
ADROIT: Android malware detection using

meta-information

Alejandro Martı́n∗, Alejandro Calleja†, Héctor D. Menéndez‡, Juan Tapiador† and David Camacho∗

∗Departamento de Informática

Universidad Autónoma de Madrid

Madrid, Spain

Email: {alejandro.martin,david.camacho}@uam.es
†Departamento de Informática

Universidad Carlos III de Madrid

Madrid, Spain

Email: {accortin,jestevez}@inf.uc3m.es
‡Department of Computer Science

University College London

London, UK

Email: h.menendez@ucl.ac.uk

Abstract—Android malware detection represents a current and
complex problem, where black hats use different methods to
infect users’ devices. One of these methods consists in directly
upload malicious applications to app stores, whose filters are not
always successful at detecting malware, entrusting the final user
the decision of whether installing or not an application. Although
there exist different solutions for analysing and detecting Android
malware, these systems are far from being sufficiently precise,
requiring the use of third-party antivirus software which is not
always simple to use and practical. In this paper, we propose
a novel method called ADROIT for analysing and detecting
malicious Android applications by employing meta-information
available on the app store website and also in the Android
Manifest. Its main objective is to provide a fast but also accurate
tool able to assist users to avoid their devices to become infected
without even requiring to install the application to perform the
analysis. The method is mainly based on a text mining process
that is used to extract significant information from meta-data,
that later is used to build efficient and highly accurate classifiers.
The results delivered by the experiments performed prove the
reliability of ADROIT, showing that it is capable of classifying
malicious applications with 93.67% accuracy.

I. INTRODUCTION

Malware threats are present in almost all software architec-

tures from devices firmware to super-computers. Smart devices

are not an exception. Currently, the growing market of mobile

apps is opening a new spreading door where black hats are able

to steal critical information from users, attacking their all-day

devices. Android is now the main target for these attacks, and

its markets have become a sensitive bridge where black hats

aim to introduce their malicious apps to get control over users

mobiles. The security of these markets is critical, in order to

avoid global infections and to guarantee the devices safeness.

Unfortunately, current markets, excluding Google Play

Store, are performing low control services to avoid infections,

leaving that responsibility to the final user [1], [2]. The

user has to decide, based on the information provided by

the online application store, whether they have confidence

to install the app or not. Although there are different tools

which can be used, mainly antivirus software, to analyse

and extract information from applications and classify them

between benign or malicious, these solutions are not prompt

nor fully effective. They force the user to install a very

resource intensive application in their devices to analyse the

suspicious applications, which has also to be installed in order

to perform the analysis. Considering this scenario, this work

aims to provide a fast and accurate tool for detecting Android

malware leveraging meta-information which can be extracted

directly from the online app store and also in the Android

Manifest. We combine and apply text mining and classification

techniques on this information to assist the user in the decision,

whether the application is reliable and it can be installed safely

or when there are malicious indications which advise against

installing.

Based on Gorla et al. [3] work, ADROIT aims towards

providing an up-to-date and improved contribution, limiting

the analysis to meta-information instead of performing soft-

ware analysis, as the former authors did (which complicates

and slows the analysis). This allows to build an easy-to-use

technology while ensuring high accuracy, due to a wide and

representative selection of features. This methodology can also

help to feed recommender systems to assist the user during the

decision process. Furthermore, we have also chosen supervised

learning for this approach in order to improve the classification

quality.

The main contributions of this paper are:

• An up-to-day analysis of Aptoide market, one of the most

important alternative applications stores under which sev-

eral markets are grouped, choosing randomly a represen-

tative sample of more than 9,000 apps to measure the

security for the final user.

• A text mining analysis combining different meta-data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195309841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


information to generate a classifier which can assist users

in their final decisions. The classifier obtains 93.67%

of accuracy improving the state-of-the-art techniques

and overcoming commercial Anti-Virus engines, as we

demonstrate in the experiments sections.

• A technique that can easily be extended to any app

market, including iOS and Windows markets, due to the

independence from the application software.

The paper is structured as follows: next section explains

the methodologies applied; after, Section 3 introduces the

experimental setup which is applied for the experiments of

Section 4. Then, next section introduces the related work.

