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Abstract

On-line commercial transactions involve an inherent mistrust between
participant parties since, sometimes, no previous relation exists between
them. Such mistrust may be a deadlock point in a trade transaction where
the buyer does not want to perform the payment until the seller sends the
good and the seller does not want to do so until the buyer pays for the
purchase. In this paper we present a fair protocol for data trading where
the commercial deal, in terms of delivering the data and performing the
payment, is atomic since the seller cannot redeem the payment unless the
buyer obtains the data and the buyer cannot obtain the data without per-
forming the payment. The protocol is based on Bitcoin scripting language
and the fairness of the protocol can be probabilistically enforced.

1 Introduction

From its first uses, computer networks have been applied as a business base
ground to perform commercial transactions. Obviously, on-line interactions
impose some restrictions on how such transactions can be performed since there
is no physical contact between the parties. One of the first problems that on-line
economic transactions faces is distrustful that parts in the transaction may have
on each other. When a buyer is in a regular shop buying some groceries, whether
the seller will provide the groceries in a bag first or the buyer will give the money
for that purchase before is irrelevant since the on-site transaction reduces the
distrustful of the parts. However, if the economic transaction is on-line such
situation implies a disadvantage for the party that performs the fist step of the
protocol. If the buyer pays before receiving the purchase, the seller could act
maliciously by not sending the goods and, conversely, if the seller delivers the
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Pérez-Solà, Guillermo Navarro-Arribas, Jordi Herrera-Joancomart́ı, A fair protocol for data
trading based on Bitcoin transactions, In Future Generation Computer Systems, 2017, In
press , ISSN 0167-739X, https://doi.org/10.1016/j.future.2017.08.021.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195309992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


goods before getting paid, the buyer could disappear with the product without
paying. Such situation is solved in real transactions by creating some trust
relationship between buyer and seller. Such trust is somehow based on the fact
that the buyer is willing to pay before the product is delivered because standard
on-line payment systems, like credit cards or bank transfers, have the possibility
to be reversed. So the buyer has some confidence that if something goes wrong,
for instance, the product is not delivered, he could prove it, the system could
reverse the payment and the he would not be at a disadvantage.

However, the situation is different when blockchain based cryptocurrencies
are the payment system for purchases. Blockchain based cryptocurrencies avoid
the double-spending problem of digital cash systems by maintaining a general
ledger in which all transactions are stored. The main property of such ledger is
its immutability which makes payments final once a transaction is deep enough
in the blockchain. Once the payment is firmly included in the blockchain, it
is impossible to reverse such payment, unless the payee of such transaction
unilaterally agrees to return the money. Such mechanism leaves the buyer in a
weaker position when the payment is performed before obtaining the goods.

The best approach to solving this unequal advantage of the parties in a
purchase is to set the whole transaction atomic in the sense that the payment
and good delivery takes place at the same time. With this approach, in case
one of the parties does not complete his part, any exchange is finished (neither
delivery nor payment). In fact, such situation is the best emulation of on-site
shop scenario where the payment and the delivery take place at the same time,
almost atomically. Of course, translating such approach to a virtual environment
implies that goods traded would be restricted to digital data.

The contribution of this paper is the following. We propose a fair protocol
for data trading. Our protocol is fair since none of the participants have an
advantageous position in the execution of the protocol. The protocol is atomic
in the sense that either it is fully executed, ending the buyer with the data
and the seller with the payment, or no party incurs in any loss. Our proposal
is a practical one, based on Bitcoin scripting language, and can be deployed
using existing technology, in contrast to other theoretical approaches that are
reviewed in Section 2.

The rest of the paper is organized as follows. In Section 2 we review the state
of the art in fair exchange protocols. Section 3 provides some background on
Bitcoin transactions, its scripting language and the main relevant transactions
used in our protocol. In Section 4 the fair protocol for data trading is presented
and its main properties analyzed. Finally, Section 5 concludes the paper.

