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Abstract: Abstract
Background: Textural analysis (TA) shows promise as radiological biomarker. The use
of native TA in the field of cardiology is unproven.  We hypothesized that
Cardiovascular Magnetic Resonance pre-contrast bSSFP cine images could be
analysed using TA software; TA features would differentiate  different aetiologies of
disease causing increased myocardial wall thickness (left ventricular hypertrophy
{LVH}) and indicate the severity of myocardial tissue abnormality.
Methods: A mid short axis pre-contrast cine frame of 216 cases (50 hypertrophic
cardiomyopathy (predominantly LVOTO sub type) (HCM), 52 cardiac amyloid
(predominantly AL sub-type) (CA), 68 aortic stenosis (AS), 15 hypertensive with LVH
(HTN+LVH) and 31 healthy volunteers (HV)) underwent CMRTA using TexRAD
(TexRAD Ltd, Cambridge, UK).  Among HV, 16/ 31 were scanned twice to form a test-
retest reproducibility cohort. CMRTA comprised a filtration-histogram technique to
extract and quantify features using 6 parameters.
Results:  Test-retest analysis in HV showed a medium filter (3mm) was the most
reproducible (intra-class correlation of 0.9 for kurtosis and skewness and 0.8 for mean
and SD). Disease cohorts were statistically different (p<0.001) to health for all
parameters. Pair wise comparisons of CMRTA parameters showed kurtosis and
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skewness consistently significant in ranking degree of difference from HV (greatest to
least); CA, HCM, LVH+HTN, AS (p<0.001). Similarly mean, SD, entropy and mean
positive pixel (MPP) were consistent in ranking degree of difference from HV; HCM,
CA, AS and HTN+LVH.
Conclusion: Radiomic features of bSSFP CMR data sets, derived using TA, show
promise in discriminating between aetiologies of LVH.
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Dear Editor, 
 
Thank you for your email outlining the reviewers comments. 
 
Pleas find enclosed the revised manuscript. Since this project was first envisaged the field of radio-omics 
has become an area of increasing research interest.  The reviewers constructive criticisms were very 
helpful and we thank them for their time. 
 
Please see the point-by-point response to the reviewers comments. 
 
Specific points: 

1. The introduction section outlines the application of TA to oncological radiomics, but has not 
mentioned any of the published cardiac applications of TA. There are recent publications of TA 
application in hypertrophic cardiomyopathy and myocardial infarction that should be referenced 
in the manuscript.  
References 12,13,14 added. 

2. Line 45 - please elaborate what abbreviation SAP scan stands for 
Added to the list of abbreviations 

3. Please recheck the number for subsections in Results as they do not appear to run in order 
Order ammended 

4. It would help contextualise the data if there is CMR phenotypic or volumetric data for the 
subjects included in the various disease states - for example, it would be useful to know how 
significant the LVH is in hypertension cohort or asymmetrical septal hypertrophy is in HCM 
cohort. Was volumetric and functional data acquired and available for the study subjects?  
Limited data regarding the phenotyping is available. There is a new paragraph to highlight this to 
the readers 
 

5. Section III of Results where pairwise comparisons of disease states have been made and listed. 
This section is quite difficult to comprehend apart from the statistically significant p values listed. 
Please consider alternative presentation of the data, as listing each p value does not really 
provide any clinical context to the results 
Revision of this section adding in plausible clinical context.   

6. Were LGE positive regions included in the analysis of bSSFP segments analysed with TA in the 
Results section (lines 219-223)? 
Yes 

7. The statement in Discussion section where 'this is the first example of the use of TA technique.... 
(line 280) is incorrect as there are other published applications of non-contrast CMR. 
Ammended 

8. In Limitations, it is state that 'the patients in each disease cohort varied in terms of severity of 
disease'. There has been no corresponding data presented in the manuscript (see Point 4 above) 
Ammended 

9. Figure 3 - the patients in the hypertension group have not been included in the Figure. Was this 
an inadvertent omission? 
Ammended 

10. Please consider re-tabulating Table 3 or presenting the data in an easier format to interpret 
The additional explanation in the main body of the text should assist the reader to interpret 
Table 3 
 

 
Whilst the concept of applying textural analysis to cardiac pathology in non-contrast CMR is attractive, 
the data presented does not actually discriminate between the different disease states encompassed. 
The results are presented in lists of pairwise comparisons that do not provide any clinical context to the 
disease states or severity of pathology being analysed. Whilst there are statistically significant differences 
in the parameters presented, these have limited clinical meaning and relevance in current format of 

Anonymous list of revisions



results presented. The statistics performed unfortunately appear to be a 'fishing' exercise for statistically 
significant p values.  There is no CMR phenotypic/volumetric or functional data provided, so it is difficult 
to know if the statistically significant differences in different disease states analysed by TA actually reflect 
different clinical phenotypes.  
 