Finally, the last section details the conclusions and future

work.

II. ANDROID MALWARE DETECTION USING

META-INFORMATION

This section describes ADROIT, a novel malware detection

method based on meta-information available in the app store

and in the Android Manifest file. The objectives of ADROIT

consist on providing a fast and reliable tool to help users when

they make the decision of installing an application in their

personal devices, discouraging this action when there are signs

which call into doubt its real intentions. ADROIT is built in

a step by a step approach as it is shown in Figure 1.

First of all, a representative set of samples was gathered

with applications downloaded from Aptoide, an online app

store. All these samples were analysed with a pool of different

antivirus engines, allowing to verify the existence of malware

in this store and generating a labelled dataset of benign and

malicious Android applications. Together with the application

itself, it was also downloaded diverse meta-information, later

used to train and test different machine learning classification

algorithms. This information includes the minimum SDK and

OpenGL versions required to run the application, the minimum

size of the screen and the supported CPU types of the Android

device, an identification of the developer, its organisation, the

locality and the country, the rating score given by the users,

the number of users who voted and a description, where the

developer use to describe what is the application about and

define its purposes. Although it is possible to retrieve a list

of permissions from the app store, this list is not reliable.

After comparing it with the permissions written in the Android

Manifest, it was discovered that many virus writers provide a

fake list to the app store with the aim of confusing the user,

as it is explained in the Experimental Setup section.

The method proposed performs a static analysis using all

this meta-information with the ultimate goal of providing a

fast tool to detect if an application is suspected to contain

malicious code. Each piece of meta-information provides a

valuable instrument to detect evidences, patterns or traces

linked to apps considered as malware. For example, the rating

score allows to make a decision based on the opinion of

users who have already used the application. It is also useful

the description, in order to discover techniques used by virus

writers to confuse the user or other patterns that may reflect

differences in comparison with benign-ware. The developer,

organisation, locality or the country allows to find relations

which can be used to disclose sectors closely linked to a

particular kind of applications. Finally, the list of permissions

allows to incorporate a useful definition of the behaviour of

the application, enabling to find groups or relations mostly

associated to a specific label.

A. Natural Language Processing

The description of the app needs special care, because it

contains semantic information. In order to include the meta-

information provided by the description inside our classi-

fication model we have used Text Mining techniques. The

technique followed is based on the classical term-document

matrix where each description is considered as a document

and a set of terms is extracted from the whole description

corpus. These terms are chosen after a cleaning process which

eliminates those terms that are not relevant, and uniforms those

terms that have similar roots. This process is divided in the

following steps:

• Remove special characters: All irrelevant characters (such

as numbers, exclamation, symbols, etc), are eliminated.

• Remove stopwords: those words which are normally used

to connect sentences or words.

• Stemming: Reduces words to the word stem, i.e., to a root

form where affixes can be attached.

• Strip white spaces: if it is found an space inside a word

after applying the previous steps, it is also removed.

After the cleaning process the corpus is transformed into

a term-document matrix, and normalised using TF-IDF nor-

malisation. In addition, those terms with a sparsity above a

specific threshold are removed.

Finally, this matrix is combined with the rest of meta-

information available in the online app store, considering them

as categorical data and translating it to a boolean matrix

(excepted rating, number of votes and minimum OpenGL and

SDK versions, which are kept as numeric values).

This matrix is also combined with the list of permissions

defined in the Android Manifest, where each new features

indicates the declaration or not of a specific permission. The

use of this information allows to include more accurate data

which has not been modified to confuse the user, in contrast

to the meta-information available in the app store.

Once it is defined the search space, it is possible to

apply different classifiers to distinguish between malware and

benign-ware. The following section describes the classifiers.

