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A B S T R A C T

The design and optimisation of building structures is a complex undertaking that requires the effective colla-
boration of various stakeholders and involves technical and non-technical expertise. The paper investigated an
integrated decision-support framework using Quality Function Deployment (QFD) in structural design optimi-
sation. The aim of the study was to develop and test a systematic participatory model that utilises Building
Information Modelling (BIM)-enabled technologies for data collection and group decision-making theory. The
uncertainties associated with the decision-makers’ preferences were computed using Evidential Reasoning (ER)
algorithms in the QFD house of quality. An actual decision scenario was used to test the proposed framework and
investigate its capabilities in the context of reinforced concrete buildings. The study demonstrated how the
proposed QFD model could effectively enhance decision-making by managing the diversity of stakeholders’
preferences via design integration, enhanced communication and shared domain knowledge.

1. Introduction

The complexity and poor decision practices of construction projects
often lie in the inconsistencies occurred during the early design stages
when engineers, clients, architects, and contractors formalise multiple
priorities and preferences [1]. In structural engineering problems where
the project team can significantly influence the final design decisions, it
is important to consider both quantitative (analysis) and qualitative
(preferences) aspects when outlining a decision-making framework [2].
Group decision-making processes are suitable for the selection of en-
gineering design priorities when there is a need to satisfy several con-
flicting opinions. However, obtaining consensus within design teams
remains a significant challenge even though in recent years it has re-
ceived considerable attention amongst researchers and practitioners
[3]. Furthermore, the selection of appropriate decision-making
methods is not easy as it involves understanding of different decision
criteria, process analyses and domain requirements [4]. Various
methods have been applied to different decision-making problems in
product development [5] and infrastructure management [6], seismic
retrofit of structures [7,8], building [9], envelope designs [10,11] and
energy conservation [12]. Additional work is still required in the do-
main of structural optimisation to support more robust and practical
decision-making procedures. The optimisation of building systems such

as the structural systems requires (1) clear organisation of all the in-
formation provided by the various stakeholders against project specific
decision criteria [13] and (2) assessment methods that offer a better
understanding of the final design selection [14].
In the context of building structures most of the optimisation pro-

blems can be represented using multi-objective algorithms that involve
more than one objective function. In multi-objective optimisation trade-
off solutions between conflicting design objectives are identified and
represented in the Pareto front. However, a good approximation of the
Pareto front does not necessarily mean that the optimisation procedure is
finalised [15]. Further analysis of the resulting solutions is necessary to
complete the decision-making. The reason for that is because the human
factor is always responsible for the final approval and selection of a
design solution [16]. One way to increase the acceptance levels of the
solutions associated with the Pareto front by the design team members
was formulated by Grierson [17], which involves the manipulation of
Pareto data to identify designs based on a trade-off analysis.
The evaluation of the Pareto front solutions could be performed

using Multi-Criteria Decision-Making (MCDM) approaches that are
structured using specific decision criteria articulated by a group of
decision-makers. The current paper explores a new approach to specify
decision criteria that are necessary in MCDM [18] for the final selection
of solutions obtained from stuctural optimisation analysis with
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conflicting objective functions. To achieve that a decision-support
model for the specification of such decision criteria based on group
decision-making was investigated. The proposed decision-support
model was based on the Quality Function Deployment (QFD). QFD is a
strategic methodology that allows companies and multi-disciplinary
teams to recognise clients’ needs and translate them into technical at-
tributes during the product development phases [19].
QFD was originally applied in product and services development in

Japan [20]. In the construction industry, QFD approaches have been
widely used as their implementation could be particularly effective in
addressing specific project needs [21]. In addition, QFD approach could
effectively lead designers to a better understanding of stakeholders’
requirements, whilst it could enhance the communication between the
users and the designers [22]. Previous applications involve early design
stage development [21–23], bridge design [24,25] and maintenance
[25], energy efficiency measures in office [26] and residential buildings
[10] and sustainable performance assessments [27,25,28]. However,
more focused efforts are still required to effectively integrate QFD in the
optimisation of building structures where design decisions often tend to
be unsystematic and fragmented. If QFD is implemented early in the
design development it can be particularly helpful with the: (1) prior-
itisation of project requirements, (2) articulation of design criteria, (3)
efficient resources management (quality, construction delays, materials
waste, etc.) [23,25], (4) information transfer between disciplines [10].
Furthermore, it was reported that early interactions of decision-makers
in QFD could increase the feasibility and adoption of design solutions
[26]. QFD could enhance the decision-making processes associated with
structural design by: (1) Analysing clients’ and users’ needs, (2) Spe-
cifying functional and technical performance assessments, (3) Ranking
engineering criteria [29]. According to Eldin and Hikle [23], QFD can
significantly reduce design costs and time. Yang et al. [30] have re-
cognised that the integration of QFD with quantitative methods such as
Analytic Hierarchy Process (AHP) [31], Neural Networks [32] or Fuzzy
Set Theory [31] could provide intelligent information systems that
support the development of structured decision-making processes.
An important consideration this paper puts forward is the integra-

tion of QFD with Building Information Modelling (BIM) technologies.
BIM applications have gained a lot of attention in various structural
engineering operations (programme improvements, cost estimations,
data documentation and interoperability, design team communication),
as reported in an extensive review by Eleftheriadis et al. [33]. BIM can
effectively address the dynamic nature of structural optimisation and
decision-making problems as suggested by [34–36] advocating that
several synergies and new development opportunities might exist. An-
tucheviciene et al. [37] have recognised the possibility of enhancing the
current BIM-based software applications with decision support systems
that assist existing multi-criteria problem solvers. Albukhari [38] pro-
posed a BIM based decision support framework for the automatic eva-
luation of window submittals based on performance criteria such as life
cycle cost and implementing Multi-Attribute Utility Theory (MAUT)
and AHP. Significant time savings and reductions in decision sub-
jectivity are the main advantages of this methodology.
The proposed decision support model utilises BIM technologies with

QFD to amplify decision-making evaluation of design solutions ob-
tained from structural optimisation with conflicting objective functions.
The general concepts and computational components of the proposed
model are presented in Section 2. In Section 3 the application and
practical extensions of the decision-support model in the case of re-
inforced concrete structures are illustrated. Finally, in Section 4 the
robustness of the proposed method is assessed and the main contribu-
tions are discussed. The paper concludes in Section 5.

2. Research framework

A BIM-based decision support model which integrates QFD is pro-
posed in this study to assist engineers identify relevant decision criteria.

The implementation of the decision support model in an actual opti-
misation and MCDM scenario is outside the scope of the current paper
but it is investigated in future research. The specification of a post-
processing workflow for the proposed decision support in future work is
described in Section 3.4. Thus, the main objective of this paper is to
build and validate the BIM-based QFD decision-support model for the
identification of decision criteria by translating detailed project re-
quirements into structural design parameters using stakeholders’ expert
knowledge. The project requirements may vary between different pro-
jects which means that the engineering requirements will need to be
adapted accordingly. However, the study provides a general method on
how this decision support model can be implemented in various prac-
tical decision circumstances.