Reviewer 1 comments are welcomed and respected we offer an alternative view point: 
 
Our study is exploratory but not a fishing exercise.  We used test-retest cohorts for technical validation 
which identified SSF 3 to be the most robust and reproducible for CMR. We then performed clinical 
validation and demonstrated a differ in the parameters between the HV and disease cohorts.  We 
explored the differences in parameters between disease cohorts and gave potential plausible 
explanation.  We took steps to reduce Fahad recovery rate by limiting the statistical comparisons by first 
deriving the most robust filter size.   
In addition, traditional scientific methodology requires the generation of a hypothesis and the derivation 
of an experiment to test said hypothesis.  Use of ‘big data’ to ‘trawl’ for pattern recognition turns this 
ideology on it’s head but has led to new scientific developments and the better understanding of 
diseases. Although we understand the limitations of the study and do not advocate the use of the 
technique in clinical medicine in it’s current form we would advocate further study and better 
understanding before deciding on clinical utility.  We feel it is important that this data is published to 
ensure scientific progression. 
 
Reviewer #2: Thank you for asking me to review this interesting paper on textural analysis of SSFP cine 
imaging in CMRI.  
 
I must disclose that I have no experience of textural analysis of medical imaging, however it is becoming 
increasing clear that we need to maximize the amount of data we draw from our imaging investigations 
as the processing of large data sets with machine learning becomes more commonplace. The role of CMR 
in the differentiation of etiologies for myocardial hypertrophy is a particularly rich field for research 
involving late gadolinium enhancement and parametric mapping. The possibility of interrogating our 
standard cine images to help in this delineation is very attractive. 
 
I found this paper to be written well with sound methodology, the figures and tables were clear.  I would 
recommend formal statistical analysis due to the volume of data processed. 
Formal statistic analysis was performed 
 
As tissue parametric maps are beginning to be accepted as the standard for the evaluation of diffuse 
hypertrophy I was pleased that the authors proposed evaluating for correlation with these techniques in 
the methods, unfortunately presumably due to the retrospective nature of this study only ECV in the 
cardiac amyloid group was available. 
This is true 
 
 
Thank you again for your comments.  Please let us know if any further changes are required. 
 
 



Abstract 1 

Background: Textural analysis (TA) shows promise as radiological biomarker. The use of 2 

native TA in the field of cardiology is unproven.  We hypothesized that Cardiovascular 3 

Magnetic Resonance pre-contrast bSSFP cine images could be analysed using TA software; 4 

TA features would differentiate  different aetiologies of disease causing increased myocardial 5 

wall thickness (left ventricular hypertrophy {LVH}) and indicate the severity of myocardial 6 

tissue abnormality.  7 

Methods: A mid short axis pre-contrast cine frame of 216 cases (50 hypertrophic 8 

cardiomyopathy (predominantly LVOTO sub type) (HCM), 52 cardiac amyloid 9 

(predominantly AL sub-type) (CA), 68 aortic stenosis (AS), 15 hypertensive with LVH 10 

(HTN+LVH) and 31 healthy volunteers (HV)) underwent CMRTA using TexRAD (TexRAD 11 

Ltd, Cambridge, UK).  Among HV, 16/ 31 were scanned twice to form a test-retest 12 

reproducibility cohort. CMRTA comprised a filtration-histogram technique to extract and 13 

quantify features using 6 parameters.  14 

Results:  Test-retest analysis in HV showed a medium filter (3mm) was the most reproducible 15 

(intra-class correlation of 0.9 for kurtosis and skewness and 0.8 for mean and SD). Disease 16 

cohorts were statistically different (p<0.001) to health for all parameters. Pair wise 17 

comparisons of CMRTA parameters showed kurtosis and skewness consistently significant in 18 

ranking degree of difference from HV (greatest to least); CA, HCM, LVH+HTN, AS 19 

(p<0.001). Similarly mean, SD, entropy and mean positive pixel (MPP) were consistent in 20 

ranking degree of difference from HV; HCM, CA, AS and HTN+LVH.  21 

Conclusion: Radiomic features of bSSFP CMR data sets, derived using TA, show promise in 22 

discriminating between aetiologies of LVH. 23 

 24 
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Introduction 1 

The ability of cardiovascular magnetic resonance (CMR) imaging to aid in tissue 2 

characterisation has propelled its use into mainstream clinical cardiology. Late gadolinium 3 

enhancement (LGE) imaging and parametric mapping of the myocardium (native T1, T2, T2* 4 

and extracellular volume (ECV) maps) offer non-invasive assessment of myocytes and 5 

interstitium. These techniques may require the administration of a gadolinium-based contrast 6 

agent, additional sequences and breath-holds for the patient.  They may be non-specific in early 7 

disease. The ability to mine the existing basic data set, using computer algorithms, is an area 8 

of current research interest.  Each voxel in bSSFP data sets is an expression of the physical 9 

structure it represents.  10 

The field of ‘Radiomics’ is the process of obtaining quantitative data from these qualitative 11 

radiological images combined with the use of Artificial Intelligence (AI) this data can be used 12 

to create big data sets which can be processed and the data acquired can be linked to patient 13 

characteristics and prognostic data.  With deep machine learning algorithms this large volume 14 

dataset may be used as an ancillary diagnostic tool.  Radiomics may even be used to assess 15 

response to treatment or to convey certain prognostic characteristics. 16 

Textural analysis (TA) has been used for several decades in many domains. Within medical 17 

imaging the technique has generated interest in diverse applications over recent years. In 18 

