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Abstract We investigate the dynamics of suspended sediment transport in a hyper-

tidal estuarine channel which displays a vertically sheared exchange flow. We apply a

three-dimensional process-based model coupling hydrodynamics, turbulence, and sedi-

ment transport to the Dee Estuary, in the north-west region of the UK. The numerical

model is used to reproduce observations of suspended sediment and to assess physi-

cal processes responsible for the observed suspended sediment concentration patterns.

The study period focuses on a calm period during which wave-current interactions can

reasonably be neglected. Good agreement between model and observations has been ob-

tained. A series of numerical experiments aims to isolate specific processes and confirm

that the suspended sediment dynamics result primarily from advection of a longitudi-

nal gradient in concentration during our study period, combined with resuspension and

vertical exchange processes. Horizontal advection of sediment presents a strong semi-

diurnal variability, while vertical exchange processes (including time-varying settling

as a proxy for flocculation) exhibit a quarter-diurnal variability. Sediment input from

the river is found to have very little importance and spatial gradients in suspended

concentration are generated by spatial heterogeneity in bed sediment characteristics

and spatial variations in turbulence and bed shear stress.

Keywords Suspended sediment · Modelling · Dee Estuary · tidal advection

1 Introduction

Estuaries are highly dynamic environments that are characterized by complex and

competing physical processes both in terms of hydrodynamics and in terms of sediment

dynamics. Suspended particulate matter is closely linked to estuarine turbidity; it

impacts water quality and estuarine ecology; and it also contributes to the overall
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estuarine sediment budgets. Temporal variations in suspended sediment concentrations

and their correlation with tidal currents are thus critical towards understanding and

predicting net transport, pathways, and estuary health.

Observations combined with modelling approaches have enabled the explanation

of complex suspended sediment temporal patterns. In particular, observed suspended

sediment concentrations have been interpreted as the result from the combined effect of

tidal resuspension and tidal advection of a horizontal concentration gradient in tidally

dominated coastal and shelf seas (e.g., Weeks et al, 1993; Jones et al, 1996; Jago and

Jones, 1998; Bass et al, 2002). In regions where the largest tidal constituent is M2, tidal

resuspension produces peaks with M4 variability while advection of horizontal gradients

produces peaks with M2 variability, which can combine and result in the so-called twin-

peak feature (Weeks et al, 1993). While the earlier studies previously mentioned were

based on simplified modelling approaches, with inherent limits in terms of general

validity (e.g., Jago and Jones, 1998; Jago et al, 2006), this fundamental concept has

since been reported in three-dimensional numerical results: e.g., Souza et al (2007) in

the North Sea; and Stanev et al (2007) in the East Frisian Wadden Sea, which is a

shallow and strongly non-linear tidal system.

In estuaries, the confluence and mixing of fresh riverine water and salty oceanic

water leads to several additional baroclinic physical mechanisms which may impact sus-

pended sediment dynamics. The presence of density gradients results in significantly

more complex systems. In particular, tidal straining (e.g., Simpson et al, 1990), asym-

metry in mixing (e.g., Jay and Musiak, 1994), damping of turbulence by stratification

(Geyer, 1993), and longitudinal density gradients (Burchard et al, 2008) have all been

shown to impact suspended sediment dynamics and contribute to residual sediment

transport. Tidal variations in particle size can also occur and modify temporal pat-
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terns in suspended sediment (e.g., Jago et al, 2006). In turn, variations in settling rates

and flocculation may introduce phase lags between the suspended sediment and under-

lying current, and change the overall net transport (e.g., Winterwerp, 2011). Most of

these estuarine physical processes have not been considered in combination with the

conceptual model of Weeks et al (1993), and interpretation of complex, including twin-

peak, suspended sediment patterns is still incomplete in tidally dominated estuaries

where longitudinal gradients in sediment may occur.

Modelling systems employed to investigate sediment transport in estuaries increas-

ingly rely on three-dimensional baroclinic models (e.g. Burchard et al, 2004; Park et al,

2008; de Nijs and Pietrzak, 2012; Ralston et al, 2012). From a physical process point-

of-view, process-based modelling is extremely valuable towards isolating and assessing

specific processes, either via the invasive numerical approach of switching on or off

given processes, or via selective analysis of individual contributions from numerical

simulations with high predictive skill (e.g. Burchard and Hetland, 2010). From a mod-

elling point-of-view, even though three-dimensional baroclinic models are demanding

both in terms of computational power and quantity of input data, they are necessary

to fully represent estuarine dynamics. Less complex approaches fundamentally rely on

simplifying assumptions and may not be able to represent all required processes. For ex-

ample, depth-averaged modelling cannot reproduce all baroclinic processes (e.g., Souza

and Lane, 2013), and local one-dimensional vertical models commonly assume simple

behaviour of horizontal (density) gradients (e.g., Simpson and Souza, 1995; Burchard

and Hetland, 2010).

In the current study, we present a three-dimensional baroclinic process-based mod-

elling system, which is applied to a hypertidal region of freshwater influence and estuar-

ies therein. Several recent observational campaigns have focused on the same study area
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and have thus provided data for model validation. We focus on one specific estuary in

which complex temporal patterns are observed for suspended sediment concentration,

including the so-called twin-peak feature. We will use the process-based model in order

to assess how the interplay between vertical exchange processes and tidal advection of

spatial gradients can explain the observed suspended sediment behaviour. Results from

this study will also provide some insight on a priori requirements for good predictive

ability at intratidal timescales, in turn important for predictions of net transport.

