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Abstract—Steel scheduling is recognised as one of the most
difficult real-world scheduling problems. It is characterised by a
wide range of operational constraints, variable dependencies and
multiple objectives. This paper uses a divide and conquer method
to reduce the combinatorial complexity of a real-world multi-
line steel scheduling problem. The problem is first decomposed
into sub-problems which are solved individually in parallel using
parallel branch and bound, then sub-problems are combined to
form a solution to the original problem. Three decomposition
strategies are compared, specifically: a manual heuristic domain
knowledge (DOM) intensive strategy, K-means++ (KM) cluster-
ing and Self-organising maps (SOM). Experimental results show
that using SOM for decomposition is a promising approach. This
paper demonstrates that despite being a highly complex and
constrained problem, it is possible to use divide and conquer
to achieve potentially good scalability characteristics without
significant detriment to the solution quality.

I. INTRODUCTION

We live in a globalised, hyper-connected, massively inter-
dependent world. A significant challenge facing all countries
today is Industry 4.0, the next digital industrial revolution [1].
The world around us is becoming more complex and a high
demand for productivity gains to logistic problems persists
[2]. Most scheduling problems found in industrial environ-
ments can be regarded as large-scale complex combinatorial
optimisation problems (COP) classed as NP-Hard [3]. To date,
no polynomial time complexity algorithm is known to solve
COPs optimally.

A major difficulty in solving large-scale COPs is the compu-
tational expense involved. COPs are characterised by a rugged
fitness landscape that contains a combinatorial number of
local optima; this imposes high computational requirements
on the underlying implementation platform. The complexity
of COPs is heightened in real-world problems as a wide range
of operational constraints often need to be taken into account,
they are subjected to dynamic change over space and time,
companies have limited computational resources, are deadline-
sensitive, constraints are affected by uncertainty, there are
multiple objective and constraint functions which can be
expensive to evaluate and may have numeric or experimental
noise.
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The performance of many optimisation algorithms deterio-
rates [4] as the problem size increases. This can be attributed
to an increase in the dimensionality of the search space (see:
the curse of dimensionality [S]). Each schedule in a steel
manufacturing plant has a respective cost associated with it,
meaning the wrong decision can be very damaging if it has a
substantial financial impact [6]. This necessitates identifying
efficient optimisation strategies that explore promising regions
of the search space within a feasible time-frame.

This paper solves a large-scale real-world multi-line steel
scheduling problem. A natural approach (and the method used
within natural ecosystems) is to tackle large-scale problems
and reduce the combinatorial explosion is through a divide-
and-conquer approach. This paper places emphasis on using
decomposition (divide-and-conquer) to explore the underlying
structure of the corresponding optimisation problem. The key
idea is to reduce the complexity of the original problem by
decomposing the problem of size n into b sub-problems of
size —, solving their respective sub-problems then developing
strategies to link partial solutions. In a realistic setting this size
may vary between different sub-problems. This process also
adds some linear complexity; however the benefit of scaling
outweighs this cost.

The idea of decomposition (divide-and-conquer) appears in
early work on large-scale linear programs in the 1960s [7]. The
idea is to ensure the relationship between any two modules at
the same level of abstraction is as weak as possible in order
to create meaningful partitions. Decomposition allows the use
of a parallel or distributed approach so that the computational
load can be spread over a network, thereby offering scalability,
since size and time requirements do not grow as significantly
with an increase in the problem size [8]. Moreover this permits
greater scope for flexibility as specialised methods can be
applied to different sub-problems and solution building blocks
can be re-used.

Finding sub-problems is a computationally difficult NP-
hard task [9], therefore it is infeasible to apply a precise
analytic algorithm. Despite this hardness there have been sev-
eral methods proposed with varying success levels [10]. This
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paper focuses on three strategies: a manual heuristic domain
knowledge intensive (DOM) strategy, K-means++ (KM) and
Self-organising maps (SOM).

This paper is organised as follows: The next section surveys
related work on steel scheduling problems and solutions pro-
posed. Section 3 gives details on the multi-lined steel schedul-
ing problem considered. Section 4 describes the proposed
approach. Section 5 provides details on the experiments and
analyses results. The final section discusses findings and draws
conclusions.