oncology, TA of computed tomography (CT) images has shown correlation to underlying 19 

tumor biology by differentiating different histological features (associated with the different 20 

hallmarks of cancer) and specific gene mutations.1-4 In established malignancies, TA relates to 21 

tumor histology5,6 across many common solid tumors (lung, colorectal, oesophageal, breast), 22 

it correlates with specific gene mutations and can track therapeutic responses.7-10 Outside of 23 

oncology, non-malignant organ changes can be detected (for example liver cirrhosis and usual 24 

interstitial pneumonitis).11  TA applied to CT, MRI and positron emission tomography (PET) 25 
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imaging shows promise in oncological radiomics. Within cardiac imaging CMR-TA has been 26 

used to assess the risk of arrhythmia post MI12 , the use of CMR-TA in pre contrast and LGE 27 

imaging of patients with Hypertrophic Cardiomyopathy to predict outcome is a current area of 28 

particular interest 13,14.  29 

This project started several years ago at a time when CMRTA had not been reported. We first 30 

hypothesised that, routine CMR cine images would be amenable to TA; TA features would 31 

differentiate between the different etiologies of disease that cause increased myocardial wall 32 

thickness (left ventricular hypertrophy [LVH]) and also healthy controls. Finally we 33 

hypothesised CMRTA would provide additional supporting information which may act as a 34 

surrogate marker for tissue abnormality by demonstrating correlation between abnormal 35 

CMRTA and presence of LGE/increased ECV.  36 

 37 

 38 

Methods  39 

 40 

Study Population 41 

We performed a retrospective analysis of five cohorts of subjects.  42 

 43 

All subjects had given informed written consent for their anonymised images being used in 44 

clinical research. Analysis was performed on anonymised data from study participants who 45 

had previously provided written informed consent for CMR research approved by a local 46 

research ethics committee at xxxxxxxxxxxx.   47 

 48 

1. Cardiac Amyloid (CA, n=52), confirmed by tissue biopsy, positive SAP scan or cardiac 49 

involvement diagnosed by echo criteria. 50 

2. Hypertrophic Cardiomyopathy (HCM, n=50): randomly selected clinically confirmed 51 

HCM patients with LVH, predominantly LVOTO subtype (recruited from an ongoing 52 

HCM study). 53 

3. Severe Aortic Stenosis (AS, n=68). CMR prior to Aortic Valve Replacement  54 



4. Hypertensive patients with LVH confirmed by increased indexed LV mass on echo 55 

(HTN+LVH, n=15). 56 

5. Healthy Volunteers (HV, n=31) all prospectively recruited volunteers with no history 57 

of cardiovascular disease (normal health questionnaire, normal electrocardiogram, no 58 

cardioactive medication except for primary prevention). This group included 16 healthy 59 

volunteers who were scanned twice with deliberate changes to scanning parameters to 60 

alter SNR and CNR. This reproducibility testing was performed to identify the most 61 

robust CMRTA parameters.  62 

 63 

 64 

 65 

CMR examination 66 

CMR was performed on a 1.5T clinical scanner (Avanto, Siemens Healthcare, Erlangen, 67 

Germany) following obtained written consent for anonymised research participation. A mid 68 

short axis balanced SSFP pre-contrast cine was acquired in accordance to the Society for 69 

CMR (SCMR) guidelines as part of the routine scanning protocol in each study15. The ECV 70 

was quantified. The contrast agent used was gadoterate meglumine [Dotarem, Guerbet SA, 71 

Paris, France] at a dosage of 0.1mg/kg. LGE imaging was performed approximately 10 72 

minutes following administration using either a standard fast low-angle single shot inversion 73 

recovery (FLASH) or true fast imaging with steady state free precession sequence (FISP) 74 

with a phase sensitive inversion recovery (PSIR) reconstruction. Presence or absence of LGE 75 

was reported by an experienced CMR physician (>10 years CMR). For the Amyloid cohort 76 

T1 maps and ECV quantification was performed as outlined in previous studies.16
 77 

In the test-retest cohort of 16 healthy volunteers,  a pre-contrast SSFP short axis cine was 78 

acquired in accordance to the SCMR guidelines 15.  The volunteer was taken out of the 79 



magnet and repositioned. The piloting and bSSFP SAX cine was then repeated using a 80 

different phase encoding direction and FOV. The studies were anonymised and randomised 81 

so the CMRTA operator was blinded. This test-retest cohort with altered scanning parameters 82 

was employed to assess the variability/reproducibility of CMRTA parameters to simulate the 83 

normal routine clinical practice where there will be variation in scanners, scanning protocol 84 

between different centres or between serial scans on the same magnet. 85 

 86 

 87 

 88 

CMRTA 89 

CMRTA was assessed using a filtration-histogram technique using a commercially available 90 

research software (TexRAD, TexRAD Ltd, www.texrad.com, part of Feedback Plc, 91 

Cambridge, UK). 3-10,17 Whole endocardial and epicardial contours were drawn identifying the 92 

whole myocardium for analysis. CMRTA comprised an initial filtration-step using a band-pass 93 