B. Classification

The classification process is based on discriminating mal-

ware and benign-ware using a learning process which aims

to identify patterns from different permission policies and

instructions used. In this case, we consider two labels: malware

and benign-ware. This information feeds the classifier in order



Natural Language 
Processing

Data cleaning
Sparse words removal
Description filter
Dataset building

Applications gathering

Description
Permissions
Rating
...Aptoide

Labelling
process

Benignware 
applications

Malware 
applications

Classification &
validation

Random Forest
Nearest Neighbors
Decision Tree
AdaBoost
Bagging
Naive Bayes

Preprocessing

Fig. 1: Diagram of the step-by-step process to build a classifier in ADROIT

to learn the main differences among them. The following

classifiers have been selected in order to perform this task1:

• Random Forest (RF): It is a hybrid method that in-

corporates the advantages of combining different tree

classifiers. This methodology trains several decision trees

and assigns a confidence value to each one, creating a

voting system. This confidence value is used to reach

an agreement between the different tree classifiers [4]. It

helps to determine when there are sections that are not

totally linear.

• k-Nearest Neighbours (kNN): The Nearest Neighbours

algorithm assign a new class to an instance according to

the k closest neighbours.

• Decision Trees (DT): It divides the data linearly using

limits in the attributes and generates a decision tree. The

division is chosen using a metric, in this case, the data

entropy [5]. The specific algorithm used is SCART, a

modification of the C4.5 algorithm.

• AdaBoost (AB) It is a multi-learners approach that com-

bines weak classifiers through a weight voting system, in

order to ensure that they can complement each other. The

weights are learned by the algorithm during the training

process.

• Bagging (B) This methodology combines different clas-

sifiers choosing random subsets from the space and

feeding the classifiers with them. The chosen classifiers

are Decision Trees classifiers.

• Naı̈ve bayes (NB): Naı̈ve Bayes (NB) is based on

Bayes Probability Laws and considers each feature in-

dependently from the rest [6] and contributing to the

information modelling. This helps to understand when

the features are independent or they need to complement

their information with another feature.

III. EXPERIMENTAL SETUP

This section introduces the data and algorithms that have

been applied for this study, specially the parameters and

validation metrics used during the experiments.

1The implementation of the classifiers can be found in http://scikit-learn.
org/stable/

A. Dataset

Currently, there are several app stores enabling users to

download applications to their devices. Although they claim

that every available application has passed through a full scan

to detect if it contains malicious components, it has been

proved that many applications are able to bypass these filters

and finish being published. We have gathered a set of 12,360

applications downloaded from the Aptoide2 app store. Then,

we analysed each of them using the API provided by the

VirusTotal3 online portal, which allows to analyse applications

or documents with 56 different antivirus engines. For more

than the 38% of the samples, at least one antivirus tested for

positive. This figure notes the need to take precautions when

downloading and installing new applications, even when they

are obtained from sites qualified as safe.

These 12,360 apps extracted from the Aptoide market4

were used to test our model. In order to generate a ground

truth about the software nature, the results obtained from

the VirusTotal website were used to label all the samples.

We considered that an app is malware when a single Anti-

Virus produces a positive detection. From all these application,

VirusTotal detected 4,799 apps as malware, while the rest of

samples were categorised as benign-ware by all the Anti-virus

engines5.

Together with the application executable file, we took all the

meta-information information previously described, including

the description, the developer or the rating score. After an

overall analysis, it was found that an important number of the

samples did not have a description, forcing to remove all these

applications from the dataset and decreasing its size to 2,426

malicious and 6,704 benign applications.

B. Text Mining

The text preprocessing step for each application aims to

obtain a set of relevant terms that can be used to represent them

and distinguish between malicious versus benign applications.

This Text Mining process was addressed using the Text Mining

Package for R6. Once the data is preprocessed and cleaned

2https://www.aptoide.com/
3https://www.virustotal.com/
4http://www.aptoide.com/
5The extraction and analysis date was done on June 2016.
6https://cran.r-project.org/web/packages/tm



Malware Benignware

Samples where permissions informed
in website differs from Manifest

73.32% 37.03%

Average number of permissions informed in
app store website but not declared in Manifest

7.58 2.25

Average number of permissions informed
in Manifest not declared in app store

9.90 9.63

TABLE I: Differences in Android permissions declaration

found in Android Manifest and app store

applying different filters, it is needed to find a subset of

words representative of different behavioural patterns. The

RemoveSparse function allows to remove those terms which

are only part of a low number of samples and hardly to be

useful to discover these patterns. This function receives a

parameter in charge of establishing a limit to dispersed terms

included. Given the importance of this parameter, which is

closely linked to the granularity level of the system, but also to

its generalisation ability on new data, different values ranging

from 0.95 to 0.999 were tested.

