrated
as a risk factor for SM (68) and ventricular dilatation (69),
supporting the observation that brachycephaly affects the CSF
channels.

Theoretically, bony and soft tissue changes associated
with brachycephaly may impact on the CSF drainage system
predisposing to ventriculomegaly and raised intracranial
pressure (9, 70). Basichondrocranium anomalies (the
cartilaginous parts of an embryonic cranium) have been
associated with stenosis of the jugular foramen and raised
intracranial pressure in humans (71, 72). Jugular foramen
stenosis in CKCS dogs has been described (48). Reduction
and rotation of the olfactory bulb is also associated with
brachycephaly (60) and may have an impact on CSF drainage.
The olfactory CSF conduit is an evolutionary ancient system
whereby CSF drains though the interstitial space from the
medial temporal lobe along the lateral olfactory stria through
the olfactory trigone down the olfactory tract to the olfactory
bulb (73–75). The CSF percolates through the cribriform plate of
the ethmoid bone to the nasal submucosa and nasal lymphatic
system, and CSF drainage amenability and any aberrations
predispose to ventriculomegaly, raised intracranial pressure
(76–78) and SM (9, 79).Thus brachycephaly-related distortions
of intra-cranial dimensions and impaired CSF drainage may
explain the etiology of independent symptomatic CM (11),
and be an additional pathogenic factor for the development
of SM. The phenotypes of brachycephaly have considerable
variation between dog breeds and consequently Brachycephalic
obstructive airway syndrome (BOAS) also has variation between
individual breeds and presents with different phenotypes and
severity, for example, nostril obstruction in Pugs, French
Bulldogs and Bulldogs (80). In these respects CM/SM can
be considered comparable to BOAS i.e., a Brachycephalic
obstructive CSF channel syndrome (BOCCS). Similarly to BOAS
and the airway, BOCCS can be considered any distortion of the
skull and/or craniocervical junction that compromises the neural
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parenchyma and CSF circulation causing pain and/or SM with
variation between breeds and individuals.

Craniocervical Junction Abnormalities
The craniocervical junction or craniovertebral junction (CVJ)
plays a crucial role in upholding circulation of the CSF (81).
Mechanically CVJ consists of a central pivot (basioccipital bone,
dens and axis) and two rings (foramen magnum and atlas) (82)
and any alteration in the one ormore of these components has the
potential to affect CSF flow. For example, osseous abnormalities
of the reduced caudal cranial fossa and craniocervical junction
are thought to predispose to increased hydrostatic differentials
between the spinal cord and the subarachnoid space (83, 84).
Alterations in conformation affect CSF dynamics, as revealed
by studies using cardiac-gated cine balanced fast field echo
(bFEE) MRI (26, 49). SM affected CKCS have reduced venous
sinus volume with parenchymal “overcrowding” of the caudal
cranial fossa suggesting a role for reduced venous drainage in the
pathophysiology of SM (47).

In the toy dog breeds there exists a number of craniocervical
junction abnormalities which have been identified as risk factors
for SM (85). They include atlanto-occipital overlapping, (37, 86)
which is similar to basilar invagination (BI) in humans (87) and
defined as invagination of the odontoid process into the foramen
magnum with ventral brainstem compression i.e., a more severe
malformation (88). Less common canine craniocervical junction
anomalies associated with CM include atlantoaxial subluxation
(20, 89) and dorsal angulation of the dens (90). Occipital
dysplasia (i.e., foramen magnum keyhole-like widening) may
also be seen (40, 91); however it has been suggested that this
is an acquired condition due to overcrowding of the caudal
cranial fossa, mechanical pressure from the cerebellum and
supraoccipital bone resorption (43). In some cases of CM/SM,
a fibrous band caudal to the foramen magnum that compresses
the spinal cord and subarachnoid space has been identified (53)
and similar atlantoaxial banding has been found in humans
(87).

Taken together, the range of craniocervical junction
anatomical abnormalities associated with CM/SM highlight
the multifactorial nature of this condition in dogs (and humans).
How each of these assemblies develops in a coordinated manner
during normal embryonic morphogenesis and post-natal growth
remains poorly understood.

