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ABSTRACT
In Shared Media Experience Services (SMESs), a group of people is

interested in streaming consumption in a synchronised way, like

in the case of cloud gaming, live streaming, and interactive social

applications. However, group synchronisation comes at the expense

of other Quality of Experience (QoE) factors due to both the dy-

namic and diverse network conditions that each group member

experiences. Someone might wonder if there is a way to keep a

group synchronised while maintaining the highest possible QoE

for each one of its members. In this work, at first we create a Qual-

ity Assessment Framework capable of evaluating different SMESs

improvement approaches with respect to traditional metrics like

media bitrate quality, playback disruption, and end user desynchro-

nisation. Secondly, we focus on the bitrate adaptation for improving

the QoE of SMESs, as an incrementally deployable end user trig-

gered approach, and we formulate the problem in the context of

Adaptive Real Time Dynamic Programming (ARTDP). Finally, we

develop and apply a simple QoE aware bitrate adaptation mech-

anism that we compare against youtube live-streaming traces to

find that it improves the youtube performance by more than 30%.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Software
and its engineering → Synchronization; • Networks → Net-
work control algorithms; Network performance modeling; • Theory
of computation → Online learning algorithms;

KEYWORDS
SharedMedia Experience Services (SMESs), QoE Assessment Frame-

work, Bitrate Adaptation

1 INTRODUCTION
The recent growth of services requiring the simultaneous media

consumption by a group of users has been unprecedented. An in-

creasing number of interactive streaming, video calls, as well as

cloud gaming, indicate a movement in video streaming consump-

tion from a passive activity, that takes place in isolation, to both a

dynamic and interactive scenery. These developments demand the

revision of media delivery approaches since under this paradigm

the end user Quality of Experience (QoE) is affected by how syn-

chronised the media reception is between the other users. We refer

to these services as Shared Media Experience Services (SMESs). In

SMESs, centralised designs [10] should take into account the diverse

network conditions, experienced by each end user, for delivering

media simultaneously; however, the involved overhead questions

(a) Ideal (b) Actual

Figure 1: Shared Media Streaming Services Synchronisation,
Ideal vs. Actual

the scalability of such a system. Clearly as a first step, SMESs de-

livery must investigate decentralised, scalable, and incrementally

deployable methods to address the problem of synchronised media

delivery. Here, we argue that the end user media quality adaptation
seems like the most promising approach.

End user media quality adaptation refers to the dynamic, user

triggered media chunk quality change, in terms of bitrate [12].

Utilising different bitrate qualities is an old concept [6, 8] which

tries to capture the fundamental tradeoff betweenmedia quality and

smooth playback. This tradeoff exists since higher bitrates increase

the chances of playback freezing/disruption, caused by the volatile

network conditions which inherently impose restrictions on the

smoothness of content delivery.

The aim of this work is to take full advantage of the end users’

media quality adaptation, in terms of bitrate, for improving their

content delivery QoE in the context of SMESs. We argue that the

approach under investigation is an attractive, incrementally deploy-

able, and scalable solution, that is based on a previously proposed

mature concept. SMESs can be considered as an extreme case of

multimedia streaming where i) the synchronisation dimension of

media consumption is crucial to QoE, and ii) the content might

be almost real time generated. This means that always selecting

a low bitrate does not maximise the buffered content, since the

content may not have been generated yet, forcing the end-user to

remain idle, wasting bandwidth resources. On the other hand, a

higher bitrate, than the one that can be supported by the network

conditions, does not only cause playback disruptions but also leads

to end users’ desynchronisation. For these reasons, the globally

established DASH approach [14] is not fit for purpose.

Clearly, at first we need a notion of what is considered to be a

successful bitrate adaptation mechanism before developing one. To

this end, the main contributions of this paper are as follows:

(1) We create a QoE assessment framework for SMESs that can

be used for comparing different SMESs content delivery

mechanisms.
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(2) We develop a simple QoE aware bitrate adaptation mecha-

nism after formulating the bitrate adaptation problem as a

real-time adaptive dynamic programming.

(3) We collect Youtube live streaming traces and we compare

the performance of our adaptive bitrate mechanism against

youtube.

