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Abstract. We describe the deployment of the Sapienz Search Based
Software Engineering (SBSE) testing system. Sapienz has been deployed
in production at Facebook since September 2017 to design test cases,
localise and triage crashes to developers and to monitor their fixes. Since
then, running in fully continuous integration within Facebook’s produc-
tion development process, Sapienz has been testing Facebook’s Android
app, which consists of millions of lines of code and is used daily by hun-
dreds of millions of people around the globe.

We continue to build on the Sapienz infrastructure, extending it to
provide other software engineering services, applying it to other apps
and platforms, and hope this will yield further industrial interest in and
uptake of SBSE (and hybridisations of SBSE) as a result.

1 Introduction and Background

Sapienz uses multi-objective Search Based Software Engineering (SBSE) to
automatically design system level test cases for mobile apps [49]. We explain
how Sapienz has been deployed into Facebook’s central production continuous
integration system, Phabricator, how it collaborates with other Facebook tools
and technologies: the FBLearner Machine Learning Infrastructure [38], the One
World Mobile Platform [20] and Infer, the Facebook Static Analysis tooling [13].
We also outline some open problems and challenges for the SBSE community,
based on our experience.

Our primary focus for this paper is the deployment of the SBSE technology,
rather than the SBSE aspects themselves. We believe the deployment throws
up interesting new challenges that we would like to surface and share with the
SBSE community as one potential source of stimulus for on-going and future
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work on deployable SBSE. The details of the SBSE algorithms, the SBSE app-
roach adopted by Sapienz and its evaluation against state-of-the-art and state-
of-practice automated mobile test techniques can be found elsewhere [49].

Sapienz augments traditional Search Based Software Testing (SBST) [33,55],
with systematic testing. It is also designed to support crowd-based testing [48] to
enhance the search with ‘motif genes’ (patterns of behaviour pre-defined by the
tester and/or harvested from user journeys through a system under test [50]).

Many SBSE testing tools, both more and less recent instances [26,45,71], tend
to focus on unit level testing. By contrast, Sapienz is a system-level testing tool,
in which the representation over which we design a test is the event sequence at
GUI level, making Sapienz approach more similar to the Exsyst1 approach [30]
than it is to other more unit-testing orientated approaches. Such system-level
SBSE testing has been found to reduce the false positives that plague automated
test data generation at the unit level [30]. However, it does pose other challenges
to deployment, particularly on a mobile platform at scale, as we shall discuss.

In September 2017 the Sapienz system first went live at Facebook, deployed
on top of Facebook’s FBLearner machine learning infrastructure [38] and draw-
ing on its One World Platform which is used to supply mobile devices and emu-
lators [20]. Since then, Sapienz has run continuously within Facebook’s Continu-
ous Integration platform, testing every diff that lands into the Facebook Android
app’s code base. A ‘diff’ refers to a code commit submitted to the repository by
an engineer. Since February 2018, Sapienz has additionally been continuously
testing every smoke build of diffs, as they are submitted for review.

The Facebook Android app is one of the largest Android apps available and
is one of the most widely used apps in production at the time of writing. It
supports social networking and community building for hundreds of millions of
users world wide. Since April 2018, we extended Sapienz to test the Messen-
ger app for Android, another large and popular app, with hundreds of millions
of users world wide, who use it to connect and communicate with people and
organisations that matter to them.

These two apps are not the only communications products available, nor the
only large apps for which testing is needed. Nevertheless, the challenges of scale
and deployment are likely to be similar for other apps, and so lessons learned
will hopefully generalise to other apps and also to the issues associated with
SBSE deployment into many other Continuous Integration scenarios.

We are currently extending Sapienz to iOS and to other apps in the Facebook
app family. With these extensions we aim to widen the benefits of automated
test design from the hundreds of millions who currently use the Android Face-
book social media app to the entire Facebook community. At the time of writing,
this community numbers more than 2.2 billion monthly active users world wide,
thereby representing a significant route to research impact for software engineer-
ing scientific research communities.

The ‘debug payload’ delivered to the engineer by Sapienz, when it detects
a crashing input sequence, includes a stack trace, various reporting and

1 http://exsyst.org/.
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cross-correlation information and a crash-witness video (which can be walked
through under developer control and correlated to activities covered), all of which
combine to ensure a high fix rate, an approximate lower-bound on which is 75%
at the time of writing.

Determining a guaranteed true fix is a challenging problem in itself, so we
use a conservative mechanism to give a lower bound, as explained in Sect. 3.2.
The true fix rate is likely higher, with remaining crashes reported being believed
to be either unimportant to users or false positives (See Sect. 7.8).

A video presentation, by Ke Mao and Mark Harman from the Sapienz team,
recorded at Facebook’s F8 developer conference on 1st May 2018 is available2.
There is also a video of Ke Mao’s presentation at the conference FaceTAV 20173,
on the Sapienz deployment at Facebook4.

SBSE is now starting to achieve significant uptake in the industrial and
practitioner sectors and consequent real world impact. This impact is being
felt, not only at Facebook, but elsewhere, such as Ericsson [2], Google [77], and
Microsoft [70] as well as the earlier pioneering work of Wegener and his colleagues
at Daimler [72]. SBSE has been applied to test embedded systems software in
the Automotive domain, for example with industrial case studies involving the
Ford Motor Company, Delphi Technologies and IEE S.A. [1,54,61], and the space
domain at SES S.A. [69]. It has also been deployed in the financial services sector
for security testing [42] and in the maritime sector at Kongsberg Gruppen for
stress testing [3].

Such industrial applications allow us to evaluate in both laboratory and in
industrial/practitioner settings [52]. As has been argued previously [32], both
forms of evaluation are important in their own right and each tends to bring to
light complementary evaluation findings. That is, laboratory evaluations tend to
be more controlled, but less realistic, while industrial/practice evaluations tend
to be more realistic, but less controlled.

However, despite the widespread uptake of SBSE, indeed arguably because
of it, we now have an even richer set of exciting scientific problems and intel-
lectual challenges to tackle. In our own deployment work in the Sapienz Team
at Facebook, we encountered many open problems, some of which are currently
the subject of some scientific study, but some of which appeared to be largely
overlooked in the literature.

As we moved from the research prototype of Sapienz to a fully scaled-up
version, deployed in continuous production, we took the conscious decision to
document-but-not-solve these research challenges. Our goal was to focus on
deployment first, and only once we had a fully scaled and deployed automated
test design platform, did we propose to try to address any open research prob-
lems.

2 developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/.
3 facetavlondon2017.splashthat.com/.
4 Sapienz presentation starts at 46.45 in this video: www.facebook.com/andre.steed.

1/videos/160774057852147/.
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We were not surprised to discover that, after 15 months of intensive deploy-
ment focus, we had already accrued more exciting and interesting research chal-
lenges than we could hope to solve in reasonable time. In this paper we set out
some of these challenges and open problems in the hope of stimulating inter-
est and uptake in the scientific research community. We would be interested to
partner and collaborate with the academic community to tackle them.

2 Sapienz at Facebook: Overview

Sapienz is deployed using FBLearner, Facebook’s Machine Learning Infrastruc-
ture. In particular, Sapienz uses the FBLearner flow operators and workflows for
continuous deployment and availability. The Sapienz infrastructure also supports
sophisticated and extensive facilitates for experimentation, statistical analysis
and graphic reporting (see Sect. 5). This section outlines the principal compo-
nents of the deployment.

2.1 Top Level Deployment Mode

The overall top level depiction of the deployment of Sapienz at Facebook is
presented in Fig. 1.

Fig. 1. Overall deployment mode for Sapienz at Facebook

2.2 Phabricator

Phabricator is the backbone Facebook’s Continuous Integration system5. It is
used for modern code review, through which developers submit changes (diffs)

5 http://phabricator.org.
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and comment on each others’ diffs, before they ultimately become accepted into
the code base (or are discarded). More than 100,000 diffs are committed to the
central repository every week at Facebook, using Phabricator as a central gate-
keeper, reporting, curating and testing system [37]. In 2011 Facebook released
Phabricator as open source.

Sapienz reports the test signals it generates directly into the Phabricator
code review process. It has been found with earlier tool deployment, such as the
previous Infer deployment [13,37], that the code review system is an ideal carrier
for the signals that originate in testing and verification technologies. The Sapienz
deployment therefore followed a similar pattern to the Infer static analysis tool,
which also deployed through Phabricator, commenting on developers’ diffs. Infer
also originated in the research community via a London-based start up Monoidics
[13] in 2013, while Sapienz came from the London-based start up Majicke [24]
in 2017.

2.3 Diff Time and Land Time Testing

Sapienz comments on diffs at two different points in the code review process:
diff submit time, and post land time. A diff is first submitted by a developer,
to be reviewed by other developers, and cannot land into the code base until it
has passed this review stage, so diff submit time always occurs strictly earlier in
the code development life cycle than land time. The post-land stage is the point
at which diffs may be encountered by dogfooding, allowing Sapienz to cross-
check whether crashes it has found have also been witnessed in pre-production
dogfooding of release candidates.

At diff submit time, Sapienz receives smoke builds from Facebook’s ‘Sandcas-
tle’ test infrastructure, using these to test individual diffs as they are submitted
by developers (and batches of such diffs where possible, for efficiency reasons).
The aim of diff time testing is to run a selection of tests at least once per diff,
selected from those previously-generated by Sapienz. This selection is run as soon
as possible after the diff is submitted, in order to give early signal to the devel-
opers as they submit their changes to be reviewed. Often, through this mode,
Sapienz is able to comment on a crashing diff before a human reviewer has had
time to comment, thereby saving precious human reviewer effort. Furthermore,
as has been widely-observed in the software testing literature [10,11], the earlier
we can detect faults, the cheaper and quicker they can be corrected.