Laplacian of Gaussian filter (similar to a non-orthogonal Wavelet) to extract and enhance 94 

visually imperceptible features corresponding to variation in sizes, number and tonal intensities 95 

in relation to the background-tissue/surrounding-pixels defined as fine, medium and coarse 96 

texture scales corresponding to the spatial scale filter (SSF). SSF has typically taken the values 97 

of 2mm (fine), 3mm (medium) and 6mm (coarse). This was followed by quantification of 98 

textures from the filtered intensity maps using histogram based statistical analysis which 99 

describes the shape of the histogram. Typical CMR SSFP imaging voxel size is 100 

2.0mmx2.0mmx8.0mm (TR/TE 39.6/1.12ms), flip angle 55 deg, matrix 192x192. Parameters 101 

included - mean intensity , standard deviation, entropy, mean of positive pixel (MPP), kurtosis 102 

and skewness.  Table 1 –Definition of parameters. 103 

 104 

http://www.texrad.com/


Typically, for ‘normal’ tissue histograms are near Gaussian e.g. kurtosis and skewness near 105 

zero. Pathology changes this.18,19 In brief, ‘mean’ changes approximately in proportion to the 106 

number of objects/features highlighted and their mean brightness (dark objects are negative). 107 

MPP only includes pixels greater than zero (i.e bright) and so reduces the impact of dark objects 108 

on the mean histogram value. SD increases approximately in proportion to the square root of 109 

the number of features highlighted and their mean intensity difference compared with the 110 

background (i.e. dark and bright objects are both counted). Skewness is related to the average 111 

brightness of the highlighted features, moving away from zero with intensity variation in 112 

highlighted features and towards zero with an increasing number of features highlighted. 113 

Kurtosis is inversely related to the number of features highlighted (whether bright or dark) and 114 

increases by intensity variations in highlighted features. Entropy reflects how irregular or 115 

‘random’ the pixel intensity distribution is. Figures 1 illustrates the workflow of undertaking 116 

the CMRTA.   117 

 118 

 119 

Statistical Analysis 120 

IBM SPSS Statistics (version 22, Chicago, Illinois) was used for statistical analysis. Test-retest 121 

(reproducibility) of the CMRTA parameters across the 3 SSF values (fine, medium, coarse) 122 

was evaluated using the intra-class correlation (ICC).  ICC>0.75 were considered to be 123 

reproducible. Bland-Altman plots were used to visualise the average-difference plot for the 124 

CMR parameters. Amongst the three different SSF values representing fine, medium and 125 

coarse texture scales, one which demonstrated the texture parameters to be most robust (based 126 

on the above reproducibility analyses) were further evaluated for their clinical diagnostic 127 

capabilities. For each disease sub-types, and each preselected texture parameter, box and 128 

whisker plots were generated with non-parametric pairwise Kruskal Wallis and Mann Whitney 129 



testing to identify pairwise differences.  ROC analysis was performed to assess the sensitivity 130 

and specificity of each parameter in differentiating AS from HTN+LVH on the basis of 131 

CMRTA alone. 132 

Mann Whitney test was used to assess any of the derived texture parameters could differentiate 133 

between LGE positive versus negative. Spearman’s rank correlation test was used to identify 134 

if there was a correlation between ECV and any of the derived textural parameters. P-value of 135 

<0.001 was regarded as significant. 136 

With 5 conditions, 3 filters and 6 parameters, multiple pairwise parameters are possible so to 137 

avoid issue related to multiple testing and false discovery rate, we selected to pursue the most 138 

reproducible parameters (using the test-retest reproducibility assessment in the healthy 139 

volunteers as a marker of information extraction rather than scatter). 140 

 141 

Results 142 

Given the number of components to this preliminary study the results are presented in the 143 

order of Test-restest analysis (to inform the most reproducible filter size), Comparison of the 144 

parameters derived in HV vs all disease groups, the results of comparison between the 145 

disease states and finally the analysis with the disease cohorts of HCM and CA of patients 146 

with different clinical phenotypes. 147 

 148 

I. Test re-test analysis 149 

Comparing filters, the medium (spatial scale factor, SSF=3mm) filter was the most 150 

reproducible (example: ICC for Mean, SD, skewness and kurtosis were 0.84, 0.75, 0.92 and 151 

0.87 respectively, average ICC= 0.85). Average ICC of the same parameters for fine (2mm) 152 

was 0.70 and coarse (6mm) was 0.76.  153 

Bland-Altman plots for Mean, SD, skewness and kurtosis using SSF 3 for the test-retest cohort 154 



is shown in Figure 2. 155 

Absolute values for the 6 derived parameters in HV and each disease state are shown in Table 156 

2 (all figures to 2 decimal places) and Figure 3.  157 

Accordingly only texture quantifiers at medium filter (SSF 3mm) was pursued further for 158 

statistical analysis to evaluate clinical diagnostic capabilities. 159 

 160 

II Health vs Disease (Figure 3) 161 

Figure 3 highlights that the parameters can be positive or negative so we assessed degree of 162 

change from zero. Within our study mean and skewness were generally negative, suggesting 163 

more dark objects were highlighted in all cohorts, whereas SD, entropy and MPP were 164 

generally positive. By definition SD and MPP should be positive.  The fact that entropy was 165 

positive suggests a degree of irregularity within the myocardium. Kurtosis, indicates the visual 166 

contrast.  A high/positive kurtosis indicates a greater range of contrast and a low/negative 167 

kurtosis indicates a narrower range of visual contrast.   168 

Comparing the 4 disease states (CA, HCM, AS, HTN+LVH), to health (HV), the mean, SD, 169 