2.1. Decision support model

The development of the QFD normally follows a four-stage ap-
proach, in which each one corresponds to a stage of a product’s de-
velopment: (1) Planning phase (clients’ attributes), (2) Design phase
(technical requirements), (3) Operational phase (component char-
acteristics), (4) Control phase (process steps) [39,30]. The planning
phase of QFD is formalised through a conceptual matrix called the
House of Quality (HOQ) which helps prioritise technical attributes early
in the project development by relating client needs (WHATs) into en-
gineering design attributes (HOWs) [40,41]. Fig. 1 shows a general
representation of the HOQ.
For the purposes of this study the general HOQ was adapted so that

the client WHATs are converted into project requirements (PR) to ad-
dress building relevant needs, whereas the client HOWs were translated
to structural design requirements (DR) that address the project re-
quirements. The preparation of the HOQ relies on the inclusion of data
in the form of expert opinions for the specification of the: (Step 1)
Project requirements and importance matrix, (Step 2) Engineering re-
quirements and relationship matrix, and (Step 3) Interrelationship
matrix of engineering requirements.
In most new building projects, design teams work collectively in a

shared BIM model. This offers many opportunities to use BIM technol-
ogies as a platform to exchange and record design preferences and de-
cision criteria. This is particularly useful during the early design stages
when different design options are investigated. The current research
utilises BIM to collate necessary data for the computation and delivery of

Fig. 1. House of quality (adapted from [19]).
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the HOQ in the QFD model. The structure of the BIM component within
the decision support model is presented in Fig. 2. The shared BIM model
is accessed by team members such as architects, structural engineers,
contractors or subcontractors to add or amend building information. This
functionality is enhanced with a custom application within BIM that is
used for the data collection of stakeholders’ preferences.
In this study Autodesk Revit Application Programming Interface

(API) was used to develop the application for the collection of HOQ
data from the project team. The application could be loaded as an add-
on at the beginning of every project. The application is responsible for
the specification of the three HOQ steps identified previously: the
project team not only can record PR based on the current project brief
but it also provides numerical assessment based on their preference and
experience. The DR are then recognised by the team of engineers as well
as the relationships between the PR and the DR. Finally, the inter-
relationship between DR is used to identify the final DR importance
ratings. All necessary computations for the specification of DR priorities
are performed using an Evidential Reasoning (ER) algorithm solver.
The final perceived decision priorities from the decision support

model could be subsequently used for the assessment of design alter-
natives obtained from structural optimisation studies that utilise
building data and information directly from the BIM model like the

ones proposed in [34–36]. This assembly is not covered in the current
study but it is addressed in future work as it is expected to create more
efficient design and decision workflows within BIM’s virtual environ-
ment enhancing the collaboration between project team members.

2.2. Numerical assessment

Fig. 3 shows a snapshot of the BIM tool with the corresponding tabs
which are associated to the three HOQ steps. To conduct the numerical
assessment with the stakeholders’ preferences the rating scales from
Chin et al. [42] were implemented within the BIM tool to identify the
corresponding PR importance weights wmn {9=Extremely Important,
7=Very Important, 5=Moderately Important, 3=Weakly Im-
portant, 1=Very Weakly Important, 0=Not Important}, the re-
lationships between PR and DR Rmn {9=Very Strong Relationship,
7= Strong Relationship, 5=Moderate Relationship, 3=Weak Re-
lationship, 1=Very Weak Relationship, 0=No Relationship} and the
correlation of DR, rmn {9=Very Strong Correlation, 7= Strong Cor-
relation, 5=Moderate Correlation, 3=Weak Correlation, 1=Very
Weak Correlation, 0=No Correlation}.
At Step 1, the numerical assessment (wmn) for the PR is computed,

whereas the relationships (Rmn) between the PR and the DR takes place

Fig. 2. Structure of the decision support model.
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at Step 2. Finally, the inner relationships between the DR (rmn) are
assessed at Step 3. The interface components for Step 2 and Step 3
follow a similar logic with the one shown for Step 1 and thus were not
fully displayed in Fig. 3. Background information about the QFD
methodology and user guidelines are summarised in the instructions
tab.
An important contribution of the proposed decision support model

is the ability to address the uncertainties associated with the decision
makers’ opinions. This is a significant limitation of the traditional QFD
models and in this study, is addressed utilising Evidential Reasoning
(ER) algorithms. ER is embedded within the QFD component to tackle
two main types of uncertainties: (1) vagueness and ambiguity of data
input, (2) incomplete, imprecise data. Typically, most methods address
the first type of QFD uncertainties, which involves the vagueness of
input data using fuzzy logic [43,44]. However, fuzzy logic approaches
embedded in the commonly used AHP or ANP cannot deal with in-
complete, or missing information (ignorance) in QFD which is often
inevitable in human being’s subjective judgement [42]. The most
common way to address this kind of data limitation is using ER logic.
ER uses Dempster-Shaffer’s theory of evidence [45] which deals

with multiple attribute decision analysis problems that include both
quantitative and qualitative features with various types of uncertainties
[46]. The methodology allows decision-makers to express their sub-
jective judgement using belief structures which means they can provide
more than one perceived ratings if they are not feeling confident about
a single selection [42].
In addition, this approach allows incomplete ratings to be con-

sidered in the model if decision-makers are uncertain about their se-
lection. Simple examples to show how these properties are modelled are
shown below. One decision-maker can assess one of the project re-
quirements (PRi) as being 50% very important and 50% moderately
important (total 100% belief).
This is modelled as {(7, 50%), (5, 50%)}=7×50%+5×50%.

This means that the total rating is 6. Another decision-maker could
assess the same criterion as 60% between moderately important and
extremely important and only 20% as weakly important. This pre-
ference is modelled as {([5–9], 60%), (3,
20%)}= [5–9]×60%+3×20%+ [0–9]×20%. The reason the
component [0–9]×20% is added into the model is because the initial
belief structure is incomplete (80% < 100%). In that case the re-
maining belief degree represents the probability that has not been as-
signed to any of the other ratings [0–9]. This means that the rating
would be interval ranging from 3.6 (lower bound) to 7.8 (upper bound).

2.3. Data processing and computations

Once all team members have completed their numerical assessment
using the rating scales and the belief structures described earlier, the
data are exported to calculate the HOQ and the final priorities of the
structural design requirements. The solver in this study is a Microsoft
Excel worksheet that uses the data collected from the BIM application
(csv data format). The overall computational workflow developed in
the current study is shown in Fig. 4.
Chin et al. [42] have introduced the implementation of the ER

functions within QFD. Mehrabi-Kandsar et al. [47] have applied Chin
et al.’s [42] ER-based QFD in the compressor manufacturing industry
but no applications in the context of structural engineering have been
found in the literature. The importance ratings of PR were computed
and normalised first using the project team’s preferences followed by
the computation of the relationship matrix between DR and PR using
structural engineers’ preferences.
Finally, the interrelationships between DR were incorporated and

the final DR priorities defined. Because the PR ratings could be intervals

Fig. 3. BIM application interface panel with different functionalities for data collection.