In order to comment at diff time, it is necessary for Sapienz to be able to
test the diff quickly. This requires a scheduling system that prioritises recently-
submitted diffs, and fast selection of a likely fault-revealing subset of test
sequences. We are continuing to work on both the scheduling process, and
smarter sampling of appropriate tests; a problem well-studied in the research
community [5,16,22,59,67,74] for over two decades. At this stage we use infor-
mation retrieval approaches, popular elsewhere in software engineering, such as
Term Frequency–Inverse Document Frequency (TF*IDF) [68] to promote diver-
sity and relevance of test sequences to diff under test.
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When Sapienz executes on diffs that have been landed into the debug build of
the code base, the primary role, here, is to generate a good set of test sequences,
rather than to test the app (although testing does occur, and any crashes found
and triaged, will be reported and their fixes tracked). More importantly, by using
the debug build as a representative cut of the current user interface of the app,
Sapienz is able to maintain, update and curate the Activity Transition Graph
(ATG), that captures Sapienz’s inferred representation of the GUI structure of
the app. This testing phase is where the SBSE algorithms are used to generate
new test sequences.

2.4 FBLearner

FBLearner is a Machine Learning (ML) platform through which most of Face-
book’s ML work is conducted [38]. Sapienz is one many tools and services that
is built on top of the FBLearner framework. Facebook uses FBLearner for many
other problems, including search queries for videos, photos, people and events,
anomaly detection, image understanding, language translation, and speech and
face recognition.

Tens of trillions of ML operations are executed per day; a scale that allows
Facebook to deploy the benefits of machine learning in real time. For example,
Facebook performs natural language translation between approximately 2000
language pairs, serving approximately 4.5 billion translated post impressions
every day, thereby allowing 600 million people to read translated posts in their
mother tongue [38]. This considerably lowers linguistic barriers to international
communication.

Sapienz currently uses the FBLearner Flow components to deploy detection
of crashing behaviour directly into the work flow of engineers, integrated with
Phabricator for reporting and actioning fixes to correct the failures detected
by Sapienz. The current deployment does not yet exploit the other two phases
of the FBLearner infrastructure, namely the FBLearner Feature Store and the
FBLearner Predictor. Nevertheless, there are many exciting possibilities for pre-
dictive modelling in software testing at scale, and this infrastructure will nat-
urally support investigation of these possibilities and potential future research
directions. The team at Facebook would be very interested to explore collabora-
tion possibilities with those in the research community who would like to tackle
these challenges.

3 The Sapienz FBLearner Workflows

Three of the more important Sapienz FBLearner workflows are depicted in Fig. 2.
Each of these three workflows is explained in more detail below.

The Evolution Workflow: The evolution workflow is used to generate test
inputs and record information about them and, where they crash, to report
this to developers. The evolution workflow has six principal operators, which
execute cyclically. At the time of writing, the periodicity is every 30 min for test
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Fig. 2. The three principal Sapienz FBLearner flow workflows and their operators

generation and, for diff time test selection, every 10 min to process the queue
of scheduled diff-tine requests. These repeat cycle periodicities are, of course,
control parameters that remain under review and are subject to analysis and
tuning.

The purpose of these operators is to test the debug build of the application
file that contains all of the submitted diffs that have landed into the master
build. The overall workflow is broken into 6 separate FBLearner Flow operators.
The build operator builds an APK file.

The database of servers, maintained on the emulator by the APK file is
updated by Sapienz with a redirection that uses a proxy server to taint the
Sapienz requests so that these can be identified in production, when they hit
back-end servers, and thereby diverted where they might otherwise affect pro-
duction. Other than this ability to taint requests via the proxy server, the APK
file has the same functionality as that downloaded onto phones by dogfooders,
and ultimately, by real users, once the next cut of the debug build has been
rendered into one of many release candidates.

The ‘Evolve’ operator runs the Sapienz evolutionary workflow, executing
the Sapienz multi objective evolutionary algorithm to generate new test input
sequences from the master build. The details of the evolutionary algorithm
are relatively similar to those described in the previous ISSTA paper about
the Sapienz research prototype [49]. The primary difference lies the additional
technology required to lease and communicate with the emulators used by the
MotifCore component, which executes test cases and records, inter alia, cover-
age and crashes. Many 100 s of emulators per app-under-test can be leased for
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each execution of the operator, through the OneWorld platform, rather than by
the more direct connection to a specific device or devices implemented in the
research prototype.

The ‘Jobs’ operator records information about the evolutionary algorithm
executions so that these can be harvested and examined later on, while the
‘Crash’ operator records information about crashes detected in each run. This
is used in reporting and fix detection. The ‘FPs’ operator is inserted into the
workflow to detect false positives, and remove these so that they are not reported
to developers. False positives can occur, for example, because the emulator may
lack (or differently implement) technical features compared to any device, for
example, augmented reality features offered in advanced handsets. Where these
are not present in the emulator this may lead to a crash that would not occur
on a real device and clearly it would be a nuisance to developers to report these
false positive crashes to them.

Finally, the Sapienz Automated Fault Triage (‘SAFT’) operator identifies the
diff responsible (and the line of code within that diff) that is the likely root cause
of each crash detected. When the SAFT operator is able to triage to a particular
line of code, this is reported to the developer through the Phabricator Continuous
Integration system. The developer receives a ‘Debugging payload’, consisting of
information about the crash, the stack trace, video(s) showing steps to reproduce
the crash, and pointers to collections of information about potentially related
crashing behaviour, and debugging support technology.

3.1 Crash Reproduction Workflow

The problem of flaky tests means that many failing test cases will not reliably
fail on every test execution, even in apparently identical circumstances. The
crash reproduction workflow assesses and records information about the degree
of flakiness for each crashing test sequence, using repeated execution.

Several authors have commented on the reasons for this flakiness [28,37,46,
56,62], finding that one of the most common causes lies in the prevalent use of
asynchronous waits; functions make asynchronous calls to services, but may not
wait sufficient time for those services to respond, producing a different result to
that had they waited slightly longer.

The result of this async wait issue is that different pauses between test events
can significantly affect the behaviour of the app under test. Sapienz runs a
crash reproduction workflow in order to determine the level of repeatability for
the failing test cases it discovers. Those found to have higher repeatability are
archived and logged as such.

For diff submit time deployment of Sapienz, test flakiness is less of a perni-
cious problem. This is because any crash, on any occasion, even if not repeatable,
has two properties that tend to promote a quick fix:

1. The crash is reported early, at diff submit time, so the developer concerned
has the full context in his or her head and is able to act immediately to
remediate.
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2. The crash serves as a proof of existence; it is possible that this diff can cause
the app to crash, in some circumstance, and this is typically sufficient signal
to occasion a change at this stage in the development process.

On the other hand, when Sapienz discovers a crash that relates to a longer-
standing problem, and cannot triage the crash to a recent diff submitted or
landed into the code base by developer, then repeatability of tests becomes
more important. A single flaky test will likely fail to give the developer sufficient
signal that he or she will want to invest time effort on a fix attempt.

However, as we have argued elsewhere [37], this does not necessarily mean
that flaky tests cannot be useful. Indeed, we believe that more research is needed
on combinations of flaky tests, such that the combined signal they produce can
be highly actionable.

We believe that promising research avenues may exist, for example using
techniques such as information theory and other probabilistic interpretations
of test outcomes [6,17,73,75]. This is important because, in many situations,
particularly with automated test data generation, we may have to work in a
world where it is safer to assume that All Tests Are Flaky (ATAF) [37].

3.2 Fix Detection Workflow

It turns out that detecting whether a crash is fixed or not is an interesting
challenge, and one that would benefit from further scientific investigation by
the research community. This is a problem to which the Search Based Software
Engineering community could contribute. The problem consists of two parts:

1. Determining when two or more crashes likely originate from the same cause.
This involves grouping crashes and their likely causes.

2. The problem of ‘proving a negative’. That is, how long should we wait, while
continually observing no re-occurrence of a failure (in testing or production)
before we claim that the root causes(s) have been fixed? Since absence of proof
is not proof of absence, we can really only more precisely speak of ‘appar-
ent fixes’ or ‘failure symptom non-reoccurrence’. Addressing this question
requires a fix detection protocol.

Grouping Crashes and Their Likely Causes. The starting point for this
problem is the difference between faults and failures, a problem well-known to
the testing literature [10]. While a single fault may lead to multiple failures,
a particular failure may also be caused by multiple faults. Therefore, there is
a many-to-many mapping between faults and failures. An automated dynamic
test design technology such as Sapienz is only able to directly detect a failure
(not a fault), and has to use further reasoning to indirectly identify the likely
candidate fault (or faults) that may have caused the failure.

In order to identify a particular failure, and distinguish it from others, we
need some kind of ‘failure hash’, or ID, that uniquely identifies each individual
failure. However, what we are really interested in, is the fault(s) that lead to these
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failures. The failure hash ID is thus an attempt to capture fault(s), through these
symptoms observed as a failure.