MPP and entropy showed the greatest difference from zero in the HV whereas kurtosis and 170 

skewness were closest to zero in HV.  This may suggest that in HV there is a narrower range 171 

of visual contrast and that there is a normal distribution curve of the pixel intensities in HV.   172 

Between disease conditions the greatest differences in parameters from health were in HCM 173 

(mean, SD, entropy, MPP) and CA (kurtosis, skewness). Specifically - HCM and CA were 174 

most different to health (all six texture parameters statistically different, each p<0.001); then 175 

AS (5 parameters were different p<0.001; entropy was not), and HTN+LVH (5 were different 176 

- mean, SD, entropy, and kurtosis, each p<0.001, MPP p<0.002).  177 



The histological processes in CA and HCM differ, however, it is likely that the degree of 178 

myocardial abnormality in the CA and HCM cohort would be greater then in the AS and 179 

HTN+LVH cohorts.   180 

Broadly speaking in CA there is an expansion of the myocardial interstitial matrix as a result 181 

of abnormal protein deposition.  There is a predilection for subendocardial involvement, 182 

however, when compared to HCM there is more likely to be a relatively uniform degree of 183 

abnormality compared to healthy myocardium. The finding that CA showed the largest range 184 

of pixel visual contrast (kurtosis) and skewness may suggest the detection of a ‘granularity’ 185 

and degree of average brightness of the pixels. 186 

Broadly speaking in HCM there is diffuse myocardial fibrosis and myofibril disarray with 187 

patches of focal interstitial fibrosis. This would make HCM the most ‘random’ pathology in 188 

terms of the disease pattern within the myocardium.  The finding that entropy was the most 189 

different to HV therefore has potential plausible explanation.  190 

 191 

 192 

III Comparing Disease States-Pairwise comparisons (Figure 4/Table 3) 193 

Table 3 highlights the pair-wise comparison of the study cohorts. Figure 4 demonstrates box 194 

and whisker plots for the CMRTA derived parameters across the cohorts. 195 

 196 

Within the 4 diseases differences (6 pairs), the following results were observed:  197 

a. HCM vs CA 198 

Mean (p=0.019) and skewness (p=0.002) were negative and nearer to zero (i.e. ‘higher’) in 199 

HCM compared to CA. SD (p<0.001), entropy (p<0.001), MPP (p=0.002) and kurtosis 200 

(p=0.026) were positive and nearer to zero (i.e. ‘lower’) in HCM compared to CA. 201 



The pixel brightness was therefore higher in HCM.  The pixel brightness, the number of 202 

abnormal features highlighted and the degree of irregularity were all higher in HCM. The range 203 

of pixel visual contrast was higher in CA. 204 

b. HCM vs AS 205 

Mean (p<0.001) and skewness (p=0.095, NS) were negative with Mean being nearer to zero 206 

(i.e. ‘higher’) whereas Skewness showed a greater deviation from zero (i.e.‘lower’) in HCM 207 

compared to AS. 208 

SD (p<0.001), entropy (p<0.001) and MPP (p<0.001) were positive and nearer to zero (i.e. 209 

‘lower’) in HCM compared to AS. Kurtosis (p<0.001) was positive and away from zero (i.e. 210 

‘higher’) in HCM compared to AS.  211 

Therefore, compared to AS, HCM showed fewer objects highlighted but a larger range of pixel 212 

intensities and a higher degree of irregularity.  213 

c. CA vs AS 214 

Mean (p<0.001) and skewness (p<0.001) were negative with Mean being closer to zero (i.e. 215 

‘higher’). Skewness, showed a greater deviation from zero (i.e. ‘lower’) (p<0.001) in CA 216 

compared to AS.  217 

SD (p<0.001), entropy (p=0.001), MPP (p<0.001) were all positive and were nearer to zero 218 

(i.e. ‘lower’) in CA compared to AS. Kurtosis (p<0.001) was also positive and more deviated 219 

from zero in CA (i.e. ‘higher’) compared to AS. 220 

Therefore compared to AS, CA showed fewer number of features highlighted but a larger range 221 

of pixel intensities and a higher degree of irregularity.  222 

d. HCM vs HTN+LVH 223 

Mean (p=0.064) was negative and closer to zero (i.e. ‘higher’) in HCM compared to 224 

HTN+LVH (p=0.064). Skewness was also negative with a greater deviation from zero in HCM 225 

(i.e. ‘lower’), (p=0.001) compared to HTN+LVH. 226 



SD (p=0.035), entropy (p=0.012) and MPP (p<0.001) were all positive and all were lower in 227 

HCM compared to HTN+LVH.  228 

Kurtosis showed a trend to be higher in HCM compared to HTN+LVH but did not reach 229 

statistical significance, (p=0.162). 230 

Interestingly the difference between the range of pixel intensity highlighted was not statistically 231 

different between the HCM and HTN+LVH cohorts. The pixel brightness and degree 232 

irregularity was greater in the HCM group.  233 

e. CA vs HTN+LVH 234 

Mean was negative and showed a trend to be further from zero (ie ‘lower’) in CA compared to 235 

