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Abstract Introduction: We studied, using a data-driven approach, how different combinations of diagnostic
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tests contribute to the differential diagnosis of dementia.
Methods: In this multicenter study, we included 356 patients with Alzheimer’s disease, 87 fronto-
temporal dementia, 61 dementia with Lewy bodies, 38 vascular dementia, and 302 controls. We
used a classifier to assess accuracy for individual performance and combinations of cognitive tests,
cerebrospinal fluid biomarkers, and automated magnetic resonance imaging features for pairwise dif-
ferentiation between dementia types.
Results: Cognitive tests had good performance in separating any type of dementia from controls. Ce-
rebrospinal fluid optimally contributed to identifying Alzheimer’s disease, whereas magnetic reso-
nance imaging features aided in separating vascular dementia, dementia with Lewy bodies, and
frontotemporal dementia. Combining diagnostic tests increased the accuracy, with balanced accu-
racies ranging from 78% to 97%.
Discussion: Different diagnostic tests have their distinct roles in differential diagnostics of dementias.
Our results indicate that combining different diagnostic tests may increase the accuracy further.
� 2018TheAuthors. Published byElsevier Inc. on behalf of theAlzheimer’sAssociation. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Differential diagnosis; Biomarkers; Diagnostic test assessment; Clinical decision support system; CSF; MRI;
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1. Background

Dementia affects an increasing number of people world-
wide [1]. Alzheimer’s disease (AD) is the most frequent
cause of dementia accounting for 50%–70% of dementia
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cases [2]. Other common causes of dementia include
vascular dementia (VaD), dementia with Lewy bodies
(DLB), and frontotemporal dementia (FTD) [3–6]. To
ensure appropriate pharmacological treatment, counseling,
and inclusion in clinical trials, early and precise diagnosis
of the underlying disease causing dementia is important.

Cognitive profiles differ between dementia types showing
primarily memory impairment in AD, visuospatial and exec-
utive dysfunction in DLB, delayed cognitive processing in
VaD, and mainly language, executive, and behavioral
dysfunction in FTD, although considerable overlap exists
[7,8]. Progress in biomarker development has provided
new disease insights and improved accuracy of dementia
diagnosis. This has led to an increasing role of biomarkers,
such as those obtained from cerebrospinal fluid (CSF)
measures and structural magnetic resonance imaging
(MRI), in diagnostic criteria and guidelines [3–6]. CSF
biomarkers can provide evidence for the presence of b
amyloid 1–42 (Ab42) accumulation and downstream
neuronal dementia in AD (tau and tau phosphorylated at
threonine 181 [p-tau]), whereas isolated elevation of tau
may also be seen in FTD, and intermediate concentrations
of CSF biomarkers often occur in DLB and VaD [9,10].
On structural MRI, typical abnormalities for different
causes of dementia have been described, such as
hippocampal and parietal atrophy in AD, frontal-temporal
atrophy in FTD, and profound white matter hyperintensities
(WMHs) in VaD, whereas DLB presents with unspecific
mild generalized atrophy [11–13].

Despite these advances, differential diagnosis of demen-
tia in terms of accurately identifying the underlying etiology
remains challenging. First, biomarkers for other types of de-
mentia are less developed than those for AD; and second,
there is often overlap in underlying pathology and clinical
presentation as most patients do not present in an archetyp-
ical fashion [9,11]. In addition, diagnostic guidelines remain
relatively general and address one disease only. In reality, a
clinician is often faced with a complex differential
diagnostic task of simultaneously evaluating a range of
potential diagnoses and combining data from multiple tests
and biomarkers. More knowledge on performance and
value of biomarkers in the differential diagnosis of
dementia is therefore needed.

Combination of diagnostic tests, such as MRI and CSF,
has been studied for AD and progression, but not previously
for differential diagnosis in a multicenter cohort [14,15]. We
used a classifier based on the Disease State Index (DSI) [16]
in a large cohort from four European memory clinics to
differentiate between controls and patients with AD, FTD,
DLB, and VaD. We used a data-driven approach to explore
the diagnostic accuracy of commonly used clinical diag-
nostic tests, including cognitive tests, CSF biomarkers, and
automated MRI features. Furthermore, we evaluated perfor-
mance of all diagnostic tests combined and which combina-
tions of tests were optimal for each pairwise comparison of
diagnoses.
2. Methods

2.1. Subjects

We included 844 subjects, which were pooled from four
different memory clinic-based cohorts: 543 subjects from
the Amsterdam Dementia Cohort at the VU Medical Center
Amsterdam [17,18], 112 subjects from the Danish Dementia
Research Center at Copenhagen University Hospital,
Rigshospitalet, 139 subjects from the Department of
Gerontology and Geriatrics of the University of Perugia,
“S. Maria della Misericordia” Hospital of Perugia, and 50
subjects from the Department of Neurology from the
University of Eastern Finland. Data from Rigshospitalet,
University of Perugia, University of Eastern Finland, and
44 subjects from VU Medical Center had been collected as
part of the PredictND study [19]. The remainder of VUmc
subjects was included from Amsterdam Dementia Cohort.
The pooled cohort consisted of subjects with the following
diagnosis: 326 AD, 87 FTD, 61 DLB, 38 VaD, and 302 con-
trols with subjective cognitive decline (SCD) (Table 1). Sub-
jects were eligible for inclusion if brain MRI was available.