Fig. 4. Computational workflow and HOQ stages.
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(ranges and not crisp numbers) the DR rating might need to be opti-
mised accordingly to identify its corresponding lower and upper
bounds. The detailed algorithmic functions for all the computational
components including the DR optimisation models are described in
Appendix A.

2.3.1. PR computations
To compute the importance ratings for each of the project require-

ments (PR), a relative weight is assigned first to all the project team
members to resemble their influence in the decision procedure. Each
weight takes any value between 0 and 1 with the condition that the sum
of all the team members’ weights is 1. Subsequently, each member of
the team gives a perceived score to all the specified project require-
ments based on their expertise and domain knowledge. The team
members’ scores are called belief structures and are represented lin-
guistically using the rating scales described in Section 2.2. The belief
structure can be represented as a single rating (e.g. “Extremely Im-
portant”) if there is no ambiguity in the team members’ preferences or
more frequently as a range when the participants are unsure about their
particular selection (e.g. “Very Important – Extremely Important”).
Each linguistic rating is computed using a corresponding numerical
representation as summarised in Section 2.2. The numerical assessment
for each of the importance ratings is multiplied by a confidence per-
centage (0–100%) which describes how confident the participants are
with their selections. The sum of the team members’ ratings multiplied
by their corresponding influence weights gives the weighted average
ratings for each of the PR. Typically, the weighted average ratings
would be represented in a numerical range format. The normalised
ratings are computed last using the average weights calculated pre-
viously.

2.3.2. PR and DR computations
Belief structures were also used to compute the relationship matrix

between the PR and the DR. In this case, instead of project team
members, a group of structural engineers was responsible for the spe-
cification of the relationships to ensure that each decision scenario is
analysed in detail. Similarly to the PR computations, each of the
structural engineers is assigned an influence weight (from 0 to 1) ty-
pically based on their role in the design. The project engineers have
more influence on design decisions compared to the team of structural
engineers that only support the analysis. The sum of all relative weights
also needs to be equal to 1. All structural engineers give a perceived
relationship score using the linguistic expressions from Section 2.2
based on their intuition and valuable project experience. After com-
puting the belief structures for all the DR and PR relationships, they
were then combined for each of the DR by converting them into
probability masses using the ER algorithms and the PR ratings pre-
viously computed. The probability masses for each of the two PR were
considered as two pieces of evidence and thus they needed to be

combined. All the probability masses for the DR and PR were combined
in a recursive process that combined all the pieces of evidence. How-
ever, because the weights for the PR were typically interval ratings
(range between two values), the combination process needed to be
repeated for all the interval ratings. Once this process was completed,
the minimum and maximum ratings for each of the DR were generated.

2.3.3. DR interrelationship computations
To compute the final DR priorities, the interrelationships between

the various design requirements were incorporated to ensure the en-
gineering interactions are adequately considered. This step is sig-
nificant as the DR relationships can influence how the final rankings are
prioritised. The interrelationship matrix was developed by the same
team of structural engineers who analysed the DR and PR relationships
using the numerical assessment outlined in Section 2.2. Once the de-
tailed DR relationship ratings are recognised for all the design re-
quirements, the initial DR importance ratings are multiplied with the
interrelationship matrix. Once this step is completed, the normalised
weighted DR ratings are finally computed.

3. Project application and assessment

To test the proposed decision-support model a practical example in
the context of structural design was analysed in this section. A parti-
cular stage of the design development was investigated which involved
the necessary decisions for the prioritisation of structural design para-
meters. Prioritising design parameters helps structural engineers re-
cognise optimisation opportunities. This means that the structural ty-
pology and system for a building have already been identified and
agreed by the project team in advance. The design domain of multi-
storey reinforced concrete (RC) structures was covered in this paper.
However, the proposed method is not limited to the structural material
and applications in other structural domains such as steel or timber
structures could also be investigated in a similar manner.

3.1. Domain description and background

The design and optimisation of reinforced concrete structures in
multi-storey buildings involves several design components that are
often interrelated. Understanding these relationships can be time-con-
suming involving not only engineering analysis but also the assessment
of whole building interactions and construction requirements. Material
properties, column grids, slab thickness, columns sizes and reinforce-
ment detailing are a few of the parameters structural engineers should
consider whilst liaising with the design team.
Fig. 5 shows representative building examples that were used to test

the proposed framework. The tested buildings were organised in two
main blocks that shared the majority of their structural design char-
acteristics and specifications (all buildings were residential and the

Fig. 5. BIM models of building scenarios under investigation.
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structure consisted of flat slab floors supported by in situ columns
which is a typical and widely used solution in the UK). The findings of
this study are not limited to the selection of buildings as the participants
were asked to define generalised design and project characteristics
using their expert knowledge and domain experience. Similar design
procedures should be expected for buildings that fall into the two main
groups of buildings. In addition, the proposed framework could be
adapted to any building context and could be used by any project team.
The general design priorities were determined through the participa-
tory QFD model to satisfy typical project requirements.
Senior project team members were advised and the background

research, briefing, surveying and data collection took place in two de-
cision experiments during June and July 2017. Each one lasted ap-
proximately 2 h. Detailed programme guidelines for the sessions were
sent to the participants beforehand without disclosing any specific in-
formation for the building scenarios. The reason for this was to capture
the participants’ spontaneous opinions and preferences. The first ex-
periment was organised with a multidisciplinary design team (archi-
tects, contractors, etc.) to specify the project related characteristics,
whereas in the second experiment only structural engineers were in-
volved to analyse the engineering design characteristics. During each
experiment the project (PR) and engineering requirements (DR) were
identified first (linguistic assessment) followed by the specification of
their corresponding weights (numerical assessment) using the BIM ap-
plication.

3.2. Project and design requirements specification

3.2.1. Project requirements
To investigate project requirements five qualified members of an

existing project team were invited to participate in the study. The team
members included the architect (Team Member 1), the client (Team
Member 2), the contractor (Team Member 3) and the project manager
(Team Member 4) and the structural engineer (Team Member 5). A
briefing session was organised to answer any questions and explain the
motivations of the study. After the briefing session, the participants
were given access to the BIM application to develop and assess usual
project requirements based on their expertise in the design and delivery
of multi-storey reinforced concrete structures similar to the ones shown
in Fig. 5. The project team agreed that for RC building structures the
most relevant project requirements are associated with time and cost
factors.
Six project requirements were analysed in this study by the project

team’s initial time-cost hierarchy. These are listed in Table 1. Delays in
the construction works should be eliminated as they can have sig-
nificant cost implications and interrupt the completion of site works
(PR1). In addition, for the timely completion of the project, the struc-
tural designs should be rationalised (PR6) and the construction pro-
cesses should be simplified (PR2) as much as possible. Complicated and
expensive solutions should be avoided unless they are absolutely ne-
cessary. At the same time, the overall quality of the resulting design
should be high to eliminate future maintenance needs which would add
to the total costs of the structure (PR5). The successful integration of the
structure with other building systems can significantly reduce the

design development time which means that the construction works
could start earlier (PR4). Costly design decisions and other relevant
design risks could also be effectively managed by a project team that
has experience in the specific building typology and structural system
(PR3).