2 SYSTEM MODEL & QUALITY ASSESSMENT
FRAMEWORK

2.1 System Model
We consider a SMES environment where a group of users, G, is
interested in consuming, in a synchronised way, content that is

produced and/or stored at a source, src . Let t0 be the moment

that the session between group G members and the source src is
established. Then for each moment t > t0 we denote the set of

available chunks at the source as X t ≜ {x1,x2, ...,xq }. Evidently,
when the content is created dynamically, like in the case of live

streaming, X t
is increasing over time, or more formally, X t ⊇ X t ′

for t ≥ t ′; otherwise, all the chunks of the content are available at
the source since t0, i.e., X t0

= X t
for all t ≥ t0.

Each chunk has a predefined, by the source, playback duration,

ofψ time units, while it is offered in z + 1 different bitrate qualities,

B ≜ {b0,b1, ...,bz }. Note that set B is totally ordered in the sense

that bj ≥ bi ∀j ≥ i, j ≤ z. Thus, the amount of data associated with

a chunk of duration ψ and quality bi is si = ψ × bi . Furthermore,

we assume that there is a different bitrate available in B for each

possible combination of frames per second (fps) and user display

resolution. Therefore, in order to take into account the end-user

diverse bitrate requirements, we assume that each user д ∈ G,
is interested in a bitrate subset Bд ⊆ B suitable for her display

resolution. We consider Bд as a totally ordered set too.

The download speed of user д from source src over time, t ≥ t0,
is denoted byCд (·), which is a continuous positive function defined

over [t0,+∞). Based on Cд (·) function, the download completion

time of a bi bitrate k-th chunk, xk , requested at tk , is estimated by:

τbitk = {t ′ ∈ [tk , +∞) :

∫ t ′

tk
Cд (x )dx = si } (1)

where si is the requested chunk size. Note, that upon the time of

request, tk , chunk xk has to belong to the set of available chunks,

xk ∈ X tk . Otherwise, tk equals the minimum time that the chunk

becomes available, t
дen
k , or more formally t

дen
k = arg mint {xk ∈

X t }. Each end-user requests chunks in the logical order of media

consumption, meaning that tk ≤ tk+1
.

2.2 A Quality Assessment Framework for
SMESs

Let Tm ≜ {τt1
,τt2
, ...,τtm } be the vector of delivery times for the

firstm requested chunks of a user. Next we describe a quality as-

sessment framework, based on Tm , capable of capturing the QoE

over time of an end-user. Generally, quantifying the QoE of adap-

tive bitrate is the subject of ongoing research [1]. However, recent

works have identified playback disruption, when the media player

buffer gets empty, and frequent video quality changes, as major

causes of impairing user’s engagement [4, 11]. In the case of SMESs,

we include the media consumption desynchronisation on top of the

traditional adaptive bitrate QoE factors. Therefore, we express the

produced QoE as a function of the received bitrate quality, play-

back disruptions, and src desynchronisation as we explain next

in detail. Since QoE is subjective, the presented framework maps

measurement metrics, traditionally used for describing the Qual-

ity of Service, to the QoE in a representative way, similarly to the

framework described in [15, 16] in the context of crowdsourcing

media delivery.

Conjecture 1. The total dissatisfaction produced upon receiving
the first m chunks of content, Ṽm

(Tm ), is the sum function of the
bitrate quality cost,Vm

b (·), the playback disruptions cost,Vm
d (Tm ),

and the desynchronisation cost to the source,Vm
δ (Tm ).

We assume that the total cost is the sum of these different cost

functions since an end user most probably would complain about

these features separately. In other words, we assume that the dis-

satisfaction caused by a low bitrate quality is independent of how

smooth the content playback is as well as of how desynchronised

the user might be compared to the source.

We start by defining the cost impact of different bitrate choices

function to the firstm delivered chunks. Let Vb : Bд 7 −→ [vb ,vb ]

be a non-increasing per chunk cost function from the totally or-

dered set of available bitrates, Bд , to the cost interval of [vb ,vb ].