C. Android permissions

When developing an Android application, it is needed to

indicate in the Android Manifest a series of permissions

required to run the app. They allow the application to access

certain operating system and terminal functions and are a

means of increasing the security. They also enable to extract an

overall picture of its behavioural model based on the actions

expected to be performed at run-time. These permissions are

provided to the user in the app store website, as well as other

information such as the minimum required SDK version or

the description of the application. Although the information

displayed should be consistent with the Android Manifest, this

is not always the case.

In order to analyse and discover possible differences be-

tween both information sources, the app store website and

the Android manifest, they were compared separately for all

the benign and malicious applications gathered from Aptoide.

Table I summarises the results obtained. There are clear

differences between malware and benign-ware. While 37% of

the second ones showed differences between the permissions

declared in the Manifest and in the app store, in the case of

malware this figure rises to 73% of the samples. It is also

worth noting the specific distribution between the differences

found in malware and benign samples, where there can be

permissions declared in the Android Manifest, but not in the

app store website or, in contrast, permissions declared in the

app store but missing in the Manifest. Regarding the first

group, there is a very remarkable trend, showing that virus-

writers use to report many permissions which are later not

implemented. The reasons for this could lie in the intention

of black-hats of showing fictitious intentions to hide the real

purposes (as a Trojan horse).

On the other hand, within the range of applications reporting

an incomplete list of permissions to the app store, there is a

similar trend for both kinds of applications, where close to

9.5% of the samples exhibit discrepancies. Although this is

an unexpected behaviour, it can be attributed to an intentional

omission of particular permissions by the app store. Due to this

divergence between the permissions declared in the Android

Manifest and on the app store website, we have selected the

Manifest as a more reliable source of information, since it is

the document actually used by the operating system to allow

the application execution.

D. Classification

The classification algorithms applied in this study were

executed using the scikit-learn7 library for Python. Each

classification algorithm was executed 20 times with a different

random initialisation for each configuration evaluated. In order

to measure the quality of each model, the data was divided

into a training and a testing dataset, at a rate of 2/3 and 1/3

respectively. The specific classification algorithms used are the

following:

• Random Forest: fixing the number of internal decision

trees to 100.

• Nearest Neighbors: keeping default settings.

• Decision Tree: keeping default settings.

• AdaBoost: keeping default settings.

• Naive Bayes: keeping default settings.

• Bagging: using Random Forest as individual classifier

and fixing the number of decision trees to 100.

In order to evaluate the quality of the algorithms, we have

used the accuracy:

ACC =
TP + TN

TP + TN + FP + FN
, (1)

which allow us to compare the current results with Gorla

et al. results [3]. Furthermore, we have also built the ROC

curve for different configurations in order to assess the false

positives and true positives ratios.

IV. EXPERIMENTS

This section shows the final experiments performed during

the detection process. First, we focus the analysis on the

classification accuracy. After, we perform an study of the ROC

curve in order to evaluate what classifier can be more suitable

to reduce false positives. Finally, we compare our detection

methodology with commercial antivirus and another method

with a similar approach.

A. Accuracy Results

Each classification algorithm run 20 times for different

number of terms used in the text-mining step (according to

the parameter of the RemoveSparse function). The results are

shown in Fig. 2, where Naive Bayes and Nearest Neighbours

have been omitted for better visualisation, since any of them

exceeded a 80% accuracy at no observed point. The remaining

four classifiers also indicate important differences between

them. While RandomForest and Bagging have a very similar

behaviour, a simple decision tree or AdaBoost are not able to

compete on accuracy.