2 Related work

Our proposal can be seen as a fair exchange protocol where two parties agree in
the exchange of some data for a given value (in this case measured in Bitcoins).
Usually, fair exchange protocols can be used to sign a contract between two
parties stating such exchanges and the conditions under the exchange has to be
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carried. The signature is produced so that no party can gain advantage over
the other. We rely in Bitcoin as a way to actually implement the exchange
contract. The contract does not need to be enforced by other parties (even if
the signature of the contract is fairly produced by both parties) because Bitcoin
itself executes the contract in the form of a transaction script.

Fair exchange protocols are usually divided into two party protocols and
protocols requiring a trusted third party (TTP). Two party protocols, provide
a gradual exchange of messages or information between the two parties, to
gradually decrease uncertainty and increase fairness in the transaction, without
the need for a TTP. First proposed in [7], the idea is for the two parties to
exchange secrets bit by bit allowing them to verify the correctness of the received
bits. This idea was also proposed in other approaches [9] more specifically for the
signature of contracts. Probabilistic protocols for fair exchange were introduced
in [4], where the goal is for the parties to end up with a given probability on
the fairness (commitment to the contract by the two parties) at a given time
(or step).

Regarding the use of a TTP, we usually distinguish between online and offline
TTP. The online TTP acts as an intermediary between the two parties ensuring
the fairness of the exchange [20, 10]. On the other hand an offline TTP only
acts in case of dispute and does not participate in the protocol if all parts act
honestly, also called an optimistic fair exchange [2, 21, 3].

Authors refer to the notion of perfect fairness (also called strong fair-exchange)
when a party cannot leave the protocol with a small advantage over the oppo-
nent [16]. Perfect fair exchange usually requires the use of TTP-based protocols,
although there are several alternatives to implement it. Some of them relay in
some penalty mechanism to be applied to the misbehaving parties [19]. How-
ever, it is important to note that from a practical perspective, this advantage
could be small enough in order to be tolerated by both parties.

In [11] Bitcoin is used for the payment in an optimistic fair exchange (with
a TTP) with anonymity. Most notably, Bitcoin has been proposed for fair
exchange as a mean of implementing a penalty mechanism [5]. The idea is that
if a party leaves the protocol with more knowledge than the rest, those honest
parties are compensated. The same idea is applied to multiparty computation
in [1].

In our proposal Bitcoin is used as the main mechanism to implement and
enforce the fair exchange. We do not rely in the use of a TTP and instead
of fairly sign a contract for the exchange of data, the contract is explicitly
executed as a Bitcoin smart contract. This has the advantage that the exchange
is produced, that is the buyer gets the data and the seller the money, completely
or not. In some sense we can say that the exchange is atomic. Although our
approach does not achieve strong fairness, as we will show, the advantage that
a party (in our case the buyer) takes by leaving the protocol can be bound by
the other party.

Similarly to our proposal, [6, 12] uses Bitcoin with zero knowledge proofs to
allow payments in Bitcoin subject to the disclosure of a given secret. In this case
the secret is a symmetric key used to encrypt some given data. A zero knowledge
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proof is used (externally to Bitcoin) to prove the validity of the encrypted data
and the secret key, thus providing some sort of strong fair exchange. This is
only feasible if a zero knowledge proof exists and is feasible for the specific case
(data). A more generic solution is outlined in [18, 17] where a symmetric key is
used to encrypt chunks of data such that a subset can be revealed as a proof. As
different keys are used for each chunk, revealing a subset does not ensure that
the key of the other chunks is correct. In our proposal, since the key revealed is
a private key, it is easy to verify its correctness with the corresponding public
key. This ensures that the key is valid for all data chunks by just verifying one
of them.

3 Bitcoin transactions background

Bitcoin transactions are usually seen as a transfer of bitcoins from a source to
a destination address, in which the former can prove the ownership of such bit-
coins, and thus spend them, by providing a digital signature. However, Bitcoin
transactions are far more complex, and allow the creation of richer conditions
that have to be met to redeem the funds [14]. Transactions may be seen, in
a more general way, as a collection of inputs, containing references to previous
transaction outputs, and a collection of outputs with their corresponding condi-
tions under which they will be able to be redeemed. Each input of a transaction
refers to an output of a previous one, where unlocking conditions have been
established. Hence, each input has to contain the proof of fulfillment of the
established conditions of the output he tries to redeem from.

