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Abstract A risk-neutral valuation framework is developed for pricing and hedging in-play football13

bets based on modelling scores by independent Poisson processes with constant intensities. The14

Fundamental Theorems of Asset Pricing are applied to this set-up which enables us to derive novel15

arbitrage-free valuation formulæ for contracts currently traded in the market. We also describe how16

to calibrate the model to the market and how trades can be replicated and hedged.17
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1. Introduction19

In-play football bets are traded live during a football game. The prices of these bets20

are driven by the goals scored in the underlying game in a way such that prices move21

smoothly between goals and jump to a new level at times when goals are scored.22

This is similar to financial markets where the price of an option changes according23

to the price changes of the underlying instrument. We show that the Fundamental24

Theorems of Asset Pricing can be applied to the in-play football betting market25

and that these bets can be priced in the risk-neutral framework.26

Distribution of final scores of football games has been studied by several authors.27

In particular, Maher (1982) found that an independent Poisson distribution gives28

a reasonably accurate description of football scores and achieved further improve-29

ments by applying a bivariate Poisson distribution. This was further developed by30

Dixon and Coles (1997) who proposed a model in which the final scores of the two31

teams are not independent, but the marginal distributions of each team’s scores still32

follow standard Poisson distributions.33

Distribution of in-play goal times has been studied by Dixon and Robinson (1998)34

who applied a state-dependent Poisson model where the goal intensities of the teams35

depend on the current score and time. The model also accounts for other factors36

such as home e↵ect and injury time. The standard Poisson model has been applied37
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by Fitt, Howls, and Kabelka (2005) to develop analytical valuation formulae for38

in-play spread bets on goals and also on corners. A stochastic intensity model has39

been suggested by Jottreau (2009) where the goals are driven by Poisson processes40

with intensities that are stochastic, in particular driven by a Cox-Ingerson-Ross41

process. Vecer, Kopriva, and Ichiba (2009) have shown that in-play football bets42

may have additional sensitivities on the top of the standard Poisson model, for43

instance sensitivities to red cards.44

The Fundamental Theorems of Asset Pricing form the basis of the risk-neutral45

framework of financial mathematics and derivative pricing and have been developed46

by several authors, including Cox and Ross (1976), Harrison and Kreps (1979),47

Harrison and Pliska (1981), Harrison and Pliska (1983), Huang (1985), Du�e (1988)48

and Back and Pliska (1991). The first fundamental theorem states that a market49

is arbitrage free if and only if there exists a probability measure under which the50

underlying asset prices are martingales. The second fundamental theorem states that51

the market is complete, (that is, any derivative product of the underlying assets can52

be dynamically replicated) if and only if the martingale measure is unique.53

In this paper we use independent standard time-homogeneous Poisson processes54

to model the scores of the two teams. We construct a market of three underlying55

assets and show that within this model a unique martingale measure exists and56

therefore the market of in-play football bets is arbitrage-free and complete. Then57

we demonstrate calibration and replication performance using market data.58

The structure of this paper is the following. Section 2 contains a general overview59

of in-play football betting and an overview of the data set. Section 3 defines the60

formal model and contains pricing formulae for Arrow-Debreu securities among61

others. In Section 4 we calibrate the model to historical market quotes of in-play62

bets and in Section 5 we use the same data to show that Next Goal bets are natural63

hedging instruments that can be used to build a replicating portfolio to match64

the values of other bets, in particular the liquidly traded Match Odds bets. The65

Appendix reports analytical pricing formulae for some of the most liquidly traded66

bets.67

2. In-Play Football Betting68

In traditional football betting, also known as pre-game or fixed odds betting, bets69

are placed before the beginning of the game. In-play football betting enables bettors70

to place bets on the outcome of a game after it started. The main di↵erence is71

that during in-play betting, as the game progresses and as the teams score goals,72

the chances of certain outcomes jump to new levels and so do the odds of the73

bets. Prices move smoothly between goals and jump once a goal is scored. In-74

play betting became increasingly popular in recent years. For instance, Compliance75

(2013) recently reported that for one particular bookmaker (Unibet) in-play betting76

revenues exceeded pre-game betting revenues by 2013Q2 as shown in Figure 1.77

There are two main styles of in-play betting: odds betting and spread betting.78

In odds betting, the events o↵ered are similar to digital options in the sense that79

the bettor wins a certain amount if the event happens and loses a certain amount80

otherwise. Typical odds bets are whether one team wins the game, whether the total81

number of goals is above a certain number or whether the next goal is scored by82

the home team. In spread betting, the bets o↵ered are such that the bettor can win83

or lose an arbitrary amount. A typical example is a bet called “total goal minutes”84
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Figure 1. Revenue distribution of one particular bookmaker’s (Unibet) football betting revenues between
In-Play and Pre-Game football betting.

which pays the bettor the sum of the minute time of each goal. In this paper we85

focus on odds betting, but most of the results can also be applied to spread betting.86

