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 19 

Abstract 20 
 21 

SOC is the most important indicator of soil fertility and monitoring its space-time changes is a 22 

prerequisite to establish strategies to reduce soil loss and preserve its quality. Here we modelled the 23 

topsoil (0-0.3 m) SOC concentration of the cultivated area of Sicily in 1993 and 2008. Sicily is an 24 

extremely variable region with a high number of ecosystems, soils, and microclimates. We studied 25 

the role of time and land use in the modelling of SOC, and assessed the role of remote sensing (RS) 26 

covariates in the boosted regression trees modelling. The models obtained showed a high pseudo-R2 27 

(0.63-0.69) and low uncertainty (s.d. < 0.76 g C kg-1 with RS, and < 1.25 g C kg-1 without RS). These 28 

outputs allowed depicting a time variation of SOC at 1 arcsec. SOC estimation strongly depended on 29 

the soil texture, land use, rainfall and topographic indices related to erosion and deposition. RS indices 30 

captured one fifth of the total variance explained, slightly changed the ranking of variance explained 31 

by the non-RS predictors, and reduced the variability of the model replicates. During the study period, 32 

SOC decreased in the areas with relatively high initial SOC, and increased in the area with high 33 

temperature and low rainfall, dominated by arables. This was likely due to the compulsory application 34 

of some Good Agricultural and Environmental practices. These results confirm that the importance 35 

of texture and land use in short-term SOC variation is comparable to climate. The present results call 36 

for agronomic and policy intervention at the district level to maintain fertility and yield potential. In 37 

addition, the present results suggest that the application of RS covariates enhanced the modeling 38 

performance.  39 
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Introduction 43 

Agricultural lands play a major role in the storage of soil organic carbon (SOC) and 44 

sequestration/release of atmospheric CO2  (Bradford et al., 2016; Filippi et al., 2016; Post and Kwon, 45 

2000). SOC is directly linked with a number of ecosystem services and agronomical benefits and is 46 

the main driver of soil fertility. However, agricultural soils have been depleted from their original 47 

SOC stock  due to cultivation, which also negatively affected soil aggregation status, water infiltration 48 

rate, soil fertility and biota (Bruun et al., 2015; Parras-Alcántara et al., 2016; Saia et al., 2014). The 49 

preservation of soil quality is a priority to maintain agricultural productivity and environmental 50 

quality. In this framework, monitoring SOC concentration and stock changes through space and time 51 

is important to establish strategies to reduce soil loss and preserve its quality. SOC monitoring at 52 

regional scale relies on sparse sampling and application of an estimation process. Such a process 53 

should take into account the spatial interdependence of samples and abundance of predictors (Martin 54 

et al., 2014); and the distribution heterogeneity in space and among determinants (predictors) of SOC 55 

accumulation (Lacoste et al., 2014). With regards to the latter, the relationship in the domain of each 56 

predictor with SOC and the resolution of the predictors is particularly relevant for any spatial 57 

estimation (Miller et al., 2016, 2015a, 2015b). The spatial estimation of SOC concentration and stocks 58 

is commonly performed by statistical approaches (Meersmans et al., 2009; Orton et al., 2014)  with 59 

different interpolation methods and machine learning predictive models (Henderson et al., 2005; 60 

Yang et al., 2015). The former is better suited to areas with dense SOC measurements, whereas the 61 

second is more appropriate for non-regularly sampled regions, since its outcome does not rely on the 62 

sample proximity to extract functional (ecological) relationships between dependent and independent 63 

variables.  64 

SOC dynamics under different land uses are still poorly understood (Francaviglia et al., 2017; 65 

Meersmans et al., 2008; Purton et al., 2015), especially when deriving data from wide areas and with 66 

different climates. In Mediterranean environment, lack of knowledge on SOC dynamic is further due 67 

to variable climatic and erratic meteorological conditions. It has been shown that cultivation exerts a 68 

negative role on SOC accumulation in various environments (Francaviglia et al., 2017; Kämpf et al., 69 

2016; Novara et al., 2013) and this likely depends on both soil tillage and reduction of biomass return 70 

to the soil. In particular, a reduction of the tillage intensity can favor SOC accumulation irrespective 71 

of aridity (from semi-arid to humid) and can be up to 1 t SOC ha−1 yr−1 (Conant et al., 2001; Kämpf 72 

et al., 2016; Kurganova et al., 2014; Post and Kwon, 2000). The SOC dynamic also depends on other 73 

factors such as soil genesis and type, land use history and management and useful information could 74 

be gained from SOC spatial models (Badagliacca et al., 2017; Martin et al., 2014; Schillaci et al., 75 

2017, 2015; Vereecken et al., 2016).  76 



In the last two decades the integration of physical, chemical, and biological information derived from 77 

different covariates in the models has boosted the studies on soil properties (Bui et al., 2009; 78 

Henderson et al., 2005) and also for SOC mapping from global or continental (Hengl et al., 2014; 79 

Lugato et al., 2014) to regional and plot scales (Akpa et al., 2016; de Gruijter et al., 2016; Martin et 80 

al., 2014; Schillaci et al., 2017). SOC mapping attempts at giving an image of the spatial distribution 81 

despite it is costly (Minasny et al., 2013 and reference therein).   82 

The most recent developments in the digital soil mapping include machine learning (Forkuor et al., 83 