All subjects had received a standardized workup,
including medical history, physical, neurological and neuro-
psychological assessment, MRI, laboratory tests, and a sub-
set examination of CSF. Individuals were diagnosed as SCD
when the cognitive complaints could not be confirmed by
cognitive testing and criteria for mild cognitive impairment
or dementia were not met. The diagnoses were established
based on the following diagnostic criteria: the criteria of
the NIA-AA for AD dementia [3], the Rascovsky and
Gorno-Tempini criteria for FTD [5,20], the NINDS-
AIREN criteria for VaD [4], and the McKeith criteria for
DLB [6,21]. All patients had provided written informed
consent for their data to be used for research purposes.
2.2. Clinical assessment
2.2.1. Neuropsychology
We used the Mini–Mental State Examination for global

cognitive functioning [22]. For memory, the Consortium to
Establish a Registry forAlzheimer’s Diseaseword listmemory
test and the Rey Auditory Verbal Learning Task were included
[23,24]. To measure cognitive processing speed and executive
functioning, we used Trail Making Tests A andB (TMT-A and
TMT-B, respectively) [25]. Language and executive func-
tioning were tested by category fluency (animals) [26].
Missing data ranged from n5 1 (Mini–Mental State Examina-
tion) to n5 31 (4%) (memory). To pool the different memory
tests, we standardized Rey Auditory Verbal Learning Task and
Consortium to Establish a Registry for Alzheimer’s Disease
memory tests per center to z-scores using SCD subjects.

2.2.2. Cerebrospinal fluid biomarkers
The CSF biomarkers Ab42, total tau, and p-tau were

measured with commercially available ELISA tests



Table 1

Baseline characteristics according to baseline diagnosis

n

Control,

n 5 302

AD,

n 5 356

FTD,

n 5 87

VaD,

n 5 38

DLB,

n 5 61 Group-wise comparisons when significant

Female, n (%) 844 168 (56) 201 (56) 39 (45) 14 (37) 9 (15) Controls, AD , FTD, VaD , DLB

Age, in years 844 63 6 9 68 6 8 63 6 7 72 6 8 69 6 8 Controls, FTD , AD, DLB, VaD

Cognitive tests

MMSE 840 29 6 1 22 6 4 24 6 5 24 6 4 23 6 4 Controls . FTD, VaD, DLB . AD

Memory, learning 803 44 6 10 23 6 9 27 6 8 25 6 8 25 6 9 Controls . FTD . AD, VaD, DLB

Memory, recall 803 9 6 3 2 6 2 4 6 3 3 6 3 4 6 3 Controls . FTD, VaD, DLB . AD

TMT-A, in seconds 843 38 6 17 93 6 76 70 6 58 112 6 82 115 6 81 Controls , FTD , AD, VaD, DLB

TMT-B, in seconds 829 86 6 42 228 6 84 188 6 93 254 6 69 261 6 73 Controls , FTD , AD, VaD, DLB

Animal fluency 815 24 6 7 13 6 5 12 6 7 11 6 4 13 6 5 Controls . AD, FTD, VaD, DLB

CSF

Ab42, pg/mL 596 922 6 274 530 6 167 918 6 252 727 6 264 741 6 264 Controls, FTD . VaD, DLB . AD

Total tau, pg/mL 582 307 6 178 690 6 407 330 6 126 314 6 162 344 6 222 Controls, FTD, VaD, DLB , AD

p-tau, pg/mL 592 50 6 21 85 6 39 44 6 18 44 6 18 51 6 28 Controls, FTD, VaD, DLB , AD

MRI

Hippocampus, mL 844 7.0 6 0.8 5.7 6 0.9 5.7 6 1.0 6.0 6 1.0 6.3 6 0.9 Controls . DLB . AD, FTD, DLB

Lateral ventricle, mL 844 29 6 15 49 6 20 46 6 20 61 6 28 43 6 15 Controls , AD, FTD, DLB , VaD

Inferior lateral ventricle, mL 844 1.3 6 0.5 2.5 6 1.1 3.1 6 2.0 3.0 6 1.5 .2.0 6 0.9 Controls , DLB , AD, FTD, VaD