7http://scikit-learn.org/



0.86

0.88

0.90

0.92

0.94

207 265 374 575 1172 2104 6653

Number of terms in Term−Document matrix

A
c
c
u
ra

c
y

Classifier

AdaBoost

Bagging

Decision Tree

Random Forest

Fig. 2: Accuracy reached by the different classifiers trained according to the number of terms used in the text-mining process

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Classifier

AdaBoost

Bagging

Decision Tree

Naive Bayes

Nearest Neighbors

Random Forest

Fig. 3: ROC curve for the different classification algorithms tested

Comparing RandomForest with a Bagging algorithm, the

former is able to slightly increase the accuracy for most of

the sizes of the term-document matrix tested. In terms of

deviation, Decision Tree produces very different solutions,

while Random Forest and Bagging produce solutions closed

to the average. The best result, a 93.67% accuracy, is achieved

using a Random Forest classifier and 575 terms (applying a

parameter of 0.98 in the remove sparse function).

The number of terms used to include the information

provided by the description of the application, 575 different

words, can be considered as a large figure, denoting that it is

needed a deep enough granularity level to benefit from this

information. However, a larger number of points contributes

negatively, by entering unnecessary data to the model and

causing accuracy to drop slightly. In general, the accuracy

level achieved can be considered as high, arising close to 94%

accuracy without requiring a dynamic analysis and just using

information retrieved from the app store website and from the

Android Manifest.

B. ROC study

While the accuracy is a reliable information source to

measure the quality of a classifier, the false positive rate is also

a key when designing malware detection methods, because of

its link with the proper system operation. Fig. 3 shows the

ROC curve for the six classification algorithms tested. Once

again, Naive Bayes and Nearest Neighbours yield the worst

results with the smaller AUC (Area Under the Curve). Random

Forest and Bagging produce almost identical results, with

94% and 94.04% AUC sizes respectively. As it can be seen,

although Random Forest is able to achieve a higher accuracy



Detection method Accuracy

ADROIT 93.67%

CHABADA 81.18%
Qihoo-360 85.30%

Alibaba 85.06%
ESET-NOD32 74.92%

Fortinet 73.01%
Cyren 72.79%

NANO-Antivirus 72.40%

TABLE III: Accuracy reached with different commercial an-

tivirus engines, the CHABADA method and the ADROIT

level, Bagging produces a larger Area Under the Curve or, in

other words, a better balance between true positives and false

positives rates.

For best understanding of the ROC curves generated by the

different classifiers, Table II shows the maximum true positive

ratio achieved (depending on the cut-off value used) according

to different false positive rates accepted. With the aim of

minimising the false positive rate, Bagging is the best option,

reaching an 86% accuracy with only 10% of False Positives. In

contrast, when the objective is to reach the highest true positive

rate, it is possible to arise 100 per cent using a Decision Tree

classifier while producing 50% of False Positives. These values

show that it is possible to configure the algorithm to give

greater emphasis to a specific parameter. The final decision

will depend on the user’s decision.

C. Results comparison

ADROIT aims to provide a fast tool to analyse and deter-

mine the nature of an Android applications without compro-

mising the accuracy. The meta-information, the permissions,

as well as the text mining step, allow to build a strong classifier

able to compete and to overcome commercial antivirus engines

and also CHABADA, a similar approach to ADROIT but

where the authors use clustering techniques. The results,

displayed in Table III, show that ADROIT is able to overcome

the accuracy levels achieved by the rest of methods tested by

more than 8%.

Based on these results, in can be asserted that the meta-

information accompanying each application offers a powerful

resource to train accurate classification models able to distin-

guish between malicious and benign applications. This means

that the description or a permission policy specific definition

provide significant details about the nature of an Android

application.

V. RELATED WORK

This section introduces the related work based on three main

points of view which are combined in this work: Android apps

analysis, malware analysis and text mining techniques.

a) Android analysis: Android has become a famous OS

for smart devices over the last few years. This OS covers

from mobile phones, to tablets or to TV devices among

others. There are several research lines focused on Android

app analysis, specially on understanding the market behaviour

[7], development decision [8], app testing [9] and prediction

models to detect markets tendencies [10]. The work developed

by Gorla et al. [3], which inspires this work, was focused

on detecting anomalies in the market, based on the different

categories where the apps can be distributed. Using this

anomaly detector, authors where able to detect malware, but

with a high false positive ratio. This work aims to continue

this strategy focusing only on those features that are easy to

extract, instead of performing an API calls analysis, which is

normally not available to the final users.

b) Malware analysis: The analysis of Android malware

is contextualised in the malware Arms Race. From the be-

ginning of computer science, malware has been developed in

order to attack system vulnerabilities with a wide range of

malicious goals in mind [11]. These harmful attacks, originally

promoted by single individuals and currently promoted by

strong organisations, are usually counteract by white hats,

which are usually single individuals, researchers or small

organisations [12].