Both unlocking conditions and proofs are coded in transactions using Script,
a stack-based, not Turing-complete scripting language with no loops. In order to
check the correctness of a transaction, the full script is executed by concatenat-
ing both locking and unlocking scripts, leading to a final True popped up into
the top of the stack if and only if the proof satisfies the unlocking conditions.
This kind of transactions including complex unlocking scripts are also known as
smart contracts. However, not every single condition can be coded nor checked
using Script. A limited number of operations (opcodes) are defined in Bitcoin,
bounding the variety of scripts that can be encoded using the language. Fur-
thermore, its use is even more restricted, since not all the defined operations can
actually be used. For instance, the most common script transaction within Bit-
coin, the standard Pay-To-Public-Key-Hash where a digital signature is needed
to redeem a transaction, is next provided:

ScriptPubKey: OP DUP OP HASH160 <pubKeyHash> OP EQUALVERIFY

OP CHECKSIG

ScriptSig: <sig> <pubKey>

Based on the Bitcoin scripting language, multiple special-purpose transac-
tions can be defined. In the following subsections some interesting types of
transactions, that are building blocks of the proposed data trading protocol,
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are described.

3.1 Time locked transactions

Time locked transaction outputs are outputs that require a certain time in
the future to be reached in order to be redeemed. Depending on whether the
future time is absolute to Bitcoin, or relative to the transaction publishing time,
two types of time-locks can be found. On the one hand, absolute time-locks,
those based on the CheckLockTimeVerify opcode, establish a fixed date in the
future from when the transaction can be redeemed. Down bellow an example
of such time-lock (locked until 2022/12/13), along with a standard signature, is
provided:

ScriptPubKey: <2022/12/13> OP CHECKLOCKTIMEVERIFY OP DROP

<pubKey> OP CHECKSIG

ScriptSig: <sig>

On the other hand, relative time-locks, those based on the
CheckSequenceVerify opcode, establish an amount of time, starting from the
transaction publishing time, that has to be spent to unlock the output. An
example of such time-lock (locked for 25 days), together with a traditional sig-
nature, can be found as follows:

ScriptPubKey: <25d> OP CHECKSEQUENCEVERIFY OP DROP

<pubKey> OP CHECKSIG

ScriptSig: <sig>

Notice that in both examples the ScriptSig, included in the transaction that
will spent the output, does not contain any time reference, since the transaction
creation time is used to check the time-locks. Moreover, both examples include
a traditional signature lock. The reason behind this second lock is to restrict
the redeemer to a single person, otherwise anyone will be able to spend the
output once the requested time has been reached. Figure 1 depicts a general
time locked transaction, and can be seen as a representation of any of the two
introduced types.

From: Someone

Someone

1 BTC

Signed:

To: Alice

Required to unlock:

1 BTC

From: Alice 1 BTC

Signed:

To: Someone else

Required to unlock:

1 BTC

Someone else signature

m

wait until

Alice Signature

Alice

Figure 1: Time locked transaction.
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3.2 Private key locked transactions

Private key locked transactions [8] are another special case of Bitcoin transac-
tions in which the transaction output can be redeemed by anyone who provides
a private key corresponding to a public predefined key.

Two different approaches can be used to implement private key locked trans-
actions, via the definition of new Bitcoin opcode or by taking advantage of a
well-known vulnerability of ECDSA algorithm.

3.2.1 New Bitcoin opcode

One possibility to implement private key locked transactions is through the im-
plementation of a new crypto opcode that performs precisely a matching valida-
tion between the public key and the corresponding private key: OP CHECKKEYPAIRVERIFY.
The OP CHECKKEYPAIRVERIFY opcode would check whether the top two items
of the stack, pubKey and privKey (corresponding, respectively, to a public key
and private key), match.