II. RELATED WORK

Using a divide-and-conquer approach has successfully been
applied to scheduling and planning. Research demonstrates
this approach gives potential for better scalability [11, 12].
Commonly used decomposition algorithms include clustering
[13], dual decomposition [14], column generation [15] as well
as Dantzing Wolfe and Benders decomposition [16].

There are three common ways for tackling COPs like the
multi-lined steel scheduling problem:

1) Commercial solvers (e.g. CPLEX [17]): often apply
Mixed Integer Linear Program (MILP) and branch and
bound to solve COPs within a specified tolerance.

2) Intelligent algorithms: includes heuristic algorithms that
allow finding a feasible solution within a reasonable
time-frame. This includes Simulated Annealing [18],
as well as nature inspired algorithms like the Genetic
Algorithm [19].

3) Constraint programming (CP): uses a mathematical
model which embeds constraints and only searches the
feasible region of candidate solutions [20].

Solutions are not limited to these categories; the current
literature favours hybrid approaches that use a combination
of these techniques [6, 22, 23, 21].

Harijunkoski and Grossmann [23] consider solving schedul-
ing problems that involve cost minimisation, due dates and
sequence independent setup times for a test problem. They
decompose a multistage steel scheduling problem into an as-
signment problem and a sequencing problem. A hybrid MILP
and CP model is used, where MILP is used for the assignment
problem and MILP or CP is used for the sequencing problem.
Numerical results show the approach can be applied in an
industrial scale.

Tang et al. [24] tackle coil sequencing problem to ensure
the switching cost between consecutive coils is minimised
whilst satisfying constraints. The problem is divided into sub-
problems, each corresponds to a sequence of coils processed
sequentially. The coils in each turn are then grouped based
on width. Then a two-phase dynamic programming (DP)
algorithm is proposed. In the first phase boundary coils (first
and last coils) are identified. In phase two, a DP is used to
form a complete sequence whilst taking into account boundary
coils.

Fernandez et al. [25] schedule the galvanisation of steel
using Ant Colony Optimisation. Transition costs for each
combination of two nodes are calculated. These costs are

then classified into zero, finite (soft constraints violated) and
infinite (hard constraints violated). Transition costs are then
probabilistically selected to construct a solution.

From our literature survey, we found that a multi-line steel
scheduling problem for the production of galvanised steel has
seldom been tackled. The scheduling problem in this paper
uses real-world data and each line has a number of soft and
hard constraints.

III. THE MULTI-LINE STEEL SCHEDULING PROBLEM

The galvanisation of steel involves coating it with a zinc
layer to protect against air and moisture. The production of
galvanised steel involves processing steel coils sequentially
through different lines and yards. This work aims to reduce
the cost of scheduling the following 4 lines: Pickling, Tandem
Mill, Hot Dip Galvanising 1 and 2. Steel coils sequentially
flow through these different lines - a topology is presented in
Figure.1.
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Fig. 1. Topology of the multiple lines considered.

Coils go through different lines/yards in a tree structure,
whereby no coil goes through all stages. Each coil corresponds
to a production order, which needs to be processed according
to an order specification. They have different grades that
can complement or hinder each other during the production
process. They are also welded together and processed sequen-
tially. Coils in a sequence must have similar properties, as
the machine settings gradually change over time. All coils are
proceed through the same lines, despite the differences in the
required characteristics of the final product.

Coils are distinguished by their width, thickness, length,
chemical composition and grade. Each grade has a given
production recipe with strict specifications of temperature,
speed, chemistry, and processing times at different production
stages. It is important to ensure steel grade constraints overlap
in order to avoid loss of material. The key to increased
productivity and quality is to ensure that width profiles in a
sequence are as smooth as possible. In this continuous process
rollers are worn by processing coils. Processing narrower coils
before wider coils causes edge marks to transfer to wider coils,
which in effect degrades the quality of wider coils.