There are several ways for detecting malware, which are

categorised from a software analysis point of view as dynamic

and static analysis.

On the one hand, static analysis aims to analyse malware

using only the information provided by the program itself

[13]. This is usually performed by a disassembly or decompi-

lation process which recovers the program instructions and

the Control Flow Graph. Using this information, different

strategies, such as symbolic execution [14], opcode analysis

[15] or control flow graph analysis [16] can be used to detect

and understand malware behaviour. In Android systems, we

can find static analysis examples like CHABADA [3] which

extract API calls from the apps, the work of Schmidt et al.

[13] which define a collaborative framework to share static

analysis features between different systems, MOCDroid [17],

which uses genetic algorithms or the work of Yerime et al.

[18], where authors combine static features with Bayesian

classifiers.

On the other hand, dynamic analysis is focused on malware

execution and aims to understand its behaviour, studying the

traces it leaves in the systems [19], such as memory access

[20], network communications [21], and registers modifica-

tions [22], among others. This information creates a signature

used for the detection and discrimination processes. Some

examples of dynamic analysis in Android environments are

CopperDroid [23], which reconstructs the behaviour of an app,

DREBIN [24], which combines dynamic features with clas-

sification and ALTERDROID [25], which detects obfuscated

components from behavioural traces.

In this work we only focus on the meta-information

recorded by the market, enabling to make a fast but also

detailed analysis through the large number of features available

in the app store, such as the developer identification or a

description of the application. All this information is processed

using text mining and machine learning classifiers to develop

a system able to categorise Android applications between

benign and malicious depending on the existence of certain

patterns. While most of the features employed to train a



Classifier

False Positive rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bagging 0 0.86 0.89 0.91 0.94 0.96 0.98 0.99 1 1 1

Random Forest 0 0.85 0.88 0.91 0.93 0.95 0.97 0.99 0.99 0.99 1

Decision Tree 0 0.81 0.81 0.81 0.81 1 1 1 1 1 1

Naive Bayes 0 0.73 0.75 0.82 0.87 0.89 0.89 0.89 1 1 1

AdaBoost 0 0.55 0.87 0.90 0.92 0.95 0.97 0.98 0.99 1 1

Nearest Neighbours 0 0.38 0.60 0.65 0.70 0.80 0.83 0.84 1 1 1

TABLE II: True Positive ratios according to different False Positive ratios

classification algorithm can be used as polynomial attributes,

the description of an application is formed by texts of different

length providing raw information. The use of Text Mining

techniques allows to extract relevant data from these texts.

c) Text Mining: Text Mining is one of the most rele-

vant subfields of Natural Language Processing [26] specially

focused on topic detection and extraction [26], sentiment

analysis [26] and recommender systems [27], among others.

These techniques are based on finding similarities among

documents and topics based on semantic features extracted

from their used [27]. Using these features as basic knowledge,

machine learning algorithms leverage them to generate high-

level abstraction models [27]. These models can be applied to

document classification [27], trending detection [26], etc. In

this work we take advantage of this combination to generate

a detection system for malicious apps, mainly based on

understanding the descriptions language and the app meta-

information.

VI. CONCLUSIONS AND FUTURE WORK

This work has presented a text mining and machine learning

approach to detect malicious apps in a well-known Android

market, Aptoide. The combination of these two techniques is

applied over the meta-information extracted from the market

website and the Android Manifest, which includes developer

data, the permissions or the description of the application,

where a text mining operation is in charge of extracting

relevant information. The final model, called ADROIT, use

all this information to train a machine learning classification

algorithm able to reach accuracy rates close to 94%. One

of the strengths and contributions of this paper is related to

the employment of simple text mining techniques that allows

to generate highly accurate results. Our future work involves

applying and testing ADROIT in other app stores, as it can

be Google Play Store, increasing the accuracy by crossing

information of the same application in different app stores or

incorporating further meta-information.