Inevitably, how ever we choose this ‘failure hash ID’, we are effectively group-
ing failures that we believe, ultimately, may share a similar cause. This ‘failure
signal grouping problem’ is one that has been known for some time [66]. If the
grouping is too coarse grained, then we over approximate, with the result that we
falsely group together multiple distinct failures with distinct (unrelated) causes.
Conversely, if the granularity is too fine, we separate two or more different failure
observations that originate in the same root cause (false splitting).

Whatever approach we choose, there will likely be some false grouping and
also some false splitting. We can bias in favour of one or the other, but it is
unlikely that we shall find an approach that guarantees freedom from both,
since it is a challenge to be sure of root causes. Indeed, even the very concept
of causality itself, can become somewhat ‘philosophical’ and, thereby, open to
interpretation.

Hedging in favour of finer granularity, we could consider the identity of a
failure to be the precise stack trace that is returned when the failure occurs.
However, different executions may follow slightly different paths, leading to
slightly different stack traces, while ultimately denoting the same failure and,
more importantly, the same root cause (in a fault or set faults). Therefore, using
the precise sequence of calls in a stack trace for a failing execution is too fine-
grained for our purpose.

Instead, we use a ‘message identifier’, or mid, which identifies the principal
method call in a stack trace that is used as the ‘hash’ for the failure. In so-doing
we err on the side of a coarser granularity, though we cannot guarantee that
there is no false splitting. Nevertheless, the use of mids does tend to reduce the
cognitive burden on developers who might otherwise be spammed by hundreds
(or perhaps thousands) of messages concerning ultimately the same fault.

However, it does raise the problem of false grouping, in which two entirely
independent faults can become grouped together by the same mid, and thereby
appear to contribute to the same failure. False grouping poses problems for fix
detection, because the developer may respond to a signal from the tool, and fix
the fault that leads to failure, yet the false grouping of this failure with another,
otherwise independent fault, leads to the testing tool apparently re-witnessing
the failure. As a result of this apparent re-witness of the failure, the test tool
will inadvertently infer that the bug has not yet been fixed, when in fact it has.

Our motivation for adopting the more coarse-grained failure hashing app-
roach derives from the trade off in dis-benefits: We did not wish to over-claim
the fix rate for our technology, preferring to be conservative, giving a lower
bound to the claimed fix rate. We also cannot afford to spam developers or
we risk losing their trust in, and consequent engagement with, our technology.
We therefore chose to suffer this false grouping problem rather than the more
pernicious problem of giving developea of spammy signal.

Although we use a mid at Facebook, similar problems would occur in any
real-world testing system in which we need to identify and distinguish different
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failures. There is always a trade-off between the fine-grained representation and
the risk of a spammy signal, contrasted to more coarse-grained representation
which may suffer from the false grouping problem. We continue to refine and
optimise for this trade-off, but it is likely to remain a trade-off, and therefore
the challenge is to find ways to balance the two competing constraints of not
spamming developers, and not falsely grouping; a problem well-fitted to the
SBSE research community.

This crash ID problem is compounded by the nature of the continuous inte-
gration system and Internet deployment. Continuous integration results in high
levels of code churn, in which the particular identity of the method may change.
This further fuzzes the information available to the testing technology in stack
traces, over time, since code changes may introduce apparent differences in two
otherwise identical stack traces. The deployment of Internet-based systems also
tends to elevate the degree of flakiness of test cases, since productionised tests
will tend to rely on external services, that lie outside the testers’ control.

Fix Detection Protocol. Figure 3 depicts an example Fix Detection Proto-
col with which we have recently been experimenting within the Sapienz Team
at Facebook. We do not claim it is the only possible protocol, nor that it is
best among alternatives. Rather, we present it here to illustrate the subtleties
that arise when one attempts to automate the process of detecting whether a
fix can be said to have occurred in a Continuous Integration and Deployment
environment.

We are not aware of any research work on the problem of automated fix
detection for Continuous Integration and Deployment in the presence of flaky
tests. We would like to suggest this as an important open problem for the research
community and hope that this section adequately motivates this as an interesting
open research problem.

In Fig. 3, when printed in colour, green edges represent the absence of a
failure observation, denoted by mid M , within a given time window, while the red
edges denote the observation of mid M , within a given observation window. We
distinguish two observation windows; the cooling window and the resurrection
window. When printed in black and white, these colour-augmentations may be
lost, but this should not unduly affect readability.

The cooling window is the period we require the protocol to wait before we
initially claim that the mid M is deαd. When it is not observed for this cooling
window duration, we claim that the bug is ‘α-fixed’; it initially appears to be
fixed. We mark the mid M as deαd and increase our count of α-fixes, but the
mid is not yet ‘buried’.

If a deαd mid is re-observed during the resurrection window, then the mid
is said to be ‘undead’, whereas those mids that remain undetected during the
cooling window and the subsequent resurrection window are claimed to be ‘dead
and buried’, and we call this a ‘β-fix’. A mid, M which is dead and buried is one
for which we have high confidence that, should M subsequently be re-observed
after the resurrection window, then this is a ‘recycled’ mid; one that has re-
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entered our protocol as a result of new, previously unwitnessed, failure and its
corresponding cause(s). A recycled mid is a special instance of false grouping
in which the resurrection window allows us to accrue evidence that the mid is,
indeed, falsely grouped.

We count the overall number of α and β fixes. The aim in choosing the window
durations is to have a reasonable chance of the true fix count lying between these
two numbers, without making them so wide as to become impractical.

The five nodes along to top of the state machine protocol follow the a rel-
atively simple path from initialisation of the protocol through detection of the
first observation of a brand new (never before observed) mid M , its subsequent
non-observation during both cooling and resurrection window periods and the
ultimate declaration of our claim that M is dead and buried, with consequent
increments to both the α and β fix counters along the way. This path through
the state machine represents the ideal scenario that we would like to witness for
all failures, in which we detect them, they get fixed, and that is all there is to
be said about them.

The remainder of the state machine denotes the complexities involved in fix
detection, arising from the problems of flaky tests, false grouping/splitting, and
the inevitable attempt to ‘prove a negative’ inherent in fix detection. Moving
from left to right, when we first encounter a mid M after some period, it may
turn out to be one that we previously believed was dead and buried, in which
case we claim a false grouping (of faults and their failures) has occurred because,
by definition (of buried), M has not been observed for, at least, the duration of
the cooling and resurrection windows combined. The combination of these two
windows can be thought of as the duration after which we believe any mid to
be ‘recycled’ should it re-occur. The duration denoted by these two windows in
sequence therefore represents that time after which we believe it is sufficiently
safe to assume that any new mid M observation arises due to some newly-
introduced root cause.

Another possibility is that the mid M is observed for a new revision, R
in which case the mid M is already at some stage in the protocol (prior to
being dead and buried). This observation also occasions a false grouping claim,
because we know the mid arises from a different code change to the previous
observation of the same mid through testing a different revision. For this reason,
our protocol effectively treats the ‘crash hash’ for Sapienz-detected crashes as
the combination of the failure hash identifier M (the mid), and the revision, R
(the testing of which encounters M). For mids observed in production we may do
not always know the corresponding revision, but for mids reported to developers
by Sapienz we only report those that we can triage to a specific diff, so this pair
is well-defined for all Sapienz crashes reported.

When we detect a (mid, revision) pair (M,R), we initialise a count of the
number of occasions on which M has cycled from being deαd to undead, MUDM .
Mid UNdead (MUD) is an appropriate acronym for this counter since the status
of mids that cycle between deαd and undead statuses is somewhat muddy itself,
and denotes a primary source of uncertainty in our protocol.
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If M was previously buried, we ‘dig it up’ and note that M has been recycled
whereas, if it was not buried previously, we do not treat it as recycled. In either
case we believe a false grouping has occurred and claim it. Of course, we cannot
be sure, so this false grouping claim, like our other claims, is just that; a claim.

Once we have determined whether a newly-observed mid is a brand-new
(never before seen) mid, or one of these two categories of falsely-grouped mids,
we enter the main sequence of the protocol for the mid M and corresponding
revision R. At this stage, we wait for a duration determined by the cooling
window. This is a potentially infinite wait, since the cooling window is a sliding
window protocol. A mid therefore remains unfixed until it passes the cooling
window non-observation criterion.

If it does survive unobserved through the cooling window, we claim it is
deαd and increment the α-fix count. We then start waiting again, to see if the
mid re-occurs. If the mid re-occurs within the (re-initialised) cooling window,
it becomes undead, from which status it can either return to being deαd (if it
does not become re-observed during the cooling window), can remain undead,
can oscillate between deαd and undead states, or may finally exit the protocol
as a ‘dead and buried’ mid.

Overall, the protocol ensures that no mid can be claimed to be dead and
buried unless it has undergone both the cooling window and subsequent resur-
rection window. The undead status is recorded for subsequent analysis, since
it may have a bearing on the false grouping problem, the test flakiness prob-
lem, and the determination of suitable durations for the cooling window and
resurrection window. However, the undead status plays little role in the external
claims made by Sapienz about fixes; it is merely recorded as an aid to further
‘healthiness’ analysis for our window duration, mid groupings, and test flakiness.

The external claims made by the protocol concern the number of α- and β-
fixes, and the claims concerning the deαd, and the dead and buried statuses of
the mids observed by the fix detection protocol.

3.3 The Evolve FBLearner Flow Operator

The ‘Evolve’ operator in the evolution workflow, is the core Sapienz FBLearner
operator. It is depicted in Fig. 4. This architecture of the Sapienz operator
remains similar to that envisaged for the Sapienz Research prototype [49], as
can be seen.