EMBRYOLOGICAL BASIS OF CM

Embryology, as in human CM, provides the means to
understanding the developmental inter-relations between the
brain, derived from the neuroectoderm, and the skull, derived
from mesodermal and neural crest cells (61, 92–94). The
multipotent neural crest cells which delaminate from the dorsal
neural tube, contribute not only to the peripheral nervous system,
but also to the ectomesenchymal precursors that underpins the
cranial skeleton and thus the potential to influence irregularities
associated with CM. In the following overview, the normal
development of the neural and skeletal components are described
to give context for identifying where any abnormalities arise

that might influence CSF circulation with resultant CM and
secondary SM.

Brain and Ventricles
Although the brain and skull form synchronously, their
relationship is not necessarily benign, as demonstrated by
increased intracranial pressure in craniosynostosis (95, 96).
The vertebrate central nervous system arises from a flat
neuroectodermal plate to a neuroepithelial tube-like structure
which bends at defined closure-initiating points and propagates
along the length of the embryo through “zippering”. In the
dog, neural tube closure starts around day 16 of gestation
and is complete by around day 18 (97, 98). The neural tube
is surrounded dorsally by ectoderm, dorsolaterally by paraxial
mesoderm and neural crest cells and ventrally by the notochord
(99, 100). Failure of neural tube closure causes neural tube defects
including craniorachischisis (failure of the initiation of closure),
exencephaly (the embryonic precursor of anencephaly, failure
of cranial closure) and spina bifida (failure of caudal closure).
In humans, spina bifida is commonly associated with CM-II
(historically referred to as Arnold Chiari malformation). Several
theories have been proposed to explain the biological basis for
this association, and has recently been reviewed (101). Canine
CM is not classically associated with neural tube closure defects
(56).

Following completion of neural tube closure, hydrostatic
pressure is actively increased within its lumen and the
cranial neural tube balloons into three distinct segments
(102): the presumptive forebrain (prosencephalon), midbrain
(mesencephalon) and hindbrain (rhombencephalon) (94, 103,
104). These are punctuated by three primary flexures, two of
which convex dorsally; the cephalic flexure at midbrain level and
the cervical flexure, at the junction of the hindbrain and the spinal
cord, whereas the intervening pontine flexure concaves dorsally
(Figure 3).

These flexures, together with differential expansion of
the intervening parenchyma, produce the initial shape of
the five vesicles (telencephalon, diencephalon, mesencephalon,
metacephalon and myelencephalon) and create communicating
channels (94); the narrow interventricular foramina (Monroe)
which connect the lateral ventricles to the third ventricle,
the cerebral or mesencephalic aqueduct (Sylvius) from third
to fourth ventricle. The median aperture (Magendie) from
fourth to the subarachnoid space via the cisterna magna of
primates is not present in dogs (104–106) (Figure 4). The left
and right lateral apertures of the fourth ventricle open to
the subarachnoid space (61, 104). The ventricles, containing
CSF, are lined by ependymal cells which are continuous with
the central canal of the spinal cord. Highly vascularized pia
mater covered by ependymal epithelium eventually develops
into the choroid plexus which invaginates into the lateral, third
and fourth ventricles, forming the blood-CSF barrier (Figure 4
inset).

Having established the brain’s basic shape, further
specification occurs. The rhombencephalon patterns into
eight distinct segments, referred to as rhombomeres, which
form distal to the cephalic flexure under the control of Hox
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FIGURE 3 | Schematic diagram of the differentiation of vesicles in the developing brain. The three stages in the development of the vesicles within the brain as

changes in differential growth and proportions of the forebrain, mid brain and hindbrain (1st and 2nd stages) are modified by flexures that still allow the continuity of the

CSF channels within. Stage 3 illustrates the formation of cerebellum and its relationship with the fourth ventricle and the cerebral aqueduct.