ACKNOWLEDGMENT

This work has been supported by the next research projects:

Spanish Ministry of Economy and Competitivity and European

Regional Development Fund FEDER (TIN2014-56494-C4-4-

P), MINECO grant TIN2013- 46469-R (SPINY: Security and

Privacy in the Internet of You), the CAM grant S2013/ICE-

3095 (CIBERDINE: Cybersecurity, Data, and Risks) and Se-

MaMatch EP/K032623/1.

REFERENCES

[1] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale,” in 24th USENIX Security Symposium

(USENIX Security 15), 2015, pp. 659–674.

[2] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis
for android malware detection,” in Computational Intelligence and

Security (CIS), 2011 Seventh International Conference on. IEEE, 2011,
pp. 1011–1015.

[3] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International

Conference on Software Engineering. ACM, 2014, pp. 1025–1035.

[4] T. K. Ho, “The random subspace method for constructing decision
forests,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 20, no. 8, pp. 832–844, 1998.

[5] J. R. Quinlan and R. L. Rivest, “Inferring decision trees using the
minimum description lenght principle,” Information and computation,
vol. 80, no. 3, pp. 227–248, 1989.

[6] P. Domingos and M. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Machine learning, vol. 29, no. 2-3, pp.
103–130, 1997.

[7] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia,
and Y. Zhang, “Clustering mobile apps based on mined textual descrip-
tions,” in Proceedings of the 36th International Conference on Software

Engineering. ACM, 2016.

[8] F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and Y. Zhang,
“Feature lifecycles as they spread, migrate, remain, and die in app
stores,” in 2015 IEEE 23rd International Requirements Engineering

Conference (RE). IEEE, 2015, pp. 76–85.

[9] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proc. of ISSTA’16, 2016, to appear.

[10] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
sampling problem for app store mining,” in 2015 IEEE/ACM 12th

Working Conference on Mining Software Repositories. IEEE, 2015,
pp. 123–133.

[11] P. Szor, The art of computer virus research and defense. Pearson
Education, 2005.

[12] S. Bratus, “What hackers learn that the rest of us dont,” IEEE Security

and Privacy, 2007.

[13] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuk-
sel, S. A. Camtepe, and S. Albayrak, “Static analysis of executables for
collaborative malware detection on android,” in 2009 IEEE International

Conference on Communications. IEEE, 2009, pp. 1–5.

[14] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
correctness checking for real code,” in 24th USENIX Security Symposium

(USENIX Security 15), 2015, pp. 49–64.

[15] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in
International Symposium on Engineering Secure Software and Systems.
Springer, 2010, pp. 35–43.

[16] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating mal-
ware using control-flow graph matching,” in International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2006, pp. 129–143.

[17] A. Martı́n, H. D. Menéndez, and D. Camacho, “Mocdroid: multi-
objective evolutionary classifier for android malware detection,” Soft

Computing, pp. 1–11, 2016.

[18] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android
malware detection approach using bayesian classification,” in Advanced

Information Networking and Applications (AINA), 2013 IEEE 27th

International Conference on. IEEE, 2013, pp. 121–128.



[19] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security and Privacy, vol. 5,
no. 2, pp. 32–39, 2007.

[20] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM

conference on Computer and communications security. ACM, 2008,
pp. 51–62.

[21] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-
based malware and signature generation using malicious network traces.”
in NSDI, 2010, pp. 391–404.

[22] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained malware analysis
using stealth localized-executions,” in 2006 IEEE Symposium on Security

and Privacy (S&P’06). IEEE, 2006, pp. 15–pp.
[23] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:

Automatic reconstruction of android malware behaviors,” in Proc. of

the Symposium on Network and Distributed System Security (NDSS),
2015.

[24] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket.” in NDSS, 2014.

[25] G. Suarez-Tangil, J. E. Tapiador, F. Lombardi, and R. Di Pietro, “Al-
terdroid: Differential fault analysis of obfuscated smartphone malware,”
IEEE Transactions on Mobile Computing, vol. 15, no. 4, pp. 789–802,
2016.

[26] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foun-

dations and trends in information retrieval, vol. 2, no. 1-2, pp. 1–135,
2008.

[27] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.