With the usage of this new opcode, a transaction output could be constructed
such that, in order to be redeemed, the private key matching the specified public
key has to be revealed. An example1 of the scriptPubKey of such an output
together with the scriptSig needed to spend it would be:

ScriptPubKey: <pubKey> OP CHECKKEYPAIRVERIFY OP NIP OP CHECKSIG

ScriptSig: <sig> <privKey>

The script will first check that the public and private keys belong to the
same key pair. Note that, if the validation is successful, the stack values will
remain untouched. Therefore, before checking the validity of the signature with
OP CHECKSIG, the privKey value has to be removed from the stack (since it is
not needed for signature validation). The execution of OP NIP removes privKey
from the stack. Finally, OP CHECKSIG validates the signature with the public
key. If the signature is correct, the script terminates successfully.

Note that the execution of OP CHECKKEYPAIRVERIFY would fail if the valida-
tion is unsuccessful and would leave the stack as it was before if the validation
is successful. This ensures that the new opcode can be implemented as a soft
fork modification of the Bitcoin core protocol by reusing one of the currently
unused OP NOPx opcodes, in a similar way that it has been done in the past with
OP CHECKLOCKTIMEVERIFY (OP NOP2) and OP CHECKSEQUENCEVERIFY (OP NOP3).

3.2.2 ECDSA vulnerability

Since the OP CHECKKEYPAIRVERIFY opcode described in the previous section is
not still available, another approach to build transaction outputs that require

1The provided script includes a digital signature condition, following the structure of the
ones previously introduced in Section 3.1.
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the disclosure of a specific private key to be redeemed can be taken, using a
vulnerability in the ECDSA signature scheme.

ECDSA (Elliptic Curve Digital Signature Algorithm) is the cryptographic
algorithm used by Bitcoin to create and validate digital signatures. The ECDSA
signature scheme is probabilistic in the sense that there exist many different valid
signatures made with the same private key for the same message. Such feature is
based on the selection of a specific random value k during the signature process.

There exists a well known ECDSA signature vulnerability2 by which an
attacker that observes two signatures of different messages made with the same
private key is able to extract the private key if the signer reuses the same k
during the signature process. Therefore, the selection of k is critical to the
security of the system.

To implement private key lock transactions, we can make use of the afore-
mentioned ECDSA vulnerability to perform targeted private key disclosure
within Bitcoin. The Private key disclosure mechanism is performed by con-
structing transaction outputs that need to reveal a private key in order to be
redeemed, in such a way that we ensure the revealed private key is the counter-
part of a certain public key.

Let {PK,SK} be an ECDSA key pair belonging to Bob (with Addr(PK)
the Bitcoin address associated to it) and sigprev an existing signature made
with SK. Alice (that is interested in acquiring Bob’s private key) needs to
know the value of the previous signature sigprev, in order to be able to request,
afterwards, a second signature made with the same k. In contrast with the
approach followed in [8], where the previous signature appears in the blockchain
as the input script of an existing transaction, in this paper our approach is that
the existing signature sigprev does not appear in the blockchain but it is sent
to Alice by an off-chain exchange of values. In this case, the previous signature
sigprev may be transmitted confidentially (and thus only Alice and Bob know
its value). Following this approach, the signed message m does not need to
correspond to a Bitcoin transaction hash.

Once an existing previous signature sigprev is known by Alice, she creates
a transaction with an output that requires a second signature sig to be spent.
However, instead of using the classical pay-to-pubkey-hash script, she uses a
special script that forces Bob (the redeemer) not only to prove he has the private
key SK associated to the given address Addr(PK) by creating a valid signature,
but also to deliver a signature that has exactly the same k value that was used
when creating sigprev.

Doing so accomplishes two purposes: on the one hand, Bob proves he knows
the private key associated to the public key by generating a signature that
correctly validates with that public key; on the other hand, Bob is implicitly
revealing the private key associated to the same public key. Note that Bob does
not directly provide the private key, but provides information from which the
private key can be derived.