We focus our study in the Dee Estuary, which is located in the south-east corner

of Liverpool Bay, itself in the eastern Irish Sea. The Dee is a funnel-shaped, coastal

plain estuary, which is about 30 km long with a maximum width of 8.5 km at the

mouth. The main channel bifurcates forming two deep (≈ 20 m) channels near the

mouth which extend into Liverpool Bay: the Hilbre Channel in the east and the Welsh

Channel in the west. The mean annual river discharge is about 31 m3/s and peak flow

can reach 300 m3/s at the Manley Hall gauging station. The mean spring tidal range at

the mouth is approximately 10 m, tidal currents can reach over 1 m/s in the channels,

and the tide is close to a standing wave. The large tidal range results in significant

intertidal areas, which contribute further to the complexity of the physical processes.

Although the Dee imports sediment, a hypsometrical analysis suggests that it may

be approaching equilibrium with an associated decrease in accretion rates (Moore et al,

2009). However, more detailed studies are still required to better understand the sed-

iment transport patterns and budgets. Bolaños et al (2013) assessed the relative con-

tributions of several physical processes to the overall circulation in the Dee Estuary.

They showed that the two channels present distinctive tidally-averaged estuarine cir-

culation behaviours, which are unaffected by stormy periods (Brown et al, subm) (this

issue): the Hilbre Channel has a vertically sheared exchange flow pattern, while the
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Welsh Channel has a horizontally sheared exchange flow pattern. Even though the Dee

Estuary presents an interesting challenge due to the complexity of physical process

interactions, process-studies of sediment transport in the Dee, either via observations

or modelling, are still scarce.

Within the Dee Estuary, we only focus on sediment dynamics pertaining to the

Hilbre Channel. Sediment dynamics in the Welsh Channel are investigated in Ramirez-

Mendoza et al (subm) (this issue). In effect, this may be viewed as a test of the relevance

of the conceptual model first introduced by Weeks et al (1993) to an estuarine system in

which baroclinic behaviour is significant in terms of hydrodynamics (vertically sheared

exchange flow and periodic stratification) and where sediment spatial gradients are

present.

We present in section 2 the field observations used in this study and the overall

conditions observed during the observational campaign. The modelling system and

its current implementation are presented in section 3. We then present and discuss

observations (section 4) in the Hilbre Channel followed by numerical results (section

5).

2 Field observations and environmental conditions

The field observations used in this study focus on a campaign from mid February

to early March 2008 during which benthic tripods where deployed at two locations,

one in each estuarine channel (figure 1 panel C). We will only use in this study mea-

surements from the mooring location in the Hilbre Channel; measurements from the

Welsh Channel, which has distinctive hydrodynamics, are used in the modelling study

of Ramirez-Mendoza et al (subm) (in this issue). The tripod deployed in the Hilbre

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7

Fig. 1 Study location. A) UK coastline and boundaries of computational domains used in

the nesting approach: the Irish Sea domain (dashed) and the Liverpool Bay domain (solid).

B) Liverpool Bay domain and model bathymetry. C) Close-up of the mouth of the Dee, with

the two channels and the locations of the moorings (black circles).

Channel is about 2.5 m high and its feet cover a circle about 3.5 m in diameter. It was

equipped with different instruments to measure hydrodynamics and suspended sedi-

ment properties. A detailed description of the deployment is presented in Bolaños and

Souza (2010). We will mainly use in this study data from ADCP (Acoustic Doppler

Current Profiler) and LISST (Laser In Situ Scattering and Transmissometry) to pro-

vide information on flow structure and suspended sediment concentrations, although

data from a near-bed ADV (Acoustic Doppler Velocimeter) are also briefly employed.

In the Hilbre Channel, the LISST100X was located 1.82 mab (metres above the

bed) and was set to sample at a frequency of 0.025 Hz for 20 minutes every hour. The

data have been processed using the manufacturer software and the total concentration

has been calibrated using filtered water samples to obtain total sediment mass con-

centration values. It has to be noted that there is non negligible uncertainty in this

calibration (r2 ≈ 0.6).

An upward looking 1.2MHz ADCP (from Teledyne RD Instruments) was mounted

on top of the benthic tripod and provided data with a vertical bin resolution of 0.5 m.

The ADCP provided vertical profiles of current velocities. The ADCP also recorded

the acoustic backscatter strength, which can be interpreted into suspended sediment

mass concentration via regression against values obtained from the water samples (e.g.,

Souza et al, 2004). Once again, there is non-negligible uncertainty in the quantitative

mass concentration values.
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Fig. 2 Conditions observed in February 2008 in the Hilbre Channel: a) water depth; b)

current speed (3 metres above the bed); c) wave height; d) wave period; e) river freshwater

discharge. Ebbs are highlighted by the shaded vertical bands.

Measurements of tidal current, wave properties (height and period), as well as the

river discharge are presented in figure 2 for the first half of the deployment period

in February 2008. Elevations and currents in the Hilbre Channel (figure 2 panels a

and b) follow the dominant M2 tidal cycle with a clear spring-neap variability. The

currents generally exhibit a slight flood dominance (faster peak speed during flood) due

to asymmetry resulting from the generation of higher tidal harmonics in the shallow

estuary. Wave observations (figure 2 panels c and d) clearly distinguish two periods.

Before 21 February, waves remain small (≤ 0.6 m) and short. During this period,

they are unlikely to significantly contribute to sediment transport, and wave-current

interactions can be neglected. After 21 February, wave height and period are larger

and modulated by the tide. Full wave-current interactions should then be considered

for modelling purposes. We focus our study on the calm period of current dominated

conditions occurring before 21 February.

Although the river discharge (figure 2 e) remains small throughout the study, fresh-

water has a clear impact on the Dee hydrodynamics as periodic stratification was ob-

served (Bolaños et al, 2013), which is consistent with values of the horizontal Richard-

son number (Brown et al, subm) (this issue).