HTN+LVH but did not reach significance (p=0.874). 236 

MPP (p=0.003) and skewness (p<0.001) were positive and significantly closer to zero (i.e. 237 

lower) in CA compared to HTN+LVH. Kurtosis was positive and higher in CA, (p=0.002). 238 

SD (p=0.198) and entropy (p=0.134) were negative and closer to zero (i.e. lower) in CA 239 

compared to HTN+LVH but did not reach statistical significance. 240 

The degree of pixel brightness was higher in the CA cohort but the number of features 241 

highlighted was lower.  Perhaps this may explain why the entropy did not reach statistical 242 

significance.  243 

f. AS vs HTN+LVH 244 

Mean (p<0.001) and skewness (p=0.002) were negative and further from zero (i.e. ‘lower’) in 245 

AS than HTN+LVH.  246 

SD (p<0.001) and entropy (p<0.001) were positive and further from zero (i.e. ‘higher’) in AS 247 

compared to HTN+LVH. MPP (p=0.767) showed a trend to be lower in AS compared to 248 

HTN+LVN but did not reach statistical significance. 249 

Kurtosis (p=0.041) was lower in AS compared to HTN+LVH.  250 



The degree of irregularity and the range of pixel intensities was higher in the AS group, perhaps 251 

suggesting more severe disruption to the myocardium (myocytes and extra-cellular matrix).  252 

 253 

The strongest results could generate ROC curves eg HCM (most change in parameters from 254 

HV) vs AS (least change in parameters from HV). 255 

A mean >= -97.64 identified HCM from AS with a sensitivity of 72% and specificity of 94% 256 

(AUC=0.89, p<0.001, Figure 5). A kurtosis >= 1.3550 identified HCM from AS with a 257 

sensitivity of 72.0% and specificity of 69.1% (AUC=0.75, p<0.001).  A SD < 158.5550 258 

identified HCM from AS with a sensitivity of 75.0% and specificity of 78.0% (AUC=0.86, 259 

p<0.001).  An entropy < 5.9000 identified HCM from AS with a sensitivity of 72.1% and 260 

specificity of 78.0% (AUC=0.87, p<0.001).  A MPP < 46.7600 identified HCM from AS with 261 

a sensitivity of 71.0% and specificity of 78.0% (AUC=0.81, p<0.001). 262 

 263 

 264 

 265 

 266 

IV. Disease subgroups: LGE in HCM and ECV in CA  267 

Clinical phenotypic data was not routinely collected for the purposes of this preliminary study.  268 

For the disease cohorts of HCM and CA clinical phenotypic data in the form of HCM LGE+/-269 

and CA ECV was available. Comparison of the parameters showed that in HCM, mean was 270 

significantly higher (p=0.031) and MPP was significantly lower (p=0.045) in LGE +ve 271 

compared to LGE -ve  group. Figure 5. 272 

For CA, the correlation between kurtosis and ECV was not significant (rs=0.222, p=0.193, 273 

n=36) however the numbers were small. 274 

 275 



  276 



Discussion 277 

Within the cardiac phenotyping techniques available, imaging plays a major role, and CMR 278 

adds value because it can characterize the myocardium using techniques like advanced LGE 279 

and parametric mapping and ECV quantification. In this preliminary study, we show; 280 

1. CMR images are amenable to TA. 281 

 282 

2. CMRTA can differentiate between HV and disease. Specifically - HCM and CA were most 283 

different to health (all six texture parameters statistically different, each p<0.001); then AS (5 284 

parameters were different p<0.001; entropy was not), and HTN+LVH (5 were different - mean, 285 

SD, entropy, and kurtosis, each p<0.001, MPP p<0.002).  286 

3. CMRTA parameters showed significant differences between diseases. Specifically- mean 287 

and entropy were found in the HCM vs CA; SD, entropy, MPP and kurtosis in HCM vs AS; 288 

skewness and MPP in HCM vs HTN+LVH; all parameters in CA vs AS; skewness in CA vs 289 

HTN+LVH and mean, SD and entropy in AS vs LVH+HTN. 290 

It is plausible to believe that the myocardial structure varied the most to ‘normal myocardium’ 291 

in the HCM and CA.  The pattern of myocardial involvement is different between HCM and 292 

CA and entropy reflects the degree of irregularity within the myocardium.  293 

Further information regarding myocardial texture captured by images from standard cines may 294 

not be appreciated by the human eye but may be detected using TA software and eventually 295 

large volume data set machine learning could enable automated tissue characterization.   296 

Myocardial TA, in this study was most robust and richest using a medium filter (3mm domain) 297 

– just above pixel size.  298 

Myocardial TA may have promise in detecting differences between aetiology of myocardial 299 

diseases and also for risk stratifying within a disease and assessing response to therapies. One 300 

study has shown correlation of CMRTA features to arrhythmia risk post MI.16  301 

 302 



Multiple derived parameters in newer machine based visual assessment techniques are 303 

challenging to rationalize. The statistical output from the filtration-histogram MRTA technique 304 

such as mean, standard deviation, kurtosis, skewness, mean positive pixels and entropy, may 305 

not be intuitive to comprehend but they are conventional descriptors for histogram distribution. 306 