The Evolve operator is used to generate test inputs. These are used for test-
ing; if they find a failure then it is reported through the evolution workflow.
However, perhaps more importantly, the test inputs are archived and curated
into an Activity Transition Graph (ATG). This pool of tests is then used as
a source of pre-computed test inputs for diff time testing, so that Sapienz can
quickly find a set of pre-vvovled test sequences to apply to each diff as it is
submitted, using its smoke build, or a batch of such builds combined.

The Sapienz operator workflow starts by instrumenting the app under test,
and extracting statically-defined string constants by reverse engineering the
APK. These strings are used as inputs for seeding realistic strings into the app, a
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Fig. 4. Sapienz evolution operator workflow (Taken from the ISSTA 2016 paper [49])

technique that has been found to improve the performance of other search based
software testing techniques too [4,27].

Sapienz’s multi-objective search algorithm initialises the first population via
the MotifCore component which runs on the device or emulator. On android,
when evaluating individual fitnesses, Sapienz communicates with the App Exer-
ciser via the Android Debugging Bridge (ADB) and monitors the execution
states, returning measurement data, such as Android activities covered to the
fitness evaluator.

Sapienz uses a Search Based Software Engineering (SBSE) approach to opti-
mise for three objectives: code coverage, sequence length and the number of
crashes found. Its computational search is a pareto-optimal approach, based on
NSGA-II, a widely-used multi-objective evolutionary search algorithm, popu-
lar in SBSE research [35], but hybridised with other search techniques, such as
localised systematic search on devices/emulators. More details on the Sapienz
algorithms and their evaluation against the state of the art and the state of prac-
tice can be found in the ISSTA paper [49] and in Ke Mao’s PhD dissertation [47].

4 Integration with Other Facebook Tools and Systems

In this section we briefly explain some of the ways in which the Sapienz infras-
tructure inter-operates with other tools, systems and services at Facebook.

4.1 Collaboration Between Static and Dynamic Analysis: Infer
and Sapienz

Facebook has a static analysis technology, Infer [13], for scalable compositional
static analysis. Infer reviews potential faults, pinpointing the line of code con-
cerned, and reporting the fault candidate to the developer with a suitable mes-
sage. For example, Infer statically analyses program flows to highlight potential
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Null Pointer Exceptions and reports these to developers through the Phabricator
code review interface.

Naturally, it can happen that the developer decides that this fault reporting
is inaccurate, deeming a reported fault to be a false positive. The developer
has domain knowledge and may believe, for example, that execution cannot
cause this statically-inferred issue to arise in practice. Occasionally, the developer
maybe correct, but also, on other occasions he or she might be mistaken.

When the developer is incorrect in setting aside advice from Infer, it would
be highly useful to use dynamic analysis to provide a positive existence proof
that the fault can, indeed, lead to a failure. Sapienz seeks to provide just such
an existence proof, by checking whether a crash can be triaged to a line of code
on which Infer as previously commented. When such a failure is traced to a line
of code on which Infer has previous commented, a specific task is created and
reported to the developer to fix the fault, augmented with the additional signal
that this fault does really lead to a demonstrable failure (a constructive existence
proof), including a witness video, stack trace and line at which the crash occurs.

At the time of writing, the fix detection workflow has detected an almost
100% fixed rate for such Sapienz-Infer (‘SapInf’) faults. This is evidence that,
when static and dynamic analysis techniques can collaborate to provide a com-
bined (and thereby strengthened) signal to developers, it is highly likely that
such faults are likely to be true positives, and also that they are actionable and,
thereby, tend to get fixed. We believe are many more ways in which static and
dynamic analysis could collaborate and so we set out this collaboration as a
remaining open problem that requires further research work (see Sect. 7.7).

4.2 Combining with Feedback from Field Trials

It can happen that a crash hits real world users of the app, who experience the
crash in production. Clearly we try to avoid this where possible. In fact, the
‘real world’ user may well, in the first instance, be a Facebook dogfooder who is
running the app on their own device. We use such dogfooding as a line of defence
in preventing crashes hitting our end users.

When any user, dogfooder or end user, experiences a crash, the crash can
be logged and used to help improve testing and fault remedy. Sapienz has a
continuously running workflow which tracks the crashes it has reported to devel-
opers against the real world crashes found in production. Sapienz files a task for
the developer when this happens. Once again, this production-firing evidence
provides a stronger signal to the developer that a crash really is a true positive.

4.3 Bug Severity Prediction

Sapienz uses a simple tree-based machine learning classification technique (C4.5)
to predict whether the crashes it detects are likely to have a high number of real
world affected users. This is a measure of bug severity. After some experimenta-
tion, we determined that the simple C4.5 classifier produced a high prediction
accuracy (of approximately 75%), and therefore adopted for this approach.
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The classification algorithm takes as input, drivers of bug severity, such as:

1. Crash Metadata Features: e.g., new mid, number of hits, has the mid
been seen in prod;

2. Crash Stack Trace Features: e.g., crash type, stack depth;
3. Diff Features: duration to find crash, code churn metrics, reviewer comment

metrics, location in file tree.

5 Automated Scientific Experimental Reporting (ASER)
Workflow

The Automated Scientific Experimental Reporting (ASER) seeks to achieve
automated empirical software engineering, at scale, and fully in production,
using best-practice recommended inferential statistical evaluation and report-
ing for empirical SBSE [7,36]. The ASER is an example of a broader company-
wide (and increasingly sector-wide) approach to evidence-based decision making.
For all the challenges of Continuous Integration and Deployment, such demand-
ing modes of deployment do also have the exciting potential to facilitate such
evidence-based decision making, through support for automated experimenta-
tion.

As well as ensuring the team retains its scientific roots and culture, the
ASER also allows the team to collaborate efficiently and effectively with other
researchers from the academic and scientific community; new ideas, concern-
ing SBSE algorithms and more general automated Software Testing techniques,
originating from outside the team, can be empirically evaluated quickly and
systematically on a level playing field.

The ASER has four phases, starting with an initial proof of concept exper-
iment, through to full evaluation in parallel with (and evaluated against) the
production release of Sapienz. The motivation for these four phases is to allow
the experimenter to devote increasingly larger levels of resource to evaluating a
proposed new approach to test generation. As a result, promising techniques are
placed under increasingly strong scrutiny in order to evaluate them against ever-
increasingly demanding criteria, while less promising approaches can be quickly
identified as such and discarded.

Our aim is to explore and experiment, but also to ‘fail fast’ with those less
promising approaches, so that we can divert human and machine resources to
the most promising avenues of research and development. At each phase of the
ASER, metrics reporting on the performance of the approach are collected and
used as the inputs to inferential statistical analyses. These analyses are per-
formed automatically and the results of confidence intervals, significance tests,
effect sizes and the corresponding box plots and other visualisations are auto-
matically computed and returned to the experimenter and the overall team, for
inspection and assessment.

The overall flows through the four phases from initial proof of concept to
full deployment are depicted in Fig. 5. The migration through each of the four
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phases of evaluation is placed under human control. Movement through the
ASER is informed by inferential statistical analysis; should the newly-proposed
approach significantly outperform a baseline benchmark version of the deployed
technology, the newly-proposed technique moves from the initial proof of concept
to a more thorough evaluation against the production deployment.

Fig. 5. Experimental workflow into production

The first three phases are christened ‘Lite’, ‘Standard’ and ‘ProdExp’. The
fourth phase is a deployment into production for up to one month alongside
production deployment so that we can fully assess the number of faults triaged
and fixed by the newly-proposed technique. The Lite phase is designed to give
proof-of-concept feedback within an hour. It uses only five emulators on a choice
of search based parameter settings that ensures the algorithms terminate quickly.

Ideally, for any testing or verification technique, we should evaluate the
signal-to-noise ratio of the technique, rather than give an arbitrary time limit,
or we may fall in to the Cherry-Picked Budget (CTB) trap [37]. Using our Lite
experiment, it is possible that the reliance on CTB for the Lite phase can cause
techniques with a long startup time to be prematurely discarded.

Fortunately, at this stage of the deployment of Sapienz, we are blessed by
the large number of potentially promising ideas to explore. Therefore, it is more
important that we are able to quickly dismiss those that appear unpromising
(albeit initially with a CTB that favours early-stage effectiveness). As the tech-
nology matures, we will revisit these assumptions that underpin the ASER.

Newly proposed techniques that pass the initial Lite phase move into the
‘Standard’ ASER experimental phase. The Standard phase of the ASER deploys
best practice [7,36] (thus ‘standard’) inferential statistical experimental assess-
ment of effectiveness using 30 emulators. This number balances the efficiency of
time and computational resources against statistical test reliability.

We believe it sufficient to yield meaningful inferential statistical feedback
on the relative performance of the newly-proposed technique against a produc-
tionised alternative. We tend balance in favour of avoiding Type I errors (incor-
rectly rejecting the Null Hypothesis) at the expense of risking Type II errors
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(incorrectly accepting the Null Hypothesis), reflecting the current opportunity-
rich environment in which we seek large effect sizes to motivate further inves-
tigations. In terms of resource bounds, our aim is to obtain results within less
than a week, so that a decision can be made relatively quickly about whether to
move the newly proposed technique to the ‘ProdExp’ phase.

In the ‘ProdExp’ phase, the ASER deploys A/B testing, over a period of a
week, comparing the number of crashes triaged against the production deploy-
ment. The final phase is a longer A/B test, against production, for a period of
up to one month before the new technique is finally allowed to become part of
the new production deployment. This is necessary because Fix Detection has a
natural window (the cooling window; see Sect. 3.2) within which it is not possi-
ble to reliably compute a fix rate for any newly-proposed technique. As a result,
we can compute the fault reporting rate (the number of crashes triaged) during
ProdExp phase, but not the rate at which these crashes are fixed.