3.2.2. Design requirements
To meet the PR presented in the previous section, four structural

engineering practitioners of variable seniority were asked to specify and
assess relevant design requirements using the BIM application. Two
senior and two project engineers with extensive experience in RC
structures participated in the study. The structural engineers were
asked to draw from their expertise and list design parameters related to
the superstructure that effectively address the project requirements.
The parameters could involve any engineering component of the
structure that is typically specified at this stage of the design develop-
ment. The participants focused primarily on the structural floors and
the column supports as according to their feedback “minimal changes
can be achieved in the design of the structural cores”. Table 2 summarises
the DRs specified by the four structural engineers and a brief descrip-
tion for each one of the DR. As expected all DRs are quantifiable
components in a typical building structure. This mean that for any
given design configuration the seven DR can be directly obtained from
the structural BIM model which significantly helps the post-processing
and the final decision assessment. The structural engineers recognised
that most of the specified design requirements are interconnected and
thus detailed interrelationships assessment is conducted in Section
3.3.3.

3.3. Numerical evaluation

After the development of the project and design requirements the
numerical assessment is conducted in the following sections im-
plementing the equations from Appendix A. The PR importance weights
matrix is calculated first (WHATs) followed by the relationship and
interrelationship matrices (HOWs).

3.3.1. Importance weights matrix
The importance matrix of WHATs is computed in this section. Once

all the PRs (WHATs) are identified, the corresponding importance
weights were computed using the belief structures obtained from the
five project team members via the BIM application. Table 3 demon-
strates the assessment information for the six PR as obtained from the
participants’ data entries. In the tested case, it is assumed that all
project members have the same relative weight
( = = = =0.2)1 2 5 which might not be always the case in real pro-
jects. For simplicity, the participants received equal treatments. The
weights could be adjusted based on project specific needs.
The final normalised ratings were computed and the results are

shown in Table 3. It is observed that the proposed QFD method with ER
can effectively compute the ambiguity in the data collected from the
design team members. All team members except Team Member 5 have
provided their perceived importance ratings using a range scale. This
clearly verifies that the selection of the ER in the QFD model was a

Table 1
Project requirements (WHATs) specified by the design team.

Project Requirements Description

PR1 – Construction Speed It is the time that is required to complete the assembly and the construction of the structure on site
PR2 – Buildability If the construction complexity of the proposed engineering system is reduced the whole construction programme will be faster and

cheaper
PR3 – Expertise If the design team is experienced the overall construction and design quality can be improved whilst cost could be reduced
PR4 – Integration between disciplines The integration between the structure and other systems such as architectural layouts and services
PR5 – Quality If the overall design and construction delivery is improved the quality assurance of the project is increased
PR6 – Design Standardisation Rationalisation of design elements help reduce errors, speed up the completion of works on site and reduce overall project costs
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necessary functionality. The results for the normalised importance
ratings of the PR suggest that design standardisation is the most im-
portant project requirement for the structure according to the partici-
pants followed by the buildability and systems integration. The results
are not surprising as these are common constraints that structural en-
gineers should address when they specify a structural system. These
results could be attributed to the opinion that simpler structural sys-
tems are easier and cheaper to build. These are not findings that can be
applied to any structural system but provide a good indication of what
is perceived as common practice in the case of RC structures.
Similar observations were also put forward in a study conducted by

Moynihan and Allwood [48] where they identified that rationalisation
and poor buildability are the main reasons for the low structural effi-
ciencies observed in 23 real steel structures they analysed. Finally, the
results obtained suggest that if structural engineers want to optimise a
structural system they should be aware of the implications on the
buildability of the optimised designs. This could be achieved by in-
tegrating more constructability constraints in the formulation of opti-
misation procedures.
A sensitivity analysis was performed to investigate the impact of

different relative importance weights ( )i of each design team member
in the normalised PR importance ratings and to better analyse the
previous results. This is because for the assessment presented in Table 3
equal weights (20%) between the five design team members were as-
sumed. To conduct the sensitivity analysis, various weight distributions
were computed for each of the i weights using 5% increments with
minimum range being 0% and maximum range being 100%. This means
that a project team member could have no power (0%) in the project
decisions or could be entirely in charge of the relevant decisions
(100%). In total 10,686weight combinations were identified using a

Python script for each of the five i and applied in the model to cal-
culate the different PR importance ratings. The lower bound and the
upper bound value of the importance ratings were calculated. The re-
sults from the sensitivity analysis were used to calculate Pearson cor-
relation (r) [49], which is the covariance of the team weights and the
resulting PR ratings divided by the product of their standard deviations.
Fig. 6 shows the results from the sensitivity analysis of all the six PR

ratings showing the corresponding positive and negative correlation
coefficients for the five i weights. It is observed that the upper and
lower bounds of the PR ratings have different sensitivity to the i
weights. The sensitivity analysis also shows that the construction speed
(PR1) is related to the structural engineers’, the architects’ and the
project managers’ decisions whereas the buildability (PR2) is related
mainly to the contractors’ decisions. The technical expertise (PR3) re-
quired for the effective delivery of the project’s structure should be
supported by the structural engineers’ experience. The system integra-
tion (PR4) is a main concern for the architects and the clients, whilst the
overall project quality (PR5) is important for the client and the project
manager. Finally, the design standardisation (PR6) is related to most of
the stakeholders as it requires close coordination between the different
disciplines. These findings are clearly associated with the numerical
assessment provided by the participants in the study (Table 3). How-
ever, after analysing the results it becomes evident that they could be
reasonably generalised and effectively used in similar decision proce-
dures in RC projects as they offer a sensible method to distribute team
roles and priorities amongst the project team members.

3.3.2. Relationship matrix
In this section, the relationship matrix between WHATs and HOWs

was computed. The four structural engineers who participated in the

Table 2
Design Requirements (HOWs) specified by the structural engineers associated with the main components of the superstructure.

Design Requirements Description

DR1– Column Grid The column grid is given in column spacing. Larger column spacing help architects plan the internal layout of the building. However, at
the same time the decision of a structural grid could make the whole structure more inefficient due to larger spans

DR2 – Slab thickness The slab thickness is normally defined in mm and follows a set of discrete options. The selection of slab thickness is related to both the
column grid and column sizes

DR3 – Slab reinforcement The reinforcement rate in the slab is given in kg of steel per m3 of concrete. The slab thickness and the load cases significantly affect the
reinforcement rate

DR4 – Weight of structure The total weight of the structural system is given in tonnes. The structural weight is a combination of the weight of the concrete and the
reinforcement. Lighter structure could reduce construction time and waste and foundation costs

DR5 – Slab reinforcement spacing The spacing of reinforcement is given in mm and it is defined as the distance between reinforcement bars in the slab. Engineers try to
reduce the total number of reinforcement spacing to ease the construction process

DR6 – Structure reinforcement schedule The number of different bar diameters used in the slab and the columns significantly influences buildability and detailing efficiency.
Typically, engineers try to reduce the number of different bar diameters in the structure

DR7 – Column Sizes The area of the columns can affect the design of the slab. In addition, architects try to integrate columns within partitions which can
create design challenges for the engineers

Table 3
Importance ratings for the six project requirements (WHATs).