3 Model description

We apply the Proudman Oceanography Laboratory Coastal Ocean Modelling Sys-

tem (POLCOMS) in order to reproduce the observed hydrodynamic and sediment
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behaviour in the Dee Estuary. Even though this modelling system does include a wave

model, we focus on a calm period and do not account for wave-current interactions. We

will test and implement the model under several approaches and assumptions, which

will be introduced in section 5.1.

3.1 Hydrodynamic model

The POLCOMS is based on a three-dimensional baroclinic numerical model formulated

in spherical polar terrain-following coordinates (Holt and James, 2001). The hydrody-

namic model solves the three-dimensional, hydrostatic, Boussinesq equations of motion

separated into depth-varying and depth-independent parts to allow time splitting be-

tween barotropic and baroclinic components. The detailed governing equations have

been presented in Holt and James (2001) and are not repeated here.

Turbulent stresses and fluxes are modelled following turbulent viscosity and turbu-

lent gradient diffusion hypotheses. In turn, eddy viscosity and diffusivities are obtained

via coupling to the General Ocean Turbulence Model (GOTM, Umlauf et al (2005))

presented in Holt and Umlauf (2008). In the present study, we employ the k− ε model

with stability functions derived from the second-order model of Canuto et al (2001).

The bottom shear stress is calculated using a drag coefficient expression that relies on

a logarithmic near-bed velocity profile.

3.2 Suspended sediment transport model

The suspended sediment transport model allows the use of an unlimited number of

sediment classes. Each class is specified by user-defined values for sediment settling
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velocity, critical shear stress for erosion, and erosion rate. Bed processes characteristic

of cohesive sediments, such as bed consolidation, are neglected in this study.

For each class k, the suspended sediment concentration ck follows an advection-

diffusion equation

Dck
Dt

= T (ck) +
Ws,k

H

∂ck
∂σ

+ Sc,k (1)

where Sc,k is an optional sediment source/sink term, Ws,k the settling velocity for

class k. T (ck) represents transport of sediment via turbulence diffusion; it is closed

using the turbulence model and assumes that the sediment diffusivity is equal to the

buoyancy diffusivity. The left hand side term represents the material derivative and,

as such, includes advection of sediment. Horizontal diffusion is neglected.

At the free surface, the vertical flux of sediment is set to vanish. At the bottom

boundary (sediment bed), the vertical flux of sediment is taken to be equal to the sum

of erosion E and deposition D. This condition is implemented by including erosion and

deposition as a source/sink term for the bottom grid of the water column and preventing

advective and diffusive fluxes into the bed. Deposition is due to gravitational settling

and is considered to occur for all bed shear stresses

Dk = Ws,kck (2)

The erosion flux is directly related to the excess bed shear stress via a linear dependence:

(e.g., Ariathurai, 1974; Amoudry and Souza, 2011):

Ek = E0,k(1− φ)

(

τb
τce,k

− 1

)

(3)

where E0,k is the user-defined erosion rate for class k, φ is the top bed layer porosity,

τb the bed shear stress magnitude, and τce,k the critical stress value for erosion for

class k.
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3.3 Model setup

The overall hydrodynamic setup used to model the Dee Estuary follows that of Bolaños

et al (2013). The numerical domain extends over the Liverpool Bay region at a reso-

lution of about 180 m (figure 1). The bathymetry consists of digitized hydrographic

charts combined with LIDAR and multibeam data. Three-dimensional baroclinic ef-

fects, river inputs, surface heating and offshore density structure are all considered.

Liverpool Bay is subjected to a hypertidal regime (spring tidal range in excess of 10

m) and intertidal areas are significant. Wetting and drying algorithms are therefore

also implemented. The bed roughness is taken to be constant and uniform across the

Liverpool Bay domain, and its value is z0 = 0.003 m.

3.3.1 River inputs

Freshwater river flow is numerically implemented by increasing the total water elevation

by an amount calculated from the river volume flux at the river source location. This

also results in generation of momentum via the introduction of a local free-surface

gradient. The salinity is then adjusted throughout the water column assuming that

the river flow is fresh. By default, the temperature of the river input is taken to be

in equilibrium with the ocean temperature. Even though this may not be perfectly

accurate, a difference in temperature between river and ocean would remain small in

February and would have a negligible impact on the density structure in the estuary

compared with the effect of salinity. River sediment load can be included via the source

term in equation 1 at the river source location. It adds sediment by specifying its

concentration within the volume of freshwater representing river input. Daily averaged

river discharges from the Environmental Agency river gauge network are made available
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from the Centre of Ecology and Hydrology (CEH) to drive the freshwater input. Data

on the river sediment load is not available and, when taken into account, the river

sediment concentration is taken as a user-defined constant value.

3.3.2 Boundary and initial conditions

A nesting approach is employed to prescribe offshore boundary conditions for eleva-

tions, currents, temperature and salinity. Boundary values are obtained from numerical

simulations for the entire Irish Sea (see figure 1) and are then used to force the three-

dimensional hydrodynamics in the Liverpool Bay domain. Atmospheric forcing consists

of hourly wind velocity and atmospheric pressure, and three-hourly cloud cover, hu-

midity and air temperature.

The model hydrodynamics are spun up from rest for the month of January, with

initial salinity and temperature being respectively set at 35 PSU and 7◦C. Sediment

transport is initialized from clear waters on 1 February 2008, as it was found that this is

sufficient to spin up suspended sediment concentrations before the observational period,

which starts on 12 February 2008. Data on the initial bed sediment distribution are

not available. Several conditions have been implemented depending on the modelling

approach selected and will be discussed in section 5.1.