With so many possible correlations, we followed a “nested” approach, starting with test-retest 307 

data to identify the most reproducible filter scale (medium-texture at SSF=3mm) followed by 308 

texture quantification at that scale to differentiate between the healthy and 4 diseased states as 309 

well as between the diseased states and with 2 “histological” correlations (ECV and LGE). We 310 

found biologically plausible associations – with Amyloid and HCM being much more 311 

abnormal than other disease – a hierarchy that has credibility against known pathological 312 

differences. 313 

The MRTA derived parameters may provide supporting evidence of the degree of myocardial 314 

abnormality and the uniformity of that process throughout the myocardium. 315 

 316 

Whist the techniques are not refined enough currently to give a diagnosis, this area is worth 317 

exploring further. The benefits of TA is that large data sets, which are routinely acquired, can 318 

be processed and the data acquired can be linked to patient characteristics and prognostic data.  319 

With deep machine learning algorithms this large volume dataset may be used as an ancillary 320 

diagnostic tool or prognostic indicator. Certainly it presents an opportunity for potential 321 

development. The benefits of this technique are that it is fast and easy to perform and does not 322 

require additional scanning time, sequences or administration of gadolinium based contrast 323 

agents. It could complement more conventional imaging approaches and provide a more 324 

sensitive marker of degree of myocardial microstructure disruption/abnormality. With the 325 

increasing use of ‘big data’ sets and machine learning it may be possible to decode these 326 



numerous statistical outputs from TA to provide a more clinically relevant and useable 327 

outcome. 328 

We found in our study the medium texture scale to be robust from reproducibility point of view 329 

and the texture quantifiers at medium texture scale such as kurtosis, MPP, mean and skewness 330 

in particular to demonstrate diagnostic capability. 331 

TA has been successful in the fields of oncology 2-9,17, enabling earlier diagnosis of malignancy 332 

and as an imaging biomarker, linking imaging to genetic basis of malignancy and tracking 333 

response to treatment. In addition various studies have shown benefit of TA in the detection of 334 

liver fibrosis with both MR and CT. 335 

This is a preliminary study and further research is required to fully define the role of this 336 

technique which is rapid to perform.  The strength is in the use of images which are routinely 337 

obtained without use of IV gadolinium based contrast. It has major potential in large volume 338 

studies involving retrospective analysis of scans and outcome data. 339 

 340 

 341 

Study Limitations 342 

This project, being a single centre study with small numbers, is a pilot study.  The majority of 343 

scans were performed over several years using the same magnet. The patients in each disease 344 

cohort are likely to vary in terms of severity of disease however, clinical phenotypic data was 345 

not recorded for the study populations. Data regarding myocardial function and patient 346 

outcome is also missing.  347 

Due to the numerous statistical comparisons the possibility of chance findings of statistical 348 

significance are high.   349 

The ROI used was the whole mid ventricular slice on SSFP imaging in diastole, within a disease 350 

process the histological features are unlikely to be uniform throughout the myocardium.  351 



CMRTA is therefore more suited to conditions which affect the myocardium in a diffuse and 352 

largely uniform manner. There are also limitations due to movement and blood flow. The 353 

spatial resolution of CMRTA is 1mm. 354 

Despite this the test retest reproducibility cohort data was encouraging and across all 355 

parameters there was difference between the pathologies and healthy volunteers. 356 

 357 

Conclusion 358 

CMRTA is a candidate clinical and research tool to describe myocardial structural disarray. It 359 

may be of patient benefit across a variety of conditions which affect the myocardium in terms 360 

of early diagnosis, prognosis and follow up of serial change following interventions and 361 

therapies. Further evaluation on large volume data sets from CoreLabs should be pursued. 362 

 363 
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 370 

 371 

 372 

 373 
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 377 

 378 
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 390 

List of abbreviations 391 

 392 
LGE     Late gadolinium enhancement 393 

CMR     Cardiovascular Magnetic Resonance 394 

CMRTA    Cardiovascular Magnetic Resonance Textural Analysis 395 

SSFP     Steady state free precession 396 

CA     Cardiac Amyloid 397 

AS     Aortic Stenosis 398 

LVH     Left ventricular hypertrophy 399 

HTN     Hypertension 400 

HV     Healthy volunteers 401 

AL-subtype    Amyloid light chain 402 

LVOTO    Left ventricular outflow tract obstruction 403 

MPP     Mean positive pixel 404 

SD     Standard deviation 405 

ECV     Extra-cellular volume 406 

TA     Textural Analysis 407 

SNR     Signal to noise ratio 408 

CNR     Contrast to noise ratio 409 

PSIR     Phase sensitive inversion recovery 410 

FLASH    Fast low-angle single shot inversion recovery  411 

FOV     Field of view 412 

SCMR     Society of Cardiovascular Magnetic resonance 413 

ICC     Intra-class correlation 414 

PET     Positron Emission Tomography 415 

SAX     Short axis stack 416 

SAP     Serum Amyloid P component  417 

 418 
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Table 2: Table showing the average values to 2 decimal places of the 6 parameters for each of the disease states and 503 