A study of spread betting containing analytical pricing formulae for various spread87

bets was published by Fitt, Howls, and Kabelka (2005).88

In-play betting o↵ers various types of events such as total goals, home and away89

goals, individual player goals, cards, corners, injuries and other events. This paper90

focuses on bets related to goal events only.91

Throughout the paper we refer to the value Xt of a bet as the price at which92

the bet can be bought or sold at time t assuming that the bet pays a fixed amount93

of 1 unit in case it wins and zero otherwise. This is a convenient notation from a94

mathematical point of view, however it is worth noting that di↵erent conventions95

are used for indicating prices in betting markets. The two most popular conventions96

are called fractional odds and decimal odds. Both of these conventions rely on the97

assumption that the bettor wagers a fixed stake when the bet is placed and enjoys98

a payo↵ in case the bet wins or no payo↵ in case it loses. Fractional odds is the net99

payo↵ of the bet in case the bet wins (that is, payo↵ minus stake), divided by the100

stake. Decimal odds is the total payo↵ of the bet in case the bet wins, divided by101

the stake. Therefore, the value of a bet Xt is always equal to the reciprocal of the102

decimal odds which is equal to the reciprocal of fractional odds plus one, formally:103

Xt =
1

Decimal t
=

1

Fractional t + 1
, (1)

where Decimal t denotes decimal and Fractional t denotes fractional odds. Most of104

the market data we used was originally represented as decimal odds, but they were105

converted to bet values using the above formula for all the figures and for the106

underlying calculations in this paper.107
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It is also worth noting that bets can be bought or sold freely during the game.108

This includes going short which is referred to as lay betting. Mathematically this109

means that the amount held can be a negative number.110

In-play bets can be purchased from retail bookmakers at a price o↵ered by the111

bookmaker, but can also be traded on centralized marketplaces where the exchange112

merely matches orders of participants trading with each other through a limit order113

book and keeps a deposit from each party to cover potential losses.114

2.1 An example game115

In order to demonstrate our results we selected the Portugal vs. Netherlands game116

from the UEFA Euro 2012 Championship which was played on the 22nd of June117

2012. The reason for selecting this particular game is that the game had a rather118

complex unfolding with Netherlands scoring the first goal, but then Portugal taking119

the lead in the second half and finally winning the game. This made the odds jump120

several times during the game which makes it a good candidate for demonstrating121

how the model performs in an extreme situation. The number of goals as a function122

of game time is shown in Figure 2.123

Figures 3 and 4 show market values of two bet types traded on a betting market124

called Betfair: Match Odds and Over-Under. Match Odds contains three bets: home125

team winning the game, away team winning the game and the draw. Over-Under126

contains bets on the total number of goals where Under X.5 is a bet that pays o↵127

if the total number of goals is equal or less than X. The dashed lines show the best128

buy and sell o↵ers on the market while the continuous lines show the calibrated129

model values (see Section 4).130

In case of Match Odds, the value of the bet for Netherlands winning the game131

jumped after Netherlands scored the first goal. When the scores became even after132

Portugal scored a goal, the value of the Draw bet jumped up and when Portugal133

took the lead by scoring the third goal, the value of the bet for Portugal winning the134

game jumped up. Finally, by the end of the game the value of the bet for Portugal135

winning the game converged to 1 and the value of the other bets went to zero.136

In case of the Over-Under bets, trading ceased for the Under 0.5 bet after the first137

goal when the value of this bet jumped to zero. By the end of the game, the value138

of the Under 3.5, 4.5, 5.5, 6.5 and 7.5 bets reached 1 because the total number of139

goals was actually 3 and the values of the Under 0.5, 1.5 and 2.5 bets went to zero.140

3. Mathematical framework141

In this section we present a risk-neutral valuation framework for in-play football142

betting. To do so we follow the financial mathematical approach, in which we start143

by assuming a probability space, then identify a market of underlying tradable144

assets and postulate a model for the dynamics of these assets. We show that the145

first and second fundamental theorems of asset pricing apply to this market, that is146

the market is arbitrage-free and complete which means that all derivatives can be147

replicated by taking a dynamic position in the underlying assets.148

In classical finance, the distinction between the underlying asset (for example a149

stock) and a derivative (for example an option on the stock) is natural. This is not150

the case in football betting; there is no such clear distinction between underlying151

and derivative assets because all bets are made on the scores, and the score process152
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Figure 2. Scores of the two teams during the Portugal vs. Netherlands game on the 22nd of June, 2012.
The half time result was 1-1 and the final result was a 2-1 win for Portugal.

itself is not a tradable asset. In order to be able to apply the Fundamental Theorems153

of Asset Pricing we need to artificially introduce underlying assets and define the154

model by postulating a price dynamics for these assets in the physical measure. It is155

also desirable to chose underlying assets that have a simple enough price dynamics156

so that developing the replicating portfolio becomes as straightforward as possible.157

For these reasons, the two underlying assets of our choice are assets that at the158

end of the game pay out the number of goals scored by the home and away teams,159

respectively. It is important to note that these assets are not traded in practice160

and the choice therefore seems unnatural. However, these underlying assets can be161

statically replicated from Arrow-Debreu securities that are referred to as Correct162

Score bets in football betting and are traded in practice. Furthermore, towards the163

end of the Section 3.2 we arrive at Proposition 3.12 which states that any two164

linearly independent bets can be used as hedging instruments. Therefore the choice165

of the underlying assets is practically irrelevant and only serves a technical purpose.166