2017; Gasch et al., 2015; Hengl et al., 2017) to study space-time variation of soil properties and use 84 

of remote sensing (RS) covariates (Castaldi et al., 2016a). Thanks to their high accessibility, 85 

resolution and availability for wide areas, RS data gained importance for spatial prediction of the 86 

topsoil organic C (Bou Kheir et al., 2010; Poggio et al., 2013). For example, Bou Kheir et al. (2010) 87 

found that the construction of SOC maps with a classification-tree analysis by the sole RS parameters 88 

gave the same accuracy of a model built with sole digital elevation model (DEM) parameters, and 89 

both of them had sole ca. 10% less accuracy that a full RS+DEM+soil parameters model built. Poggio 90 

et al. (2013) found that integration of RS with terrain attribute data increased the predictive ability 91 

comparing to the model built with only terrain parameters. However, some of the SOC estimates lack  92 

uncertainty analysis and this compromises the reliability of predictions for decision making  (Maia et 93 

al., 2010; Minasny et al., 2013; Ogle et al., 2010). In addition, Conant et al. (2011) highlighted the 94 

limitation to document time changes in SOC because of the spatial variability in the factors that 95 

influence SOC distribution. 96 

In a regularly-spaced data collection, SOC samples are taken from representative or random sampling 97 

sites in a given study area. Legacy data comes from a mixture of sampling campaign resulting in data 98 

collected for different aims (Chartin et al., 2017), which frequently allow to make predictions for 99 

areas with sampling limitations (Rial et al., 2017). Depending on the scope of each survey (e.g. 100 

regional soil characterization or precision agriculture) sample density can change abruptly  This can 101 

consist in drawbacks including their non-regular distribution in space, which call for the use of 102 

particular modelling method and predictors. Due to these difficulties, only few examples on mapping 103 

at regional extent with legacy data are available. For example, Ross et al. (2013) and Grinand et al. 104 

(2017) carried out a space-time assessment of SOC in subtropical regions of south-eastern United 105 

States and Madagascar, respectively.  106 

Little information is available on SOC dynamics in semi-arid Mediterranean areas due to the 107 

unavailability of consistent databases. Nonetheless, time dynamic of SOC storage in the soil is highly 108 

dependent to the climatic zone of the area under study (Doetterl et al., 2015). In addition, spatial and 109 

time change of SOC can respond to different determinants at varying the climate of area under study. 110 



The present work fits within the big picture of spatial SOC mapping and time change. This was made 111 

by means of a legacy dataset and use of remotely sensed data. In particular, we used legacy data of 112 

two sampling campaigns 15 years apart (1993-2008,), coupled with climate (from Worldclim data 113 

Bio1,12), and land use information (from CORINE 1990-2006) to map the topsoil SOC variation 114 

across time in the agricultural area of a semi-arid Mediterranean region (Fig. 1). Such aim was 115 

achieved by applying a machine learning method, namely boosted regression trees (BRT), to each 116 

sampling campaign dataset using land use, soil texture, topographic and remote sensing predictors. 117 

We also tested the role of remote sensing covariates in the spatial SOC prediction and predictors’ 118 

importance by running each model either with or without the implementation of the RS covariates. 119 

In the area under study, i.e. cropped field in which plants (mostly field crops) have limited or no 120 

growth during summer and early fall, the inclusion of remote sensed variables could capture part of 121 

the SOC variation due to biomass return to the soil. 122 

 123 

Material and methods 124 

Study area 125 

The study area, Sicily (Italy), is a semiarid region located in middle of the Mediterranean Sea (Fig. 126 

1). Its area is about 25,286 km2. Approximately 60% of the Sicilian territory is cultivated. The 127 

macroclimate of the region is Mediterranean with three main bioclimatic areas: thermo-, meso-, and 128 

supra-Mediterranean. Mean annual temperatures in the cropped area range from 7 °C to 15 °C and 129 

mean annual precipitation from 350 to 1000 mm, whereas mean annual temperatures and rainfall in 130 

the natural, uncropped area can be 1.8 °C and up to 1300 mm (Cannarozzo et al., 2006; Viola et al., 131 

2014). The main annual crops are durum wheat, winter-seeded barley, pulses and forage legumes and 132 

a wide range of horticultural crops; the main perennial crops are olive groves, vineyards and fruit 133 

trees such as citrus, almonds, and stone fruits. Woodlands and secondary forests are not targeted by 134 

the SOC concentration mapping in the present work, except those areas in which agriculture 135 

abandonment occurred.  136 

Adoption of conservation soil management techniques is almost absent (Ruisi et al., 2014). In the 137 

region, different soil survey campaigns were undertaken between 1968 and 2008. The criteria for the 138 

selection of the locations of the soil sampling are explained in the next section. The island has a great 139 

pedoclimatic variability: dominant soils according to the World Reference Base for soils are Calcaric 140 

Regosols, Haplic Calcisols, Calcic Vertisols, Vitric or Silandic Andosols, Calcaric and/or Mollic 141 

Leptosols, Calcaric Phaeozems, and Fluvic Cambisols. Hence it can be considered quite 142 

representative of most of the Mediterranean countries. A number of ecological and anthropic traits 143 

make Sicily unique for ecological studies. These traits include a relatively high population density 144 



and degree of cultivation, an ancient environmental history, climatic variability, land uses and several 145 

dominations from different populations, which introduced various plant species and management 146 

techniques. All these factors made Sicily an open and extremely variable laboratory for the study of 147 

the impact of anthropic pressure and environmental variation at microscale, land cultivation and 148 

management on other environmental traits, including SOC distribution and dynamics. Such 149 

characteristics strongly help in the exportation of the results of environmental studies to other similar 150 

and different environments and scale, such as also suggested by others (Legendre and Legendre, 151 

1998; Novara et al., 2017; Schmolke et al., 2010).  152 

The region under study, Sicily (see Supplementary material Fig. 1 for a physiographic map of the 153 

area with orography and toponymy information used), is a setting of different agro-ecosystems and 154 

natural environments though it is mainly semi-arid and with few incidence of forestlands. The island 155 

has three main, almost continuous, mountain chains: Peloritani from the north-eastern corner moving 156 

to west few km down the northern coast, followed by the Nebrodi and then by the Madonie. In the 157 

western/central part of the island there is an irregular mountain area: the Sicani, somehow continuing 158 

the ridge formed by the previous mountain chains. Mean height of the mountain chains decreases 159 

from east to west. These chains were formed as part of the Apennines, which span across the island 160 

as a geological bridge between peninsular Italy (on the east end) and Tunisia (on the west end). The 161 

highest mountain of Sicily is the Etna Volcano (about 3600 m above sea level [a.s.l.]), located in the 162 

northeastern part of the region, south of the Peloritani. To the south of the Etna Volcano, a wide plain 163 