Cortex, mL 844 510 6 34 462 6 29 462 6 35 453 6 29 471 6 22 Controls . AD, FTD, DLB . VaD

Frontal cortex, mL 844 201 6 15 185 6 13 179 6 19 177 6 14 189 6 10 Controls . AD, DLB . FTD, VaD

Temporal cortex, mL 844 125 6 9 109 6 10 105 6 15 114 6 10 115 6 7 Controls . VaD, DLB . AD, FTD

Medial temporal cortex, mL 844 20 6 2 16 6 2 16 6 3 18 6 3 18 6 2 Controls . VaD, DLB . AD, FTD

Parietal cortex, mL 844 111 6 9 99 6 8 106 6 9 97 6 7 101 6 6 Controls . FTD . AD, VaD, DLB

Occipital cortex, mL 844 74 6 7 68 6 7 72 6 7 66 6 8 67 6 6 Controls, FTD . AD, VaD, DLB

Anterior versus posterior index 844 -0.3 6 0.8 -0.0 6 1.1 -2.1 6 1.7 -0.3 6 1.0 0.0 6 0.8 Controls, AD, VaD, DLB . FTD

WMH, mL 844 2.8 6 4.7 6.1 6 9.2 3.8 6 8.7 34.9 6 26.7 4.4 6 6.0 Controls , AD, FTD, DLB , VaD

Cortical infarcts, mL 844 0.0 6 0.4 0.1 6 2.1 0.3 6 1.8 4.1 6 6.8 0.0 6 0.0 Controls, AD, FTD, DLB , VaD

Lacunar infarcts, mL 844 0.0 6 0.0 0.0 6 0.1 0.0 6 0.0 0.2 6 0.2 0.0 6 0.0 Controls, AD, FTD, DLB , VaD

Abbreviations: AD, Alzheimer’s disease; FTD, frontotemporal dementia; VAD, vascular dementia; DLB, dementia with Lewy bodies; MMSE, Mini–Mental

State Examination; TMT, Trail Making Test; Ab42, b amyloid 1–42; p-tau, tau phosphorylated at threonine 181;WMH, white matter hyperintensity; MRI, mag-

netic resonance imaging; RAVLT, Rey Auditory Verbal Learning Task; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease.

NOTE. Data are presented as mean6 SD, unless otherwise specified. Group differences were calculated using one-way ANOVAwith post hoc Bonferroni for

continuous variables. For categorical variables, c-square test was used. P , .05 5 significant.

NOTE.Memory: RAVLT values, using z-scoring for thosewith only CERAD.MRI: volumes are defined from image segmentations produced by amulti-atlas

segmentation algorithm, and we report the sum of left and right, in mL.

NOTE. Voxel- and tensor-based morphometry features are computed separately for each disease pairs and reported in Appendix; also ROI-based grading

consists of eight features, so reported in the Supplementary Appendix. MRI volumes are adjusted for head size.
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(Innotest, Fujirebio, Ghent, Belgium) locally according to
standard procedures. Raw data values were used for analysis.
Analysis showed comparable values between the centers,
and no further correction were performed (see
Supplementary Fig. 3A in Appendix). CSF data were avail-
able for 596 (71%) of the subjects.

2.2.3. Imaging biomarkers
MRI scans were acquired on 1.5 T or 3 T scanners with

slice thickness of 3D T1-weighted images ,1.5 mm. MRI
scans were available for all subjects. Imaging biomarkers
were extracted from T1-weighted and fluid-attenuated inver-
sion recovery images using image quantification methods,
described in detail in [27].

Volumes of 133 brain regions were defined from image
segmentations produced by a multi-atlas segmentation
algorithm [28]. We used the volumes of the following 10
clinically relevant regions as imaging biomarkers: hippo-
campus, inferior lateral ventricle, lateral ventricle, frontal
cortex, medial temporal cortex, temporal cortex, temporal
pole, parietal cortex, occipital cortex, and whole cortex.
Furthermore, we derived from the volumes an imaging
biomarker called anterior versus posterior index, which is
defined as a ratio of the volumes at frontal and temporal
lobe regions to the volumes at parietal and occipital lobe
regions [29].