The large number of constraints related to the geometry and
chemistry of the coils make it very difficult to obtain feasible
solutions. Due to the NP-hard nature of this problem, it is more
feasible to obtain good approximate (near) optimal solutions.
Modularity allows the flexibility to adapt to changes in the
environment e.g. when a new coil enters, only the module



relevant will be modified not the whole solution. Modules
are groups of coils that have more connection to one another
then otherwise expected if coils were randomly sampled.
Modularity can be observed in ecosystems where different
regions correspond to different species which facilitate specific
functions [26].

Variations of this problem appear in almost any applica-
tion domain. The original motivating application comes from
industrial engineering which are a result of finite number of
factory machines. Despite significant advances there are still
major challenges and questions that remain unresolved.

IV. PROPOSED APPROACH

The goal is to schedule coils whilst ensuring steel quality
is maximised and cost as well as lead time minimised. The
cost takes into consideration material loss and line breakages,
it is possible to lose meters of strip as a result of quality or
a breakage that halts the facility for hours. Switching costs
occur between coils in a sequence and the product quality
is affected if the characteristics of a coil are different to the
coil immediately after it. Essentially there are two costs that
need to be minimised: the transition cost is the switching cost
incurred to move between any two coils, and the sequencing
cost is a function of the whole sequence [25].

Due to the confidential nature of this problem, a complete
mathematical formulation of the problem cannot be provided.
The proposed approach leverages decomposition to identify
the underlying structure of the problem and facilitate solving
large-scale real-world combinatorial optimisation problems
(COP) in a scalable manner. The decomposition strategy is
presented in Figure. 2.

The following steps are involved in the proposed approach:

1) Set the decomposition algorithm on a set of coils, to

separate them into groups (sub-problems) with similar
properties e.g. width, thickness, temperature and grade.
2) Run COP solver (branch and bound) on sub-problems
independently and in parallel. Each sub-problem corre-
sponds to a sequence of coils continuously processed in
a schedule.

3) Combine sub-problems based on hard constraint costs.
Major costs are a function of width, thickness and
thermal changes.

Original Problem

L LN

1) Divide to form
sub-problems

2) Solve sub-problems

N

Solution

/ 3) Combine sub-solutions
to form a complete solution
to the original problem

Fig. 2. Decomposition Strategy

A. Decomposition

Multi-stage optimisation scheduling problems can naturally
be decomposed into assignment and sequencing subproblems
[27]. This paper evaluates three strategies for problem decom-
position:

1) Domain knowledge strategy (DOM) - Converts domain
experience into a hierarchical set of rules used to group
similar coils. For example, one rule is that coils with
grade A cannot be followed by coils of grade B.

2) K-Means++ (KM) clusters [29, 28] - K-means++ was
used to help improve centroid initialisation; experimen-
tal results using real-world datasets in [28] show a sub-
stantial improvement. The number of clusters k is first
chosen using trial and error. Coils are then assigned to
clusters based on their spatial proximity to the centroid.
This distance is adapted to the different lines and allows
coils with similar features to be grouped together. Coil
features including width, thickness, thermal cycle and
strength are considered.

3) Self-organising map (SOM) [30] - An unsupervised
learning algorithm that allows the mapping from high
dimensional space to a 2-dimensional space, whilst
preserving the topological structure. A SOM model
where the input is connected to every cell in the map
is presented in Figure. 3 SOM is an artificial neural
network that works in two phases, training and mapping.
In the training phase, competitive learning is used by
neurons to learn from a sample, thereby allowing a
topological ordering of the map. In the mapping phase,
input vectors are classified. There are three important
variables that must be adjusted to suit the problem size:
the height and width of the 2-dimensional map and
the neighborhood radius. Specific coil characteristics
including width, thickness and thermal cycle are used
as features in the SOM, slightly different characteristics
are used for the different lines. An intriguing feature
of SOMs is that the number of clusters does not need
to be specified: coils with similar features are grouped
together.