(the Catania plain) is formed by the alluvium of the Simeto River, south of which there is the 164 

expansion of a hilly to mountainous area: the Hyblaean mountains/plateau. The rest of the core of the 165 

island, from the plain of Catania to the Erei Mountains and cities of Enna, Caltanissetta and Agrigento 166 

is a mostly hilly area with clayey, high pH, seldom gipsic saline soils. Such as for the main mountain 167 

chains, mean height of this latter ridge decreases from east to west. Other minor plains can be 168 

retrieved all along the coasts. All the rivers, with the exception above-mentioned Simeto, have a 169 

strong seasonal flow. This is due to the low rainfall south of the Apennines ridge, or low basin extent 170 

north of it. 171 

SOC dataset 172 

The Regional Bureau for Agriculture, Rural Development and Mediterranean Fishery, the 173 

Department of Agriculture, and Service 7 UOS7.03 provided the legacy dataset used in this study. 174 

The surveys that produced the legacy dataset had different aims (such as redaction of suitability or 175 

pedological maps). SOC, soil texture, actual land use, GPS positioning and relative metadata were 176 

measured in every survey and provided for the present work. From the complete record of observation 177 

(about 2700 different locations in a timespan of 30 years), we selected the years with the most of 178 



samplings, which were 1993 (685 points) and 2008 (337 points) (Fig.1). The 1993 database is a 179 

regional subset of the national soil survey performed in the framework of the AGRIT project of the 180 

Italian Ministry of Agriculture and Forestry (MIPAAF), all over Italy in the years 1993 to 1994. The 181 

2008 campaign (undertaken in the frame of the project “Soil Map of Sicily at 1:250,000 scale”) was 182 

aimed at closing the gap of previous campaigns basing on a GIS oriented pedo-landscape sampling 183 

design (Fantappiè et al., 2011). Only SOC data sampled in agricultural fields were taken into account 184 

for further modelling procedures.  185 

In both the 1993 and 2008 campaigns, soil-sampling scheme was designed to collect samples from 186 

various pedo-landscape (combinations of physiographies, lithologies and land uses) delineations as 187 

representative at a 1:250,000 scale. Samples of the 1993 campaign were taken following a specific 188 

guide for soil sampling and description, and consisted of minipits excavated up to a 50 cm depth to 189 

represent the top-soil, and sampled with the auger for the subsoil. The 2008 campaign consisted of 190 

soil profiles described according to the official methods of Italian Ministry of Agriculture (Paolanti 191 

et al., 2010). Soils from each campaign were sampled at various depths (maximum depth sampled up 192 

to 2.80 m). For the present study, the topsoil layer (up to 0.3-m depth) was taken into account. As 193 

stated above, soil layers were sampled according to the pedological description and thus upper and 194 

lower limit of each depth sampled varied among sampling points. Thus, to standardize the SOC 195 

concentration value, SOC was considered to decrease linearly with depth within each layers. In 196 

particular, soil layer in the depth 0-0.3 m were selected and those deeper than 50 cm were not used 197 

for the present experiment. The soil samples were passed through a 2 mm sieve, air dried, then 198 

analyzed for organic C content following Walkley-Black procedure.  199 

Predictors 200 

Climatic data were drawn from Worldclim (Hijmans et al., 2005). The original resolution of the 201 

Climatic data is about 1 km and were resampled to the desired 100 m mapping unit for the modelling 202 

process. Worldclim offers different datasets including bioclimatic data. Mean yearly rainfall and 203 

temperature of the 1950-2010 period were used.  204 

Soil texture was obtained by the sedimentation method of the samples and reported according to the 205 

USDA classification. Soil texture for the whole area was provided by the Regional Bureau for 206 

Agriculture, Rural Development and Mediterranean Fishery, the Department of Agriculture, Service 207 

7 UOS7.03 Geographical Information Systems, Cartography and Broadband Connection in 208 

Agriculture, Palermo.  209 

The CORINE land cover maps of the years 1990 and 2006 at 100-m spatial resolution were used in 210 

order to identify the agricultural land uses for the model built for the year 1993 and 2008, respectively 211 

(http://land.copernicus.eu/pan-european/corine-land-cover). 212 



The analysis was carried out according to the CORINE level 3, the Land cover type used in the 213 

modelling stage were: i) non-irrigated arable land (CORINE code 2.1.1, grid code 12, hereafter 214 

referred as ARA), ii) vineyards (CORINE code 2.2.1, grid code 15), fruit trees and berry plantations 215 

(CORINE code 2.2.2, grid code 16), and olive groves (CORINE code 2.2.3, grid code 17) (hereafter 216 

grouped in VFO), iii) annual crops associated with permanent crops (CORINE code 2.4.1, grid code 217 

19), complex cultivation patterns (CORINE code 2.4.2, grid code 20), land principally occupied by 218 

agriculture, with significant areas of natural vegetation (CORINE code 2.4.3, grid code 21) (hereafter 219 

grouped in CCP). The land uses within the groups VFO and CCP were grouped since the SOC stock 220 

and relationship between SOC-predictors and SOC stock in these land uses is very similar due to 221 

similarities in plant density and soil management, as observed in Schillaci et al. (2017). CORINE 222 

codes are provided in Supplementary material Table 1.  223 

Remote sensing-derived predictors consisted of the LANDSAT 5 spectral bands. The imagery was 224 

also used to derive the Normalized Difference Vegetation Index (NDVI), which was included as 225 

explanatory variables in the modelling phase. We used geometrical corrected images L1G. Multi-226 

temporal mosaic required normalization to adjust for inconsistencies between images because of the 227 

proximity of the sun, earth and zenith angle. The procedure involved the conversion of the digital 228 

number to radiance at sensor. Calibration coefficient were provided in the imagery metadata (Guyot 229 

and Gu, 1994). The images used for the study were obtained by mosaicking the following five 230 

LANDSAT 5 scenes using the only cloud free scenes belonging to the path 188 row 33 (East), path 231 

198 row 33 and 34 (middle) and path 190 row 33 and 34 (West) from the 1987 and 2003 for modelling 232 

data of 1993 and 2008, respectively. This time differences (1987 for the 1993 and 2003 for the 2008) 233 

were needed since the regional extent of the study area requires at least 3 LANDSAT path to make a 234 

complete mosaicking of the region and these years were the closer to those of the sampling periods, 235 

in which the satellites scenes close each other in time had no or very few clouds, thus allowing a 236 

homogeneous dataset.  LANDSAT imagery was freely acquired from the United States Geological 237 