In addition to volumetry, three other quantification
methods were applied to T1 images: voxel-based morphom-
etry (VBM), tensor-based morphometry (TBM), and auto-
mated region-of-interest (ROI)–based grading. VBM
measures the local concentration of gray matter [30], and
TBM measures the local volume differences between im-
ages [31]. For each pair of diagnostic groups, we defined a
pattern of locations where significant differences are found
in the local concentration or volume. VBM and TBM indices
used in this work measure howwell a patient fits to these pat-
terns. The ROI-based grading reconstructs a certain ROI of
the patient image as a weighted linear combination of the
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corresponding ROIs from a library of reference images. In
addition to the image itself, each reference image contains
information about the subject’s diagnostic label. The grading
feature is defined as the share of the weights from the linear
model having a certain diagnostic label. Eight grading fea-
tures that describe the similarities to SCD, AD, FTD, and
DLB data set images in the hippocampus and frontal lobe re-
gions were computed [32]. Finally, vascular burden was
measured with three features from fluid-attenuated inversion
recovery images: volume of WMHs, volume of cortical in-
farcts, and volume of lacunar infarcts [27]. Additional tech-
nical information is available in Appendix.
2.3. Disease State Index

The DSI classifier used in this study is composed of two
components: fitness and relevance [33]. Fitness of diagnostic
test i, as a function of diagnostic test value x, is defined as

fiðxÞ5 FNiðxÞ
FNiðxÞ1FPiðxÞ ;

where FN is the false negative rate and FP is the false posi-
tive rate if the value x is used to classify the diagnostic test. A
fitness value of 0 indicates a high similarity to the negative
group, for example, controls (or SCD), whereas a fitness
value of 1 indicates a high similarity to the positive group,
for example, AD. Relevance of a diagnostic test i defines
how good that diagnostic test (combination) is in differenti-
ating the negative and positive groups. Relevance is defined
as sensitivity1 specificity2 1. Finally, DSI is computed for
multiple diagnostic tests i as

DSI5

P
irelevancei ! fitnessiP

irelevancei

The DSI is a scalar value between 0 and 1 describing the
similarity of the patient’s data to comparison of each pair of
diagnostic groups in the database [16,33]. In classification,
the cutoff value is 0.5. The DSI classifier is an ensemble
classifier, which by definition is able to deal with missing
data and no imputation is needed.
2.4. Data analysis

Baseline characteristics were compared using parametric
and nonparametric tests where appropriate. MRI volume
biomarkers were corrected for the head size [34], age, and
sex [35]. Remaining markers were corrected for age and
sex [35]. We assessed the performance of each individual
diagnostic test in differentiating between diagnostic groups
through pairwise comparison. Subsequently, we assessed
the performance when combining the three groups of tests
(cognitive tests, CSF biomarkers, and MRI features) in
different compositions. We used the following performance
metrics: balanced accuracy and area under the receiver oper-
ating characteristic curve (AUC). For two diagnostic groups,
balanced accuracy can be defined simply as the average of
sensitivity and specificity for one threshold and addresses
the imbalance in the number of cases between different diag-
nostic groups. The AUC provides the percentage of area un-
der the receiver operating characteristic curve representing
true positive rates versus false positive rates across all
possible thresholds. All performance measures were
computed using 10-fold cross-validation. The disease-
specific patterns used in the VBM and TBM indices (see
Section 2.2.3) were defined within this same cross-
validation procedure.

Feature selection is often applied because certain diag-
nostic tests can become redundant or irrelevant when using
multiple tests. In DSI, less-relevant diagnostic tests have
small weights, but they are not totally excluded from compu-
tations as happens in feature selection. Therefore, we
applied finally a separate feature selection step to see which
tests become selected in the optimal combination. Diag-
nostic tests were added one-by-one if the AUC increased.
When the optimal sets of diagnostic tests are searched using
cross-validation, each fold leads to a slightly different set of
tests. Therefore, we applied feature selection to all data
without cross-validation.

P , .05 was considered significant. Statistical analyses
were performed using SPSS, version 22 (IBM, Armonk,
NY). A MATLAB toolbox created by Cluitmans et al. [36]
was used in the DSI analyses. The analyses were performed
in MATLAB, version R2015b (MathWorks, Natick, MA).
3. Results

3.1. Subjects

Baseline characteristics according to diagnostic groups
are presented in Table 1. Based on raw data comparison, con-
trols performed better on neuropsychological testing and
showed less atrophy on MRI features than all types of de-
mentia. Subjects with AD scored lowest on memory tests
and had lower Ab42 and higher tau CSF biomarkers. Sub-
jects with VaD were older, showed most vascular changes
in MRI features (WMHs, and cortical and lacunar infarcts),
and, together with subjects with DLB, performed slower on
TMT-A and TMT-B. Subjects with FTD had lower anterior
versus posterior index values.

Details on VBM and TBM features (computed separately
for each disease pairs) and ROI-based grading (consisting of
eight features) can be found in Appendix (Supplementary
Table 1A).