This result is applied in Section 5 where Next Goal bets are used as natural hedging167

instruments.168

3.1 Setup169

Let us consider a probability space (⌦,F ,P) that carries two independent Poisson170

processes N1
t , N

2
t with respective intensities µ1, µ2 and the filtration (Ft)t2[0,T ]171

generated by these processes. Let time t = 0 denote the beginning and t = T the172

end of the game. The Poisson processes represent the number of goals scored by173

the teams, the superscript 1 refers to the home and 2 refers to the away team. This174
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Figure 3. Values of the three Match Odds bets during the game: Draw (black), Portugal Win (red),
Netherlands Win (blue). Dashed lines represent the best market buy and sell o↵ers while the continuous
lines represent the calibrated model values. Note that the value of the Netherlands Win bet jumps up after
the first goal because the chance for Netherlands winning the game suddenly increased. It jumped down for
similar reasons when Portugal scored it’s first goal and at the same time the value of the Portugal Win and
Draw bets jumped up. By the end of the game, because Portugal actually won the game, the value of the
Portugal Win bet reached 1 while both other bets became worthless.

notation is used throughout, the distinction between superscripts and exponents175

will always be clear from the context. The probability measure P is the real-world176

or physical probability measure.177

We assume that there exists a liquid market where three assets can be traded178

continuously with no transaction costs or any restrictions on short selling or bor-179

rowing. The first asset Bt is a risk-free bond that bears no interests, an assumption180

that is motivated by the relatively short time frame of a football game. The second181

and third assets S1
t and S2

t are such that their values at the end of the game are182

equal to the number of goals scored by the home and away teams, respectively.183

Definition 3.1 (model). The model is defined by the following price dynamics of184

the assets:185

Bt = 1

S1
t = N1

t + �1 (T � t) (2)

S2
t = N2

t + �2 (T � t)

where �1 and �2 are known real constants.186

Essentially, the underlying asset prices are compensated Poisson processes, but the187

compensators �1,�2 are not necessarily equal to the intensities µ1, µ2 and therefore188

the prices are not necessarilty martingales in the physical measure P. This is similar189
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Figure 4. Values of Over/Under bets during the game. Under X.5 is a bet that pays o↵ in case the total
number of goals by the end of the game is below or equal to X. Marked lines represent the calibrated model
prices while the grey bands show the best market buy and sell o↵ers. Note that after the first goal trading
in the Under 0.5 bet ceased and it became worthless. By the end of the game when the total number of
goals was 3, all the bets up until Under 2.5 became worthless while the Under 3.5 and higher bets reached
a value of 1.

to the Black-Scholes model where the stock’s drift in the physical measure is not190

necessarily equal to the risk-free rate.191

We are now closely following Harrison and Pliska (1981) in defining the necessary192

concepts.193

3.2 Risk-neutral pricing of bets194

Definition 3.2 (trading strategy). A trading strategy is an Ft-predictable vec-195

tor process �t =
�
�0t ,�

1
t ,�

2
t

�
that satisfies

R t
0

���is
�� ds < 1 for i 2 {0, 1, 2}. The196

associated value process is denoted by197

V �
t = �0tBt + �1tS

1
t + �2tS

2
t . (3)

The trading strategy is self-financing if198

V �
t = V �

0 +

Z t

0
�1sdS

1
s +

Z t

0
�2sdS

2
s . (4)

where
R t
0 �

i
sdS

i
s, i 2 {1, 2} is a Lebesgue Stieltjes integral which is well defined199

according to Proposition 2.3.2 on p17 of Brémaud (1981).200

Definition 3.3 (arbitrage-freeness). The model is arbitrage-free if no self-201

7
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financing trading strategy �t exist such that P
h
V �
t � V �

0 � 0
i

= 1 and202

P
h
V �
t � V �

0 > 0
i
> 0.203

Definition 3.4 (bet). A bet (also referred to as a contingent claim or derivative)204

is an FT -measurable random variable XT .205

In practical terms this means that the value of a bet is revealed at the end of the206

game.207

Definition 3.5 (completeness). The model is complete if for every bet XT there208

exists a self-financing trading strategy �t such that XT = V �
T . In this case we say209

that the bet XT is replicated by the trading strategy �t.210

Theorem 3.6 (risk-neutral measure). There exists a probability measure Q re-211

ferred to as the risk-neutral equivalent martingale measure such that:212

(a) The asset processes Bt, S1
t , S

2
t are Q-martingales.213

(b) The goal processes N1
t and N2

t in measure Q are standard Poisson processes214

with intensities �1 and �2 respectively (which are in general di↵erent from the215

P-intensities of µ1 and µ2).216

(c) Q is an equivalent measure to P, that is the set of events having zero probability217

is the same for both measures.218

(d) Q is unique.219

Proof. The proof relies on Girsanov’s theorem for point processes (see Theorem 2220

on p.165 and Theorem 3 on page 166 in Brémaud (1981)) which states that N1
t and221

N2
t are Poisson processes with intensities �1 and �2 under the probability measure222

Q which is defined by the Radon-Nikodym-derivative223

dQ
dP = Lt, (5)

where224

Lt =
2Y

i=1

✓
�i
µi

◆N i
t

exp [(µi � �i) t] . (6)

Then uniqueness follows from Theorem 8 on p.64 in Brémaud (1981) which states225

that if two measures have the same set of intensities, then the two measures must226

coincide. The Integration Theorem on p.27 of Brémaud (1981) states that N i
t � �it227

are Q-martingales, therefore the assets Si
t are also Q-martingales for i 2 {1, 2}.228

Proposition 9.5 of Tankov (2004) claims that P and Q are equivalent probability229

measures. The process of the bond asset Bt is a trivial martingale in every measure230

because it’s a deterministic constant which therefore doesn’t depend on the measure.231