Survey  catalogue (USGS, http://earthexplorer.usgs.gov) and coincided with summer period (Rouse 238 

Jr et al., 1974), when most of the field crops have stubble or bare soil and very few or no crop growth 239 

occurs in other crops  due to extremely high temperature and low water availability . All the RS 240 

predictors had an original spatial resolution of 30 meters and they have been subsequently resampled 241 

to the desired 100 m mapping unit. The choice of such predictor is due to their strong linkage to 242 

vegetation and other soil traits, and thus, to SOC.  243 

 244 

Topographical indices 245 

http://earthexplorer.usgs.gov/


Shuttle Radar Topography Mission (SRTM-C) digital elevation model (DEM) released in September 246 

2014 with a 1-arcsec (30 meter) spatial resolution (resampled to 100 meter to fit the land use 247 

classification) was used for the calculation of the morphometric spatial predictors by means of SAGA 248 

GIS (Conrad et al., 2015). DEM was downloaded from the earthexplorer.com website, then pre-249 

processing such as mosaicking and fill sink was applied to the 10 SRTM DEM tiles covering the 250 

regional extent. Eleven terrain attributes were calculated: 1) slope 2) catchment area, 3) aspect, 4) 251 

plan curvature; 5) profile curvature, 6) length-slope factor, 7) channel network base level, 8) 252 

convergence index, 9) valley depth, 10) topographic wetness index, 11) landform classification. See 253 

http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html for details on the computation of these 254 

covariates. Categorical predictor codes are provided in Supplementary material Table 1. 255 

Boosted regression trees and map comparison 256 

Boosted Regression Trees (BRT, Elith et al., 2008) was used to identify the relationships between 257 

SOC and its predictors and to regionalize the SOC prediction. This method and other decision trees-258 

based models have already been used as DSM techniques to deal with SOC concentration and stock 259 

mapping (Bou Kheir et al., 2010; Grimm et al., 2008; Martin et al., 2011; Schillaci et al., 2017). BRT 260 

is based on the integration of weak learners (or tree-based rules). In a data mining context, a weak 261 

learner is defined as a models that performs just slightly better than random guessing (Freund and 262 

Schapire, 1997). In this sense, the BRT algorithm combines multiple weak learners into a single 263 

strong learner (Lombardo et al., 2015). This allow the algorithm to progressively increases the 264 

accuracy of the prediction by reducing the chance of obtaining outliers since weak learners also 265 

produces weak outliers. This additive structure allows for capturing the variance of a dependent 266 

variable in a way where the deeper the tree is grown, the more fitting segments are obtained and added 267 

to the initial tree, to accommodate the SOC concentration at each mapping unit. The first step of this 268 

procedure consist of a Classification And Regression Trees (CART) analysis which recursively 269 

screens the observations in matched datasets made up by a dependent variable, either categorical 270 

(classification) or continuous (regression), and one or many explanatory variables. Explanatory 271 

variables can be either categorical or continuous. Differently from a classic CART approach, where 272 

a single tree can grow only to be finally pruned to get a readable model, the application of the BRT 273 

(second step) iteratively generates trees of a fixed dimension. Each tree is based upon the previous, 274 

and BRT gradually minimizes a loss function in order to improve the predictive performance. The 275 

adoption of the Huber-M loss function instead of a more common square loss function reduces the 276 

noise when iteratively measuring the difference between estimated and actual values for SOC 277 

concentration data. The procedure ceases when the creation of trees produces overfitting effects. The 278 

evaluation of the overfitting is performed by measuring the prediction residuals or deviance for each 279 



of the consecutive trees over a random independent sample that was kept separate from the calibration 280 

phase. Typically, the testing error quickly decreases the more trees are generated and subsequently 281 

slows down reaching an inflection point from where it starts to increase. This behavior is recognized 282 

as overfitting, determining the choice of the best model before the tree starts fitting the noise of the 283 

training data instead of revealing ecological relationships.  284 

In the present research, 100 replicates were randomly generated and modelled from each of the 285 

original SOC concentration dataset. Relationships between variables are explained through response 286 

curves (Lombardo et al., 2015). We used R (R Development Core Team, 2008), with the ‘dismo’ 287 

package developed by Elith et al. (2008). The package allows for the customization of: i) learning 288 

rate (lr), which is set to determine the contribution of each tree to the final tree architecture; ii) tree 289 

complexity (tc), which controls the number of splits; iii) bag of fraction (bg), the proportion of data 290 

selected at each step of the modelling procedure. Following Hashimoto et al. (2016) we performed  291 

the 10-fold cross-validation procedure to determine the optimal number of trees (maximum numbers 292 

of trees 10,000) and a tc value of 20. Regarding each single run, model performances was assessed 293 

using the coefficient of determination of the scatter plot of the predicted against the observed values 294 

(pseudo-R2) and root mean square error (RMSE). Standard deviation maps of the 100 runs were also 295 

constructed. 296 

The maps of organic carbon generated for the 1993 and 2008 were compared and a difference 297 

(SOC08−SOC93) in which an increase of SOC was displayed as positive and a decrease as negative. 298 

An error map of the difference was built by adding the standard error of the 1993 and 2008 maps and 299 

highlighting those pixel which SOC difference (as absolute value) was higher than the sum of the 300 

standard errors. In such pixels, SOC difference was considered as reliable. 301 

 302 

Results 303 

Distributions of observed and predicted data with and without remote sensing (RS) predictors were 304 

log shaped (Table 1 and Supplementary material Fig. 2). Distribution of predicted data showed similar 305 

skewness than observed data in 1993 and lower, but always positive, kurtosis in 1993 and kurtosis 306 

and skewness than observed data in 2008, which suggest that this method better estimates SOC in the 307 

central values of the distribution. All models had pseudo-R2 higher than 0.693 for the 1993 model 308 

and 0.634 for 2008 model. The accuracy of the models with and without RS predictors was similar 309 