gene transcription factors. Each rhombomere gives rise to a
distinct hindbrain segment with its own set of ganglia and
nerves. The cerebellum starts as a proliferation of the rhombic
lips (Figure 4), which expand medially through the roof plate
of the fourth ventricle, fusing in the midline. As the pontine
flexure deepens, the enlarged metencephalon becomes folded
against the dorsal lamina of the medulla and developing choroid
plexus (94). Neuroepithelial cells in the rhombic lips differentiate
along various lineages. It is pertinent to note this later growth
of the cerebellum in the context of its deformation in CM.
In the human fetus, it has been shown that cerebellar growth
commences later than the cerebral hemispheres, whereas the
growth of the bony posterior fossa appears to precede cerebellar
growth (107). It is credible, therefore, that any reduction in
the proportions of the bony caudal fossa does not inhibit
growth of the cerebellum which would develop “normally”
and become impacted or herniated within the reduced caudal
fossa volume. Indeed, it has been demonstrated that CKCS

have an enlarged cerebellum relative to the volume of the entire
brain (38).

The traditional model of CSF hydrodynamics suggests the
majority of CSF drains from the subarachnoid space surrounding
the brain mostly via arachnoid villi in the dorsal sagittal sinus
and distal recesses of meningeal sheaths surrounding nerve
roots, especially the optic and olfactory nerves. The choroid
plexus (Figure 4 inset) provides a large surface area for solute
exchange and CSF flow as a consequence of water filtration
between the capillaries and interstitial fluid. However, the classic
CSF physiology, that this organ represents a powerful biological
pump, is now challenged in favor of CSF exchange that is
constant and present everywhere in the system (77, 108). There
is increasing evidence of the important role of extracranial
lymphatic vessels plays in CSF dynamics (79, 84, 109–111).
Brachycephalic breeds have a restricted rostral dorsal sagittal
venous sinus compared to dolichocephalic and mesaticephalic
dogs (63) and the additional reduced olfactory lobes might
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FIGURE 4 | Schematic adult brain with ventricular system with enlarged fourth ventricle inset illustrating formation of CSF. Red arrows indicate movement of filtrate

from the venous system into the ventricles at the choroid plexus; Aqua arrows indicate movement of CSF through the ventricles to the subarachnoid space and

central canal. Inset: Transverse section of medulla oblongata (myelencephalon) illustrating relationship of the choroid plexus epithelium invaginated into the CSF space

of the fourth ventricle and the blood/brain barrier and compliance with CSF drainage.

adversely affect CSF drainage and thereby increase risk of
CM/SM. Disturbance of the CSF circulation in a critical stage of
development can lead to a range of pathologies such as congenital
hydrocephalus and ventriculomegaly associated with CM/SM
(104, 112).

Thus, expansion and early growth of the developing brain,
initially without surrounding skeletal components, may be
subsequently be subjected to mechanical forces by skull
formation that can impinge on late pre-natal and early post-
natal morphogenesis depending on the elastic properties of the
brain parenchyma (113). It is reasonable to propose that this
and selected impairment and dysfunction of CSF flow, may,
over a period of time, result in late onset SM. Indeed, recent
research suggests that brain lymphatic system and its regulation
are influenced by physiological conditions such as aging, genetic
phenotypes, heart and respiration and it may have a role as
potential therapeutic targets in the treatment of neurological
diseases and pain (114).

Skull
The canine skull, as in other vertebrates, is a product of its
evolutionary origins whereby the loss of lateral walls of the

neurocranium in both birds and mammals enabled the brain to
expand into the dermal skull roof (115). Four skull components
can be described [Figure 5, based on (115)].

1. Neurocranium: trough-like skull base which has a primitive

cartilaginous forerunner (chondrocranium) supporting the
brain and sensory organs.

2. Viscerocranium (splanchnocranium or orognathofacial

complex): modified cartilaginous supports for the gill arches
of early aquatic vertebrates associated with feeding but also
part of the senses. In later evolutionary vertebrates these

features contribute to the jaws, hyoid and inner ear bones
(61, 116).

3. Dermatocranium or cranial vault (calvaria): dermal or

intramembranously-ossified bones which encase the
telencephalon and the nose which originated from the
bony head armor without a cartilaginous precursor.