Fig. 3. Self-organising map model [31]

B. COP Solver

In order to evaluate the effectiveness of the different de-
composition strategies, in this work a standard parallel branch



TABLE I
EXAMPLE COIL DATA (OBFUSCATED FOR DATA PROTECTION)

D Width  Thickness Length ~ Weight Grade
COIL1 600 4.4 500 2000 A
COIL2 100 4.3 700 3000 B
COIL3 200 5.1 800 3000 C
COIL4 200 5.1 700 3000 A

and bound (BB) [32] is used to solve all sub-problems. The
algorithm explores branches of a tree, each representing a set
of solutions, before enumerating through a branch. The upper
and lower bounds are estimated using transition costs, then a
decision is made on whether to explore a particular branch or
not. BB is an enumerative algorithm that includes a pruning
criteria to help navigate through the search space in order
to avoid performing an exhaustive search. It is important to
sort coils based on width prior to running BB. BB can be
substituted with other approaches like Genetic Algorithm [33]
and Simulated annealing [18]. Alternatively a combination of
different approaches can also be used depending on the nature
of the sub-problem.

V. EXPERIMENTS

Three test cases were executed across the four lines, pick-
ling, tandem mill, hot dip galvanising 1 and 2. Experiments
were carried out on real world data: the number of coils for
each test case ranges between 60-90.

The three test cases cover different environments for the
scheduler. The first test case is a typical one-day batch taken
from production history, which ensures that there is a relatively
smooth solution. The second test case is larger by 50%, and is
also taken from production history. The third case is the same
size as the first batch, but it is designed to mimic the batches
that could be expected when working with lower stock levels,
it is harder to schedule as there are fewer options for finding
compatible coils.

In order to ensure reliability 30 independent runs were
carried out using three different test cases on all four lines.
The experiments were performed to evaluate the three different
decomposition methods: Domain-specific Manual Heuristics
(DOM), K-means++ (KM) and Self-Organising Maps (SOM).
The values for k clusters, and SOM map width, height
and neighbourhoods were set using running trial and error
experiments and the best combination of values found was
then used for the following experiments.

All experiments were performed using a OS X machine
with 2.8 GHz Intel Core i7 and 16GB memory. The different
sub-problems were executed in parallel using threads.

A. Solution Quality

The goal of sequencing is to maximise productivity and
solution quality whilst minising cost and lead time. The
schedule quality is determined with respect to three costs:

1) Cost functions: costs associated with placing two sub-
sequent coils in a sequence.

2) Soft constraints: it is preferable not to violate soft
constraints as they impose an additional cost to the
sequence.

3) Hard constraints: which should not be violated but at
certain situations it is impossible to produce a sched-
ule without violating some hard constraints. Hard con-
straints impose a very high cost to the sequence in
comparison with the soft constraints.

TABLE I
THE NUMBER OF COST FUNCTIONS, SOFT CONSTRAINTS AND HARD
CONSTRAINTS FOR EACH LINE.

Cost Soft Hard
Functions Constraints Constraints
Pickling Line (PKL) 3 1 5
Tandem Mill Line 3 0 3
(TDM)
Hot Dip Galvanizing 1 5 0 6
Line (HDG2)
Hot Dip Galvanizing 2 4 1 5
Line (HDG1)
TABLE III
WEIGHTS APPLIED TO AVOID BREAKING CONSTRAINTS.
Weight for Soft Constraints 1000
Wight for Hard Constraints 10000000

B. Results and Analysis

Three different test cases were performed using the three
decomposition strategies (DOM, KM and SOM) as well as just
using a parallel branch and bound (BB) across the four differ-
ent lines (PKL, TDM, HDG1 and HDG2). The overall solution
sequence cost is a weighted sum of the cost function, soft
constraints and hard constraints, where the hard constraints
have a considerably high weight to try to avoid them. The
number cost functions, soft constraints and hard constraints is
presented in Figure 7.

The performance of all three decomposition strategies and
a parallel branch and bound (BB) is presented for all four
lines (PKL, TDM, HDG1 and HDG?2) in Figures 4, 5 and
6, in terms of cost functions, soft and hard constraints. The
overall results of all three test cases for solutions across all
lines is presented in Figure 7. The standard deviation measures
are also presented in all figures using error bars to show the
dispersion of the results.