4 Observed sediment dynamics

Observations alone may result in better understanding of the physical processes respon-

sible for the overall Dee sediment dynamics, which may then help inform modelling

studies. LISST-measured total suspended sediment concentrations (SSC) are presented

in figure 3 for approximately a spring-neap cycle. Even though waves may influence
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Fig. 3 Suspended sediment concentrations measured by the LISST in the Hilbre Channel

(bottom panel). Top panel: Depth-averaged along channel velocity (DAValg in red) and water

level (ζ in black). Ebbs are marked by the shaded vertical bands, floods by the unshaded

bands.

the system after 21 February, twin-peaks in SSC can be repeatedly distinguished in the

time history. These specific patterns are particularly clear at the start of the record

around 15-16 February, then 19 to 22 February, and around 25-26 February. These

twin-peaks are also present in other SSC observations in the Hilbre Channel (for ex-

ample in February 2006 as reported in Thurston (2009)). Such repetition hints that

this pattern is the result of common and important mechanisms in the Dee Estuary.

More detailed observations from both the LISST and ADCP are presented in figure

4 for our specific period of interest, i.e. the modelled period. We only present obser-

vations of total measured suspended sediment concentrations (SSC) and emphasize

that quantitative agreement has to be considered as speculative given the uncertain-

ties introduced by the respective conversions into mass concentrations. Nevertheless,

the temporal patterns remain unaffected by uncertainties introduced by the conversion

into mass concentration. The measurements display variable correlation between the

two instruments and the observed behaviour is clearly more complicated than sim-

ple resuspension. Under this unique process, we would expect SSC peaks to correlate

with velocity peaks with a phase lag due to the time needed for vertical transport

of suspended particles (e.g., Souza et al, 2004). The ADCP-inferred SSC after 19/20

February indeed seems to support such an explanation. Resuspension peaks clearly

correlate with maximum currents, and the slightly stronger peaks measured by the

ADCP during the last two floods are also consistent with a flood-dominant resuspen-

sion process due to the flood dominance of currents. Around neap, the ADCP peaks
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do not appear to be related to maximum current, instead the temporal variation seems

to become dominated by a semi-diurnal behaviour. Given that the ADCP does not

provide measurements below approximately 3 mab, a plausible explanation is that re-

suspension peaks at neap are not strong enough to result in sediment being lifted above

the ADCP and measured. Suspended sediment measured by the ADCP would then be

advected instead of locally resuspended, which is consistent with the sharp vertical

front-like pattern in SSC seen around 16 and 17 February (figure 4 panel c) in a similar

manner to the sediment starved case presented in Souza et al (2007).

Simple resuspension processes also cannot explain the LISST data in figure 4,

which exhibits either semi-diurnal peaks or the so-called ”twin-peaks” pattern over the

entire calm period. A strong semi-diurnal variability in SSC is typically explained by

advective processes in tidally-dominated environments (e.g., Weeks et al, 1993; Jones

et al, 1996; Jago and Jones, 1998; Bass et al, 2002), twin-peaks resulting from the

superposition of tidal resuspension on these advective processes. In the Dee Estuary,

the situation is unfortunately complicated by the presence of a number of processes

related to baroclinic behaviour, periodic stratification, mixed sediments and it is not

evident whether the same conceptual explanation remains valid.

We believe that the significant difference in the qualitative temporal patterns mea-

sured via ADCP or LISST primarily results from limitations inherent to acoustic mea-

surements of sediments in mixed sediment estuarine environments. Acoustic techniques

are indeed limited in terms of measuring across an entire sediment size distribution, in

particular at the extremes (e.g., Lynch et al, 1994). These techniques are also greatly

affected by flocculation processes (MacDonald et al, 2013). We will thus mainly focus

on model-observation comparison against the LISST data in the following sections.
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Fig. 4 Measured suspended sediment concentrations (SSC) in the Hilbre Channel: a) Water

elevation (shaded area) and depth-averaged along-channel current (black line and symbols), b)

Total SSC measured by the LISST at 1.82 mab (black) and for the bottom ADCP bin (red), c)

vertical profile of suspended sediment concentration inferred from the ADCP data. Numbers

on the time axis correspond to days in February 2008 (each at 00:00).

Even though we will investigate the importance of vertical exchange processes and

horizontal advection via model simulations, it is still interesting to evaluate the relative

importance of advective transport and vertical turbulent diffusion on the suspended

sediment. In particular, we can scale these terms as they appear in the suspended sed-

iment mass balance (equation 1). We then obtain that the ratio of advective transport

to vertical turbulent diffusion scales as:

ADV

DIF
=

UH2

LKz
(4)

where U is a current velocity scale, H a vertical length scale (e.g., depth of estuary), L

a horizontal length scale, and Kz the sediment diffusivity. This ratio is equivalent to an

estuarine Péclet number. Taking the following values for the Hilbre Channel U = 0.5

m/s, H = 10 m, L = 10 km, Kz = 0.01 m2 s−1 results in a ratio of 0.5, indicating

that advective transport is hardly negligible. While the chosen values are somewhat

arbitrary, they are consistent with values from Bolaños et al (2013) and they all tend

to underestimate the calculated ratio and the importance of advection.

5 Numerical results

5.1 Numerical experiments

The hydrodynamic and sediment model is implemented under several approaches and

assumptions. The aim is to assess the relative importance of vertical exchange processes
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Table 1 Numerical experiments summary.

Simulation name Sediment classes Initial bed composition River sediment input

1Sm 1 (Ws = 0.6 mm/s) Uniform No

1Sf 1 (Ws = 0.1 mm/s) Uniform No

1Sc 1 (Ws = 1.0 mm/s) Uniform No

1Sv 1 (variable Ws) Uniform No

3S 3 Following figure 5 No

3Suni 3 Uniform No

3Sri 3 Following figure 5 Yes

and of tidal advection of spatial gradients towards reproducing and explaining the ob-

served temporal SSC behaviour. The numerical simulations employed in the present

study are summarized in table 1. We consider either a single sediment class (1S in

the simulation name) or a multiclass approach with three classes (3S in the simula-

tion name). For the monoclass approach, several constant settling velocities have been

tested (denoted by suffixes f, m, c representing fine, medium, and coarse sediments).