4. Sclerotomal occipital region: incorporation of the occipital
vertebrae into the skull, supported by the annexation of
the cranial part of the spinal cord into the brain, together
with the first 2 spinal nerves as cranial nerves X1 and
X11 (117).
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FIGURE 5 | Diagram of the bones referred in text (lower jaw not illustrated) with arrows to indicate anatomical changes in dogs with CM. The green colored bones are

endochondral in origin (neurocranium of skull and notochord in axial skeleton). Calvaria and facial bones have membranous ossification (viscerocranium). Sclerotomal

occipital region bones (i.e., craniocervical junction) indicated by red border. Purple line indicates the skull base. In dog and man, interparietal and supraoccipital fuse

(yellow arrow). The reduced volume of the caudal fossa in CM is indicated by the blue arrows: reduction of the supraoccipital and dorsal displacement of atlas and

axis; premature closure of synchondroses of bones in skull base (blue*) shortening the skull base and compensatory increase in height of the parietal bone and frontal

bone (red arrows).

Characteristic canine head conformations are assumed to arise
in part from breed-specific patterns in cranial growth and
suture closure. The timing of suture closure between the ten
bones comprising the cranium (six unpaired and four paired)
is genetically predetermined (discussed further below). CM-
associated features include a reduction in the length of the cranial
base to include the basioccipital and basisphenoid and volume
of the caudal fossa, smaller and ventrally rotated olfactory bulb,
rosto-dorsal variations in the clival angle (cranial base angulation
between the ethmoidal plane and spine) and increased proximity
and more acute angulation of the atlas and dens (11).

Prenatally, skull growth is uneven, reflecting and
accommodating the developing brain (118). When intracranial
pressures become excessive, as in hydrocephalus, both cortical
plates of the calvaria become thinned and grossly expanded
(119, 120). Conversely, reduced brain expansion is associated
with small calvaria, such as in microcephalics (121). External
functional forces acting on the calvarium, such as from muscles
of mastication, add to calvarial dimensions, but not to the
intracranial capacity (118). Mechanical stresses are absorbed at
the sutures by cellular proliferation and fiber formation which
creates immovable bone joints (synarthroses) (122). Their size,
type and location are genetically determined and closure occurs
in a defined pattern in relation to the brain (123).

Expansion of the cranial base occurs by primary growth of
the cartilage and by expansion at the synchondroses i.e., at the
suture lines (123) and craniosynostosis (premature fusion) is
recognized as a key component of skull abnormalities including
CM/SM (124, 125). The median elements of the basicranium
(the basioccipital, basisphenoid and paired ossifications for
the presphenoids and ethmoid bones) fuse with their lateral
component wing (orbitosphenoids and alisphenoids) to form
the trough-like sphenoidal complex. Fusion between these

two sphenoids is never complete in the dog (61). A recent
study explored breed-specific patterns of cranial suture and
synchondrosis closure in relation to airorhynchy (preaxial angle)
in domestic dogs. By comparing the closure of 18 sutures in
domestic dogs with the wolf, they identified a correlation between
patterns of closure which appear to underlie variations in skull
shape. For example, the basisphenoid-preshenoid synchondrosis
is significantly positively correlated to the prebasial angle and
the sutures of the nose and palate. Brachycephalic breeds such
as the Bulldog had significantly higher closure scores than
non-brachycephalic breeds and the wolf (126). In addition
to regulation of cranial expansion through suture closure,
the rostral and caudal sections of the skull (divided by the
hypophyseal fossa or sella turcica) increase their length at
different rates and at different times, with the sphenoid and
basioccipital bones developing more slowly. The cranial base is
angled at the level of the hypophyseal fossa where the rostral
prechordal and caudal chordal parts meet. A study of neonatal
CKCS (127) found that the lambdoid suture closed earlier the
CKCS when compared to Beagles. Premature closure of the
lambdoid suture is associated with reduction in the posterior
fossa volume in human CM-1 (128).