Test case 1 results are presented in Figure 4. For the
PKL line it is visible that all approaches have a similar
level of performance. For the TDM line it is visible that
SOM performs considerably better than all other approaches,
whereas KM performs considerably badly as a high number
of hard constraints are violated. For HDG1, SOM performs a
little better than DOM and BB, whilst KM does not seem to be
performing well. For HDG2, BB is performing the best, this



is followed by KM, SOM then DOM. The error bars which
represent the standard deviation are very narrow showing the
reliability and confidence in the results is high. The error bars
which represent the standard deviation are very narrow for
PKL and TDM, this shows very high reliability and confidence
in the results. These bars are slightly wider for the galvanizing
lines, showing there is a little more variability in the results.

Test case 2 results are presented in Figure 5. For the PKL
line, KM seems to have switched roles and is now performing
much better than all the other methods, this is followed by
BB, DOM and finally SOM. For the TDM line, all lines have
similar performance. For the HDG1 line, BB is performing the
best, this is followed by KM, DOM and then SOM. For HDG2,
the best performing algorithms in order are BB, KM, DOM
then SOM. The error bars represent the standard deviation are
very narrow throughout all the lines, this shows the reliability
and confidence in the results is high and that variability is low.
For all lines the test case BB is working considerably well,
this is followed by KM/DOM and then SOM.

Test case 3 results are presented in Figure 6. For the PKL
line, the best performing algorithm is BB, then KM, SOM and
finally DOM. For the TDM line, the best performing algorithm
is SOM, all others have similar performance. For HDG1, BB
is the best forming, this is followed by SOM, KM and finally
DOM. For HDG2, all algorithms have very similar results.
There error bars show there is some variability in the results,
which is very low for the TDM and HDG2. This test shows
that BB and SOM are performing considerably well compared
to KM and DOM.

Average results across all 3 test cases is presented in
Figure 7. These figures represent a clearer view of the actual
performance of different cost functions as the weights for the
different costs are considered and the values are averages of all
test cases. For PKL, it is visible that SOM, KM and BB are all
performing equally. For TDM, SOM is performing better than
all the other approaches including BB, it is followed closely
by DOM. For HDG1, BB is performing the best, followed by
KM then closely by SOM, For HDG2, BB is performing the
best, this is followed by SOM. The error bars are very narrow
for TDM and HDG?2 showing high confidence and reliability
with low variability in the results: these are slightly wider for
PKL where all the approaches seem to be performing very
similarly, the most variability is visible in HDGI, where its
clear that domain heuristic approach seems have the highest
variability.

VI. CONCLUSION

The multi-lined steel scheduling problem is computationally
difficult and requires considerable expertise in optimisation
and the application domain. This paper evaluated solving the
problem using a parallel branch and bound and three different
decomposition strategies (DOM, KM and SOM). Results show
the potential significance of using SOM as a decomposition
strategy, SOM proved to be competitive with just using BB.
Using SOM allows decomposing the problem without domain
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Fig. 4. Performance comparison for Test Case 1

knowledge: problem features are selected and decomposition
is performed on these features.

These results carry significance as SOMs are not commonly
viewed as decomposition algorithms that can be applied to
real-world highly constrained problems. It is important to note
that no improvements were performed on the solutions after
combining sub-solutions obtained. However, it is feasible to
perform further improvements on the whole solution. This is
of significance as decomposition methods are usually heavily
dependent on the underlying problem. A simple SOM has
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shown surprisingly good results, further advances on the SOM
may provide better results.

SOM demonstrates potentially good scalability characteris-
tics that can be applied to highly complex and constrained
problems without significant detriment to the solution quality,
the solutions found using this approach are competitive with
BB and can potentially scale to larger problems. Furthermore,
this modular approach provides increased flexibility, allowing
the use of different strategies for different sub-problems.

Data decomposition methods are not limited to SOM and K-
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means++, different levels of clustering can be used to expose
different dimensions of the data. For example, density-based
clustering can be used to avoid the formation of highly packed
clusters as well as dual and column based decomposition
strategies. Dividing a problem into sub-problems is an NP-hard
task in itself. For this reason it is important to evaluate and
compare different decomposition strategies, especially when
the problem is complex and highly constrained.
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This proposed approach does not guarantee globally optimal
solutions, this is not possible as it is an NP-Hard problem, but
rather it allows a solution that has potential to upscale to large-
scale real world problems. This approach is generic as well as
flexible and can be adapted to solve real-world COPs in other
contexts.
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