232

Remark 3.7. Changing the measure of a Poisson process changes the intensity and233

leaves the drift unchanged. This is in contrast with the case of a Wiener process234

where change of measure changes the drift and leaves the volatility unchanged.235

Theorem 3.8. (arbitrage-free) The model is arbitrage-free and complete.236

8
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Proof. This follows directly from the first and second fundamental theorems of fi-237

nance. To be more specific, arbitrage-freeness follows from theorem 1.1 of Delbaen238

and Schachermayer (1994) which states that the existence of a risk-neutral mea-239

sure implies a so-called condition “no free lunch with vanishing risk” which implies240

arbitrage-freeness. Completeness follows from theorem 3.36 of Harrison and Pliska241

(1981) which states that the model is complete if the risk-neutral measure is unique.242

Alternatively it also follows from theorem 3.35 which states that the model is com-243

plete if the martingale representation theorem holds for all martingales which is the244

case according to Theorem 17, p.76 of Brémaud (1981).245

Corollary 3.9. The time-t value of a bet is equal to the risk-neutral expectation246

of it’s value at the end of the game, formally:247

Xt = E
Q [XT |Ft] . (7)

Proof. This follows directly from Proposition 3.31 of Harrison and Pliska (1981).248

Corollary 3.10. The time-t value of a bet is also equal to the value of the associ-249

ated self-financing trading strategy �t, formally:250

Xt = V �
t = V �

0 +

Z t

0
�1sdS

1
s +

Z t

0
�2sdS

2
s . (8)

Proof. This follows directly from Proposition 3.32 of Harrison and Pliska (1981).251

Definition 3.11 (linear independence). The bets Z1
T and Z2

T are linearly in-252

dependent if the self-financing trading strategy �1t =
�
�10t ,�11t ,�12t

�
that replicates253

Z1
T is P-almost surely linearly independent from the self-financing trading strategy254

�2t =
�
�20t ,�21t ,�22t

�
that replicates Z2

T . Formally, at any time t 2 [0, T ] and for any255

constants c1, c2 2 R256

c1�
1
t 6= c2�

2
t P a.s. (9)

Proposition 3.12 (replication). Any betXT can be replicated by taking a dynamic257

position in any two linearly independent bets Z1
T and Z2

T , formally:258

Xt = X0 +

Z t

0
 1
sdZ

1
s +

Z t

0
 2
sdZ

2
s , (10)

where the weights  1
t , 

2
t are equal to the solution of the following equation:259

✓
�11t �12t
�21t �22t

◆✓
 1
t

 2
t

◆
=

✓
�1t
�2t

◆
(11)

where
�
�11t ,�12t

�
,
�
�21t ,�22t

�
and

�
�1t ,�

2
t

�
are the components of the trading strat-260

egy that replicates Z1
T , Z

2
T and XT , respectively. The integral

R t
0  

1
sdZ

1
s is to be261

interpreted in the following sense:262

Z t

0
 1
sdZ

1
s =

Z t

0
 1
s�

11
s dS1

s +

Z t

0
 1
s�

12
s dS2

s (12)

9
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and similarly for
R t
0  

2
sdZ

2
s .263

Proof. Substituting dZ1
t = �11t dS1

t + �21t dS2
t , dZ

2
t = �12t dS1

t + �22t dS2
t and Equation264

8 into Equation 10 verifies the proposition.265

3.3 European bets266

Definition 3.13 (European bet). A European bet is a bet with a value depending267

only on the final number of goals N1
T , N

2
T , that is one of the form268

XT = ⇧
�
N1

T , N
2
T

�
(13)

where ⇧ is a known scalar function N ⇥ N ! R which is referred to as the payo↵269

function.270

Example 3.14. A typical example is a bet that pays out 1 if the home team271

scores more goals than the away team (home wins) and pays nothing otherwise,272

that is ⇧
�
N1

T , N
2
T

�
= 1

�
N1

T > N2
T

�
where the function 1 (A) takes the value of 1273

if A is true and zero otherwise. Another example is a bet that pays out 1 if the274

total number of goals is strictly higher than 2 and pays nothing otherwise, that is275

⇧
�
N1

T , N
2
T

�
= 1

�
N1

T +N2
T > 2

�
.276

Proposition 3.15 (pricing formula). The time-t value of a European bet with277

payo↵ function ⇧ is given by the explicit formula278

Xt =
1X

n1=N t
1

1X

n2=N t
2

⇧ (n1, n2)P
�
n1 �N1

t ,�1 (T � t)
�
P
�
n2 �N2

t ,�2 (T � t)
�
, (14)

where P (N,⇤) is the Poisson probability, that is P (N,⇤) = e�⇤

N ! ⇤
N if N � 0 and279

P (N,⇤) = 0 otherwise.280

Proof. This follows directly form Proposition 3.9 and Definition 3.13.281

As we have seen, the price of a European bet is a function of the time t and the282

number of goals
�
N1

t , N
2
t

�
and intensities (�1,�2). Therefore, from now on we will283

denote this function by Xt = Xt
�
N1

t , N
2
t

�
or Xt = Xt

�
t,N1

t , N
2
t ,�1,�2

�
, depending284

on whether the context requires the explicit dependence on intensities or not.285