3.2. Accuracy of each diagnostic test for differentiation of
diagnostic groups

Table 2 provides a detailed view of the performance of
each individual diagnostic test for each pairwise compari-
son of diagnostic groups showing balanced accuracy and
AUC. Cognitive tests and automated MRI features showed
high accuracy for separating controls from patients with



Table 2

Pairwise comparison of diagnostic groups for all diagnostic tests, reporting balanced accuracy and area under the ROC curve (Bal. Acc./AUC)

Controls Controls Controls Controls AD AD AD FTD FTD VaD

vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.
AD FTD VAD DLB FTD VaD DLB VAD DLB DLB

Cogni�ve tests

MMSE 91/97 82/89 83/91 88/94 60/65 53/60 54/61 55/55 55/55 46/44
Memory, learning 87/94 83/90 86/91 83/90 61/63 60/60 54/57 43/45 56/56 55/52
Memory, recall 89/95 81/88 80/88 75/85 67/68 63/68 72/76 47/46 52/57 58/59
TMT-A 75/82 71/77 84/89 83/91 55/58 57/60 57/62 63/68 66/71 47/52
TMT-B 82/91 76/84 89/94 90/94 58/59 43/46 53/52 61/60 64/61 36/39
Animal fluency 82/90 77/88 89/96 79/88 55/57 60/62 56/51 53/52 54/56 58/61

CSF

AB42 83/88 50/49 58/67 63/67 82/90 69/73 67/75 58/67 61/67 50/45
Total tau 75/83 58/59 40/42 54/51 75/80 76/83 77/81 63/62 58/57 57/53
P-tau 70/79 59/60 59/62 56/54 77/84 75/85 71/78 49/48 46/47 53/58

MRI

Hippocampus 77/86 79/85 70/74 64/67 50/48 62/65 69/73 64/65 72/74 56/59
Lateral ventricle 75/81 74/81 76/84 68/73 46/45 58/58 56/60 58/57 57/61 65/68
Inferior lateral ventricle 79/85 78/87 79/88 64/69 59/60 50/51 61/68 50/54 67/74 63/72
Temporal pole 72/80 84/89 68/70 64/68 68/74 55/60 60/66 73/79 76/82 59/57
Cortex 77/85 79/85 81/84 71/76 56/57 43/42 61/63 54/55 65/68 62/64
Frontal cortex 69/76 77/83 76/81 65/67 59/65 60/62 57/61 54/57 66/72 67/70
Temporal cortex 81/87 82/87 71/74 73/79 58/61 64/67 63/69 66/72 66/74 48/47
Medial temporal cortex 81/89 82/88 66/72 66/74 58/61 66/69 67/73 71/74 74/77 41/37
Parietal cortex 72/80 61/66 74/82 64/73 61/64 43/38 57/60 56/65 40/46 57/61
Occipital cortex 62/67 57/60 62/70 65/70 57/58 51/54 59/57 58/62 61/65 52/48
Anterior vs. Posterior index 54/56 77/84 38/35 56/61 79/85 54/56 52/53 72/82 81/88 61/60
Global VBM-index 82/89 84/91 88/92 77/84 65/71 52/48 67/73 59/65 77/84 60/69
Global TBM-index 80/87 85/90 87/91 73/81 70/77 59/64 57/61 82/88 72/80 61/70
ROI-based grading 83/91 81/91 83/88 73/80 68/76 54/62 65/71 66/70 73/78 64/67
Vascular burden 61/64 55/54 87/94 59/58 55/58 84/90 48/49 86/91 44/44 85/92

Abbreviations: ROC, receiver operating characteristic; AD, Alzheimer’s disease; FTD, frontotemporal dementia; VaD, vascular dementia; DLB, dementia

with Lewy bodies; MMSE,Mini–Mental State Examination; TMT, Trail Making Test; Ab42, b amyloid 1–42; p-tau, tau phosphorylated at threonine 181; VBM,

voxel-based morphometry; TBM, tensor-based morphometry; ROI, Region of interest; WMH, white matter hyperintensity; AUC, area under the receiver oper-

ating characteristic curve; Bal.Acc., balanced accuracy; ROC, receiver operating characteristic; RAVLT, Rey Auditory Verbal Learning Task; CERAD, Con-

sortium to Establish a Registry for Alzheimer’s Disease.

NOTE. For each pairwise comparison of two diagnostic groups, a balanced accuracy and AUC (Bal.Acc./AUC) are presented for each diagnostic test.

Balanced accuracies 85%–100% are highlighted in dark green. The gradually lighter shades of green indicate lower balanced accuracy with white being at

or below 50. Both balanced accuracy and AUC are reported as percentage values (%).