The reasoning is that the bitrate cost of a chunk starts from a maxi-

mum cost vb for the lowest available bitrate b0,Vb (b0) = vb , and
continues declining as the bitrate increases up to a satisfactory bi-

trate quality, corresponding to the minimum cost of vb . Therefore,
the total bitrate cost produced can be expressed as:

Vm
b =

m∑
k=1

Vb (bk ) (2)

Where bk is the vector of the first k bitrates, bk ≜ (bi : i = 1, ...,k).

Cost function Vb (·) requires vector bk instead of just the k-th
chunk’s bitrate, in order to capture the cost of bitrate changes

frequency with respect to the previous choices. The lowest possi-

ble bitrate we consider is the b0 = 0, denoting the case where a

user prefers to skip a chunk rather than download it, known as

aggressive content playback adjustment [9].

Next, regarding the aspects of playback disruption, we denote

by βk the buffered content, in terms of playback time units, of an

end user upon receiving chunk k . Assuming that a chunk becomes

available at the user media player as soon as it is downloaded, the

buffered time upon receiving the first chunk equals the chunk’s

playback duration, β1 = ψ . Therefore the smooth playback at the

end user will be disrupted if the time required for downloading the

second chunk exceeds the buffered content, τt2
−τt1

≥ ψ ; otherwise,
the buffered time will be increased byψ − (τt2

− τt1
). In the general

case, for ∆τk = τtk − τtk−1
, the buffered content is updated upon

the reception of chunk k according to:

βk =

{
ψ if ∆τk ≥ βk−1

ψ + βk−1
− ∆τk otherwise

The derivation of the buffered time is associated with the play-

back disruption time caused upon receiving the k-th chunk, dk , as

2



follows:

dk =

{
∆τk − βk−1

if ∆τk ≥ βk−1

0 otherwise

Let Vd : R+ 7 −→ R+ be a non-decreasing per chunk playback

disruption, dk ∈ R+, cost function. Then, given a delivery time

vector Tm , the total playback disruption cost will be:

Vm
d (Tm ) =

m∑
k=1

Vd (dk ) (3)

Note that for a bitrate ik = b0 = 0 we have that ∆τk = 0, meaning

that in our quality assessment framework, skipping a chunk is not

considered as causing a playback disruption since it does not freeze
the media player of the end user.

Finally, in the context of SMESs the rate of content consumption

is dictated by the source, src , in order to keep the end-users synchro-
nised. Letτ ∗k be the indicative time of downloading chunkk , then the

desynchronisation caused by the k-th chunk is δk = τtk −τ
∗
k . Hence,

Vδ : R+ 7 −→ R+ is defined as a non-decreasing per chunk desyn-

chronisation cost function, meaning that the cumulative desynchro-

nisation cost can be expressed as a function of Tm as:

Vm
δ (Tm ) =

m∑
k=1

Vδ (δk ) (4)

Therefore, the total dissatisfaction can be expressed function to Tm
as:

Ṽm
(Tm ) =

m∑
k=1

(
Vb (bk ) + Vd (dk ) + Vδ (δk )

)
(5)

Hence, we can estimate the playback disruption as well as the

user desynchronisation over time, resulting in estimating the total

dissatisfaction over time instead of per chunk reception basis.

Next, let C̃д (·) be the over time downloading speed function of

user д for chunk xm when the user requests chunks xm and xm+1

at the same time, i.e., tm = tm+1 ≤ τtm , as opposed to function

Cд (·) when only chunk xm is requested. Then from Eq. (1) we see

that the download completion time of chunk xm is expected to be

increased, i.e., τtm ≤ τ̃tm , due to the download speed limitations, i.e.,
C̃д (t ) ≤ Cд (t ) ∀t ∈ [tm ,τtm ]. A higher completion timemight result

in playback disruptions as well as desynchronisation, affecting

permanently the total dissatisfaction Ṽm
(·), despite the fact that

the download completion time of the second chunk might be the

same in both cases, τtm+1
= τ̃tm+1

. Clearly, the situation worsens

when more than 2 chunks are requested at once. Therefore, we

assume that in the context of SMESs each end user requests one chunk
at a time.