It is important to note that Arrow-Debreu bets do exist in in-play football betting286

and are referred to as Correct Score bets.287

Definition 3.16 (Arrow-Debreu bets). Arrow-Debreu bets, also known as Cor-288

rect Score bets are European bets with a payo↵ function ⇧AD(K1,K2) equal to 1 if289

the final score
�
N1

T , N
2
T

�
is equal to a specified result (K1,K2) and 0 otherwise:290

⇧AD(K1,K2) = 1
�
N1

T = K1, N
2
T = K2

�
(15)

According to the following proposition, Arrow-Debreu bets can be used to stati-291

cally replicate any European bet:292

Proposition 3.17 (static replication). The time-t value of a European bet with293

10
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payo↵ function ⇧ in terms of time-t values of Arrow-Debreu bets is given by:294

Xt =
1X

K1=N t
1

1X

K2=N t
2

⇧ (K1,K2)Xt,AD(K1,K2), (16)

where Xt,AD(K1,K2) denotes the time-t value of an Arrow-Debreu bet that pays out295

if the final scores are equal to (K1,K2).296

Proof. This follows directly form Proposition 3.15 and Definition 3.16.297

Let us now define the partial derivatives of the bet values with respect to change298

in time and the number goals scored. These are required for hedging and serve the299

same purpose as the greeks in the Black-Scholes framework.300

Definition 3.18 (Greeks). The greeks are the values of the following forward dif-301

ference operators (�1, �2) and partial derivative operator applied to the bet value:302

�1Xt
�
N1

t , N
2
t

�
= Xt

�
N1

t + 1, N2
t

�
�Xt

�
N1

t , N
2
t

�
(17)

�2Xt
�
N1

t , N
2
t

�
= Xt

�
N1

t , N
2
t + 1

�
�Xt

�
N1

t , N
2
t

�
(18)

@tXt
�
N1

t , N
2
t

�
= lim

dt!0

1

dt

⇥
Xt+dt

�
N1

t , N
2
t

�
�Xt

�
N1

t , N
2
t

�⇤
(19)

Remark. The forward di↵erence operators �1, �2 play the role of Delta and the303

partial derivative operator @t plays the role of Theta in the Black-Scholes framework.304

Theorem 3.19 (Kolmogorov forward equation). The value of a European bet305

X
�
t,N1

t , N
2
t

�
with a payo↵ function ⇧(N1

T , N
2
T ) satisfies the following Feynman-Kac306

representation on the time interval t 2 [0, T ] which is also known as the Kolmogorov307

forward equation:308

@tX
�
t,N1

t , N
2
t

�
= ��1�1X

�
t,N1

t , N
2
t

�
� �2�2X

�
t,N1

t , N
2
t

�
(20)

with boundary condition:309

XT
�
T,N1

T , N
2
T

�
= ⇧

�
N1

T , N
2
T

�
.

Proof. The proposition can be easily verified using the closed form formula from310

Proposition 3.15. Furthermore, several proofs are available in the literature, see for311

example Proposition 12.6 in Tankov (2004), Theorem 6.2 in Ross (2006) or Equation312

13 in Feller (1940).313

Remark 3.20. Equation 20 also has the consequence that any portfolio of Euro-314

pean bets that changes no value if either team scores a goal (Delta-neutral) does315

not change value between goals either (Theta-neutral). We note without a proof,316

that this holds for all bets in general.317

Corollary 3.21. The value of a European bet X
�
t,N1

t , N
2
t ,�1,�2

�
satisfies the318

following:319

@

@�i
Xt = (T � t) �iXt (21)
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where i 2 {1, 2}.320

Proof. This follows directly from Proposition 3.15.321

Proposition 3.22 (portfolio weights). The components
�
�1t ,�

2
t

�
of the trading322

strategy that replicates a European bet XT are equal to the forward di↵erence323

operators (�1, �2) of the bet, formally:324

�1t = �1X
�
t,N1

t , N
2
t

�
(22)

�2t = �2X
�
t,N1

t , N
2
t

�
. (23)

Proof. Recall that according to Proposition 3.10, the time-t value of a bet is equal325

to Xt = X0 +
P2

i=1

R t
0 �

i
sdS

i
s, which after substituting dSi

t = dN i
t � �idt becomes326

Xt = X0 +

Z t

0

�
�1s�1 + �2s�2

�
ds

+

N1
tX

k=0

�1t1k +

N2
tX

k=0

�2t2k , (24)

where we used
R t
0 �

i
sdN

i
s =

PN i
t

k=0 �
i
t1k

where 0  tik  t is the time of the k.th jump327

(goal) of the process N i
t for i 2 {1, 2}.328

On the other hand, using Ito’s formula for jump processes (Proposition 8.15,329

Tankov (2004)), which applies because the closed form formula in Proposition 3.15330

is infinitely di↵erentiable, the value of a European bet is equal to331

Xt = X0 +

Z t

0
@sX

�
s,N1

s , N
2
s

�
ds

+

N1
tX

k=0

�1X
⇣
t1k, N

1
t1k�, N

2
t1k�

⌘
+

N2
tX

k=0

�2X
⇣
t2k, N

1
t2k�, N

2
t2k�

⌘
, (25)

where tik� refers to the fact that the value of the processes is to be taken before the332

jump.333

Because the equality between Equations 24 and 25 hold for every possible jump334

times, the terms behind the sums are equal which proves the proposition.335

4. Model Calibration336

In this section we discuss how to calibrate the model parameters to historical market337

prices. We demonstrate that a unique equivalent martingale measure Q exists, that338

is, a set of intensities �1,�2 exist that are consistent with the prices of all bets339

observed on the market (see Propositions 3.6 and 3.8).340

We apply a least squares approach in which we consider market prices of a set341

of bets and find model intensities that deliver model prices for these bets that are342

as close as possible to the market prices. Specifically, we minimize the sum of the343

square of the weighted di↵erences between the model and market mid prices as a344

function of model intensities, using market bid-ask spreads as weights. The reason345
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for choosing a bid-ask spread weighting is that we would like to take into account346

bets with a lower bid-ask spread with a higher weight because the price of these347

bets is assumed to be more certain. Formally, we minimize the following expression:348