NOTE.Memory: RAVLT values, using z-scoring for thosewith only CERAD.MRI: volumes are defined from image segmentations produced by amulti-atlas

segmentation algorithm. Anterior versus posterior index: index between anterior and posterior weighted volumes. ROI-based grading: based on hippocampus

region of interest. The classification for “grading” consists of eight grading features and “vascular burden” consists of three features: volume ofWMHs, volume

of cortical infarcts, and volume of lacunar infarcts.
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any type of dementia. However, cognitive tests had low ac-
curacy in differentiating between types of dementia. CSF
biomarkers had the highest accuracy for differentiating
AD from other types of dementia, and especially, Ab42
had high separating performance for AD vs. FTD. Vascular
burden features were the most important diagnostic tests to
identify VaD, also in the AD vs. VaD comparison. Auto-
mated MRI quantification features had the highest perfor-
mance for separating FTD and DLB from other
diagnostic groups. Especially, the medial temporal cortex
volume, anterior versus posterior index, and ROI-based
grading feature supported differentiation of FTD and
DLB from controls, AD, and VaD, but also the pairwise
comparison FTD vs. DLB. The anterior versus posterior in-
dex performed almost as well as Ab42 for separating AD
and FTD and had the highest accuracy in the FTD vs.
DLB comparison. When we repeated the analysis in a sub-
set with complete data only, results were comparable (data
not shown).
3.3. Combinations of diagnostic tests for differentiation
between diagnostic groups

Table 3 shows, for each pairwise comparison of diag-
nostic groups, the balanced accuracies and AUC for different
combinations of the three groups of tests (cognitive tests,
CSF, and MRI), using all tests without a specific feature se-
lection. The best group of tests for differentiation of AD was
CSF biomarkers. Combined MRI features generally
achieved a high performance, especially in pairwise compar-
ison including VaD or FTD. Except for pairwise compari-
Table 3

Performance of diagnostic tests for each pairwise comparison for individual or com

curve (Bal.Acc./AUC)

Controls Controls Controls
vs. vs. vs.
AD FTD VAD

Cogni�ve tests 95/98 87/94 95/98
CSF 83/91 57/67 60/63
MRI 86/93 86/92 87/94
Cogni�ve tests + CSF 96/99 86/94 95/98
Cogni�ve tests + MRI 96/99 92/97 96/98
CSF + MRI 89/95 87/91 87/92
Cogni�ve tests + CSF + MRI 97/99 91/97 96/98

Abbreviations: ROC, receiver operating characteristic; CSF, cerebrospinal fluid;

temporal dementia; VaD, vascular dementia; DLB, dementia with Lewy bodies; A

NOTE. The table shows for each pairwise comparison of two diagnostic groups

all diagnostic tests for each individual group of tests: cognitive tests, CSF, and MR

tests are reported. Balanced accuracies 85%–100% are highlighted in dark green. T

white being at or below 50. Both balanced accuracy and AUC are reported as per
sons including VaD and FTD vs. DLB, accuracy increased
for all diagnostic pairs compared with the best single diag-
nostic tests in Table 2 when combining all tests, ranging
from 78% (for VaD vs. DLB) to 97% (for controls vs. AD).

Table 4 presents the optimal sets of diagnostic tests for
each pairwise diagnostic comparison using feature selection.
The results show that each of the optimal set of tests was
different. Overall, the optimized combinations separating
controls from dementia were a composition of cognitive
tests and MRI. For AD vs. FTD, the inclusion of only CSF
biomarkers provided the highest accuracy, whereas for sep-
aration of FTD vs. VaD and VaD vs. DLB, onlyMRI features
were included. For AD vs. VaD, AD vs. DLB, and FTD vs.
DLB, different combinations of cognitive tests, CSF bio-
markers, and MRI features provided the best performance.
4. Discussion

In this multicenter study, we determined the diagnostic
performance of cognitive tests, CSF biomarkers, and auto-
mated MRI features in differential diagnosis of dementia us-
ing a data-driven approach in a multicenter memory clinic
cohort. Our results show the performance of individual diag-
nostic tests differed between pairwise comparisons of diag-
nostic groups. Moreover, combining diagnostic tests
improved accuracy for pairwise diagnostic comparison.

We used the DSI classifier that can deal with missing data
and make pairwise comparisons [16]. Previously, we have
shown this classifier capable of separating different types
of dementia with high accuracy using retrospective data
from one memory clinic [37]. We extended this work by
bined groups of tests, reporting balanced accuracy and area under the ROC

Controls AD AD AD FTD FTD VaD
vs. vs. vs. vs. vs. vs. vs.

DLB FTD VaD DLB VAD DLB DLB

92/97 64/70 62/69 68/76 59/64 62/68 57/58
59/65 85/92 76/87 76/83 60/64 60/65 46/48
79/84 70/79 80/90 65/75 82/89 75/84 78/84
92/96 82/86 78/81 78/85 66/67 64/71 53/56
92/97 73/81 78/87 75/80 80/89 77/85 77/82
79/83 83/89 83/91 79/83 83/89 76/85 76/83

92/97 85/90 83/90 79/87 83/89 78/86 77/81

MRI, magnetic resonance imaging; AD, Alzheimer’s disease; FTD, fronto-

UC, area under the ROC curve; Bal.Acc., balanced accuracy.

the balanced accuracy and AUC (Bal.Acc./AUC) achieved when combining

I. Moreover, the balanced accuracy and AUC when combining the groups of

he gradually lighter shades of green indicate lower balanced accuracy with

centage values (%).