The ASER is fully parallelised for scalability, so multiple experiments can be
run at any given time, each of which resides at a different stage of the ASER pro-
cess. Overall, this ensures that less promising techniques are dismissed within a
week and that, after one week, we have sufficient evidence to put those techniques
that pass standard empirical SBSE evaluation into full A/B testing, yielding their
benefit in terms of triages and fixes.

For inferential testing we use a paired Wilcoxon (non Parametric) test, and
highlight, for follow up, those results with p values lower than 0.05. We do not
perform any p value corrections for multiple statistical testing, since the number
of tests is essentially unbounded and unknowable. This choice poses few practical
problems, because the final A/B testing phase would allow us to dismiss any
Type I errors before their effects hit production. The effect of Type I error is
thus an opportunity lost (in terms of time that would have been better spent on
other approaches), but it is not a computational cost in terms of the performance
of the deployed Sapienz technology.

In the following subsections we give 3 examples of the applications of the
ASER framework to evaluate new generation and selection algorithms and tech-
niques we considered for improving fitness computation, the motif core interface
and solution representations. Within the first 3 months of deployment of the
ASER, we had conducted tens of different high level experimental investiga-
tions to answer our research questions, with (overall) hundreds of specific low
level experimental algorithm comparisons (thousands of experimental runs), each
with different parameter settings and choices.

In the subsections that follow, we chose one example that allowed us to fail
fast, one that initially seemed promising, yet failed subsequent more demanding
phases of the ASER, and one that made it through the full ASER process to
production deployment. Each example also illustrates different aspects of the
automated reporting: box plots, scatter-plots and inferential statistical analy-
sis. We show the completely unvarnished output from ASER, exactly as it is
automatically rendered to the engineer in these three examples.
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5.1 ASER Example: Fail Fast Speed up Experiment

Sapienz communicates with the device or emulator using the Android Debug
Bridge (ADB). We had available to us, a modified ADB for which others had
previously reported prima facae evidence for high performance. Naturally, we
wanted to investigate whether it could reduce the time Sapienz required for each
test case.

RQ: New adb: Can the new adb version increase performance of the Sapienz
MotifCore and thereby the overall test execution time?

We used the ASER to run an experiment comparing execution time for the
modified ADB with the original ADB. Figure 6 illustrates the output from ASER’s
initial ‘Lite’ phase.

This Lite experiment immediately revealed that the modified ADB was, in fact,
slower, for our use-case, not faster so it was discarded, quickly and without our
engineers investing time building a full implementation. This example illustrates
the way in which ASER allows us to move fast and fail fast, with those ideas
that appear promising yet which, for a myriad of practical reasons, fail to deliver
benefits in practice.

5.2 ASER Example: Longer Test Sequences

We considered dropping the test sequence length constraint of Sapienz, to allow it
to search for longer test sequences that might achieve higher coverage. This chal-
lenged a core assumption in our earlier work. That is, we had initially assumed
that shorter test sequences would be inherently good for efficiency and effective-
ness of debugging. As a result, length formed part of the original multi objective
optimisation approach.

We used a pareto optimal multi objective approach, so length could only
be reduced if such reduction could be achieved without sacrificing coverage.

Fig. 6. Answer to RQ: New adb: ‘No. The new adb is not faster for Sapienz test design’.
An example of a box plot outcome that enabled us to Fail fast box plot. Vertical axis
shows execution time per overall run, in minutes.
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To challenge the assumption that length should be an objective, we created
a bi-objective version (crashes and coverage only) of our original tri-objective
algorithm, as formulated in the 2016 ISSTA paper [49].

RQ: Length: What is the efficiency and effectiveness of a bi-objective SBSE
algorithm compared to the production tri-objective algorithm?

Initial results from ASER’s ‘Lite’ phase were promising, as were inferential
statistical results from ASER’s subsequent ‘Standard’ phase; maybe our test
sequence length objective should be dropped. The results, as obtained directly
and automatically by ASER, are presented in Fig. 7. The figure shows the bi-
objective runs (red plots with data points marked as ‘+’) maintaining and
slightly improving the activity coverage as the population evolves.

The bi-objective version found 90 mids, while production found 57 with 40
overlaps). The bi-objective version also covered 130 Android activities, while
prod covered fewer (114, with 107 overlaps). Inferential statistical analysis
from ASER’s ‘Standard’ phase also gave cause for optimism: The unique crash
count improved by 109% (p = 0.003), while the unique activity coverage count
improved 31% (p < 0.001). However, set against this, run time slowed down by
21% (p < 0.001), largely because the bi-objective version’s mean test sequence
length was longer.

Based on the inferential statistical analysis from ASER’s ‘Standard’ phase,
we were highly optimistic for the bi-objective version of our algorithm: surely a
modest test system slow down of 21% was a small price to pay for extra cover-
age. However, when we deployed the bi-objective version alongside production
Sapienz in a full A/B test, we found that the bi-objective version found rela-
tively few extra crashes in practice compared to production and reported fewer
per unit time.

This illustrates the importance of the final A/B testing phase, rather than
merely relying on (purely) laboratory-condition experimental results alone. The
result also underscored, for us, the importance of time-to-signal; bugs-per-
minute, being more practically important than coverage or total bugs found,
in terms of their immediate impact on our developers, something that has been
noted elsewhere [37].

5.3 ASER Example: ATG Test Selection

As described in Sect. 2.3 we use a generate-and-select approach in which we
generate a set of tests from the debug build of the app (reporting any errors this
uncovers) and use the generated tests as a pool from which we subsequently select
tests to be run against each submitted diff. The generate and select approach was
first trialed using the ASER against the then production version (which solely
used generation). The research question we addressed using the ASER was thus:

RG: ATG: What is the efficiency and effectiveness of an Activity Transition
Graph (ATG) generate-and-select algorithm compared to a purely generation-
based algorithm?
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Figure 8 presents the results obtained from ASER for an experiment on the
Activity Transition Graph (ATG) approach, selecting from the ATG, the top
activity-covering sequences, rather than simply running in production to gener-
ate tests on each and every occasion.

The results were very promising for ASER’s ‘Standard’ phase, as can be seen
from Fig. 8. In this case, when we deployed the ATG selection approach alongside
prod, in A/B testing the optimism derived from the inferential statistical analysis
was fully borne out in practice. As a result of the successful final A/B phase, we
moved from purely generation-based testing to a generate-and-select approach.

6 DevOps Results Monitoring

The results obtained from deployment of Sapienz include many of those that we
would typically wish to collect for scientific evaluation. That is, in common with
any scientific evaluation of a research prototype, we collect information about
the key performance indicators of the Sapienz deployment. These include the
number of crashes triaged to developers, and breakouts of this data, by Android
API level, application under test, and so on. These data are plotted, typically,
as timeseries data, and are available on dashboards.

In essence, this can be thought of as a continuous empirical software engi-
neering experiment of efficiency and effectiveness of the production deployment
against a sequence of recent debug builds and submitted diffs. The comparatively
rapid rate at which diffs are submitted ensures that regressions are detected
quickly.

In addition to the continuous monitoring of efficiency and effectiveness, the
Sapienz infrastructure also needs to collect a large number of DevOps infrastruc-
tural ‘health’ monitoring metrics. These health metrics help engineers to detect
any issues in continuous deployment.

Facebook provides much infrastructural support to make it easy to mash
up such dashboards, data analysis, and inferential statistical analysis. This pro-
vides the deployment of Sapienz with detailed and continuous empirical evalua-
tion feedback. We developed the Automated Scientific Experimental Reporting
(ASER) framework, described in Sect. 5, to allow us to use these data science
infrastructural features to quickly prototype new experiments and ideas. We use
the same infrastructural support to monitor the ongoing performance and health
of the Sapienz fault triage and reporting system and its fault detection protocols
and workflows.

Many continuous integration and deployment organisations use a so-called
‘DevOps’ approach such as this, in which system deployment is continuously
monitored by engineers. This DevOps process is supported by key ‘health met-
rics’ reporting, which we briefly describe in this section. We also briefly illus-
trate the kind of performance indicators that we continually monitor to under-
stand the signal that the Sapienz deployment gives to our user community of
developers.
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Fig. 8. RG: ATG: sample ASER output: inferential statistics

6.1 Health

As explained in Sect. 3, Sapienz deployment contains many ‘moving parts’, and
such large-scale infrastructure typically cannot be expected to run continuously
without individual components occasionally failing, due to timeouts, temporary
interoperability mismatches and other resource-based exigencies.

The role of Sapienz health metrics is to understand whether these are rou-
tine, temporary incursions into deployment, or whether a more serious problem
has occurred which needs engineer intervention. Supporting the Sapienz team
in making these decisions are a number of automated monitoring and control
systems, that report continually to a dashboard monitored by the team member
who is the designated ‘on-call’ for each week.

These dashboards report on many aspects of the health of the deployment,
including the

1. number of failed production worflow runs,
2. activity coverage,
3. number of tested smoke builds currently deployed on Sapienz testing tasks,
4. number of crashes detected,
5. number of requests sent to server,
6. logging of various internal soft error warnings,
7. numbers of replication of production failures,
8. the number and proportion of reproducibility (non flakiness) of test cases.