Team Member 1
(20%)

Team Member 2
(20%)

Team Member 3
(20%)

Team Member 4
(20%)

Team Member 5
(20%)

Weighted average
ratings

Normalised importance
ratings

PR1 5:60%
0–9:40%

7–9:90%
0–9:10%

9:90%
0–9:10%

9 1 5.48–6.92 0.145–0.195

PR2 7:80%
0–9:20%

5–7:85%
0–9:15%

9:90%
0–9:10%

7 5 5.99–7.14 0.158–0.203

PR3 5:50%
0–9:50%

5 5 3:50%
5:50%

7 4.70–5.60 0.123–0.160

PR4 9:90%
0–9:10%

5 7 7 5 6.42–6.60 0.165–0.193

PR5 7:80%
0–9:20%

7 3 5 3 4.72–5.08 0.122–0.148

PR6 9:80%
0–9:20%

5–7:90%
0–9:10%

9:90%
0–9:10%

7 7 6.76–7.84 0.177–0.223
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study provided the numerical assessment of the relationship matrix.
The complete assessment of the relationship between DR and PR is
shown in the Appendix B (Table B.1) using the data the engineers
provided through the BIM application. In this study, it is assumed that
all engineers have equal relative weights ( = = = = 0.251 2 3 4 ).

Similarly to the computation of the project team’s weights presented in
the previous section the intention here was also to obtain an objective
understanding of the model’s behaviour and its ability to compute
group behaviour. Often in a real project condition, the project engineer
could influence more the design decisions over a design engineer and

Fig. 6. Sensitivity analysis results for PR importance ratings (a) PR1 Construction Speed, (b) PR2 Buildability, (c) PR3 Expertise, (d) PR4 Integration between
disciplines, (e) PR5 Quality, (f) PR6 Design Standardisation, where i are the relative influence weights associated with the five members of the design team.

Fig. 7. Combination of evidence for DR1 and computed probability masses at each stage.
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this can be accurately reflected in the weights to model individual’s
power. Once the weighted and averaged belief relationship between DR
and PR are subsequently converted into probability masses. Fig. 7
shows an example of how the model combines probability masses from
the six pieces of evidence (PR) to create joint probability masses. The
figure demonstrates that the sum of probability masses on all five
combination stages is 1, which is a good indication about the accuracy
of the performed computations. In addition, it can be observed how the
distribution of the individual masses changes with the addition of new
information on every stage. For example, at stage 4 C12 which corre-
sponds to belief relationship 1–3:21.25% is added and maintained until
the whole combination is complete. The same process is repeated until
all the combined probability masses for the seven DR are computed.
Because the obtained importance ratings PR in Table 3 are interval
numbers (ranges) the importance ratings for the DR cannot be uniquely
identified. To improve this condition, the two optimisation models are
implemented. The first model searches for the combination of PR rat-
ings from Table 3 for which the DR importance ratings are minimised.
On the other hand, the second model identifies the PR ratings combi-
nations that maximise the DR importance ratings. This means that 14
optimisation simulations (using Eqs. (A.15) and (A.16)) were performed
(2 for each of the DR) to obtain the lower and the upper bounds of the
initial DR importance ratings. They are called initial importance ratings
because the interrelationships between the DR are not incorporated yet.
Fig. 8 shows an example of the optimisation models’ results as

computed for DR1. The resulting lower bound is 6.11 and it was cal-
culated using the following combination of PR weights as represented
in the inf curve {w1=0.185, w2=0.203, w3= 0.123, w4=0.165,
w5=0.148, w6=0.177}, whereas the upper bound is 7.23 with cor-
responding weights in the sup curve {w1=0.145, w2=0.158,
w3=0.160, w4= 0.193, w5=0.122, w6=0.223}. It is observed that
the computations are sensitive to the normalised PR importance ratings
as small changes in their weights can significantly change the results for
the DR. The results also validate the initial hypothesis as the DR1 upper
bound for the weights in the inf curve is 7 which is not the maximum
value whereas the DR1 lower bound for the weights in the suf curve is
6.53 which is not the minimum value either. The lower and upper
bounds for the rest of the DR are computed in a similar manner. The
results from the entire optimisation procedure are summarised in
Table 4.

3.3.3. Interrelationship matrix
The internal relationships of HOWs are calculated herein. As pre-

viously observed there are certain interactions between the design re-
quirements and therefore it is necessary to consider these interactions
in the final computations of the importance rankings. For that reason,
an additional assessment of the interrelationship matrix was calculated
herein using the domain knowledge from the participating structural
engineers. To compute the final importance DR ratings the inter-
relationship matrix is integrated in the results from Table 4. The in-
formation assessment for the interrelationships between DR is shown in
Table B.3. The engineers’ numerical assessment for the interrelation-
ships is weighted and averaged and the results are used as the trans-
formed correlation matrix which is summarised in Table 5. The corre-
lation matrix from Table 5 is used to calculate and normalise the final
importance ratings of DR. The final normalised importance ratings and
rankings are shown in Table 6 and visualised in Fig. 9(a) showing the
average as well as the upper and lower bounds ratings.
Using the probability scheme of Eq. (A.21) the final degree of pre-

ference for the DR is calculated. The results from the numerical as-
sessment of this decision scenario suggest that the column grid (DR1)
and slab thickness (DR2) are the most important decision parameters.
On the other hand, the design requirements that received the lowest
rankings are the reinforcement spacing (DR5) and the reinforcement
bars (DR6). Comparing the final results with the previous analysis
without the interrelationship in Fig. 9(b) it can be seen how necessary is
to consider the interrelationship matrix, especially for the importance
ratings of DR3, DR4, DR5 and DR6 where the largest discrepancies were
observed.
A significant advantage of the proposed decision-support model is

that it can effectively capture what is perceived as the most important
parameters from an engineering specification standpoint as both the
structural grid and the slab thickness are design components that are
specified early in RC projects according to the participant engineers.
The results can also be organised into two main categories:

• The first one involves the design parameters that received higher
rankings and are associated with the main sizing elements of the
structure such as the structural grid, the slab thickness, the columns
area.
• On the other hand, parameters associated with structural detailing
such as the reinforcement parameters of the slab and the columns
comprise the second category that received the lowest rankings in
the model.

These findings provide a good indication of how the design devel-
opment occurs is such structures and it can ultimately help structuralFig. 8. Optimisation results obtained from Eqs. (A.15) and (A.16) for DR1 im-

portance ratings.

Table 4
Importance ratings for DR excluding the correlation matrix.

DR1 DR2 DR3 DR4 DR5 DR6 DR7

Lower bound 6.108 4.992 2.066 3.516 4.059 4.298 5.380
Upper bound 7.226 7.032 3.220 4.873 5.041 5.254 5.908

Table 5
Correlation matrix of DR from Table B.4.