Table 4

The optimal sets of diagnostic tests for each pairwise comparison

Pairwise comparison Cognitive tests CSF MRI Bal.Acc./AUC

Controls vs. AD MMSE, Memory (recall) ROI-based grading 95/99

Controls vs. FTD MMSE, Animal fluency Global VBM 92/97

Controls vs. VaD Animal fluency Vascular burden, temporal cortex 95/99

Controls vs. DLB TMT-B, Memory (learning) ROI-based grading, anterior versus posterior index 94/98

AD vs. FTD Ab42, p-tau 88/93

AD vs. VaD TMT-A p-tau Vascular burden, medial temporal cortex, ROI-based grading 86/94

AD vs. DLB Memory (recall), TMT-A Ab42, total tau ROI-based grading, temporal cortex 82/88

FTD vs. VaD Vascular burden, global TBM index 89/96

FTD vs. DLB TMT-A Ab42 Anterior versus posterior index 84/90

VaD vs. DLB Vascular burden 85/92

Abbreviations: AD, Alzheimer’s disease; FTD, frontotemporal dementia; VaD, vascular dementia; DLB, dementia with Lewy bodies; MMSE, Mini–Mental

State Examination; TMT, Trail Making Test; Ab42, b amyloid 1–42; p-tau, tau phosphorylated at threonine 181; MRI, magnetic resonance imaging; VBM,

voxel-based morphometry; TBM, tensor-based morphometry; CSF, cerebrospinal fluid; WMH, white matter hyperintensity; AUC, area under the receiver oper-

ating characteristic curve; Bal.Acc., balanced accuracy.

NOTE. The table shows the combinations of diagnostic tests that achieve the highest AUC in pairwise comparison of diagnostic groups.

NOTE. MRI: volumes are defined from image segmentations produced by a multi-atlas segmentation algorithm. ROI-based grading: based on hippocampus

and frontal lobe regions ROI. Vascular burden: based on three features—volume of WMH, volume of cortical infarcts, and volume of lacunar infarcts. Anterior

versus posterior index: index between anterior and posterior weighted volumes.
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using the classifier to provide an overview of the individual
and optimized combined performance of cognitive tests,
CSF biomarkers, and automated MRI features with regard
to discriminating the most common types of dementias in
a larger multicenter data set.

Looking at the individual diagnostic tests, we found, as
expected, that cognitive tests were most important for syn-
drome diagnosis, separating controls from dementia. Cogni-
tive tests had little value in differentiating between the
different dementia types, probably due to considerable over-
lap in clinical presentation within the diagnostic groups
[8,38,39]. Furthermore, we found CSF biomarkers highly
useful in separating AD from controls and other dementia
types, but of little value when differentiating between VaD,
DLB, and FTD, which is in line with observational studies
and previous studies using the DSI classifier [37,40,41].
The higher accuracy of CSF biomarkers in the separation
of AD from FTD, as compared with AD from DLB or VaD,
is probably due to more frequent mixed neuropathology in
the latter diagnoses [42]. Finally, most of the automated
MRI features performed with high accuracy when separating
controls and dementias. By definition, vascular burden was
the best MRI feature to define VaD from all other diagnostic
groups [27]. Furthermore, the anterior versus posterior index
had a high accuracy for identifying FTD from AD and DLB.
Moreover, global VBM and TBM indices and ROI-based
grading features performed with some of the highest accu-
racies for DLB and FTD differentiations, in line with previ-
ous study [43]. These advanced imaging biomarkers are
able to focus on the most relevant areas and local patterns ex-
tending the capacity of conventional volumetric features.
They, however, also provide huge amounts of data. Previous
studies have demonstrated that the highest increase in the
diagnostic performance of MRI was achieved by selecting
specific automated MRI features [27,44–46].
When examining the combination of tests for pairwise
differential diagnosis of dementias, we found that, espe-
cially, adding automated MRI features to either cognitive
tests or CSF biomarkers increased the accuracy [47]. More-
over, we explored the optimal combination of diagnostic
tests, which seem to improve the accuracies further,
although performance results are slightly overestimated
due to not applying cross-validation to this final analysis.
Overall, only a few of the cognitive tests increased the accu-
racy and were selected for the optimal combinations be-
tween the diagnostic dementia groups. In line with the
literature, combinations for separation of AD from other
types of dementia showed dominance of CSF biomarkers
[47]. Except for one pairwise comparison, automated MRI
features were included in all optimized combinations of
diagnostic tests. Predominantly, the selected MRI features
were the more advanced features, such as VBM, TBM,
vascular burden, anterior versus posterior index, and ROI-
based grading features, rather than standard volumetric mea-
sures. The optimized combinations of diagnostic tests for
comparison of AD vs. VaD and AD vs. DLB contained a
higher number of diagnostic tests, which could be due to
frequent overlap of neuropathology or the fact that few spe-
cific biomarkers are available for DLB [48]. Finally, we
found all optimized diagnostic sets to be different stressing
the importance and complexity of weighing and combining
biomarkers and tests correctly in clinical practice.