The DevOps reporting also includes a suite of data concerning the perfor-
mance of the triage, and the response of developers to the signal provided to
them.

As an illustration, consider Fig. 9, which depicts a graph plot for six days in
April 2018, showing activity coverage. The vertical axis is not shown and is not
necessary for this illustration. As can be seen from the figure, activity coverage
retains an apparently consistent level, which we regard as ‘healthy’, but on the
29th April a sudden drop is noticed. This points to potential problems in the
deployment, occasioning further investigation, as necessary.

Fortunately, in this case, the sudden drop proved to be merely the result of
a temporary quota limit on emulators being reached and within a few minutes,
normal behaviour resumed. This example is included as an illustration of the
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Fig. 9. Example DevOps monitoring: activity coverage over three days’ worth of pro-
duction runs in April 2018 (vertical axis deliberately occluded).

way in which a DevOps approach is used to tackle availability and resilience of
the Sapienz infrastructure. Naturally, an interesting challenge is to automate, to
the greatest extent possible, this resilience, so that little human intervention is
required to maintain healthy operation.

6.2 Key Performance Indicators

Figure 10 shows the two key performance indicators of crashes triaged to devel-
opers by Sapienz, and fixes detected by the automated fix detection protocol
described in Sect. 3.2. We are interested in fixes detected as a proxy for assessing
a bound on the likely false positive rate (more precisely, the signal-to-noise ratio
[37]) from Sapienz. Currently Sapienz enjoys a fix rate of approximately 75%,
indicating that the signal carries low noise. As explained in Sect. 3.2, this is both
an estimate on fix rate and a likely lower bound.

The figure covers the period from the first minimal viable product, in the
summer of 2017, through deployment, in full production, at the end of Septem-
ber 2017, to the end of May 2018. Up to the end of September 2017, all crashes
triaged to developers (and consequent fixes detected), were implemented by
hand, as a result of experiments with the initial minimal viable product. Since the
end of September 2017, after successful experimentation, the Sapienz automated
fault triage system went live, and Sapienz started commenting, automatically,
on diffs that had landed into the debug build of the Facebook android app.

In February 2018, the Activity Transition Graph (ATG) diff time generate-
and-select approach, described in Sect. 2.3, was deployed, following successful
experimentation with the ASER scientific experimentation framework (described
in Sect. 5.3). As can be seen from the figure, this produced a significant uptick
in the number of crashes detected and fixed.
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Facebook follows the DevOps approach, in which developers are personally
responsible for the code they deploy, but also supports developers in maintaining
their work-life balance, and thereby respects its own responsibility to developers:

“The flip side of personal responsibility is responsibility toward the engi-
neers themselves. Due to the perpetual development mindset, Facebook
culture upholds the notion of sustainable work rates. The hacker culture
doesn’t imply working impossible hours. Rather, engineers work normal
hours, take lunch breaks, take weekends off, go on vacation during the
winter holidays, and so on” [25].

As can be seen, Fig. 10 reveals a relatively ‘quiet time’ for developers around
the end of the year, which corresponds to the winter holiday vacation period.
Looking more closely, one can also see a roughly weekly cyclical periodicity, post
February (when Sapienz was deployed at diff submit time) which is accounted
for by weekends off.

7 Open Problems and Challenges

In this section, we outline a few interesting research challenges we have encoun-
tered during our attempts to improve the deployment of Sapienz at Facebook.
Some of these problems have been partially tackled, but we believe all of them
would benefit from further research work.

We eagerly anticipate results from the scientific research community on these
open research challenges and problems. We believe that progress will likely
impact, not only the Sapienz deployment, but also other automated test design
initiatives elsewhere in the software engineering sector.

7.1 Flaky Tests

As previously observed [37], it is better for research to start from the assumption
that all tests are flaky, and optimise research techniques for a world in which
failing tests may not fail reliably on every execution, even when all controllable
variables are held constant. This raises a number of research challenges, and
provides rich opportunities for probabilistic formulations of software testing, as
discussed in more detail elsewhere [37].

7.2 Fix Detection

As we described in Sect. 3.2, it remains challenging to determine whether a fix
has occurred, based solely on the symptoms of a fault, witnessed/experienced as
a failure. More research is needed to construct techniques for root cause analysis,
allowing researchers and practitioners to make more definite statements about fix
detection. Given the assumption that tests are flaky (described in the previous
section), it seems likely that statistical inferences about causal effects are likely
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to play a role in this work, due to the probabilistic nature of testing continuously
deployed Internet-based systems.

Fortunately, there has been much recent progress on causal inference [63],
which has seen applications elsewhere in software engineering [53], as well as
in defect prediction [14]. Therefore, the opportunity seems ripe for the further
development and exploitation of causal analysis as one technique for informing
and understanding fix detection. Empirical software engineering research is also
needed to understand whether different classes of fault have different fix detection
characteristics, and whether different approaches to fixing faults could lead to
different fix detection characteristics.

In general, the problem of fix detection can shed light on a collection of inter-
related software testing problems, such as the mapping between faults and fail-
ures, the flaky test problem, the cost benefit trade-offs in testing, fault severity,
debugging and social aspects of software testing and repair (whether automated
or otherwise).

Part of the fix detection problem arises from the subproblem of tackling the
mapping between faults and failures. We need techniques for inferring this map-
ping from observed failures. We need techniques that can use plausible reasoning
and inference to identify likely groupings of failures that originate with the same
cause, minimizing false grouping and false splitting according to their likely root
causing fault(s). Research might also develop techniques for adaptive testing
that could be used to drive the search for test cases that help to distinguish such
falsely grouped and/or falsely split crashes.

7.3 Automated Oracle

In our work on Sapienz deployment, we opted for a simple and unequivocal
implicit oracle [9]; any test which exposes crashing behaviour is a test that is
deemed to lead to a failure. Furthermore, if it is possible for a test to witness
a crash only once, and even if this test is flaky, this is a strong signal to the
developer that action is needed:

A Sapienz-detected crash is, essentially, a constructive existence proof; it
proves that there does exist a configuration in which the app can crash on
the input sequence constructed by Sapienz.

This use of an implicit oracle was important, both for us to be able to fully
automate deployment and to increase the actionability of the signal Sapienz
provided the developers. However, we believe it is merely a first step, with an
obvious starting point, using an implicit oracle.

Much more work is needed to find techniques to automate more sophisticated
and nuanced test oracles. Naturally, if the developers use assertions or excep-
tion handling, then these can lead to soft errors that can be exploited by an
automated search-based testing technique.

Nevertheless, it remains an open question how to either augment or improve
the existing test oracles provided by developers [41]. It is also important to
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find techniques that generate, from scratch, likely test oracles using techniques
such as assertion inference [23]. As test input generation becomes more mature,
and more widely-deployed in industry, we can expect a natural migration of the
research challenges from the problems of automatically generating test inputs,
to the problems of automatically generating test oracles.

Ultimately, if we can automate the generation of oracles and the genera-
tion of repairs, then we are very close to the grand challenge of FiFiVerify [34];
automatically finding, fixing and verifying software. By tackling the FiFiVer-
ify challenge, we would have practical deployed approaches that would take an
existing software system (which may be buggy), and return a new version of the
software, guaranteed to be free of certain classes of bugs, entirely automatically.

7.4 Fitness Evaluation Resource Requirements

One of the practical problems in deploying search-based software testing lies in
the resources required for fitness evaluation. This problem falls inbetween engi-
neering detail and research question. Undoubtedly, some of the solution involves
specific platforms and their characteristics and therefore is more a matter of
engineering implementation excellence than it is for scientific research.

Nevertheless, there is insufficient guidance in the research literature, and
insufficient evaluation in the empirical software engineering literature, of tech-
niques for reducing time spent on fitness evaluation. Fitness evaluation reduction
techniques essentially trade the computing resources needed for individual fit-
ness evaluation, against the quality of signal returned by fitness evaluation. The
ultimate efficacy of fitness evaluation optimisation depends upon the observed
impact on higher-level system-wide metrics, such as fault detection rate.

A fast-but-imprecise fitness computation may significantly reduce correctness
and thereby guidance provided by an individual fitness evaluation. Neverthe-
less, such an apparently suboptimal individual fitness evaluation, when executed
many millions of times over the lifetime of an evolutionary process, may have a
profound effect in reducing the execution time for the overall technique.

As a result, a relatively imperfect fitness evaluation that is fast may be prefer-
able to a much more precise fitness evaluation. These questions naturally centre
on cost-benefit trade-offs, which are at the very heart of any engineering disci-
pline. In taking scientific ideas from the evolutionary computation community
and turning these into practical engineering techniques for the software engineer-
ing research community, much more work is needed on the question of reducing
fitness evaluation resource consumption.

7.5 Wider Search Spaces

In common with most system-level approaches to search based testing in par-
ticular, and automated test data generation in general, Sapienz considers the
input to the program to consist solely of user interactions. Other approaches to
search-based testing, at the unit level, typically consider a vector of values that
can be presented to the unit under test.



32 N. Alshahwan et al.

However, there has been little work on extending the test data generation
search space to include the app’s user state and environment. User state and the
users’ device environment can play a critical role in both elevating coverage of
the application under test, and in revealing faults. Some of the faults revealed
through different state/environment settings may occur only in certain specific
user state and environment settings.

These observations are not peculiar to Facebook, but apply to any software
system in which the history of interactions of the user and other state variables
and configurations can play a role in determining which path is executed. More
research is needed in order to define general approaches to tackling this wider
search space.