Given that each end user downloads one chunk at a time, we

have that the request time of a chunk xm+1 is taking place after

the download completion of chunk xm , i.e., τtm ≤ tm+1. Then, let τ
be the download time of chunk xm+1 when the chunk is requested

upon the delivery of chunk xm , τtm . Then from Eq. (1) we have that

τ ≤ τtm+1
for any chunk xm+1 request time tm+1 > τtm , meaning

that we may end up with a higher dissatisfaction Ṽm+1
(·). Since the

optimal request time is determined by the previous chunk delivery

time, the only decision left for the end user is the requested bitrate

of each chunk. Therefore, we assume that the total dissatisfaction
produced depends solely on the bitrate choices of the end user.
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Figure 2: Quality Assessment Framework, Chunk Cost Ab-
stract View

Note that despite the fact that SMESs purpose is to keep a group

of users synchronised, in the adaptive bitrate approach presented

here the group remains synchronised indirectly by remaining syn-

chronised to the source of the content.

Fig. 2 summarises the per chunk cost of the quality assessment

framework, where the content bitrates received so far affect the

chunk bitrate cost while the chunk delivery time defines both the

playback disruption and desynchronisation cost. The presented

framework’s purpose is to be utilised as a totally parametrised

comparison basis of different approaches concerning SMESs QoE

improvement. Furthermore, the derivation of QoE cost function is

an independent component of the framework that can be replaced

by more sophisticated and service specific models, like [5] for Cloud

gaming, and [17] for interactive multimedia environments. Nev-

ertheless, we believe that with the right parametrisation, even a

simple approach like the one presented here, can capture a broad

scope of SMESs QoE on a satisfying level.

3 PROBLEM FORMULATION & QUALITY
AWARE ADAPTIVE BITRATE

3.1 Problem Formulation
Given that a user is interested in the first N chunks of SMESs, the

objective of a control mechanism is to find the optimal vector of

delivery times, T ∗
N , that minimises the total dissatisfaction ṼN

(·).

The search for the optimal T ∗
N can be formulated as an Adaptive

Real Time Dynamic Programming (ARTDP) [2] problem as we

describe next.

Imagine the following dynamic discrete dynamic system, result-

ing in the downloading time of chunk xm+1:

τ im+1
= f (τ im , im+1,wm ) (6)

where the system state τ im+1
derives from the optimal request time

of xm+1, the previous state τ
im

, the control parameter of bitrate

for this chunk im+1 ∈ Bд , and the random parameter of network

conditions,wm , that affect the chunk download time, τ im+1
. Note

that if them + 1 chunk is not created yet upon its optimal request

time, t
дen
m+1
> τ im , the end user remains idle until t

дen
m+1

.

If we knew the network conditions function Cд (·) we would be

able to use Eq. (1) for defining the outcome of each possible bitrate

chunk choice, making our problem deterministic. Unfortunately,

3
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Figure 3: Buffer Monitoring, Actual and Extended Cumula-
tive Function.

Cд (·) is unknown, rendering our dynamic system a Markovian Deci-

sion Problem with incomplete information. That said, our problem

is adaptive in a sense that it tries to approximate the behaviour of

the unknown Cд (·) as a random variable,wm , and real time since
our knowledge about wm increases as the system is controlled,

meaning that we need an online/real time decision update method.

3.2 Quality Aware Adaptive Bitrate
Assuming that we know the time required for receiving a chunk

of a specific bitrate, the involved chunk cost can be estimated. In

order to improve the end user QoE it is crucial to have a mechanism

for predicting each chunk’s delivery time for each available bitrate

choice. Here we derive a simple to implement delivery time forecast-

ing approach for each chunk, that is solely based on monitoring

the involved media player buffer. The challenge here is to estimate

the next chunk’s delivery time by using only the information of

the chunks that are delivered to the media player buffer over time.