DR1 DR2 DR3 DR4 DR5 DR6 DR7

DR1 9 8.9–9 8.1625–9 7.95–8.9 0 0 8.05
DR2 8.9–9 9 8.55–9 8.775–9 0 0 4.625–5.3
DR3 8.1625–9 8.55–9 9 0.725–1.2 0 0 0.45–1.4
DR4 7.95–8.9 8.775–9 0.725–1.2 9 0 0 7.1–7.6
DR5 0 0 0 0 9 0 0
DR6 0 0 0 0 0 9 0
DR7 8.05 4.625–5.3 0.45–1.4 7.1–7.6 0 0 9
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engineers identify optimisation opportunities within these two cate-
gories.

3.4. Post-processing specification

In the preceding section, the numerical assessment for the decision
criteria that developed from the BIM-integrated QFD process was
computed. Following on from this process the main question that
emerges is “How this numerical data can be used in practical terms by
structural engineers to conduct more informed design decisions?”. All the
obtained design requirements (DR) represent quantitative qualities or
parameters of a structure that can be identified by the structural en-
gineers from the corresponding BIM structural models. For instance, the
total weight of the structure and the reinforcement rates can be ob-
tained directly from the material schedules (BIM quantity take-offs)
whilst the rest of the sizing parameters such as slab thicknesses, column
areas, column grids are found in the BIM families’ properties. This is
significant for the post-processing of the QFD results as the DR nor-
malised importance ratings can be directly used within a MCDM
workflow for the assessment of different structural design alternatives.
A post processing workflow is proposed herein as illustrated in Fig. 10.
Assume there is a structural design scenario with a conflicting set of

optimisation objectives as described in the literature section with the
optimised results represented in a graph similar to the one shown in
Fig. 11. There will be a set of structural alternatives on the Pareto front
that will require further assessment to identify a single solution. For
that purpose a MCDM model that combines quantitative data from the
BIM structural models and the DR weights from the BIM-based QFD
model could be used. The two sets of data are aggregated within the
MCDM model and the final design rankings of the different structural
options could be identified. Thus, the proposed decision-support model
becomes an integral component of a comprehensive decision workflow
that utilises structural optimisation analysis, BIM technologies and QFD

data combined with MCDM procedures. The main benefit of such a
workflow is that structural optimisation can be effectively integrated
with decision processes which could ultimately enhance the use of such
procedures in practice.

3.5. Shared domain knowledge

A follow up session with the project team took place and the results
obtained from the analysis of the QFD model were presented whilst
future guidelines were also reviewed. After analysing the results all
participants agreed that the proposed method have significantly helped
them synthesise the main project priorities associated with the build-
ings structure. Furthermore, the structural engineers verified that
through the QFD approach they managed to get a better understanding
of what is important for the project team. Both these observations are
particularly useful as domain knowledge can be effectively shared
through the QFD model allowing a formal and systematic decision
structure. In addition, this suggests that decision-makers may be re-
ceptive to new decision hierarchies that help them create a shared
understanding of the decision problem whilst collectively establish
domain knowledge necessary for the final decision-making. Generally,
shared domain knowledge can make the whole decision process and
design development more efficient. Finally, a few recommendations for
further development were also provided by the participants: BIM -
knowledge-based systems that embed the results from the QFD model
could further engage the design team and help them assess the outputs
from the entire process.

4. Discussion

By enabling knowledge and information transfer between dis-
ciplines, decision-making practices could effectively capture domain
knowledge and offer more integrated solutions to complex structural

Table 6
Final importance ratings and ranking order.

DR1 DR2 DR3 DR4 DR5 DR6 DR7

Importance Ratings Lower Bound 187.546 172.708 116.115 163.717 36.538 38.683 146.584
Upper Bound 248.271 232.509 171.451 220.243 36.538 38.683 190.174

Normalised Importance Ratings Lower Bound 0.1741 0.1602 0.1073 0.1514 0.0321 0.0339 0.1339
Upper Bound 0.2691 0.2523 0.1869 0.2398 0.0424 0.0449 0.2100

Average 0.2216 0.2062 0.1471 0.1956 0.0373 0.0394 0.1720

Ranking 1 2 5 3 7 6 4

Fig. 9. (a) Final ranking of the engineering design requirements – HOWs (average values with lower and upper boundaries), (b) comparison of normalised im-
portance ratings with and without interrelationship matrix.
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design optimisation problems. By identifying the decision priorities for
the structural system, it is anticipated that structural engineers would
be able to effectively use them when assessing optimised designs.

4.1. Method evaluation

The methodology of the proposed decision-support model was as-
sessed against Ullman’s [50] hierarchy for robust decision-making.
Ullman [51] suggested that decision-making models utilise three fun-
damental categories of information comprising data, models and
knowledge. To obtain the knowledge necessary to make a decision the
relationships between the data are firstly analysed through explicit
model representations followed by understanding and evaluating the
behaviour of such models. Specifically for the development of decision
criteria which is the main focus of this paper, Ullman recommended
QFD concepts to define and measure the important features of a deci-
sion problem. The method in this paper effectively builds on Ullman’s
hierarchy: numerical and linguistic data are implemented to identify
project and design requirements through a participatory QFD model
whilst decision insights are obtained through the analysis of the QFD
model using integrated evidential reasoning algorithms. The study aims
to fill the gap in the knowledge regarding the use of BIM in the

optimisation and decision-making of the buildings structures. The use
of BIM technologies brought together the different features of the
hierarchy and improved the decision procedures in three main direc-
tions: (1) Design Integration, (2) Enhanced Communication, (3) Deci-
sion-based Optimisation Delivery.

4.2. Design integration

The design integration opportunities were recognised as the main
advantage of the proposed participatory decision process against con-
ventional practices by the participants of the study. An illustrative de-
sign situation was highlighted during the experiment: on most instances
the column grids are specified by the architects to accommodate room
layouts and planning requirements. This leaves structural engineers
with limited options when it comes to the optimisation of the column
grid. This approach could restrict the design efficiency or even worse
could result in uneconomic or inefficient structural solutions. Following
on from the pilot study the team architect seemed to be open to more
explicit structural engineering advice especially during the early design
stages when the selection of column grid takes place. Similar design
integration opportunities with the structural systems could be enabled
via the proposed BIM application. Decision priorities that are collec-
tively planned and identified by the project team are translated in de-
tailed design characteristics which are subsequently can be stored in the
shared BIM models and relevant knowledge-based systems. Individual
team members could access these design priorities and review whether
trade-off solutions that improve design efficiencies are obtainable.
Further synergies could be identified between structural engineers and
architects (column grids and element sizes), structural engineers and
contractors (construction sequencing), structural engineers and M&E
engineers (services-structures integration).

4.3. Enhanced communication

Extending the capabilities of BIM applications to further integrate
them with decision-making processes and enhance the communication
amongst the project team members especially during the early stages of
the design development was perceived as a positive transformation by
the participants of this study. As it was observed in the decision
workflow in Section 3.4 BIM applications create interactions between
structural optimisation, decision-making procedures and project teams.
This is particularly important as the adoption of such decision support
models are expected to enhance the collaboration of the decision-

Fig. 10. Workflow for post processing of the results.