(Supplementary material Fig. 3). The removal of the RS predictors had a negligible effect on both the 310 

variation of the pseudo-R2 and angular coefficient of the pseudo regression lines of both models, 311 

which was 0.43-0.45 in the 1993 and 0.33-0.34 in the 2008. Similarly, the intercepts were from 6.59 312 



to 10.13 g organic C kg-1, thus the predictions overestimated the observed value when SOC is low 313 

and down-estimated it when SOC is high. 314 

Removal of the RS predictors slightly changed the ranking of the predictors in terms of contribution 315 

to the total variance explained (Table 2). Among the RS predictors, only NDVI in the 1993 model 316 

showed a relatively high contribution to the variability explained (7.11%, the 4th strongest predictor), 317 

whereas its importance was negligible in the 2008 model (2.45%, the 15th predictor). 318 

In general, the removal of the RS predictors resulted in an increase of the contribution to the total 319 

variance of the lowest contributing predictors (Table 1), with the exception of rainfall (5.91% in the 320 

1993 model and 4.21% in the 2008 model). Rainfall contribution to the total variance explained was 321 

1.57 and 1.41 fold after removal of the RS predictors. In total, the removal of the RS predictors from 322 

the modelling procedure increased the total contribution to the total variance explained of the six most 323 

important non-RS predictors by 9.71% in 1993 and 8.08% in 2008. The most important predictor of 324 

SOC content in both the 1993 and 2008 models was texture (19.18% and 22.64%, respectively, in the 325 

models with RS predictors). The six most important non-RS predictors across all 4 models were soil 326 

texture, land use, valley depth, rainfall, channel network base level (that is correlated with the height 327 

above the see level [a.s.l.] of the basin upon each pixel and thus to the chance of receiving SOC by 328 

erosion) and LS factor. 329 

In the models both with and without RS predictors, a discrepancy in the association between soil 330 

texture levels and relative importance for SOC prediction was found between the 1993 and 2008 331 

models (Supplementary material Fig. 4). In the 1993 model, only Silty-Clay-Loam (texture 6) and 332 

Sandy-Loam (texture 7) showed a positive association to the SOC, whereas in the 2008 model, such 333 

a positive association was also found for Clay (texture 1), Sandy Clay Loam (texture 8), and Sandy 334 

soils (texture 9). In both models, CCP contributed more than VFO to SOC estimation and VFO more 335 

than ARA. Channel network base level negatively correlated with SOC estimation in the first half of 336 

its range in both the 1993 and 2008 models (up to 660 and 330 m a.s.l., respectively), after which its 337 

contribution to the function of SOC estimation was always positive and constant. Similar trends were 338 

observed for the SOC to rainfall relationship. The role played by valley depth was strong in the 1993 339 

model, only. Valley depth, which is inversely correlated with the deposition process, positively 340 

associated with SOC only in the lowest SOC concentration samples. 341 

As expected, the highest SOC concentrations were mostly found in sites with relatively low mean 342 

temperature and high rainfall, which, in this area, are conducive for C accumulation in soil (see 343 

Cannarozzo et al., 2006; and Viola et al., 2014 for maps of rainfall and temperatures). In our study 344 

area, these sites are mainly located at the boundaries of the mountain chains (Fig. 2 and 3): the 345 

northern mountain chains (Madonie, Nebrodi and Peloritani), the Volcano Etna in the eastern part of 346 



the island, the Sicani Mountains in the western part of the island, the Hyblaean area in the south-347 

eastern corner. In general, the higher the SOC concentration, the higher the standard error of the 348 

model. The models with RS showed a lower standard error than the models without RS, especially in 349 

1993. 350 

Classification of the predicted samples in the range ±50% than the observed was high for both the 351 

1993 and 2008 models (81% and 72% of the estimated data extracted on the same location of the 352 

entry data; Fig. 4) and well distributed in the area. Samples classified in the ranges < or >50% than 353 

the observed were also well distributed.   354 

The removal of the RS predictors did not exert an effect on the SOC prediction (Fig. 5), which was 355 

on average 11.9 g organic C kg−1 in ARA, 12.6 g organic C kg−1 in VFO, and 14.4 g organic C kg−1 356 

in CCP. Irrespective of the presence of the RS covariates in the model, such amount increased by 357 

1.9%, 1.9% and 0.9% in ARA, VFO, and CCP, respectively, from 1993 to 2008 and such increase 358 

occurred in all land use groups considered in a similar extent (Supplementary material Fig. 5). 359 

The variation of the SOC in the area under study strongly depended on the subarea within the region 360 

and did not match the SOC map at the baseline (1993) (Fig. 6) In contrast, the reliability of this 361 

difference [measured as |SOC08−93|−(STDEV08+STDEV93)] did not depend on the area and was 362 

positive in almost all pixels. An increase of SOC concentration (up to +17.0 g SOC kg−1 in the right 363 

end of the difference distribution, +10.1 g SOC kg−1 in the 99th percentile, i.e +0.67 g SOC kg−1 yr−1, 364 

Supplementary material Fig. 6) was frequently found in the Hyblaean area, especially in the 365 

mountains and hilly environments, in the western hilly to plains areas, and, unexpectedly, on the 366 

central area located on the south of the northern mountain ridge. A loss of SOC (up to −13.0 g C kg−1 367 

in the left end of the difference distribution, −6.6 g SOC kg−1 in the 1st percentile, i.e −0.44 g SOC 368 

kg−1 yr−1) was observed in the areas surrounding the other mountains ridge, the areas between the 369 

eastern slope of Etna Volcano and the sea and the Catania plain to the south of Etna, the Hyblaean 370 

plains on the south of the Hyblaean Mountains, and in part of the far-western plains, near the western 371 

corner of the island.    372 



Discussion 373 

The understanding of the space-time variation of SOC is a prerequisite to hypothesize future scenarios 374 

and the outcome of any policy on crop yield, yield potential and ecosystem service (Dono et al., 2016; 375 