One monoclass simulation (denoted by the suffix v) uses an empirical formulation for

prescribing a time-varying settling rate. For the multiclass simulations, river sediment

input has been considered (denoted by suffix ri), and two initial bed compositions im-

plemented: one spatially uniform (suffix uni), and one spatially varying (no suffix). It

has to be noted that the monoclass simulations implicitly employ uniform initial bed

distributions.

Sediment model parameters are summarized in table 2 for both monoclass and

multiclass approaches. A default constant value for the settling velocity (Ws = 0.6

mm/s) has been estimated from the size distribution which has been measured by

the LISST and averaged over the modelled period (i.e., 14 to 21 February). Both
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Table 2 Sediment model parameters for monoclass and multiclass modelling. (τ represents

the turbulent stress)

Number of classes Ws (mm/s) E0 (kg m−2 s−1) τce (Pa) Source

1 0.1; 0.6; 1.0 1.25 ×10−5 0.19 Bed

Ws(τ) 1.25 ×10−5 0.19 Bed

3 0.1 1.25 ×10−5 0.05 Bed (+ River)

0.6 1.25 ×10−5 0.19 Bed

1.0 1.25 ×10−5 0.5 Bed

smaller and larger settling rates are also investigated. The time-varying settling rate is

implemented as an empirical formula which relates Ws to the turbulent stress in order

to represent processes inducing temporal changes in settling rate, such as aggregation

at slack water (e.g., Thurston, 2009) and turbulence induced break-up. This empirical

formula is derived from the data collected in the Dee during the same deployment and

follows the approach of Ramirez-Mendoza et al (subm) (this issue). More details are

provided there and not repeated here. The multiclass approach only considers sediment

parameters constant in time for each sediment class.

Different mechanisms are considered for the generation of longitudinal concentra-

tion gradients. Simulations using spatially uniform bed characteristics do not exclude

this, as spatially varying erosion can still be induced by spatial variations to the bed

shear stress. In the multiclass simulations, additional mechanisms are considered via

the specification of a spatially varying initial bed composition and river sediment input.

The initial bed is chosen to consist of three types of sediment with different constant

settling rates and different constant critical stress for erosion. Data on spatial variations

in bed composition in the Dee Estuary are unfortunately not available, even though

grab samples within the channels indicate a bed composed of muddy sand. Instead, we
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Fig. 5 Initial composition of sediment bed in the Dee for simulations with three sediment

classes. The colours correspond to the percentage of the given sediment class initially present

in the bed. The classes each have a different settling velocity: from left to right Ws = 0.1

mm/s, Ws = 0.6 mm/s, and Ws = 1.0 mm/s.

have to rely on a more conceptual and qualitative approach. Our starting point is well-

known sorting mechanisms due to tidal forcing that result in finer sediment landward

(e.g. van Straaten and Kuenen, 1958; Holland and Elmore, 2008). We therefore choose

to introduce an initial condition that prescribes changes to the distribution of sediment

based on the local bathymetry. For depths higher than the mean sea level, the bed is

initially composed of 50% fine (Ws = 0.1 mm/s) and 50% medium (Ws = 0.6 mm/s)

for depths larger than 10 metres the bed is initially composed of 25% medium and 75%

coarse (Ws = 1.0 mm/s), in between the bed is composed of 50% medium and 50%

coarse. The resulting composition is presented in figure 5. Even though the specific

numbers are somewhat arbitrary, this composition is consistent, at least conceptually

and/or qualitatively, with current general understanding of sediment heterogeneity in

tidal flats (e.g., Holland and Elmore, 2008). A spatially uniform composition of 50%

medium, 25% fine and 25% coarse is also implemented in order to isolate the effect of

spatial gradients in bed composition.

River input of sediment is considered in one simulation. As mentioned previously,

this is implemented by specifying a constant sediment concentration value (of fine

particles only) to the freshwater input.
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5.2 Hydrodynamic model validation

Model results and observations are compared during the calm period 14 to 21 February.

This is done using the numerical results from the nearest neighbouring computational

grid point to the mooring location. Differences between the four computational points

surrounding the deployment are not found to be significant, and we do not believe

that more complicated interpolation would impact the results. In addition to model-

observation comparison plots, we will quantify the skill of the model by applying the

following statistical parameters to the sediment concentration time history at 1.82 mab

in comparison with the LISST data: relative bias, index of agreement (d) following

Willmott et al (1985), and r2, which describes the proportion of the total variance

explained by the model. Relative bias and index of agreement d are respectively defined

as:

Rel.Bias =

∑N
i=1

(Mi −Oi)
∑N

i=1
|Oi|

(5)

d = 1−

∑N
i=1

(Mi −Oi)
∑N

i=1

[∣

∣Mi − Ō
∣

∣+
∣

∣Oi − Ō
∣

∣

]2
(6)

where M represents model results and O observations, the overbar denotes the mean

value. The relative bias expresses the under or over prediction of the model with respect

to the observations. Values less than 0.1 are judged as excellent and less than 0.2 as

very good. The index of agreement measures the skill of the model with values of 1 for

perfect agreement and 0 for complete disagreement.

Even though the hydrodynamic component of the model has been investigated in

Bolaños et al (2013) and found to reproduce reasonably well the observations in the Dee,

we present in figure 6 the comparison between depth-varying ADCP data and model

results for the along-channel velocity at the deployment location in the Hilbre Channel.
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Fig. 6 Model-observation comparison for the along-channel velocity component. a) water

elevation ζ with observations in black circles and model results in the red line; b) Depth-

averaged along channel velocity component (positive for flood) again with observations in

black circles and model results in the red line; c) along-channel depth-dependent velocity

measured by ADCP; d) along-channel depth-dependent velocity predicted by model. Numbers

on the time axis correspond to days in February 2008 (each at 00:00).