HV, using Spatial Filter Size 3. 504 

Table3: Table showing the pair-wise comparison of all study cohorts and the parameters showing statistical 505 

significance 506 

 507 

Figures List 508 

Figure 1: Illustrates the TexRad histogram-filtration method of CMR image analysis workflow. 509 

Figure 2: Bland-Altman plots for Mean, SD, skewness and kurtosis using SSF 3 for the test-retest cohort. 510 

Figure 3: Bar graph showing the average values of the 6 parameters for each of the disease states and HV, using 511 

Spatial Filter Size 3. 512 

Figure 4: Using the medium scale, Figure 4 demonstrates box and whisker plots for CMR texture parameters of 513 

mean, standard deviation, entropy and kurtosis across all disease types (HCM, CA, AS, HV, HTN+LVH). 0=HCM, 514 

1=CA, 2=AS, 3=HV, 4=HTN+LVH 515 



Figure 5: ROC-analysis HCM vs AS using Mean. A mean >= -97.64 identified HCM from AS with a sensitivity of 516 

72.0% and specificity of 94.1% (AUC=0.89, p<0.001) . 517 
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Figure 2: Bland-Altman plots for Mean, SD, skewness and kurtosis using SSF 3 for the test-retest cohort.

Blinded analysis of each scan performed by single operator.  Same patient was scanned twice deliberately changing scan parameters 

(Phase encoding direction, FOV, re-piloted).



Figure 4: Using the medium scale, Figure 4 demonstrates box and whisker plots for CMR texture parameters of mean, standard deviation, entropy and kurtosis 

across all disease types (HCM, CA, AS, HV, HTN+LVH). 0=HCM, 1=CA, 2=AS, 3=HV, 4=HTN+LVH



Figure 5 ROC-analysis HCM vs AS using Mean

A mean >= -97.64 identified HCM from AS with a sensitivity of 72.0% and specificity of 94.1% (AUC=0.89, p<0.001.



Figure 3: Bar graph showing the absolute values of the 6 parameters for each of the disease states and HV,

using Spatial Filter Size 3.
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Table 1: A table outlining all the CMRTA derived texture parameters and their meaning. 

PARAMETER DEFINITION 

  

MEAN The average value of the pixels within the region of interest 

SD A measure of how much variation or dispersion exists from average 

(mean value). A low SD indicates that the data points tend to be very 

close to the mean; high SD indicates that the data points are spread 

out over a large range of values 

SKEWNESS A measure of the asymmetry of the histogram.  The skewness value 

can be positive or negative.  A negative skew indicates that the tail on 

the left of the histogram is longer than the right ride.  A positive skew 

indicates that the tail on the right side is longer than the left side.  A 

zero value indicates the values are both evenly distributed on both 

sides of the mean 

KURTOSIS A measure of the peakedness of the histogram.  The kurtosis can be 

positive or negative.  A positive kurtosis indicates a histogram that is 

more peaked than Gaussian (normal) distribution.  A negative kurtosis 

indicates that the histogram is flatter then a Gaussian distribution 

ENTROPY A marker of randomness 

MEAN POSITIVE PIXEL Considers only pixels greater than zero and so reduced the impact of 

dark objects on the mean histogram value. 

 

 



Table 2: Table showing the absolute values to 2 decimal places of the 6 parameters for each of the disease states and 

HV, using Spatial Filter Size 3. 

SPATIAL 
FILTER SIZE 

PARAMETERS HCM AMYLOID AS NORMAL 

SSF3 Mean -82.48 -101.07 -211.43 -392.07 

 SD 105.79 144.35 199.47 273.76 

 Entropy 5.39 5.81 6.02 6.22 

 Kurtosis 2.64 3.81 1.05 -0.03 

 MPP 38.65 48.61 71.78 113.32 

 Skewness -0.94 -1.43 -0.74 -0.00 

 



Table3: Table showing the pair-wise comparison of all study cohorts and the parameters showing statistical 

significance 

Pair Wise Comparison Parameters showing 

significant differences 

Parameters not meeting 

statistical significance 

HCM vs CA SD, entropy Mean, skewness, MPP, kurtosis 

HCM vs AS Mean, SD, MPP, entropy, kurtosis Skewness 

CA vs AS Mean, SD, MPP, entropy, skewness, 

kurtosis 

 

HCM vs HTN+LVH Skewness, MPP Mean, SD, entropy, kurtosis 

CA vs HTN+LVH Skewness Mean, SD, MPP, entropy, kurtosis 

AS vs HTN+LVH Mean, SD, entropy,  Skewness, MPP, kurtosis 

 



 Textural Analysis provides additional information from routinely acquired medical 
imaging. 

 

 Textural Analysis can be performed on a single frame bSSFP cine image which are 
routinely acquired in routine CMR. 

 

 CMRTA ‘knows’ the difference between health and disease and shows promise in 
differentiating between diseases causing LVH. 

 

 Large volume analysis of CMR datasets using TA, combined with machine learning, 
shows promise as an ancillary diagnostic tool and possibly a prognostic indicator. 

Highlights