2The vulnerability is also present in the non-elliptic curve signature scheme of ElGa-
mal (and its popular variant, DSA) and is described in any fundamental cryptography text
book [13, 15].
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Figure 2 shows an scheme of the Bitcoin transactions involved in the con-
struction of a a private key locked output. Once Alice knows the previous
signature, she can construct the transaction Tx2, that transfers some bitcoins
of her property to Bob, only if Bob provides a valid signature that has the same
k as the previous signature sigprev that Bob previously sent to Alice. Moreover,
the output has an additional condition with a time lock allowing Alice to get
a refund of her bitcoins if Bob decides not to collaborate and does not redeem
Tx2’s output.

Bob

From: Someone

Someone

1 BTC

Signed:

To: Alice

Required to unlock:

1 BTC

Alice

From: Alice

Signed:

To: Bob | Alice 

Required to unlock:

Or:

Alice

1 BTC

Bob Signature (      SK )

1 BTC

Alice Signature

SK

Tx1

Tx2

B A

Sig
Prev

Figure 2: Transactions involved in the scheme.

The ScriptPubKey of the output (and its corresponding ScriptSig) that
implement the mechanism described above are the following:

ScriptPubKey: OP DUP <pubKey> OP CHECKSIGVERIFY

OP SIZE <0x47> OP EQUALVERIFY

<sigmask> OP AND <kprev> OP EQUAL

ScriptSig: <sig>

First, the script validates the signature against the specified public key.
Then, the length of the signature is checked. Finally, a bitwise AND between
the new signature and sigmask

3 is computed, and the result is compared with the
k value of the previous signature. If both values are equal, the script terminates
successfully; otherwise, the script terminates with a False value on the stack,
making it fail.

Note that the only way to ensure that the script succeeds is by providing a

3sigmask: a byte array that has 1s on selected positions and 0s in the rest of positions in
order to be able to extract information from the k value of the signature (see [8] for more
details).
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valid signature that has exactly the same k as the previous signature. Therefore,
although the redeem ScriptSig that spends the output does not include the
value of the private key directly, it is implicitly leaking its value by the ECDSA
vulnerabilty.

Also note that the ScriptSig needed to spend the output only requires one
value: the new signature.

4 The data trading protocol

As we have already stated, the main property of our data trading protocol is
its atomicity which provides its fairness for the participants of the protocol.
The proposed protocol is run by two parties, the buyer, B, and the seller,
S, and no additional party, like a TTP is needed. Notice that, contrary to
other fair exchange protocols [2, 21, 3], our proposal does not define a dispute
mechanism, in which some proposals also need a TTP, thanks to the atomicity of
the protocol. Furthermore, since our protocol is based on bitcoins, both parties
need to be connected with the Bitcoin network to send/receive transactions from
the blockchain.

In our scenario, the buyer, B, wants to buy some data D to the seller, S,
and he is willing to pay x bitcoins for such data. In order to minimize any
possible advantage of one of the parties, we consider that the data being sold
can be divided in n different parts and each of those parts may have a meaning
by itself. Notice that this scenario is not as restrictive as it would appear since
multiple data falls into this category. For instance, movies or songs can be
sliced and each slice may be recognized as part of the whole performance. On
the other hand, when dealing with sensor data, some sensing values may provide
evidence that the sensing is correct but the whole sensing data could be needed
for specific purposes.

4.1 Protocol description

The full protocol, depicted in Figure 3, can be divided in three main parts:
the Data correctness proof, in which a cut & choose protocol between B and
S is performed in order to convince B that the acquired data is correct. The
Signature commitment, used for B to obtain a previous signature performed by
S with the private key used to encrypt the data. And the Private Key Exchange,
used to exchange, atomically, the private key that allows to decrypt the sold
information for the agreed amount of bitcoins.

In the following paragraphs, we describe in detail each subprotocol. We
denote by {PK,SK} a public key pair and EPK(·) the encryption function
using the public key.