The spheno-occipital synchondrosis makes a significant
contribution to growth postnatally because chondral growth of
the synchrondroses continues until the bones are ossified (103).
Premature fusion of the joint between the basisphenoid and the
basioccipital (spheno-occipital synchondrosis) and between the
basisphenoid and presphenoid (intersphenoidal synchondrosis)
shortens the basicranial axis (Figure 5). However this allows the
lower jaw to continue to grow unopposed rostrally and arch
dorsally in brachycephalic dogs, as typical of such breeds as
the Bulldog and Griffon Bruxellois (61, 67, 129). The spheno-
occipital synchondrosis has been shown to ossify earlier in
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CKCS compared to other brachycephalic dogs, which in turn
ossified earlier than mesaticephalic dogs (130). Furthermore,
complete removal of the spheno-occipital synchondrosis in
experimental rats drastically changes skull growth resulting in
observable differences in the angulation of the skull base, an
increased curvature of the cranial roof and a marked forward
displacement of the occipital condyles reminiscent of CM skull
conformation. Other changes included a ventral and forward
rotation of the plane of the foramen magnum (131). Rostral
dorsal angulation between the skull base and hard palate (129)
and ventral rotation of the brain (60) is typical of brachycephalic
breeds.

Craniocervical Junction
At the craniocervical junction, the four endochondral occipital
bones that surround the foramen magnum do not have the
same embryological origins in the mammalian skull (Figure 5)
(132). The basioccipital bone of the chondrocranium is the first
of the bones in the skull base to ossify and the two lateral
exoccipitals follow the changing contours of the developing
brain (98). The supraoccipital bone, forming the dorsal border
of the foramen magnum, is derived from cephalic paraxial
mesoderm (92, 133) and its development is influenced by the
evolution of the interparietal bone, which becomes incorporated
with the supraoccipital in many mammalian species including
man and the dog. As part of an investigation into the
development of CM in the CKCS, (127) studied the histology
of the supraoccipital bone in neonatal dogs and identified
two parts: superior-membranous and inferior cartilaginous.
A sinus was identified between the two parts of the bone,
located on the internal surface of the occipital protuberance
implying that the two parts ossified and fused at birth. In
humans, the interparietal bone begins to fuse before birth and
closure is completed between the second and fourth year (134).
Sometimes the bones can remain unfused in the adult dog,
more apparent internally or as the external sagittal crest (61).
The nuchal crest separates the dorsal and caudal divisions
of the skull and the external occipital protuberance forms a
ridge or crest which is poorly developed in some dogs, e.g.,
Griffon Bruxellois (18, 67) but particularly in dogs with CM/SM
(32).

Occipital hypoplasia has been a key identifying features of SM
secondary to CM (135) and results in a reduced volume of the
caudal fossa which plays a significant role in the pathogenesis
of SM. Furthermore, histology of neo-natal CKCS showed
marked apoptosis of supraoccipital chondrocytes, which would
result in decreased growth potential (127). Histomorphometric
analysis confirmed an irregular and concave bone with reduced
numbers of trabeculae (bony spicules which form a meshwork
of intercommunicating spaces), compared to age-matched
controls (different breeds). In other words, the quality of
the supraoccipital bone in the CKCS fetus was diminished.
Pathological changes with a lower cellularity were also identified
in the single sample of adult supraoccipital bone (40).

Rusbridge established a coexistence of occipital dysplasia and
hypoplasia with SM in CKCS and demonstrated that it was not
possible to differentiate by MRI either condition with herniation

of the cerebellum (40). Post mortem findings identified a tough
membrane that covered the keyhole defect and suggested that
this tissue was more compliant than bone and offered less
resistance to CSF flow dynamics during the cardiac cycle. It was
postulated that this might also delay onset of painful clinical
signs associated with CM (40). However it was later suggested
that the bone defect was not congenital but acquired and bone
was resorbed due to pressure from caudal fossa overcrowding.
Indeed, Driver et al. showed that the height of the foramen
magnum in CKCS increases with time (43), i.e., suggesting a
dynamic loss of the supraoccipital bone, and may be a marker
of disease progression (45). Figure 6 provides an example of a
Chihuahua with the supraoccipital bone is completely lost which
might be attributed to pressure necrosis, with the dens dorsally
angled. The atlas is rostral to the occipital crest but not actually
overlapping, as nothing to overlap in this individual. Atlanto-
occipital overlap can occur with and without SM in this breed
(16, 32, 85).