R
�
�1t ,�

2
t

�
=

vuuut 1

n

nX

i=1

2

4Xi,MID

t �Xi
t

�
�1t ,�

2
t , N

1
t , N

2
t

�

1
2

⇣
Xi,SELL

t �Xi,BUY

t

⌘

3

5
2

, (26)

where n is the total number of bets used, Xi,BUY

t and Xi,SELL
t are the best market349

buy and sell quotes of the i.th type of bet at time t, Xi,MID

t is the market mid price350

which is the average of the best buy and sell quotes, Xi
t

�
N1

t , N
2
t ,�

1
t ,�

2
t

�
is the model351

price of the i.th bet at time t, given the current number of goals N1
t , N

2
t and model352

intensity parameters �1t ,�
2
t , see Proposition 3.15. This minimization procedure is353

referred to as model calibration.354

Calibration has been performed using a time step of 1 minute during the game,355

independently at each time step. We used the three most liquid groups of bets which356

in our case were Match Odds, Over / Under and Correct Score with a total of 31357

bet types in these three categories. Appendix A describes these bet types in detail.358

The continuous lines in Figures 3 and 4 show the calibrated model prices while359

the dashed lines are the market buy and sell o↵ers. It can be seen that the calibrated360

values are close to the market quotes, although they are not always within the bid-361

ask spread. As the measures of the goodness of the fit we use the optimal value of362

the cost function of Equation 26, which is the average distance of the calibrated363

values from the market mid prices in units of bid-ask spread, the calibration error364

is shown in Figure 5. We performed calibration for multiple games of the Euro 2012365

Championship, the time average of the calibration errors for each game is shown in366

Table 1. The mean and standard deviation of the calibration errors across games367

is 1.57 ± 0.27 which is to be interpreted in units of bid-ask spread because of the368

weighting of the error function in Equation 26. This means, that on average, the369

calibrated values are outside of the bid-ask spread, but not significantly. Given that370

a model of only 2 parameters has been calibrated to a total of 31 independent371

market quotes, this is a reasonably good result.372

Finally, the implied intensities, along with the estimated uncertainties of the cal-373

ibration using the bid-ask spreads are shown in Figure 6. Contrary to our initial374

assumption of constant intensities, the actual intensities fluctuate over time and375

there also seems to be an increasing trend in the implied goal intensities of both376

teams.377

In order to better understand the nature of the implied intensity process, we378

estimated the drift and volatility of the log total intensity, that is we assumed the379

following:380

d ln
�
�1t + �2t

�
= µdt+ �dWt (27)

where µ and � are the drift and volatility of the process. Table 2 shows the results381

of the estimation for multiple games. The mean and standard deviation of the drift382

terms are µ = 0.55 ± 0.16 1/90min while the mean and standard deviation of the383

volatility terms are � = 0.51±0.19 1/
p
90min. The fact that implied goal intensities384

are increasing during the game is consistent with findings of Dixon and Robinson385
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Figure 5. Calibration error during the game. Calibration error is defined as the average distance of all
31 calibrated bet values from the market mid prices in units of bid-ask spread. A formal definition is given
by Equation 26. Note that the calibration error for this particular game is usually between 1 and 2 bid-ask
spreads which is a reasonably good result, given that the model has only 2 free parameters to explain all
31 bet values.

Game Calibration Error

Denmark v Germany 1.65
Portugal v Netherlands 1.18
Spain v Italy 2.21
Sweden v England 1.58
Italy v Croatia 1.45
Germany v Italy 1.50
Germany v Greece 1.34
Netherlands v Germany 1.78
Spain v Rep of Ireland 1.64
Spain v France 1.40

Average 1.57
Standard deviation 0.27

Table 1. Average calibration errors in units of bid-ask spread as shown in Figure 5 have been calculated
for multiple games of the UEFA Euro 2012 Championship and are shown in this table. Note that the mean
of the averages is just 1.57 bid-ask spreads with a standard deviation of 0.27 which shows that the model
fit is reasonably good for the games analysed.

(1998) who found gradual increase of scoring rates by analysing goal times of 4012386

matches between 1993 and 1996.387
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Figure 6. Calibrated model parameters, also referred to as implied intensities during the game. Formally,
this is equal to the minimizer �1

t ,�
2
t of Equation 26. The bands show the parameter uncertainties estimated

from the bid-ask spreads of the market values of the bets. Note that the intensities appear to have an
increasing trend and also fluctuate over time.