In particular, assuming that we can keep track of the chunks

size, i.e., in megabytes, and delivery times at the media player

buffer, we form the cumulative function of data up to a monitoring

time t . At first we convert the actual stepwise data cumulative

function into a continue extended one, by increasing the received

data linearly between the chunk delivery times. Then, given that

we are interested in a specific bitrate b, associated with a chunk size

s , we use the extended cumulative function to estimate the time

that would be required to deliver chunks of size s up to the present

time t .
For example, in Fig. 3 we see the relationship between the actual

measured and the extended data cumulative functions. In particular,

the player buffer receives 2 chunks of size s at τ1 and τ2, and another

2 chunks of size s ′ > s , i.e., of a higher bitrate, at τ3 and τ4. Then in

Fig. 4, by targeting a chunk size s∗, we use the extended cumulative

function to find that y1 seconds would be required for delivering

the first chunk and another y2 seconds for the second. In that way,

we create artificial historical data regarding a sequence of delivery

times for each bitrate, by using only the same extended cumulative

function.

More formally, let ybt ≜ (ybt,i : i = 1, ...,k) be the vector of past

delivery times for chunks of bitrate b given the extended data cumu-

lative functions at time t . Let ȳbt (h) be the average value produced by

the h last elements of vector ybt , i.e., (y
b
t,k−h ,y

b
t,k−h+1

, ...,ybt,k ), and

σbt (h) the corresponding variance. Then the expected time required

Data	CF	

t	y1	

Extended	

s*	

s*	

τ5	 τ6	y2	

Figure 4: Delivery time measurements derivation for chunk
size s∗.

Resolution Bitrate Cost, Vb (·)

144p 80Kbps 91.4

240p 350Kbps 66.2

360p 520Kbps 53.0

480p 830Kbps 34.0

720p 1.6Mbps 7.9

1080p 3Mbps 0.0

Table 1: Resolution and Bitrate Cost
to download the next chunk of a bitrate b will be equal to:

ȳbt,k+1
(h, r ) = ȳbt (h) + rσbt (h) (7)

where rσbt (h) is an r -weighted term that characterises the risk of

a chunk to be delivered after its expected time. Evidently, a risk
averse end user will choose a high r value while a risk taker end

user will set r = 0.

Then the expected delivery time of the next chunkm + 1 for a

bitrate im+1 = b is τ im+1
= t + ȳbt,k+1

(h, r ). The end user is finally

requesting the bitrate that minimises the next chunk’s cost. Note

that each vectorybt is updated in each buffer measurement iteration

by including the additional chunks that would have been delivered

for the new extended cumulative function.

4 EVALUATION
4.1 Live streaming traces
At first we asked 10 users, all located in Japan, to watch a popular

live streaming youtube channel for over 2 days after installing the

“Delay Measuring" chrome extension
1
for monitoring the buffer of

their media players. In total 480 hours of data have been collected

containing information about the chunks received over time, related

to their size as well as the involved content duration. The “Delay

Measuring" extension starts a new video session every hour, so

the previously buffered content is discarded. From the size of each

chunk we were able to approximate the underline bitrate by using

the resolution-Kbps association depicted in Table 1. These bitrates

were chosen as representative of 24fps normal motion content.

4.2 Quality Evaluation Setting
Following the resolution-bitrate association, for our evaluation we

consider the same resolution categories and we map each chunk res-

olution to a cost, depicted on the third column of Table 1. We set the

resolution of 1080p as the acceptable one with cost/dissatisfaction

1
https://chrome.google.com/webstore/detail/delay-measuring/llpfcdecognofljfhigpaaaojejcjepk
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equal to 0. Similarly, we assume that the maximum bitrate cost that

can be produced by a chunk when it is skipped equals to 100, i.e.,
Vb (b0) = 100. The cost presented in Table 1 derives by associat-

ing the 2 extreme costs, Vb (b0) = 100 and Vb (3Mbps) = 0, with

a positive, decreasing, and convex function for the intermediate

resolutions’ bitrates.

Next, we assume that the end-users are indifferent between skip-

ping a chunk and experiencing a playback disruption equal to the

chunk’s duration. Therefore, since our live streaming traces indi-

cate a chunk content duration of 5 seconds, we define the playback

disruption cost at 5 seconds equal to 100, i.e.,Vd (5) = 100. Similarly,

we also assume that the desynchronisation cost at 5 seconds equals

to 100,Vδ (5) = 100. Furthermore, we consider that both playback

disruption and desynchronisation cost functions increase linearly

until the reception of a chunk, that might exceed the chunk’s dura-

tion, e.g.,Vd (6) = Vδ (6) = 120.