In the Data correctness proof subprotocol, the buyer B starts the proto-
col by requesting data to the seller S. In such first step, B will indicate to S the
data he is wiling to buy. Such request will include the conditions, cond, that the
data being sold has to hold. Such conditions need to be hold not only for the
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Buyer
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From: S x BTC

Signed:

Seller (         SK )               

Required to unlock:

Someone  signature
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Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 9
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 ∈ [0,...,n−1])

Validate(message, sig
prev

,
 
PK

 
)Step 8
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Step 10
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Figure 3: Fair data trading protocol.
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complete data being sold but also for each of the sliced part of the data4. Upon
reception, S generates a new key pair {PK,SK} and sends B the following
information (see Step 2 in Figure 3): the public key PK, the requested data D
encrypted using PK, and the data price x. In order to allow B to prove the
data correctness, S does not send the D as a whole bunch of encrypted data,
but split in n chunks which are encrypted individually (as shown in Figure 4),
that is: EPK(D) = {EPK(D0), EPK(D1), ..., EPK(Dn−1)}.

D
0

D


... D
n−

E
PK

E
PK

E
PK

E
PK

E
PK

(D
0
) E

PK
(D


) ... E

PK
(D

n−
)

Data

E
PK
(Data)

Figure 4: Split and encrypt procedure.

When B receives all the encrypted data, he requests a correctness proof to
S consisting in a random subset of non-encrypted data from D. To that end, B
selects the subset by randomly choosing a set of m pieces from the encrypted
dataset, that is ij ∀j ∈ [0,m− 1], ij ∈ [0, n− 1]. B sends this information and
S can build the correctness proof by choosing the unencrypted pieces of data
that matches the received indexes, that is, proof = {Dij ∀j ∈ [0,m− 1], ij ∈
[0, n− 1]}. S sends such correctness proof to B.

Once B has received the proof he verifies the correctness of D by check-
ing that the proof satisfies the conditions. Furthermore, B validates that the
received data also matches with the subset of received encrypted data, by recre-
ating the data encryption using PK. Therefore, since the subset has been
randomly chosen by B, the correctness of the full dataset can be proved with a
given probability. Section 4.3 analyzes in depth the impact of the parameters
of the scheme on such probability.

Once the data correctness has been proven, the Signature commitment
subprotocol is performed. B requests a signature Sigprev over a nonce message
performed with the private key SK generated by S. S sends Sigprev and B
validates that the signature is correct, using the public key PK that has received
in Step 2 of the Data Correctness Proof subprotocol.

Finally, the Private Key Exchange subprotocol is performed. In such sub-
protocol, B builds a private key locked transaction, Tx1, to perform the atomic
exchange between the private key, SK, and the bitcoin price x. Such private
key locked transaction is built using the technique described in Section 3.2 and
also adding another time constrain condition following the details of Section 3.1.
Such time constrain is used for B to recover the amount of x bitcoins in case S
decides not to reveal the private key by not spending the received transaction.

4Notice that such conditions will be verified by a validation mechanism. Whether such
mechanism is performed automatically or the validation needs a supervised environment is
out of the scope of our protocol.
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B broadcasts the transaction Tx1 to the Bitcoin P2P network. Once Tx1 is
included in a block, S can spend the output of such transaction with an input
of a new transaction Tx2 in which S will provide the second signature with
the same k of sigprev. Once Tx2 appears on the blockchain, B will be able to
recover the private key SK (following the details of Section 3.2) and decrypt
the data EPK(D) he received in Step 2 to retrieve the purchased data.

4.2 Implementation details

In the protocol description provided in the previous section some implementa-
tion details have deliberately omitted to allow a better understanding of the
general protocol. In this section, we provide some comments regarding such
specific details.