The overall complexity of the embryology of the skull and
craniocervical junction has resulted in range of abnormities
which results in a mismatch between the skull, craniocervical
junction and neuroparenchyma that might compromise
CSF circulation. The association of CM with craniofacial
abnormalities that are paraxial mesoderm in origin and involve
craniosynostosis is well documented in humans (9, 134).
Unfortunately, the desire and popularity to select and breed dogs
that produce characteristic facial and breed specific features has
resulted in breed-specific variations in suture/synchondrosis
fusion which interfere with the natural morphogenetic processes
of growth, thus predisposing dogs to CM.

GENETICS OF CM

Embryological morphogenesis as well as the subsequent
rate/extent of growth are under genetic control. Polygenic
contributions of complex disorders are well-established, with
each variant typically explaining a small proportion of the
disease phenotype or risk. Canine CM is known to have a strong
heritable component (22, 136, 137). Breeding away from SM
has been shown to be effective (28, 138) and attempts have
been made to elucidate the inheritance of brachycephaly using
mixed breeding with a mesaticephalic dog (139). Research at
Montreal and McGill Universities with principal investigator
Dr Z Kibar investigating human genetics of CM has made use
of canine databases from worldwide collections (140). CM is
ubiquitous in the CKCS and consequently there were insufficient
control dogs without CM/SM available so this breed was used
to investigate SM secondary to CM. The Griffon Bruxellois
breed was used to investigate CM. In the CKCS, an initial
genome wide linkage studies identified a novel locus for SM
associated with CM and a haplotype that infers protection
against SM (141). A more recent study involving 526 dogs,
identified two loci on Canis familiaris Autosomes (CFA) 22
and CFA26 which were associated with the syrinx maximum
transverse diameter. A wide syrinx diameter was linked to
reduced volume of the caudal cranial fossa illustrated by the
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FIGURE 6 | Constructed images using CT and MRI of the skull, brain and craniocervical junction of a Chihuahua with CM and SM. MRI and CT of a 5 year old female

Chihuahua with CM and SM are used to construct images to illustrate the complexity of the skull, craniocervical junction and neuroparenchymal malformation. Top

row: 3d models (Courtesy of Dr. Cameron Black, Clinical Research Officer, Fitzpatrick Referrals Ltd.) (A) cerebellum is invaginated under the occipital lobes with little

space available for this organ. Much of the atlas is rostral to the level of the occipital crest. (B) caudal view of the skull with the supra-occipital bone missing either

because it did not form in the first instance or was resorbed due to pressure necrosis. Bottom row: (C) composite of midsagittal brain and cervical MRI and CT with

the short skull base and complex craniocervical junction abnormality with overall reduction of volume, loss of the cisterna magnum and medullary elevation over a

dorsally angled den.

phenotype in Figure 2 which was used for genotyping (136).
A quantitative trait locus (QTL) approach was adopted in the
Griffon Bruxellois and analyses identified associated single
nucleotide polymorphisms (SNPs) on 5 CFAs: CFA2, CFA9,
CFA12, CFA14 and CFA24. A reconstructed haplotype of
0.53Mb on CFA2 strongly associated to the height of the cranial
fossa and CFA14 was associated with both the height of the
rostral part of the caudal cranial fossa and the height of the
brain. The CFA2 QTL harbors the Sall-1 gene which is an
excellent candidate since its orthologue in humans is mutated
in Townes-Brocks syndrome with known association to CM- I
(137).

Given the relative rarity of the condition, human CM-
I studies have largely relied on analysis of candidate genes
with known roles in embryonic development [e.g., (142)]. A

recent whole exome sequencing study analyzing two Italian
pedigrees identified potentially causative mutations in three
genes: Dickkopf-like (DKK)1, LDL receptor-related protein
(LRP)4, and bone morphogenetic protein (BMP)4 (143). Both
DKK1 and LRP4 are components of the potently-osteogenic
canonical Wnt signaling pathway and both have antagonistic
effects on this pathway. DKK1 acts as a secreted antagonist of
Wnt-ligands, whereas LRP4 potentiates the effects of another
secreted Wnt antagonist, sclerostin (144). Intriguingly, BMP
signaling is also potently osteogenic, a property which is used
clinically in fracture repair.