Elith et al., 2008; Luo et al., 2015; Novara et al., 2017). Thus SOC should be primarily managed to 376 

increase (agro)-ecosystem resilience to anthropic pressure and climate change. However, the mutual 377 

relationship of SOC and climate change depends on several variables (e.g. soil texture or tillage) and 378 

have wide variation (Kirschbaum, 1995; Stockmann et al., 2013). In this framework, the integration 379 

of short and long term comparisons (Conant et al., 2001; Kämpf et al., 2016; Kurganova et al., 2014; 380 

Post and Kwon, 2000) can strongly boost the accuracy of SOC prediction (Luo et al., 2015). However, 381 

single-point comparisons, even when analyzed for a wide timespan, have the drawback of being 382 

uncorrected for position in the stochastic population of the data and are thus not representative of 383 

wide areas. 384 

In the present study, the integration of DSM and BRT modelling allowed us produce maps of probable 385 

agricultural topsoil SOC distribution (along with reliability and error maps) for two sampling 386 

campaigns performed 15 years apart (1993 and 2008). This allowed us to estimate how SOC varied 387 

through space and time at each land use group (arables [ARA], tree-like crops [VFO], and cropped 388 

areas with semi-natural vegetation [CCP]) and the importance of some ecological characteristics on 389 

space-time SOC variation. 390 

The study period was selected according to the highest availability of data within each campaign and 391 

its timespan (15 years) allowed us to depict a short-term variation of SOC within a well-characterized 392 

period. Its beginning (1993) luckily fell soon before a number of European and worldwide policy 393 

measures which profoundly impacted agriculture, including the Regulation EEC 1272/88 on set-aside 394 

(compulsory from the 1992); the United Nations Framework Convention on Climate Change of 1993 395 

(into force from 1994); and the World Trade Organization Marrakesh Agreement of 1994. Similarly, 396 

its end (2008 campaign) fell soon after the abolishment of the compulsory set-aside in the EU 397 

(Common Agricultural Policy [CAP] health check 2008) and the decoupled CAP EU payments to 398 

agriculture in 2005 (Regulation EEC 1782/2003). This collocates our research study in a period of 399 

low agricultural dynamic in term of land use change and management techniques, the latter of which 400 

were dominated by deep plowing. 401 

Indeed, we found that the area covered by ARA and that by VFO were almost constant during the 402 

study period (1993 to 2008), whereas the area covered by CCP increased by 55%, which was likely 403 

due to the temporarily conversion of grassland to pastures. As expected, we found that SOC of ARA 404 

was predicted as lower than VFO and that of VFO lower than CCP. The increase in the SOC stock 405 

during the study period was however partly unexpected. From the one hand, we expected to find an 406 

increase in the ARA and VFO due to many conditions. These include the application of Good 407 



Agricultural and Environmental Conditions (Borrelli et al., 2016), which effects on ARA were 408 

directly elucidated in similar environments (Ventrella et al., 2011); the high clay content in the soils 409 

cropped with these species, as directly addressed by Zinn et al. (2005); massive recourse to the set-410 

aside (partly compulsory); the minor role of climate change in agricultural areas (Cannarozzo et al., 411 

2006; Fantappiè et al., 2011); and ease of SOC increase in low-SOC soils (Kämpf et al., 2016), such 412 

as those in the present study (<12.6 g kg−1 ± 0.21 g kg−1). From the other hand, such an increase was 413 

expected to occur in the northern, rainy, part of Sicily thanks to the presence of conditions conducive 414 

to a SOC accumulation, rather than in the southern, more arid parts, whereas we found an opposite 415 

pattern. Nonetheless, these results agree with those of other lower resolution studies in the same area 416 

(Chiti et al., 2012; Fantappiè et al., 2011; Freibauer et al., 2004; Hashimoto et al., 2016; Lugato et al., 417 

2014) or studies conducted in similar environments (Farina et al., 2016; Rodríguez Martín et al., 418 

2016), where soil management exerted an important role in the percentage or reduction of SOC in 419 

relatively humid areas.  420 

Climate change effect on Sicily are under debate: no change in the rainfall in most of ARA and VFO-421 

dominated areas is expected (Cannarozzo et al., 2006), and a temperature increase is likely to occur 422 

(Viola et al., 2014). However, the interaction between water availability and temperature with the 423 

effect of soil traits and land use on potential and actual mineralization and C inputs are yet to be 424 

clarified (Badagliacca et al., 2017; Bogunović et al., 2017b; Davidson and Janssens, 2006; Purton et 425 

al., 2015). For example, in a high organic C area (Galapagos), Rial et al. (2017) suggested that the 426 

increase in the amount of rainfall and in general water availability (through occult precipitations, too) 427 

will likely consist in an increase of the SOC stock. 428 

During this 15-years study (1993-2008), mean increase in SOC in the agricultural area of the region 429 

(median = + 1.62 g C kg−1 soil; lower confidence interval 95%: − 4.86 g C kg−1; upper confidence 430 

interval 95%: + 8.40 g C kg−1) appeared similar to the time trends in temperature and rainfall observed 431 

in the region (Cannarozzo et al., 2006; Viola et al., 2014) and the degree of lithological and soil 432 

diversity (Costantini and L’Abate, 2016; Fantappiè et al., 2015). This occurred despite the most 433 

important predictors of SOC at any pixel were soil texture, land use and topographic covariates, as 434 

also found elsewhere (Bogunović et al., 2017b), whereas rainfall and temperature only contributed 435 

by 8.98% and 8.94% of the total variability explained in the 1993 and 2008 model, respectively.  436 

Grinand et al. (2017), by means of an algorithm similar to the one we used, found that SOC change 437 

modelled in a 20-years timespan was likely negative in humid and not different than zero in arid areas 438 

and that such variation strongly depended on both the climatic predictors and degree of deforestation. 439 

However, in contrast to Grinand et al. (2017), we found an increase of the CCP, which effect on SOC 440 

is more similar to that of forests compared to ARA and VFO. 441 



A matching between SOC and climatic gradient was observed by Vaysse and Lagacherie (2015) in 442 

southern France, a colder and more rainy environment than Sicily. In addition, in the ‘Vaysse and 443 