The comparison is good and leads to high indices of agreement for both the elevations

and along-channel velocities (respectively 0.99 and 0.98, the later value applying to

both the depth-averaged velocity or depth-dependent velocity). Even though the across-

channel component is not predicted as well, it is much smaller (Bolaños et al, 2013) and

only has a second-order effect on sediment dynamics. The same hydrodynamic model

has also been validated against observations at other locations in Liverpool Bay (e.g.,

Brown et al, 2011, 2013). Altogether, this confirms the good predictive capability of

this model in terms of hydrodynamics.

Predictions of sediment resuspension critically depend on the model’s ability to

correctly reproduce near-bed shear. We present in figure 7 model-observation compar-

ison using measurements by an ADV mounted under the benthic tripod and located

at 1 mab. The comparison for speed, which thus includes both along-channel and

across-channel components, is shown in panel b. The model reproduces the timing

of maximum speed well. Some effects of the benthic tripod on hydrodynamics were

observed during this deployment (Bolaños et al, 2011), and may explain the underpre-

diction of the ADV-measured speed by the model. Measured and modelled turbulent

stresses, in order to represent vertical mixing, are compared in panel c. The model

predicts the timing of large stresses well, even though some discrepancies exist for the

stress magnitude especially during flood. These may reflect some model shortcoming,
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Fig. 7 Near-bed model-observation comparison. a) Depth-averaged along channel current

from ADCP (black circles) and model (red line); and water elevation (shaded area). b) Speed

measured by an near-bed ADV (black line with pluses) and predicted speed (red line). c)

Turbulent stress derived from the ADV measurements (black line with pluses) and modelled

turbulent stress (red line). d) Turbulent kinetic energy (TKE) derived from ADV (black line

with pluses) and modelled friction velocity uf (red dashed line).

but may also be due to some effect of the tripod on the measured turbulent stresses

(e.g., Bolaños et al, 2011). Finally, the turbulent kinetic energy calculated from the

ADV measurements is presented alongside the model friction velocity in panel d, as

further illustration of the good temporal behaviour of the model. Even though the

turbulent kinetic energy and the friction velocity are not the same quantity they are

related as the second is the bed boundary condition for the first.

As mentioned previously, we will focus on comparisons of SSC at the deployment

location using the LISST data at 1.82 mab. The present sediment transport model,

based on POLCOMS coupled to GOTM, has already been shown to have good pre-

dictive power for simple suspended sediment dynamics (Amoudry and Souza, 2011).

Combined with the good predictive power of both hydrodynamics (figure 6) and near-

bed shear (figure 7), we thus have confidence in its ability to reproduce the fundamental

processes of advective transport, vertical turbulent diffusion and settling. The statis-

tical parameters for all numerical simulations are summarized in table 3. They have

been calculated from hourly time series over 7 days. Due to the unperfect correlation

between mass and volume concentrations in the data analysis, both bias and index of

agreement may be partly attributable to uncertainties in the experimental data. This

would be less the case for r2 for which agreement on periodicity and phase of temporal

patterns would be important.
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Table 3 Summary of model skill for sediment concentration.

Numerical simulation Rel. Bias d r2

1Sm -0.35 0.55 0.15

1Sf 3.86 0.37 0.64

1Sc -0.69 0.45 0.03

1Sv -0.14 0.54 0.06

3S -0.15 0.86 0.59

3Suni 5.22 0.29 0.60

3Sri -0.15 0.86 0.59

Fig. 8 Sensitivity of model results to sediment settling velocity. Observations are plotted as

circles for elevation (top panel) and as the black line with the pluses for the suspended sediment

concentration (bottom panel). The model results are for one sediment class with Ws = 0.1

mm/s (green), Ws = 0.6 mm/s (red), Ws = 1.0 mm/s (blue). Elevations are identical for all

three simulations.

5.3 One-class sediment model

Model results using the monoclass approach are compared with the LISST data in

figures 8 and 9. The default simulation (1Sm in table 3 plotted in red in both figures)

does not reproduce the data well. Some important physical processes are therefore not

properly taken into account. Changes to the settling rates are presented in both figures

(different constant values in figure 8 and variable settling in figure 9). As expected

and rather obviously, the smaller the settling velocity, the larger the concentration

becomes. This leads to overall bias in the numerical results, and the best agreement is

found using the variable settling rate, and second best by the default constant value

(table 3), both of which are really not surprising given that the settling velocity was

determined based on the observations in both cases.
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Fig. 9 Sensitivity of one-class model results to inclusion of empirical variations in settling

rate as function of turbulent stress. Top panel: elevation in shaded area and depth-averaged

along channel current. Bottom panel: suspended sediment concentrations from LISST (black

line with pluses), from model with constant settling with Ws = 0.6 mm/s (red line) and

variable settling Ws = Ws(τ) (blue line).

The more interesting behaviour concerns the temporal qualitative patterns (i.e., fre-

quency and phase of peaks). For three simulations (1Sm, 1Sc, and 1Sv), the modelled

SSC displays quarter-diurnal variability, which corresponds well to tidal resuspension

and vertical exchange processes but does not reproduce the observations adequately.

Most importantly, using a variable settling rate does not change the frequency and

phase of SSC peaks. All three cases show low correlation to the measured SSC. The

situation is clearly different for the fine particles (simulation 1Sf ): the predicted con-

centration time history presents distinct peaks at low water, and much increased corre-

lation with the LISST measurements, even though the model dramatically overpredicts

the amount of suspended sediment.