Game Drift [1/90min] Vol [1/
p
90min]

Denmark v Germany 0.36 0.28
Portugal v Netherlands 0.49 0.44
Spain v Italy 0.60 0.76
Sweden v England 0.58 0.59
Italy v Croatia 0.82 0.60
Germany v Italy 0.76 0.39
Germany v Greece 0.65 0.66
Netherlands v Germany 0.43 0.32
Spain v Rep of Ireland 0.32 0.78
Spain v France 0.48 0.25

Average 0.55 0.51
Standard deviation 0.16 0.19

Table 2. Average drift and volatility of total log-intensities estimated for multiple games of the UEFA
Euro 2012 Championship. Note that the drift term is positive for all games which is consistent with the
empirical observation of increasing goal frequencies as the game progresses.

5. Hedging with Next Goal bets388

In this section we demonstrate market completeness and we show that Next Goal389

bets are natural hedging instruments that can be used to dynamically replicate and390

hedge other bets.391

Recall that according to Proposition 3.12 any European bet Xt can be replicated392
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Figure 7. Replicating the Match Odds home, away and draw contracts using Next Goal home and away
contracts as hedging instruments. The left column shows the replication performance with the dashed line
showing the value of the original Match Odds contracts and the continuous line showing the value of the
replicating portfolio. The right column shows the weights of the replicating portfolio with the dashed line
showing the weight of the Next Goal home contract and the dotted line showing the weight of the Next
Goal away contract.

by dynamically trading in two linearly independent instruments Z1
t and Z2

t :393

Xt = X0 +

Z t

0
 1
sdZ

1
s +

Z t

0
 2
sdZ

2
s (28)

where the portfolio weights  1
t , 

2
t are equal to the solution of the equation394

✓
�1Z1

t �1Z2
t

�2Z1
t �2Z2

t

◆✓
 1
t

 2
t

◆
=

✓
�1Xt

�2Xt

◆
, (29)

where the values of the finite di↵erence operators � (Definition 3.18) can be com-395

puted using Proposition 3.15 using the calibrated model intensities. Equation 29396

tells us that the change in the replicating portfolio must match the change of the397

bet value Xt in case either team scores a goal. This approach is analogous to delta398

hedging in the Black Scholes framework.399

The two bets that we use as replicating instruments are the Next Goal home and400

the Next Goal away bets. These bets settle during the game in a way such that401

when the home team scores a goal the price of the Next Goal home bet jumps to 1402

and the price of the Next Goal away bet jumps to zero and vice versa for the away403

team. After the goal the bets reset and trade again at their regular market price.404

The values of the bets are:405
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ZNG1

t =
�1

�1 + �2

h
1� e�(�1+�2)(T�t)

i
(30)

ZNG2

t =
�2

�1 + �2

h
1� e�(�1+�2)(T�t)

i
. (31)

The matrix of deltas, that is the changes of contract values in case of a goal as406

defined in 3.18 are:407

✓
�1Z

NG1

t �1Z
NG2

t

�2Z
NG1

t �2Z
NG2

t

◆
=

✓
1� ZNG1

t �ZNG2

t

�ZNG1

t 1� ZNG2

t

◆
(32)

The reason for choosing Next Goal bets as hedging instruments is that these408

bets are linearly independent (see Definition 3.11), that is the delta matrix is non-409

singular even if there is a large goal di↵erence between the two teams. Note that this410

is an advantage compared to using the Match Odds bets as hedging instruments: in411

case one team leads by several goals, it is almost certain that the team will win. In412

that case the value of the Match Odds bets goes close to 1 for the given team and413

0 for the other team. An additional goal does not change the values significantly,414

therefore the delta matrix becomes singular and the bets are not suitable for hedging415

because the portfolio weights go to infinity. This is never the case with Next Goal416

bets which can therefore be used as natural hedging instruments.417

We used the Portugal vs. Netherlands game from Section 2.1 to replicate the values418

of the three Match Odds bets, using the Next Goal bets as hedging instruments.419

Figure 7 shows the values of the original Match Odds bets along with the values of420

the replicating portfolios (left column) and the replicating portfolio weights (right421

column).422

Figure 8 shows the jumps of contract values against the jumps of replicating port-423

folio values at times when a goal was scored. This figure contains several di↵erent424

types of bets, that is not only Match Odds bets, but also Over/Under and Cor-425

rect Score bets. The figure also contains all 3 goals scored during the Portugal vs.426

Netherlands game. It can be seen that the jumps of the original contract values427

are in line with the jumps of the replicating portfolio values with a correlation of428

89%. Table 3 shows these correlations for multiple games of the UEFA Euro 2012429

Championship. It can be seen that the correlations are reasonably high for all games430

with an average of 80% and a standard deviation of 19%.431

6. Conclusions432

In this paper we have shown that the Fundamental Theorems of Asset Pricing apply433

to the market of in-play football bets if the scores are assumed to follow independent434

Poisson processes of constant intensities. We developed general formulae for pricing435

and replication. We have shown that the model of only 2 parameters calibrates436

to 31 di↵erent bets with an error of less than 2 bid-ask spreads. Furthermore, we437

have shown that the model can also be used for replication and hedging. Overall438

we obtained good agreement between actual contract values and the values of the439

corresponding replicating portfolios, however we point out that hedging errors can440
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Figure 8. Jumps of actual contract values (horizontal axis) versus jumps of replicating portfolio values
(vertical axis) at times of goals scored during the Portugal vs. Netherlands game. The changes are computed
between the last traded price before a goal and the first traded price after a goal, for all goals. The figure
contains Match Odds, Over/Under and Correct Score bets. Next Goal home and away bets were used
as hedging instruments to build the replicating portfolios. Note that the value changes of the replicating
portfolios corresponds reasonably well to the value changes of the original contracts with a correlation of
89%.