Fig. 11. Optimised structural alternatives for conflicting objective functions.
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makers through interactive BIM applications and possibly BIM-enabled
knowledge-based systems. Overall, the intention of the proposed re-
search is not only to challenge the current decision practice in the
structural engineering domain but also to encourage further integration
of quality-based decision support models in the construction industry as
a whole. Similar research efforts in other structural domains such as
steel or timber construction could be realised through similar BIM-
based decision procedures.

4.4. Decision-based optimisation

The numerical example presented in Section 3.3 exhibited how the
decision support model could be implemented in real optimisation oc-
currences in the context of RC structures. The results from the study
clearly indicated that the decision-makers value buildability and con-
structability as the most important parameters for the structural sys-
tems. This is significant as it can inform future policies on structural
optimisation procedures. New decision-based optimisation models
could be formulated to incorporate decision-makers’ feedback. In ad-
dition, new computational paradigms that incorporate constructability
functions as algorithmic constraints would be required to increase the
adoption of structural optimisation procedures in practical design
problems. BIM-enabled structural optimisation frameworks would have
a primary role in the development of decision-based optimisation
models as they can be directly integrated in a decision workflow as the
one shown in Section 3.4 to generate structural optimised alternatives.
In that way, every aspect associated with the decision making of
building structures will be facilitated and managed with BIM related
applications.

5. Conclusions

The design optimisation and decision-making analysis of building
structures could be complicated due to the plethora of stakeholders that
often have conflicting requirements. This could inherently create a lot
of inefficient designs as structural engineers cannot easily specify key
design optimisation parameters in a project brief. To address this
drawback, a novel decision support model that assists structural en-
gineers and other stakeholders prioritise design criteria based on pro-
ject specific requirements was proposed in this paper as part of a
comprehensive decision-based optimisation model. The different pro-
ject and design requirements were modeled using a participatory QFD
method which was adapted for this purpose.
Active stakeholder involvement was facilitated via a custom BIM

application which was used to collect data relevant to the QFD model.
Evidential reasoning algorithms under uncertainty were implemented
within the QFD model to effectively process the data collected from the
BIM application and create the final numerical assessment of the

engineering design priorities. The real value of the BIM integration is
that it allows different design teams to easily repeat the decision pro-
cess at the beginning of every project. In this paper, the proposed de-
cision support model was tested and verified in decision experiments
analysing the interactions of real design teams.
The decision experiments provided new insights and suggestions on

how the proposed participatory decision model can be practically used
as an effective design prioritisation framework and optimisation gui-
dance in the context of reinforced concrete building structures by re-
cognising and computing project and design engineering requirements.
In the conducted decision experiments, the (1) Construction speed, (2)
Buildability, (3) Expertise, (4) Integration between disciplines, (5)
Quality and (6) Design standardisation were recognised as the main
project characteristics relevant to the structural design. Between those
six project requirements for the structure, the most important one was
the design standardisation followed by the buildability and systems
integration.
Furthermore, seven common structural design requirements that

address the aforementioned project requirements were identified
during the conducted experiments: (1) Column grid, (2) Slab thickness,
(3) Slab reinforcement, (4) Structural weight, (5) Slab reinforcement
spacing, (6) Structure reinforcement schedule, and (7) Column sizes.
After analysing the relationships between the project and design re-
quirements as well as the interrelationships between the design re-
quirements, it was concluded that the column grid, the slab thickness,
and the structural weight were the most important design character-
istics of the tested structural typologies and they should be prioritised
early in the design process.
Overall, the study suggested that by enabling knowledge and in-

formation transfer between the different disciplines involved in the
decision-making processes of building structures, domain knowledge
could be effectively captured, whilst more integrated solutions to
complex structural design optimisation problems could be articulated.
Therefore, by identifying decision priorities for the structural system
early in the project development, it is anticipated that structural en-
gineers would be able to effectively use them when assessing designs
obtained from optimisation procedures.
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Appendix A. Evidential reasoning algorithms within QFD was implemented from [42,47]

E S( )i
l( ) is the expected score obtained from the belief structure of a decision-maker l when assessing the relative importance of a project

requirement PRi. The total score is the sum of the expected scores from all project team members L and it can be represented as:
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where l is the relative weight of the team member l. Based on this equation the relative importance of PRi can be defined as:
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The relationship matrix (Rij, i = 1,…,m, j= 1,…n) between PR and DR is computed using the structural engineers’ belief structures. Assuming
that M structural engineers are participating in this study each of them is given a weight > =k M0 ( 1 , )k with == 1k

M
k1 . The belief structures

recorded by the k-th team member is represented by = =H p N q N{( , ), 0 , ; 0 , }pq pq
k( ) where pq

k( ) are the belief degrees to which the relationship
Rij is evaluated to the interval rating Hpq.
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The crisps ratings defined for the relationship assessment are Hpp for p=0…, N whereas the interval ratings are Hpq for p= 0…, N and
q= p+1…, N. The matrix in Eq. (A.3) shows the 21 possible relationships that can exist between the PR and the DR. Only six crisp ratings exist in
the matrix consisting of H00, H11, H22, H33, H44 and H55. The remaining 15 ratings are interval.

= =H

H H H H H H
H H H H H

H H H H
H H H

H H
H

0 0 1 0 3 0 5 0 7 0 9
1 1 3 1 5 1 7 1 9

3 3 5 3 7 3 9
5 5 7 5 9

7 7 9
9

00 01 02 03 04 05

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55 (A.3)

The expected belief degree for all the M team members regarding every relationship between PR and DR is computed using the following
equation:

= = =
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The interrelationship matrix uses belief structures from the engineering team and it is computed using Equation (A.5)
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where apq
k( ) is the belief degree to which rjk is assessed to the interval Hpq.

After computing the belief structures for all the relationships Rij they are combined for each of the DR. For two belief structures
= = =R H R p N q p N{( , ( )), 0, , , , , }i j pq pq i j1 1 and = = =R H R p N q p N{( , ( )), 0, , , , , }i j pq pq i j2 2 showing the relationship between project

requirements PRi1 and PRi2 related to a design requirement and wi1 and wi2 are their normalised weights, the belief structures are converted into
probability masses using the equations below:

= = =m w R p N q p N( ), 0, , ; , ,pq i pq i j1 1 (A.6)
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The above probability masses are combined using Eqs. (A.10), (A.11) and (A.12). The procedure to provide a set of joint probability masses is
based on the evidential reasoning approach and Dempster-Shafer theory of evidence which uses two pieces of evidence to create joint probability
masses Cpq = =p N q p N( 0, , , , , ) and CH [47] using the following equations:
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Final normalised combined probability mass is computed using:
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The overall assessment is computed by an expected interval which represents the importance rating of the DR:
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Because the importance weights of PR that are computed by Eqs. (A.1) and (A.2) could be intervals the importance rating of DR obtained by Eq.
(A.14) cannot be uniquely identified. To improve this drawback the following two optimisation models that consider the PR as decision variable are
used to identify the lower and upper limits for all the DR.
Lower bound:
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where pq is identified by Eq. (A.13). The models in Eqs. (A.15) and (A.16) are computed using the Excel Solver for each of the DR and the final
weights are used in the next step where the interrelationship matrix between the DR is integrated.
The most common way to incorporate the interrelationship matrix is shown below after [42]:
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where R'ij is the adjusted relationship between PR and DR and rkj is the interrelationship between DR. Using Eq. (A.17) the importance rating of
DR can be obtained from the equation:
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Where DR' j and DRj are the importance ratings with and without the interrelationship matrix. Assuming that E r( )kj is the expected score matrix
obtained from Eq. (A.5) and = =E DR E E k n( ) [ , ], 1, ..,k k

L
k
U is the initial DR importance ratings obtained by solving Eqs. (A.15) and (A.16) the final

importance rating is computed from Eq. (A.18) as:

= =
=

DR E DR E r j n' ( ) ( ), 1, ,j
k

n

k kj
1 (A.19)

The last equation computes the technical importance of the design requirements however due to the uncertainties associated with the interval
rankings the results need to be normalised. The equation below is used to normalise the design importance ratings:
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where DR( )j
L' and DR( )i

U' are the lower and upper boundaries ofDRj
' .

Once the normalised weights for the design requirements have been obtained their priority rankings can been estimated. In this study the
equation proposed by Wang et al [52] is used to compute the priority degree as shown below:

> =
+

P a b max a b max a b
a a b b

( ) (0, ) (0, )
( ) ( )

2 1 1 2

2 1 2 1 (A.21)

where =a a a[ , ]1 2 e and =b b b[ , ]1 2 are two positive interval numbers.

Appendix B. Comprehensive preference data collected from the BIM application

See Tables B.1–B.4.

Table B.1
Assessment on the relationships between DR and PR.

DR1 DR2 DR3 DR4 DR5 DR6 DR7

PR1 TM1 (25%) 5:80% 5 5 5 7 9 7
TM2 (25%) 5 Unknown Unknown Unknown 9 7 7
TM3 (25%) 5 3 5 5 7 7 3–5
TM4 (25%) 9 5 7 3 5 5–7: 80%

9:20%
5:70%
7:30%

PR2 TM1 (25%) 5 7:90% 3 5 7 9 7
TM2 (25%) 3 Unknown 3–5 7–9 9 7 7
TM3 (25%) 3 5 7:75%

5:25%
Unknown 7 5:85%

7:15%
3–5

TM4 (25%) 5–7 5 7 5 5–7 7 3

PR3 TM1 (25%) 7 7 0 3 1 1 7
TM2 (25%) 9 5:90% 0 1–3 0–1 0–1 5
TM3 (25%) 7 5 0 5 0–1 0–1 3–5
TM4 (25%) 7:85% 7 0 5 3 3 7

PR4 TM1 (25%) 9 7 0 3 1 1 5

(continued on next page)
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Table B.1 (continued)

DR1 DR2 DR3 DR4 DR5 DR6 DR7

TM2 (25%) 7 9 0 1–3 1 1 3
TM3 (25%) 7 Unknown 0 5 0–1 0–1 5–7
TM4 (25%) 9 9 0 3 3 3 7

PR5 TM1 (25%) 5 3 0 3 1 1 5
TM2 (25%) 5 1 0 Unknown 0–1 1 3
TM3 (25%) 1–3:85%

5:15%
1 0 3 0–1 0–1 5:80%

3:20%
TM4 (25%) 3 Unknown 0 1–3:80% 3 5 5

PR6 TM1 (25%) 7 7:90% 3 5 7 7 7
TM2 (25%) 9:80% 9 3 3 9 9 7
TM3 (25%) 7 5 5 5 5 7 5–7
TM4 (25%) 9 9 5–7 5 9 9 7

Table B.2
Belief relationship matrix between DR and PR.

DR1 DR2 DR3 DR4 DR5 DR6 DR7

PR1 5:70%
9:25%
0–9:5%

3:25%
5:50%
0–9:25%

5:50%
7:25%
0–9:25%

3:25%
5:50%
0–9:25%

5:25%
7:50%
9:25%

7:50%
9:30%
5–7:20%

7:57.5%
5:17.5%
3–5:25%

PR2 3:50%
5:25%
5–7:25%

5:50%
7:22.5%
0–9:27.5

3:25%
5:6.25%
7:43.75%
3–5:25%

5:50%
7–9:25%
0–9:25%

7:50%
9:25%
5–7:25%

9:25%
7:53.75%
5:21.25%

7:50%
3:25%
3–5:25%

PR3 7:71.25%
9:25%
0–9:3.75%

7:25%
9:50%
0–9:25%

0 3:25%
5:50%
1–3:25%

1:25%
0–1:50%
3:25%

1:25%
0–1:50%
3:25%

7:50%
5:25%
3–5:25%

PR4 9:50%
7:50%

9:50%
7:25%
0–9:25%

0 3:50%
5:25%
1–3:25%

1:50%
3:25%
0–1:25%

1:50%
3:25%
0–1:25%

5:25%
3:25%
7:25%
5–7:25%

PR5 5:53.75%
3:25%
1–3:21.25%

3:25%
1:50%
0–9:25%

0 3:50%
1–3:20%
0–9:30%

3:25%
1:25%
0–1:50%

1:50%
0–1:25%
5:25%

5:70%
3:30%

PR6 7:50%
9:45%
0–9:5%

9:50%
7:22.5%
5:25%
0–9:2.5%

3:50%
5:25%
5–7:25%

5:75%
3:25%

9:50%
7:25%
5:25%

9:50%
7:50%

7:75%
5–7:25%

Table B.3
Assessment on the interrelationships between DR.

DR1 DR2 DR3 DR4 DR5 DR6 DR7

DR1 TM1 (25%) 9 9 9:85% 9:80%
7:20%

0 0 9

TM2 (25%) 9 9:80% 9 9:80% 0 0 9
TM3 (25%) 9 9 9 7–9 0 0 7:90%

9:10%
TM4 (25%) 9 9 7–9 9 0 0

DR2 TM1 (25%) 9 9 9:80% 9 0 0 5:80%
TM2 (25%) 9:80% 9 9 9 0 0 5
TM3 (25%) 9 9 9 9 0 0 5
TM4 (25%) 9 9 9 9:90% 0 0 5:90%

DR3 TM1 (25%) 9:85% 9:80% 9 1:90% 0 0 1
TM2 (25%) 9 9 9 1 0 0 0–1
TM3 (25%) 9 9 9 1 0 0 0–1
TM4 (25%) 7–9 9 9 0–1 0 0 1:80%

DR4 TM1 (25%) 9:80%
7:20%

9 1:90% 9 0 0 7:80%
9:20%

TM2 (25%) 9:80% 9 1 9 0 0 7
TM3 (25%) 7–9 9 1 9 0 0 7

(continued on next page)
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