Lagacherie (2015)’ modelling of soil traits, a similarity among maps of SOC, soil pH and soil clay 444 

content can be observed. It is likely that in our environment, the variability of some important traits 445 

related to soil erosion and deposition (such as valley depth and channel network base level) and thus 446 

C movements by erosion and deposition across pixel was better related to trends in rainfall and 447 

temperature, than their long-term mean. Nevertheless, the present results only partly fitted the erosion 448 

risk map published soon before the beginning (Ferro et al., 1991) or the end (Fantappiè et al., 2015) 449 

of the present experiment. This latter discrepancy can depend on both the difference in the spatial 450 

resolution between the present map and those of Ferro et al. (1991) and Fantappiè et al. (2015) and 451 

the lack in these of the information about the deposition of the eroded soil and C (Adhikari et al., 452 

2014). Indeed, we found that catchment area, landforms, valley depth and channel network base level, 453 

which are related to soil deposition, contributed by 20.3% and 18.2% of the total SOC variability 454 

explained in 1993 and 2008, respectively. Topographic indices can strongly affect SOC concentration 455 

through erosion and deposition, whereas their role in SOC stock can be minimal (Grimm et al., 2008; 456 

Schillaci et al., 2017). In the present work, we found that RS indices minimally increased the pseudo-457 

R2 of the fitting functions and mostly affected both the variance explained by each covariate and the 458 

variability among model replicates. In particular, the RS covariates captured on their whole 18.1% 459 

and 17.4% of the total variance explained in the 1993 and 2008, respectively. Bou Kheir et al. (2010) 460 

found that removal of RS indices can increase the total variance explained by the less important 461 

predictors and, in contrast to the present study, also the overall accuracy of the model. Other studies 462 

indicated that the importance of RS indices in SOC mapping can depend on a range of factors, 463 

including the variable mapped, the resolution of the measured and ancillary variables, the extent of 464 

the study and the importance of the processes of SOC accumulation in relation to the study area 465 

(Castaldi et al., 2016b; Grinand et al., 2017; Poggio et al., 2013; Priori et al., 2016). It is thus likely 466 

that the high number of non-RS covariates in this work and their ability to explain a high degree of 467 

variability reduced the ability of the RS data to explain an additional amount of variability. In 468 

addition, the need of using more than one Landsat image (each of which took 13-32 days apart from 469 

each other) could have reduced the importance of RS indices for the whole area and impaired their 470 

contribution to the prediction. Similarly, some experiments with fewer input points and or coarser 471 

covariates than the present found a high percentage of variance explained by the RS indices in either 472 

SOC or other environmental traits (Akpa et al., 2016; Castaldi et al., 2016b; Wang et al., 2016). 473 

 474 



Conclusions 475 

In the present work, two legacy sub-datasets of SOC concentration were integrated in a DSM 476 

procedure to estimate the SOC variation along a 15-years period (1993-2008). This results was 477 

possible since the application of the covariates produced a pseudo-R2 of SOC representation of 0.63-478 

0.69, which allowed a time comparison of SOC at the pixel level. Texture and land use classes showed 479 

the highest predictor importance, around one third of the variance explained. Yigini and Panagos 480 

(2016) indicated these traits as capable of having a short-term impact on the SOC higher than climate-481 

driven processes. 482 

The integration of RS indices used in this study did not increase the pseudo-R2, but captured about 483 

one fifth of the total variance explained by the covariates and strongly reduced the modelling 484 

variability. This suggests that their integration in the models can overcome problems related to 485 

erroneous attribution of some samples to the other covariate levels.  486 

Finally, the present results can imply both agronomic and policy consequences at the district level 487 

and call for an intervention on soil fertility to maintain agriculture productivity (Dono et al., 2016). 488 

These results can help in calibrating models of SOC dynamic under various management or climate 489 

change scenarios, especially at regional extent, by removing the noise in the modelling phase by a 490 

correction with RS or other soil traits and geographical covariates, as already shown with other 491 

disturbing covariates in SOC modelling (Bogunović et al., 2017a, 2017b; Zinn et al., 2005b), which 492 

provide measures of covariates with a unique resolution in broad areas. 493 
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Tables 802 

Table 1. Descriptive statistics of the observed soil organic carbon (SOC) concentration values and that of the distributions of the predicted SOC values 803 

modelled extracted on the same locations of the observed values. RS if for remote sensing covariates. Descriptive statistics were produced for both 804 

row and log-transformed data. Unit of measure for row data is % SOC.   805 

  

 raw data  log-transformed data 

 1993   2008  1993   2008  
 observed predicted  

with                               

RS 

predicted 

without 

RS 

 
 observed predicted  

with                               

RS 

predicted 

without 

RS 

 
 observed predicted  

with                               

RS 

predicted 

without 

RS 

 

 observed predicted  

with                               

RS 

predicted 

without 

RS 

Mean  1.2219 1.2246 1.2246  1.4881 1.4959 1.4965  0.0080 0.0687 0.0693 0.0743 0.1536 0.1546 

Standard error  0.0273 0.0146 0.0143  0.0567 0.0249 0.0244  0.0098 0.0044 0.0044 0.0146 0.0065 0.0064 

Minimum  0.1000 0.6821 0.6665  0.0300 0.8027 0.7774  -1.0000 -0.1661 -0.1762 -1.5229 -0.0955 -0.1093 

Percentile 1%  0.2000 0.7322 0.7231  0.2000 0.8523 0.8889  -0.6990 -0.1354 -0.1408 -0.6990 -0.0694 -0.0512 

Percentile 2.5%  0.2000 0.7779 0.7811  0.2533 0.9137 0.9222  -0.6990 -0.1091 -0.1073 -0.5965 -0.0392 -0.0352 

Percentile 25%  0.8000 0.9599 0.9611  0.8325 1.1294 1.1416  -0.0969 -0.0178 -0.0172 -0.0796 0.0529 0.0575 

Median  1.0000 1.1125 1.1148  1.1450 1.3573 1.3480  0.0000 0.0463 0.0472 0.0588 0.1327 0.1297 

Percentile 75%  1.5000 1.3453 1.3392  1.7575 1.6973 1.7033  0.1761 0.1288 0.1268 0.2449 0.2298 0.2313 