In our particular situation, we are concerned, naturally, with the ‘social state’
of the user. For example, a fault may not be witnessed by a test input sequence,
unless the user has already responded to at least one post by another user, or
has at least one connection in their social network. The user state is thus a part
of the wider space in which we search for test cases using SBSE. Characterising
the circumstances under which a crash occurs, in terms of this state, would yield
highly actionable signal to the developer. It may also prove pivotal in helping to
debug otherwise very subtle bugs.

For other apps, and other organisations, the details of the user state will
clearly differ, but the general problem of characterising the user state, and the
search space it denotes, and defining fitness functions on that representation
remains an important, generic, and open research problem. Scientific progress
on this open problem is highly likely to yield impactful and actionable research.

We distinguish the user state from the user environment. The environment is
general to all applications, while the state is particular to a particular application
under test. The environment will, nevertheless, have different impact on different
applications. For example, for a photo sharing app, it will likely be important
that the user has photos in their photo library on the device. For a map or travel
application, GPS settings may prove to be important, although both apps will
have access to photos and GPS settings and may use both. In most applications,
the network environment will also play an important role.

As devices become more sophisticated, the environment will become ever
richer, offering interesting opportunities for SBSE-based characterisations of the
search space. More work is needed to characterise this environment in which users
execute applications, particularly on mobile devices, to tease out notations for
eloquently and succinctly defining this environment. Once characterised, tech-
niques such as Combinatorial Interaction Testing (CIT) [43,60,64] can be used
to explore interaction faults, for example.

For the SBSE community, we also need to consider different representations
for those environments that promote efficient and effective search. Such work
will enrich the search space and tackle several practical problems, such as device
fragmentation and context-aware test case generation.

More work is also needed to provide general notations for describing the user
state, such that the generic properties of state-based testing can be explored
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scientifically and empirically. Such work will shed light on the nature of state-
based testing for Internet-deployed, device-executed, applications. This notation
may also use and benefit from work on CIT.

Research on user state and environment will have multiple benefits to the
research community and to practitioners. For researchers, this work will pro-
vide a rich avenue of untapped research questions, with potential insights that
may help the research community to understand different kinds of deployment
mode, applications, environments and properties of states. For practitioners, this
research may help us to better understand the applications we are testing, may
help us to go beyond merely revealing faults, and also help us to characterise
salient properties that yield deep insights into app performance, usability, and
different use-case scenarios for different sub-communities of users.

7.6 Smarter, Unobtrusive and Controllable White Box Coverage

After so many years of software testing, in which instrumentation of the sys-
tem under test has often played a central role, the reader could be forgiven for
believing that the problem of white box coverage assessment is entirely solved.
However, while it may be true that white box coverage techniques exist for most
languages, platforms and systems, for search based software testing there are
more stringent requirements than simply the ability to collect coverage informa-
tion.

Instrumentation of a system under test changes the behaviour of the system,
and these changes can impact on the test data generation technique. Search-
based software testing, in particular, may be vulnerable to such influences, where
the instrumentation changes timing properties, possibly occluding or revealing
race conditions, and other time-based behaviours, differently in the app under
the test, when compared to the app in the field.

We need smarter control of white box coverage information, that is minimally
obtrusive on the execution characteristics of the app under test. Such techniques
need to be smarter. That is, for effective SBSE we need a greater level of con-
trol over the parameters that affect the trade-offs between quality of white box
coverage information and the impact of collecting this signal.

Some of this work is necessary engineering and implementation detail, but
there are also interesting high-level scientific problems. The challenge is to tease
out and empirically investigate these trade-offs between quality of signal from
white box coverage, and impact of collecting any signal on the system under
test.

7.7 Combining Static and Dynamic Analysis and Hybrids of SBSE

Although there has been a great deal of research on static analysis techniques,
and dynamic analysis techniques, there has been comparatively less work on the
combination of static and dynamic analysis. This ‘blended’ analysis (as it has
been called [19]), has the potential for practical impact, since we can leverage the
strengths of both techniques to overcome some of the weaknesses of the other.
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Equally importantly, such combinations of static and dynamic analysis may
yield insights into fundamental questions of computation, touching on the limits
imposed by decidability constraints and the connections between statistical and
logical inferences.

7.8 False Positives and Pseudo False Positives

It is sometimes claimed, partly as an aphorism [18], that static analysis uses a
conservative over approximation, thereby avoiding false negatives (at the expense
of some false positives), while dynamic analysis suffers many false negatives, but
does not suffer from false positives because it is an under approximation.

This claim is based on an attractive (but misplaced) assumption that the
symmetries of over and under approximation, inherent in the theoretical char-
acterisation of static and dynamic analysis, carry over into practice. They do
not [37]. Both static and dynamic analysis, whether over or under approximat-
ing their respective models of computation in production, suffer from both false
positives and false negatives.

It is well known that static analysis yields false positives when it seeks to
offer a conservative over-approximation. However, static analysis, even when con-
strued as a conservative (i.e., ‘safe’) approach, can also yield false negatives. For
example, a static slicing algorithm is only conservative with respect to a set of
assumptions, and these assumptions always allow some false negatives; depen-
dencies that exist between elements of real systems, yet which go undetected by
the slicing algorithm [12].

Dynamic analysis is well-known to suffer from false negatives, due to the
inability to exhaustively test (apart from in special circumstances and with
respect to strong assumptions, such as integration testing with stream X-
machines [39,40]).

At the unit level, dynamic analysis has also been shown to suffer from false
positives [30]. However, even at the system level, dynamic analysis also suffers
from false positives. System level false positives occur in dynamic analyses, such
as the testing deployed by Sapienz. We generate tests on a version of the system
as close to production as possible. Nevertheless, since the testing tool is not the
real end user, there can be differences in behaviour that will cause the testing
tool to detect crashes that no real user will ever encounter.

This occurs, for example, due to differences in the device used for testing,
and devices used by end users. False positives are also caused by differences in
the abilities of the automated testing tool compared to real user abilities; the
test tool has an arbitrary number of ‘fingers’ at its disposal. Finally, due to
differences in the deployment environment for the test infrastructure and the
production infrastructure used by the end users can also cause false positives.

Sapienz uses emulators to perform test execution. We have found that,
because Facebook has 2.2 billion monthly active users (at the time of writing),
this means that almost any crash we can find with an emulator can be found on
some device in the real world. Therefore, we have not experienced a large number
of false positives, simply due to our use of emulators, rather than real devices.
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Nevertheless, we have witnessed a kind of pseudo false positive due to imple-
mentation details concerning emulators, such as inadequate emulation of Aug-
mented Reality (AR) features in earlier instances of the Android emulator API
(e.g., API 19, which lacks the relevant AR library support). This leads to crashes
which are ‘true’ positives, strictly speaking (since the system should not crash
if the AR library is not present). However, we need to treat such a crash like a
‘pseudo false positive’, since it instantly crashes the app and thereby prohibits
further testing, yet it is unlikely to be a priority for fixing (since such a crash
tends not to fire in the field, although it could in theory).

This observation of ‘pseudo’ false positives suggests a spectrum in which a
completely false positive lies at one extreme, but for which a pseudo false positive,
that is exceptionally unlikely to occur in practice, lies close to the ‘fully false’
positives; it shares many of the practical characteristics of ‘fully false’ positives.

In deployment scenarios where there are only relatively few end users, and
these end users only use a strict subset of the available Android devices available,
deployment of automated testing techniques, like Sapienz, may also yield further
pseudo false positives (which we do not tend to witness at Facebook) due to the
differences in test devices and end-user devices.

The degree of ‘pseudo falseness’ of a crash signal is, effectively, a function
of the number of likely end users, since this is a determinant of the probability
that a test-time crash will be found in production. As testers at Facebook, we
are thus blessed by the relatively large number of end users we serve, because
of the way in which this number tends to reduce pseudo false positiveness to a
minimum; almost any signal concerning crashes is treated as a true positive by
our developer community.

End user abilities may also differ from those of the automated testing sys-
tem. The primary difference we have noticed lies in the speed with which the
automated test sequence can be executed on an emulator; potentially far faster
than that achieved by any human. Once again, this has led to fewer false posi-
tives than we initially expected. The wide variety of different Android devices in
circulation means that test sequences executed by a user on a slower device may
have similar characteristics to a faster-executed test sequence on a higher-end
device. Nevertheless, some false positives can occur due to speed of test sequence
execution.

A further source of difference between test user ability and real user ability,
lies in the exceptionally dextrous nature with which an automated test tech-
nique can interact with the device or emulator. Effectively, the test user is not
hampered by physical constraints imposed by the number fingers and thumbs
on a typical human hand, and their varying degrees of freedom to articulate.
Previously, it was proposed to use robotic testing to achieve fully black box
testing, thereby avoiding this potential source of false positives [51]. This is not
something we have currently deployed, but it remains an option, should the false
positive problem ever become more pernicious.
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7.9 Unit Tests from System Tests

Sapienz generates system-level tests, that test the application, end to end, imi-
tating as closely as possible the behaviour of real users. This system-level app-
roach significantly reduces the propensity of automated test design to produce
false positives, that have been widely reported to occur for more lower-level,
unit level, testing [30]. However, an interesting research problem lies in convert-
ing system level test sequences into corresponding unit level test information,
thereby circumventing the unit level false positive problem, while simultaneously
facilitating unit testing through automated test design.