4.2.1 Privacy protection

First of all, sensitive information exchanged in the protocol should be protected
from third parties. For instance, if an attacker could retrieve the information
transmitted in Step 2 and in Step 7, later on, with the knowledge of Tx2, which
is publicly available in the blockchain, he could decrypt the information and
retrieve the original data D. To avoid such situation, information transmitted
on steps 2 and 7 could be encrypted using the public key of B, that could be
sent to S in Step 1. Furthermore, in Step 4, some part of the data is transmitted
in clear for validation purposes. In this case, an external attacker could also
obtain such information. Again, such situation can be avoided by encrypting
the information of Step 4 in the same way we just described for Steps 2 and 7.

4.2.2 Data encryption mechanism

As it is well known, public key cryptography is not suitable for encrypting
large files due to its poor performance. Then, since the size of the data chunks
that are encrypted and transmitted in Step 2 can vary depending of the traded
data, we suggest to use digital envelopes to encrypt D. Digital envelopes [13]
protect the message by using a two layer encryption in which the data itself is
encrypted using symmetric encryption, and then the symmetric key is encrypted
using public-key cryptography. Following such an approach, for each chunk i
of data created from D, Di, a symmetric key ki is also generated. Di will be
encrypted using ki, that is Ci = Eki

(Di) and ki will then be encrypted using
PK, that is, ci = EPK(ki). Thus, each encrypted chunk of data Di sent by
S to B during Step 2 should be replaced by {Ci, ci}, that is, EPK(Di) →
{Ci, ci}. Furthermore, when sending the correctness proof, S will include the
corresponding symmetric encryption keys ki ∀i ∈ 0, ...,m − 1. Finally, B will
need to undo the digital envelope process in Step 5 in order to perform all the
required verifications, and also in Step 12, when finally decrypts D.
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4.2.3 Script building

The private key locked transaction used in the secret key exchange subprotocol,
Tx1 also includes a time lock condition to allow B to refund his x bitcoins in
case S decides not correctly follow the last step of the protocol. The details on
how the ScriptPubKey of such transaction can be build are next provided 5 :

ScriptPubKey: IF

OP DUP <B pubKey> OP CHECKSIGVERIFY

OP SIZE <0x47> OP EQUALVERIFY

<sigmask> OP AND <rprev> OP EQUAL

ELSE

<expiring time> OP CHECKLOCKTIMEVERIFY

OP DROP <S pubKey> OP CHECKSIG

ENDIF

4.3 Protocol fairness discussion

The main objective of the proposed protocol is to achieve fairness in the sense
that neither B nor S would have any advantage in the protocol. By advantage we
mean that B cannot obtain the data without paying x bitcoins and S cannot
obtain the bitcoins without revealing the data. The Data Correctness Proof
subprotocol ensures that S cannot sell fake data. Without B verifying parts of
the encrypted data, S could encrypt fake data and when S obtains the bitcoins
in Tx2 and B the decryption key, B will learn that he was cheated but it will
be too late since S already has the bitcoins.

In the following paragraphs, we will show how the buyer B is probabilisti-
cally protected against deception by using a cut-and-choose mechanism. Fur-
thermore, the level of protection may be adjusted by fixing the ratio of chunks
revealed on Step 2.

In the main steps of the Data Correctness Proof subprotocol:

1. S encrypts each of the n chunks of data with a public key PK and commits
to the ciphered chunks by sending them to B.

2. B chooses a subset of m chunks and asks S to reveal the original data
corresponding to those chunks.

3. B validates the received chunks by checking both that the original data
meets the specified conditions and that the encryption of the original data
is equal to the committed values.

We say that a seller S successfully deceives a buyer B if the seller is able to
include b corrupted chunks of data within the n traded chunks without the buyer

5An example of such a transaction can be found in
http://tbtc.blockr.io/api/v1/tx/info/c1ecc2d4bad00e65aab425071ced1eb7dbdeeb1b3712a3df2d4dccd49c907f09
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noticing it after having validated the m revealed chunks (that is, after finishing
the Data Correctness Proof subprotocol). The probability Ω of S successfully
deceiving B is given by the following equation:

Ω(m,n, b) = 1−
min{b,m}∑

i=1

(
b
i

)(
n−b
m−i

)(
n
m

)
Indeed,

(
n
m

)
counts the number of ways of choosing m elements from a set

of n elements. We are interested in knowing how many of those ways include at
least one corrupted chunk. We compute this value by counting the number of
ways of selecting m elements with exactly i of them being corrupt and summing
them up for all possible i values.