Percentile 97.5%  3.2475 2.4201 2.3855  4.4638 2.9182 2.8322  0.5115 0.3838 0.3776 0.6497 0.4651 0.4521 

Percentile 99%  4.2000 2.7196 2.7162  5.6966 2.9813 3.0149  0.6232 0.4345 0.4340 0.7556 0.4744 0.4793 

Maximum  5.4000 2.9830 3.0140  10.9500 3.4762 3.3565  0.7324 0.4746 0.4791 1.0394 0.5411 0.5259 

Mode  1.0000 1.0554 1.0151  0.9900 0.8205 0.7774  0.0000 0.0234 0.0065 -0.0044 -0.0859 -0.1093 

Standard deviation  0.7648 0.4074 0.4002  1.1530 0.5074 0.4968  0.2751 0.1237 0.1218 0.2972 0.1318 0.1294 

Kurtosis  5.1596 3.4557 3.4879  14.9722 1.5478 1.5422  1.3897 0.7781 0.8042 2.1546 -0.0729 -0.0682 

Skewness  1.8570 1.7964 1.7953   2.9695 1.3679 1.3563  -0.6215 0.9741 0.9742   -0.3757 0.6848 0.6774 

  806 



Table 2. The importance of each of the 25 predictors used in the boosted regression trees model to 807 

estimate the soil organic carbon performed on the 1993 and 2008 samples in Sicily, Italy. The role of 808 

the remote sensed (RS) predictors on the contribution to the total variance explained by the non-RS 809 

predictors and fold variation after removal of the RS predictors is shown.  810 

 

1993 

 

2008 

with                                    

RS 

without 

RS 

fold 

variation 

with                                    

RS 

without 

RS 

fold 

variation 

Non-remote sensed (RS) 

predictors 
      

  

      

Soil Texture 16.18 16.17 1.00 22.64 24.14 1.07 

Land use 12.02 14.37 1.20 6.79 8.56 1.26 

Valley depth 9.24 10.21 1.10 2.38 3.24 1.36 

Rainfall 5.91 9.27 1.57 4.21 5.93 1.41 

Channel network base level 4.97 6.96 1.40 9.05 10.35 1.14 

LS factor 4.61 5.65 1.23 3.35 4.27 1.28 

Landforms 4.19 5.04 1.20 4.44 5.34 1.20 

Aspect 3.88 4.89 1.26 4.54 5.84 1.29 

Elevation 3.38 4.65 1.38 3.12 3.90 1.25 

Temperature 3.07 4.00 1.30 4.63 5.57 1.20 

Cross sectional curvature 2.55 3.25 1.27 2.40 3.33 1.39 

Slope 2.24 2.84 1.27 2.64 3.65 1.38 

Vertical distance to channel 

network 
2.00 2.62 1.31 2.78 3.74 1.35 

Relative slope position 1.97 2.42 1.23 2.02 2.58 1.28 

Catchment area 1.93 2.63 1.36 2.33 2.87 1.23 

Convergence index 1.88 2.42 1.29 3.70 4.59 1.24 

Topographic wetness index 1.85 2.60 1.40 1.60 2.09 1.31 

RS predictors 
       

NDVI 7.11 - n.a.* 

  

2.45 - n.a. 

Landsat 1 1.98 - n.a. 2.33 - n.a. 

Landsat 2 1.45 - n.a. 1.45 - n.a. 

Landsat 3 1.80 - n.a. 1.18 - n.a. 

Landsat 4 2.31 - n.a. 2.73 - n.a. 

Landsat 5 1.91 - n.a. 1.28 - n.a. 

Landsat 6 0.00 - n.a. 3.93 - n.a. 

Landsat 7 1.57 - n.a. 2.04 - n.a. 

 * remote sensing; ** non applicable 811 
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Figure Captions  813 

Fig. 1. Locations of the sampling sites in the 1993 and 2008 in the area under study (Sicily). Land 814 

use groups used in the study are displayed. 815 

Fig. 2. One-hundred meters resolution maps of the SOC (expressed in g C kg−1, a, b) and uncertainty 816 

maps (c, d) of the boosted regression trees models built with data from 1993 with (a, c) or without (b, 817 

d) remote sensed covariates. Please note that range vary among classes. 818 

Fig. 3. One-hundred meters resolution maps of the SOC (expressed in g C kg−1, a, b) and uncertainty 819 

maps (c, d) of the boosted regression trees models built with data from 2008 with (a, c) or without (b, 820 

d) remote sensed covariates. Please note that range vary among classes. 821 

Fig. 4. Prediction confidence map of the boosted regression trees (BRT) models of 1993 (a, c) and 822 

2008 (b, d) built with (a, b) or without (c, d) remote sensed predictors. Each point represents the ratio 823 

between BRT-predicted and observed values. The closer the ratio is to 1, the better its representation 824 

of the observed value is. 825 

Fig. 5. Estimates of the soil organic carbon in each of the land use groups used in the present study 826 

as affected by the presence of the remote sensed (RS) covariates in the model. ARA is for non-827 

irrigated arable land; VFO is for vineyards, fruit trees and berry plantations, and olive groves; CCP 828 

is for annual crops associated with permanent crops, complex cultivation patterns, land principally 829 

occupied by agriculture, with significant areas of natural vegetation. Data are means ± standard error. 830 

Number of sampling points falling into an area of each land use group is shown. 831 

Fig. 6. One-hundred meters resolution map of the difference in the SOC (expressed in g C kg−1) 832 

during the study period (a, b). Reddish pixels indicates a loss and greenish pixels a gain in the SOC 833 

in 2008 compared to 1993. Please note that range vary among classes. Reliability (c, d) of the maps 834 

in A and B panels, respectively, computed as the difference between the SOC difference and the sum 835 

of the standard errors (in lower panels of Fig. 2 and 3). Green points indicate those pixel in which the 836 

difference of SOC is reliable. Maps of the sum of the standard deviations of the ‘map of SOC’ (e, f). 837 

Each computation and mapping was made for models built with (a, c, and e) and without (b, d, and f) 838 

remote sensing (RS) predictors.  839 