One possibility lies in generating a set of system-level tests [21], instrumented
towitness the pre- and post-condition state for some unit under test, and the subse-
quent use of likely invariant inference, such as Daikon [23], to infer the constraints
that apply at the unit level. With these inferred constraints in hand, automated
test design (at the unit level) can now proceed within the constrained search space,
thereby reducing the incidence of unit-level false positives.

7.10 Combining Human- and Machine- Designed Tests

Humans have designed tests for many years. Automated test design techniques,
like Sapienz, might reduce human effort and thereby minimize the ‘friction’ of
the test design process, but they are unlikely to fully replace humans. After all,
humans have domain knowledge and engineers can link this domain knowledge to
specific aspects of code. There is a productive benefit in finding hybrids that can
combine human- and machine-designed tests, but this remains an open research
challenge.

One possibility is to extract assertions from human-designed tests and re-use
them as partial oracles for machine-designed test cases. Humans’ domain knowl-
edge is an important resource, while automating the test oracle design process is
non-trivial. Perhaps human-written tests can be mined for re-usable test oracle
information in the form of assertions extracted from human-designed test cases.

Another possibility would be for the human test to act as a prefix to the
machine-designed test. Perhaps the human test might move the system into a
state that is hard to reach, but important, or it may simply do so more efficiently
than a machine-designed test. Perhaps a human-designed test prefix might estab-
lish a state of interest or set up a particular environmental configuration that
enables machine-designed tests. For all these reasons, it makes sense to use a
human-designed test as a prefix for a Sapienz (or other automatically designed)
test. More research is needed on techniques to best combine human-designed
and machine-designed test cases.

7.11 Enhancing the Debug Payload

Far too little research is undertaken on the important problem of debugging [37].
Many problems in software debugging can be characterised in terms of multi-
objective search. Therefore, we believe the SBSE community has a role to play
in tackling this important and under-researched set of challenges.
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In some cases, as much as 50% of engineers’ time spent on programming
may be devoted to the problem of debugging in its various forms. It is there-
fore surprising (and disappointing) that there is not a single dedicated annual
international academic conference, nor any scientific journal dedicated to the
perennially important problem of automated support for debugging.

We would like to encourage the software engineering community, more gen-
erally, and the Search Based Software Engineering community, in particular, to
renew research interest and activity on debugging. Even if automated software
repair were ultimately able to remove the need for human debugging effort, the
problem of automated debugging would remain a pressing one. That is, tech-
niques that supply additional context and guidance to a human concerned with
complex debugging tasks, would also be likely to provide useful input to improve
the efficiency and effectiveness of automated program repair. This potential dual
use of debugging support, for both human-based debugging activity and auto-
mated program repair, makes it all the more important that we should see signif-
icant attention and energy devoted to techniques to support debugging activity,
whether that activity be by machine or by human hand.

7.12 Search in the Presence of Inherent Flakiness

Search-based software engineering is well-adapted to tackle the problems of test
flakiness [37,46,57,62]. We envisage a bright future for probabilistic approaches
to testing, and believe that the SBSE community has an important role to play
here. By making flakiness of first class property of test cases, and test suites,
we can optimise for this property. Furthermore, by measuring the signal and
signal-to-noise ratio [37] produced by automated testing tools, we can define
these evaluation criteria, and potentially also surface them as fitness functions.

Addressing the Assume Tests Are Flakey (ATAFistic) world [37], we may
construct a fully probabilistic formulation of software testing and verification.
We hope to formulate and investigate new concepts of correctness, better-fitted
to Internet-based deployment than their precursors that were generally initially
constructed in the era of mainframes and stand alone desk tops with low numbers
of inter-connections.

Probabilistic testing and verification is nascent in the work in information
theory for testing [73,75] and probabilistic model checking [15,44], but more work
is required on theoretical foundations to unify testing and verification within a
fully probabilistic framework. More work is also required to develop the fruits of
such foundations in practical, scalable and deployable techniques for probabilistic
testing and verification.

7.13 New Search Algorithms that Fully Realize Efficiently
Deployable Parallelism at Scale

Search-based software testing systems have rested on evolutionary computing
as one of the primary search techniques to explore the space of all candidate
inputs to the system under test [33,55]. While there has been some work on
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parallelisation to achieve the, oft-stated but seldom witnessed, ‘embarrassing
parallelism’ of SBSE [8,58,76], there has been little work on the formulation of
SBSE algorithms to better fit modern distributed computational resources.

The bottleneck for most search based testing (and much of SBSE, more gen-
erally), lies in the computation of fitness for a candidate test input sequence
(more generally, of a software engineering artefact). The distribution of com-
putation times for SBSE fitness inherently involves a high degree of variance,
due to the highly stochastic nature of software deployment for Internet-based
computing.

Therefore, any approach based on iterative generations of the population is
inherently inefficient when we require that all members of the population have
to be evaluated in lockstep. We believe there is further work to be done on
extending, rethinking, and redefining the underlying evolutionary algorithms.
We need to fully decouple unnecessary interdependence between fitness compu-
tations, so that maximal parallelism can be achieved; algorithms that can fully
exploit asynchronous fitness evaluation will scale well with available parallel
computation resources.

Furthermore, closer integration of evolutionary algorithm technology with
predictive modelling and machine learning is required in order to better use
computational resources for static fitness estimation. For example, predicting
likely fitness outcomes and maximising the quantity of information derived from
each fitness outcome are both important concerns to maximise the impact of
Search Based Software Engineering.

7.14 Automated Fixing

Automated software repair remains an active topic in the research community
[29]. At Facebook we find ourselves in an excellent position to act as both a pro-
ducer and consumer of research and development on deployable automated pro-
gram repair; as this paper explains we have infrastructure in place for automated
testing and for fix detection. We would be particularly interested to collaborate
with the academic research community on this topic.

7.15 Automated Performance Improvement

Generalising from automated repair to genetic improvement [65], and related
topics in program synthesis [31], we also see great potential for research in
automating program improvement, particularly for non-functional properties,
such as performance-related behaviours and resource consumption characteris-
tics [34].

We would also be very interested to collaborate with the academic community
on scalable and deployable automated program improvement techniques. With
Sapienz now deployed at Facebook, we are in a good position to provide the
automated test input generation infrastructure that would be a natural pre-
requisite for the deployment of test-based program improvement and synthesis
techniques such as genetic improvement.
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Facebook also has static analysis and verification technology in the form of
Infer [13], as well as dynamic test design infrastructure (Sapienz) and manually-
designed automated execution frameworks (such as the Buddy end-to-end test-
ing system). We are therefore also in an excellent position to offer collaborative
support to academics seeking to tackle the FiGiVerify challenge; Finding issues
(bugs, performance, resource-related), Genetically Improving them (to synthe-
size improvements), and Verifying the improvements’ correctness [37].

8 The History of Sapienz Deployment to Date

Sapienz was developed as a research prototype, which was initially proposed
by Ke Mao and grew out of his PhD work [47]. The first version of Sapienz
was described in the Ke’s thesis [47] and at ISSTA 2016 [49], the International
Symposium on Software Testing and Analysis (ISSTA 2016). This version was
made publicly available as a research prototype6. The research prototype found
558 unique crashes among the top 1,000 Android apps, several of which were
reported and fixed [49].

The three authors of the ISSTA 2016 paper (Ke Mao and his two PhD super-
visors, Mark Harman and Yue Jia) launched an Android testing start-up, called
Majicke Ltd., in September 2016, with Ke at the CTO, Yue as CEO and Mark as
scientific advisor. Majicke’s technical offering was based on Sapienz. The three
subsequently moved to Facebook7 on February 6th 2017, where they founded the
Sapienz team at Facebook London, with Ke moving into the role of technical
lead, Yue focusing on long term technical issues (the vital ‘important but not
urgent’) and Mark taking up the role of team manager.

The Facebook Sapienz Team’s role is to deploy, develop and research SBSE-
related techniques for automated test case design so that we can have Friction-
Free Fault Finding and Fixing. The team has been strongly supported by Face-
book’s Developer Infrastructure team (DevInfra).

The Sapienz team has grown significantly since then and now includes (or has
included) the authors of this paper. Taijin Tei subsequently moved to work for
another team, while Alexander Mols has worked and continues to work part time
on Sapienz and other projects. The remaining authors of this paper have worked
full time, continuously, on Sapienz since starting work at Facebook. Many others
at Facebook have helped with support, advice and other contributions and we
thank them in the acknowledgements of this paper.

The Sapienz team’s many partners, collaborators and supporters in the Face-
book developer community have also provided a wealth of support, advice and
collaboration. Their willingness to try new technologies and to explore and exper-
iment was evident from the very outset. Facebook’s open engineering culture has
greatly accelerated the deployment of SBSE at Facebook.

6 https://github.com/Rhapsod/sapienz.
7 http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-

facebook/.

https://github.com/Rhapsod/sapienz
http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-facebook/
http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-facebook/
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9 Conclusions

We have outlined the primary features of the deployment of the Sapienz Search
Based Testing system at Facebook, where it is currently testing Facebook’s
Android social media and messaging apps. These are two of the largest and
most widely-used apps in the overall international Android ecosystem. Work is
under way to extend to other apps and platforms and to improve the algorithms
and technology on which Sapienz relies.

To achieve rapid development of research into production, we use an Auto-
mated Scientific Experimental Reporting (ASER) framework, which automates
experiments from proof of concept, through inferential statistical testing to full
experiment-to-prod A/B testing.

We also outline some of the challenges and open problems that we believe are
suitable for tackling by the automated testing and SBSE research communities,
based on our experience from this Search Based Software Testing deployment
work.
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