A missense mutation in another BMP ligand, BMP3, has
previously been associated with variations in skull shape in
dogs (145). This mutation was almost exclusively found in
extreme brachycephalic breeds. A more recent genome wide
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association study found that the genetic polymorphisms with
the largest effect size on neurocranium centroid size (the square
root of the sum of squared distances of landmarks from the
centroid: a measure which takes into account influences of
allometry from viscerocranium shape variation) were in SMAD2,
which acts as a BMP effector in certain cell types (146). In
addition, an intronic transposon which reduces expression of
the gene SMOC2 was found to explain 36% of the variation
in face length between breeds, and skulls from Smoc2−/−

mice were found to be widened mediolaterally and shortened
rostrocaudally (146). SMOC2 is a secreted matricellular protein
involved in cell adhesion and migration, but it has also
been reported to promote BMP target gene expression in
zebrafish (147).

Genetic contributions are likely to be polygenic, involving
those that influence cranial base length and synchondrosis
closure time, supraoccipital and intraparietal bone development,
size of the cerebellum, morphology of the craniocervical junction
and possibly factors that affect CSF production and absorption.
Environmental factors, epigenetic factors and/or other genetic
modifiers may also be responsible for the final phenotype of
CM/SM perhaps acting through the blood/brain/CSF barrier
associated with BOCCS. Taken together, these studies strongly
support the involvement of embryonically-active pro-osteogenic
signaling pathways in the establishment of cranial structure,
potentially supporting the theory that compression of the
neuroepithelial brain by predominantly mesodermally-derived
skeletal components is caused bymesodermal insufficiency (148).
This may have an evolutionary basis: variable tandem repeat
sequences in the master regulator of the bone-forming osteoblast
lineage runt-related transcription factor (RUNX)2 is associated
with face length across carnivore species as well as specifically
within dogs (149). Although the majority of studies reported to
date have focused on facial length rather than craniofacial index,
the large effect sizes identified raise the possibility that similar
genetic pathways may influence risk of developing CM. Robust
phenotyping is essential for genetic investigation and further
delineation of the genetic basis of canine CM/SM and potentially
identify high-risk individuals at a very early age in order to allow
selective monitoring or even the development of prophylactic
targeted therapies.

CONCLUSION AND FUTURE
DEVELOPMENTS

This review reflects the key morphogenetic processes involved in
CM/SM and how they relate to the most recent research findings
for these conditions with respect to brachycephaly, craniocervical
junction abnormalities and diagnosis but highlighting the need
for further investigation.

Understanding the developmental origins of complex three
dimensional structures of the brain, skull, craniocervical junction
and spinal cord with associated ventricles and CSF channels,
is crucial to understanding canine CM and ultimately the

pathogenesis of SM. The molecular genetics that underlay
CM/SM can provide a powerful tool to elucidate such an
understanding. However, the challenge is finding appropriate
genetic markers that can achieve this, which is confounded by
not having readily quantifiable pathogenic phenotypic features
to study. The importance of accurate phenotyping has been
fundamental for genetic studies of CM, but it is also the key
for accurate diagnosis (14, 15). The complexity of the existing
morphometrics involved in the current phenotypes make them
impractical for everyday use and a machine learning technique
for diagnosis that removes human bias has been suggested
(150). Pilot studies in this technology has identified biomarkers
in structures such as the soft palate not previously associated
with these conditions that when investigated may give further
insight into conformation change. Mathematical modeling has
also been applied to the dynamics associated with CSF flowwhich
might be used to predict the outcome following different surgical
approaches (151). The challenge of quantifying and interpreting
intermittent and variable clinical signs for a complex trait such as
CM/SM cannot be overstated. More investigation is required to
defining the pathology of symptomatic CM and its relationship
with brachycephaly and miniaturization. This priority for future
research can make a considerable and direct impact on dog
welfare.

The genetic investigation for canine CM/SM has been carried
out in conjunction with human studies and it reaffirms how “Man
and his Dog” have an enduring partnership. The progress made
has been with the whole-hearted co-operation of breeders and
pet owners supporting human sufferers of CM/SM under the
umbrella “One Health.”
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