(
b
i

)(
n−b
m−i

)
computes the number of ways of

selecting exactly i corrupted chunks, that is, the number of ways of selecting i
bad chunks from the set of b corrupted chunks,

(
b
i

)
, multiplied by the number

of ways of selecting the rest m − i elements from the non corrupted set n − b,(
n−b
m−i

)
. The summation gives the probability of selecting at least one corrupted

chunk within the m reveleaded, that is, the probability of detecting a fraud.
Therefore, the probability of deception is the complement.

Figure 5 shows the probability of deception Ω for different ratios of chunks
revealed, m

n , and different number of corrupted chunks included by the seller,
b, for n = 1 000. Note that, even when the checked chunks ratio is low, the
probability of successfully deceiving a buyer is low whenever b is over a certain
threshold. For instance, when 20% of the chunks are checked, the probability of
deception is 0.8 if the seller includes just 0.1% of corrupted chunks (b = 1, red
dot on Fig. 5). However, if the seller includes 1% of corrupted chunks (b = 10),
the probability of successfully deceiving the buyer decreases to 0.106 (green dot
on Fig. 5).

When using the proposed data selling protocol, the two parties (buyer and
seller) agree on the value of the parameter m. Therefore, the buyer can decide
beforehand whether or not to buy a given dataset depending on the deception
risk he is willing to assume. Buyers will be interested in using high m values,
since these offer higher levels of protection. Of course, even honest sellers will
prefer low m values, since if the client does not finally buy the data, m data
chunks end up being revealed for free.

As an example, let us consider a certain seller S that sells a dataset divided
in n = 1 000 chunks. The buyer may allow to accept, at most, 5% of corrupted
chunks in his purchased data, and the seller does not want neither to reveal
in the Step 2 more than the 5% of the chunks. With this configuration, if we
analyze the probability Ω for b = 50 (the 5% of the 1 000 chunks),

Ω(50, 1 000, 50) ≈ 0.072

the buyer can be sure that the seller cannot cheat with a probability greater
1− 0.072 = 0.928. Of course, if the buyer does not have any trust in the seller,
he could force the seller to reveal 10% of chunks instead of only 5% in Step
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Figure 5: Probability of deception Ω. Grey lines highlight the values mentioned
as numerical examples.

2. With this settings, the buyer knows that the probability the seller cheats is
almost negligible, less than a 0.004.

5 Conclusion

In this paper we have introduced a fair data trading protocol based on Bitcoin
transactions. The protocol uses a new type of transactions, the private key
locked transaction, that provide an atomic way of exchanging a private key for
Bitcoins. Such key is used to encrypt all the traded data, and will be traded,
as a part of a Bitcoin smart contract, only when the two parties agree. The
correctness of the data sold using the protocol is verifiable by the buyer before
performing the transaction by checking a small random subset of data. By using
such a cut-and-choose technique, deception is avoided with a high probability
while only a small part of the information is learned by the buyer.

The protocol can be implemented by using the recently proposed private key
locked transaction and exchanging a few messages between the parties involved
in the process, making it easy to deploy. Moreover, it lays on the security
measures Bitcoin provides, without introducing more complexity, and it is bound
to the computational capabilities of the Bitcoin Scripting language.

We believe that, since there is no need of any other entity, like a TTP, to
implement the protocol, it could be easily deployed to provide an additional
security layer in the process of data trading using Bitcoins, reducing the trust
the involved parties have to share among them, and promoting the use of such a
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currency for trading with non-physical goods. The application of such a protocol
covers a wide range of topics, from general interest data, such as songs, pictures
or movies, to even specific purpose data, such as data sensing readings. The
integration of such a data trading in data sensing scenarios could provide a
secure way of data correctness verification, reducing users misbehaving ratio
and optimizing the rewarding system.
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