Game Correlation

Denmark vs. Germany 79%
Portugal vs. Netherlands 89%
Spain vs. Italy 97%
Italy vs. Croatia 47%
Spain vs. France 86%
Germany vs. Italy 99%
Germany vs. Greece 60%
Netherlands vs. Germany 93%
Spain vs. Rep of Ireland 98%
Sweden vs. England 50%

Average 80%
Standard deviation 19%

Table 3. Correlation between the jumps of bet values and jumps of replicating portfolios at times of goals
for all bets of a game.

sometimes be significant due to the fact the implied intensities are in practice not441

constant.442
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Appendix A. Valuation formulae480

This section summarizes a list of analytical formulae for the values of some of the481

most common in-play football bets. In the first sub-section we consider European482

bets, while the second sub-section contains non-European bets.483

A.1 European Bets484

The value of a European bet at the end of the game only depends on the final485

scores. The formulae of this section follow directly from Proposition 3.15. Table A1486

summarizes the payo↵ functions and the valuation formulae for some of the most487
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Bet type Payo↵ ⇧
�
N1

T , N
2
T

�
Value Xt

�
N1

t , N
2
t ,�1,�2

�

Match Odds Home 1
�
N1

T > N2
T

� P
k1>k2

Q2
i=1 P

�
ki �N i

t ,⇤i
�

Match Odds Away 1
�
N1

T < N2
T

� P
k1<k2

Q2
i=1 P

�
ki �N i

t ,⇤i
�

Match Odds Draw 1
�
N1

T = N2
T

� P
k1=k2

Q2
i=1 P

�
ki �N i

t ,⇤i
�

Arrow-Debreu K1,K2 1
�
N1

T = K1, N2
T = K2

� Q2
i=1 P

�
Ki �N i

t ,⇤i
�

Over K 1
�
N1

T +N2
T > K

� P1
k=K+1 P

�
k �N1

t �N2
t , (⇤1 + ⇤2)

�

Under K 1
�
N1

T +N2
T < K

� PK�1
k=0 P

�
k �N1

t �N2
t , (⇤1 + ⇤2)

�

Odd 1
�
N1

T +N2
T = 1 mod 2

�
exp [� (⇤1 + ⇤2)] cosh [(⇤1 + ⇤2)]

Even 1
�
N1

T +N2
T = 0 mod 2

�
exp [� (⇤1 + ⇤2)] sinh [(⇤1 + ⇤2)]

Winning Margin K 1
�
N1

T �N2
T = K

� exp [� (⇤1 + ⇤2)]
⇣
⇤1

⇤2

⌘K�N1
t +N2

t
2

·B|K�N1
t +N2

t |
�
2
p
⇤1⇤2

�

Table A1. Valuation formulae for some of the most common types of in-play football bets. ⇧
�
N1

T , N2
T

�

denotes the payo↵ function, that is the value of the European bet at the end of the game. P (k,⇤) denotes
the Poisson distribution, that is P (k,⇤) = 1

k! e
�⇤⇤k and ⇤i = �i (T � t) with i 2 {1, 2} for the home and

the away team, respectively.

common types of European bets.488

Match Odds Home, Away and Draw bets pay out depending on the final result489

of the game. The Arrow-Debreu K1,K2 bets pay out if the final scores are equal to490

K1,K2. Over K and Under K bets pay out if the total number of goals is over or491

under K. Odd and Even bets pay out if the total number of goals is an odd or an492

even number.493

The Winning Margin K bet wins if the di↵erence between the home and away494

scores is equal to K. The value of this bet follows the Skellam distribution, Bk (z)495

denotes the modified Bessel function of the first kind.496

A.2 Non-European Bets497

Bets in this category have a value at the end of the game that depends not only498

on the final score, but also on the score before the end of the game or the order of499

scores. We consider two popular bets in this category: Next Goal and Half Time /500

Full Time bets. Valuation of these bets follows from Corollary 3.9.501

A.2.1 Next Goal. The Next Goal Home bet wins if the home team scores the next502

goal. The value of this bet is503

Xt =
�1

�1 + �2

h
1� e�(�1+�2)(T�t)

i
. (A1)

Similarly, the value of the Next Goal Away bet is equal to504

Xt =
�2

�1 + �2

h
1� e�(�1+�2)(T�t)

i
. (A2)

A.2.2 Half Time / Full Time. Half Time / Full Time bets win if the half time505

and the full time is won by the predicted team or is a draw. Given that there are 3506
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outcomes in each halves, there are 9 bets in this category. For example, the value of507

the Half Time Home / Full Time Draw bet before the end of the first half is equal508

to:509

Xt =
P

k1>k2

P
l1=l2

P
⇣
k1 �N1

t ,�1
⇣
T 1

2
� t

⌘⌘
P
⇣
k2 �N2

t ,�2
⇣
T 1

2
� t

⌘⌘

⇥P
⇣
l1 � k1,�1

⇣
T � T 1

2

⌘⌘
P
⇣
l2 � k2,�2

⇣
T � T 1

2

⌘⌘
.(A3)

In the second half, this bet either becomes worthless if the first half was not won510

by the home team or otherwise becomes equal to the Draw bet.511
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