Such a shift in the temporal variability implies a much reduced importance of

resuspension and vertical exchange processes. Instead, advection and/or dilution due

to changes in water depth become dominant. The shift is due to the finest sediment

displaying different dynamic suspension characteristics from that of the other two. In

particular, it remains in suspension for significantly longer periods of time, as shown

by the following values for the ratio between a settling time scale and the tide period:

H/(WsT ) = 2.23, 0.37, 0.22 for H = 10 m, T the M2 tidal period, and increasing Ws

values. The major shift in dynamical behaviour of suspended material is also depicted

by a change of about one order of magnitude for the ratio of settling to turbulent

suspension time scales (e.g., Prandle, 1997). Even under stratified conditions, for which
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turbulent mixing can be suppressed, the dynamical behaviour of suspended material

is drastically modified for extremely fine particles (e.g., Geyer, 1993). Altogether these

promote the relative contributions of advection and dilution, both of which exhibit

semi-diurnal variations.

5.4 Multiclass sediment model

Conceptually, we expect the non-uniform bed composition to lead to strong horizontal

gradients in suspended sediment, which will then be advected by the tidal currents.

These gradients can first be set up via two principle mechanisms: spatial heterogeneity

in sediment resuspension or river source of sediment. Both are considered and their

relative importance in the Dee is investigated. For the bed composition specified and

illustrated in figure 5, we expect the model to produce high sediment concentrations

dominated by fines in the upper estuary and low concentrations offshore. Following

the conceptual model of Weeks et al (1993), such a gradient would then be advected

along the estuary and result in a strong semi-diurnal component to the temporal SSC

patterns, as shown by simple numerical models (e.g., Jones et al, 1996). It has to be

noted that spatial heterogeneity in sediment resuspension can also be induced by spatial

differences in levels of turbulence and bed shear stress. As mentioned previously, this

is implicitly taken into account in all simulations presented.

Figure 10 presents the model-observation comparison for the concentration time

history at 1.82 mab in the Hilbre Channel. As conceptually expected and explained,

the results from simulation 3S are in much better agreement with the LISST data.

The statistical parameters in table 3 are also greatly improved. Numerical results that

include a riverine source of fine sediment to the 3S simulation (Cr = 100 g/m3 in
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Fig. 10 Model-observations comparison for suspended sediment concentration (SSC) for the

three-class simulations with initial bed composition given by figure 5 in red and uniform initial

bed composition in blue. The observations are in black.

simulation 3Sri) are indistinguishable from those without riverine sediment input (i.e.,

model-model comparison between simulations 3S and 3Sri). While the actual value for

Cr is arbitrary since no data is available, significant changes to the SSC at the mea-

surement location are only obtained in the model with unrealistically and unphysically

large value (i.e. Cr ≈ 104 to 105 g/m3). These numerical results strongly suggest that

river sediment input does not directly contribute to the observed SSC patterns in a

significant manner.

Changing the initial bed composition leads to dramatic changes. The modelled

suspended sediment concentration severely overpredicts the LISST observations when

a uniform initial bed is implemented (figure 10). The numerical results from simulation

3Suni are actually quite similar to those of simulation 1Sf, and sediment transport

is then dominated by the dynamical behaviour of the fine class. It is clear that the

horizontal gradients introduced via the non-uniform initial distribution are key to the

overall sediment transport dynamics in the Dee Estuary. In comparison, horizontal

gradients induced by gradients in turbulence and bed shear stress are not sufficient to

reproduce the observed patterns.

Figure 11 separates the three classes and their individual contribution to the overall

SSC signal. The semi-diurnal peaks mostly consist of the fine sediment (Ws = 0.1

mm/s). This is particularly instructive as this sediment type is initially not present at

the measurement location and the only mechanism that can therefore explain the peaks

of fine sediment is horizontal advection. The two remaining classes, and in particular
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Fig. 11 Contribution of the three sediment classes to the SSC pattern at 1.82 mab in the

Hilbre Channel. Top panel: water elevation as the shaded area, and depth-averaged along

channel current (model in red and ADCP data in black circles). Bottom panel: SSC from

LISST as the black line, SSC for the slow-settling sediment in magenta, SSC for the medium-

settling sediment class in cyan, and SSC for the large-settling sediment class in red (mostly

trace amounts compared with the other two classes).

the medium sediment (Ws = 0.6 mm/s) class, present temporal variations that are

suggestive of resuspension as they correlate well with maximum current and maximum

stress. It is important to note that the semi-diurnal peaks of fine sediment happen

around slack water, the net flux of fine sediment is thus uncertain from such short

simulations. This makes any inference on sediment budgets, which would require results

for long-term spatial patterns, difficult.

The numerical results do provide information on the vertical structure of the sus-

pended sediment. Figure 12 presents the vertical profiles at the deployment location for

the study period for each of the three sediment classes included. Even though it may be

tempting to compare in details these results to the ADCP measurements (presented in

figure 4), we already discussed the limitations and shortcomings of the ADCP-derived

SSC in the present situation. The different behaviour of the three classes is once again

evident. The slow-settling sediment is advected in a well-mixed vertical structure past

the deployment location due to the action of tides and exhibits a distinct semi-diurnal

variability. The other two classes present behaviours linked to resuspension processes,

as shown by the correlation to peak currents, and exhibit asymmetric quarter-diurnal

variability. A number of barotropic and baroclinic processes, one of which is asymme-

try of the barotropic tide and related turbulence, combine to produce this asymmetry

and it is not our aim to identify and further separate these processes. Overall, figure
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Fig. 12 Suspended sediment profiles. a) Water elevation as the shaded area, and depth-

averaged along channel current (model in red and ADCP data in black circles); Modelled SSC

vertical profiles (simulation 3S) for the three sediment classes: b) Ws = 1.0 mm/s; c) Ws = 0.6

mm/s; d) Ws = 0.1 mm/s.