Then, we combine all the cost functions into a weighted sum

and we consider a desynchronisation first scenario 1, where
the total cost is Ṽm

(·) = 0.15Vb (·) + 0.15Vd (·) + 0.7Vδ (·), and

a desynchronisation second scenario 2, where the total cost

is Ṽm
(·) = 0.4Vb (·) + 0.4Vd (·) + 0.2Vδ (·). In both scenarios we

consider the chunk bitrate to be equally important to playback

disruptions.

We compare our quality aware adaptive bitratemechanism against

the youtube performance and an oracle approach. To begin with,

evaluating the youtube performance under each scenario is straight-

forward. Secondly, for applying our approach we have to construct

for each user the extended cumulative function progressively and

apply Eq. (7) to forecast the delivery time of each chunk for each

resolution of Table 1. Finally, for the oracle approach we implement

a branch and bound algorithm while knowing the extended cumu-

lative function, i.e., the network conditions, since the beginning, so

the bitrate chunk choices are optimal.

4.3 Results
Initially, we investigate our approach in both scenarios for different

parameters of previous measurements, h =1, 5, 10, 20, 40, and risk

weights, r =0, 1, 1.5, 2. For scenario 1, where the desynchronisation

is important, we see in Fig. 5 that if we do not take the risk into

account in our forecasting, i.e., r = 0, our average cost per chunk

will deteriorate as we include more measurements, i.e., h increases.

For all other combinations of h and r parameters, the performance

of our approach is similar; meaning that when desynchronisation is

important the end user has to be risk averse, i.e., r > 0. On the other

hand, in the second scenario where the desynchronisation is not

as important as the other cost factors, the different combinations

of h and r result in small performance differences, between 39.1

and 39.9 as it is illustrated in Fig. 6. Generally, we observe that the

parametrisation of our approach in both scenarios is quite simple

as long as parameter r > 0 and parameter h > 1.

That said, we set r = 1 and h = 5 and we compare our approach

against the optimal-oracle mechanism and youtube. As shown in

Figures 7 and 8 our approach achieves an improvement of 37%

and 33%, compared to youtube performance, for scenarios 1 and 2

respectively. At the same time our approach is only worse than the

oracle by 25% for scenario 1 and 33% for scenario 2.
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Figure 5: Adaptive Bitrate Parametrisa-
tion Scenario 1
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Figure 6: Adaptive Bitrate Parametrisa-
tion Scenario 2
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Figure 7: Average Chunk Cost Sce-
nario 1
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Figure 8: Average Chunk Cost Sce-
nario 2

5 RELATEDWORK
A lot of recent works consider bitrate adaptation approaches for

improving the delivery of media streaming. In BOLA [13] a simple

to implement buffer based algorithm is introduced which efficiency

5



is verified on extensive network traces. ELASTIC [3] aims to keep

the buffer occupancy at a constant level. PANDA [7] drops mul-

tiplicatively and increases linearly and requested bitrate quality

as response to the network bandwidth. In [18] offline optimisa-

tion is performed for an exhaustive set of scenarios in order to

apply model predictive control for improving QoE related metrics.

However, none of these works consider the dimension of synchro-

nisation in media consumption. On the other hand, authors in [9]

address explicitly the problem of synchronised media consumption.

Nevertheless, their approach relies on the deployment of a new

protocol which does not seem promising in being deployed as the

bitrate adaptation approach. Unlike previous work, we present a

buffer based approach for estimating the network conditions and

adapt the requested content bitrate in a SMESs QoE-aware way.

6 CONCLUSIONS
In this work, we created a Quality assessment framework for eval-

uating the performance of Shared Media Services, in which QoE

depends on the synchronised content consumption. Then based

on buffered measurements we created a simple to implement and

parametrise Quality aware bitrate adaptation approach. Based on

real youtube live streaming traces we found that our bitrate adap-

tation mechanism improves the performance of youtube by more

than 30%.
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