The strengths of our study are the large multicenter
cohort, containing patients diagnosed with the most frequent
types of dementia. Furthermore, a standardized, thorough
clinical workup of all patients in each center, and the fact
that using multicenter data, adds to the generalizability of
our results. We used data that were typical of memory clinics
not optimized or imputed but varied and incomplete.
Because we aimed to study biomarkers used in daily
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practice, it is essential the analysis method can deal with
missing data or data of suboptimal quality [37,40,49].

One limitation of this study was that a comparable inde-
pendent validation cohort was not available. Using cross-
validation may lead to overoptimistic accuracy estimates,
but choosing either the Amsterdam Dementia Cohort or Pre-
dictND cohort as an independent cohort would have
compromised the precision of accuracy estimates due to
the relatively low number of patients with FTD, DLB, and
VaD. Likewise, an independent cohort is also needed for
validating the optimal combination of diagnostic tests
defined by feature selection. However, the main purpose of
the study was not to provide precise estimates about the
diagnostic accuracy for different diagnostic comparisons
but rather to present clinically useful information about
how different diagnostic tests, alone or combined, contribute
to differential diagnostics of dementia. Additional diag-
nostic tests, such as amyloid– and 18F-fluorodeoxyglu-
cose–positron emission tomography, were not included in
the study but could have provided even more insight into
the performance of diagnostic tests. Another limitation is
that generally 20%–40% of patients with dementia have
more than one underlying pathologies that are accounted
for neither in the clinical diagnosis nor the classifier [48].
This could presumably have underestimated the accuracy.
The fact that clinical diagnosis was used as reference diag-
nosis is also associated with some constraints as agreement
between clinical diagnosis and postmortem neuropatholog-
ical diagnosis has been reported to be 70%–90% in demen-
tias [50,51]. A confirmed neuropathological diagnosis would
therefore have been preferable. Furthermore, cognitive tests
and CSF biomarkers were used to determine the clinical
diagnosis. However, the automated features were
computed for this study and had not been used for clinical
diagnosis. Finally, although FTD is a heterogenic disease
including subtypes, behavioral variant FTD, semantic
dementia, and progressive nonfluent aphasia were
evaluated as one diagnostic group in this study. With a
larger group of patients with FTD, it would be interesting
to explore the performance of the diagnostic tests for each
of these subtypes separately.

This study has important clinical implications; evidence-
based medicine is struggling with the challenge of
comparing multiple sources of data in differential diagnosis
of dementia. Our study demonstrates how combinations of
diagnostic tests for pairwise comparison of diagnostic
groups can be studied using clinical decision support sys-
tem, though, still based on group-level information. Howev-
er, applying classifiers like this to the diagnostic assessment
in clinical practice could assist clinicians in the simulta-
neous evaluation of a wide range of diagnostic tests while
evaluating different types of dementia on a personalized
level [19].

In conclusion, based on a data-driven approach this
research shows that different diagnostic tests have their
distinct roles in differential diagnostics of dementias. Our re-
sults also indicate that combining different tests seems to in-
crease accuracy in differentiating several diagnostic groups.
Together with knowledge from conventional studies, these
results could help clinicians to prioritize biomarkers and
improve clinical practice for patients with dementia.
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RESEARCH IN CONTEXT

1. Systematic review: We searched the literature using
scientific databases focusing on biomarkers for dif-
ferential dementia diagnostics and classifiers. Most
studies focused on either two types of dementia or
few types of diagnostic tests. There is a paucity of
knowledge on combining biomarkers optimally in
differential diagnosis of dementia in clinical prac-
tice.

2. Interpretation: Using a data-driven classifier, we
demonstrated accuracies for individual performance
and optimal combinations of cognitive tests, cere-
brospinal fluid biomarkers, and automated magnetic
resonance imaging–derived features for pairwise
differential diagnosis of dementias, focusing on
Alzheimer’s disease, frontotemporal dementia, de-
mentia with Lewy bodies, and vascular dementia.
Through new machine learning–based technologies,
our research provides a more holistic view of the
combinatorial performance of diagnostic tests in
clinical differential diagnostic dilemmas.

3. Future directions: This research shows that the
optimal combinations of diagnostic tests differ for
each pairwise separation of diagnostic groups. Future
research should focus on confirming these optimal
combinations and translate this knowledge into
clinical practice.
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