12 provides another illustration of the conceptual model following which a longitu-

dinal gradient in suspended concentration generates pulses of high sediment tidally

advected first offshore then landwards past the stationary deployment (panel d), to

which resuspension dominated patterns (panel c) are superposed. Depending on the

relative importance of the two contributions, semi-diurnal peaks, or twin-peaks, or

even quarter-diurnal peaks (not observed and reproduced in the present study) may

be obtained.

6 Concluding remarks

We have combined numerical results from a sediment transport model with field ob-

servations in order to investigate sediment dynamics in the Hilbre Channel of the Dee

Estuary, UK. Baroclinic behaviour is important both in the channel studied, which

exhibits a vertically-sheared exchange flow and periodic stratification (Bolaños et al,

2013), and in Liverpool Bay, which is a region of freshwater influence.

Observations of suspended sediment concentration using optical techniques (a LISST)

display semi-diurnal peaks or twin-peaks close to low water. Although intermittent in

time, this is observed repeatedly and is an important manifestation of sediment dy-

namics in the Hilbre Channel of the Dee Estuary. We have applied a coupled three-

dimensional circulation, turbulence and sediment transport modelling system in order

to reproduce and investigate the observed patterns. The model provides good predic-
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tions of hydrodynamics and has shown satisfactory capabilities in terms of sediment

transport.

We have used the model as an investigative tool in order to test the relevance of

the conceptual model of Weeks et al (1993) to an estuarine system where baroclinic

behaviour is significant and periodic stratification is observed. Numerical results have

confirmed that the observed patterns of suspended sediment concentration result from

superposition of tidal resuspension and tidal advection of spatial sediment concentra-

tion gradients, the second process being dominant during most of the period studied.

In particular, vertical exchange processes, such as resuspension and time-varying or

constant settling, have been shown to be insufficient to generate the observed strong

semi-diurnal variability in suspended sediment concentration. This specific behaviour

has been reproduced by the model when using the spatially heterogeous initial sedi-

ment distribution, and advection of fine particles then appears to be responsible for the

observed variability in suspended concentration. Using the representative scaling intro-

duced previously (i.e., U = 0.5 m/s), semi-diurnal concentration peaks due to advective

processes imply a source of fine sediment about 10 km upstream of the measurement

location, which corresponds well with our assumption and basic implementation of

heterogeneous sediment bed.

Several mechanisms have been considered to generate the spatial concentration

gradients to be advected: spatial variations in turbulence and bed shear stress (implic-

itly in all cases), spatial gradients in bed sediment characteristics, and river sediment

inputs. Numerical results indicate how important these processes are towards repro-

ducing observations: the first is insufficient, the second is key, the third is negligible

here. In comparison, previous studies had considered general limited availability of bed

material (e.g., Jones et al, 1996; Jago and Jones, 1998; Souza et al, 2007) or spatial
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variations in turbulence (Stanev et al, 2007) as the mechanisms generating the con-

centration gradients. It has to be pointed out that the present simulations (table 1) do

not allow to isolate the relative importance of spatial variations in turbulence against

that of spatial gradients in bed characteristics, and removing only the first mecha-

nism cannot easily be implemented in the full three-dimensional model. Nevertheless,

being insufficient towards reproducing observations does not necessarily mean not im-

portant. In practice and in our results, horizontal concentration gradients are set up

from a combination of the spatially-varying bed shear stress and spatially varying bed

characteristics.

The inference from our numerical results that river sediment inputs are negligible

has to be interpreted carefully as we have focused on one channel near the mouth of

the estuary for a time-limited period under moderate river discharge. More impact

of sediment river input is possible or likely (i) further upstream in the estuary, and

(ii) under stronger river discharges. The limited period of time also means that we

cannot assess whether river sediment input can generate spatial gradients in either

the bed characteristics or suspended concentration over the long term. This would

require numerical simulations to be undertaken over at least yearly time scales, and

may provide another significant mechanism towards setting up important advective

transport of sediment.

It has to be noted that the model-observation comparisons presented are mostly

informative in a qualitative manner. Even though the three-dimensional baroclinic

process-based model does provide a deterministic solution, several assumptions and

input conditions remain somewhat conceptual in nature. This is especially true of the

initial bed composition and sediment parameters for the multiclass simulations. The

overall results should therefore not be considered as fully quantitative, but more qual-
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itative and conceptual. Significant additional work would be necessary towards better

quantitative assessments. For example, the model’s sensitivity to the specification of

the multiclass setup (both initial bed condition and sediment parameters) would need

to be investigated further.

In spite of these limitations, this study highlights the important processes that

control suspended sediment concentration in the Dee and does provide valuable insight

on some modelling requirements. While high quality input data should be considered

as an obvious generic requirement, the present numerical results suggest a few more

detailed inferences. They confirm that knowledge of the spatial distribution of different

sediment classes, each determined by settling velocity and erosion parameters (E0 and

τce here), is very important towards accurately reproducing sediment dynamics in

the Dee Estuary. However, the present work does not, and does not intend to, fully

address how such spatial information can best be prescribed. Initial spatially-varying

bed composition may be derived from existing data (see Nitsche et al (2007) for an

example of extensive benthic mapping data), self-generated by the model (e.g., van der

Wegen et al, 2011), or a combination of both (e.g., Ralston et al, 2012). Such approaches

would probably result in more complex sediment distribution patterns than the ones

used in this study. The reasonable results achieved here are an indication that our

simple approach is sufficient to resolve the principal processes controlling sediment

dynamics in the Dee Estuary during the studied period: along-estuary gradients.
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