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Abstract

Chunking is the process by which frequently repeated segments of temporal inputs are

concatenated into single units that are easy to process. Such a process is fundamental to

time-series analysis in biological and artificial information processing systems. The brain

efficiently acquires chunks from various information streams in an unsupervised manner;

however, the underlying mechanisms of this process remain elusive. A widely-adopted sta-

tistical method for chunking consists of predicting frequently repeated contiguous elements

in an input sequence based on unequal transition probabilities over sequence elements.

However, recent experimental findings suggest that the brain is unlikely to adopt this

method, as human subjects can chunk sequences with uniform transition probabilities.

In this study, we propose a novel conceptual framework to overcome this limitation. In this

process, neural networks learn to predict dynamical response patterns to sequence input

rather than to directly learn transition patterns. Using a mutually supervising pair of reservoir

computing modules, we demonstrate how this mechanism works in chunking sequences

of letters or visual images with variable regularity and complexity. In addition, we demon-

strate that background noise plays a crucial role in correctly learning chunks in this model. In

particular, the model can successfully chunk sequences that conventional statistical

approaches fail to chunk due to uniform transition probabilities. In addition, the neural

responses of the model exhibit an interesting similarity to those of the basal ganglia

observed after motor habit formation.

Author summary

Varieties of information processing require chunking, but chunking arbitrary complex

sequences as flexibly as the brain does remains a challenge. In this study, we solved this

important but difficult problem of chunking by "reservoir computing" inferred from

brain computation. In the method, chunking occurs automatically when a pair of such

modules supervising one another agree on the recurring response patterns to remember.

Our model revealed a unique dynamical mechanism for embedding the temporal commu-

nity structure of inputs into low-dimensional neural trajectories. From a biological
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viewpoint, our model based on pairwise computing suggests the computational implica-

tions of brain’s bi-hemispheric information streams. Owing to recent technological

advances, the implementation of this model by electronic devices should be

straightforward.

Introduction

When a sequence of stimuli is repeated, they may be segmented into “chunks,” which are then

processed and stored as discrete units. This process, called “chunking” or "bracketing" [1],

takes place during various cognitive behaviors that require hierarchical sequence processing

[2–5]. For instance, in motor learning, a sequence of smaller movements may be executed as

one compound movement after repetitive practice [1,6–9]. During language acquisition, con-

tinuous vocal sounds are segmented into familiar groups of contiguous sounds that are pro-

cessed as words [10, 11]. Chunking is believed to reduce the complexity of sequence

processing and hence the associated computational cost [1, 12–13]. In this regard, chunking

constitutes a crucial step in representing the hierarchical structure of sequential knowledge in

neural circuits [14].

Chunking is believed to occur through two consecutive processes. Long and complex

sequences are first segmented into shorter and simple sequences, while frequently repeated

segments are concatenated into a single unit [15]. Various mechanisms of chunking have been

proposed based on Bayesian computation [4, 16], statistical learning guided by prediction

errors [17], and a bifurcation structure (stable heteroclinic orbits) in nonlinear dynamical sys-

tems [18, 19]. In addition, a neuromorphic hardware has been proposed [20]. However, none

of these mechanisms have been shown to chunk with the level of flexibility that the brain

offers. It also remains unclear whether a bifurcation theoretic mechanism exists that enables

the chunking of arbitrary complex sequences. Many studies evaluating event segmentation in

biological and artificial systems have focused on mechanisms to detect boundaries between

events by transient increases in surprise signals, which are thought to form based on unequal

transition probabilities among sequence elements [4, 14, 21–22]. However, human subjects

can segment sequences of visual stimuli that have uniform transition probabilities and hence

cannot be chunked by any variation of such mechanisms [23]. These findings suggest that bio-

logical neural networks favor a mechanism of chunking that is based on temporal community

detection, in which stimuli that frequently go together are grouped into a chunk. A similar

mechanism may also account for the brain’s ability to detect repetitions of patterned stimuli in

random sequences [24–26].

However, the logic and neural mechanism of flexible and automatic chunking by the brain

remain unknown. In this study, we propose a novel mechanism of unsupervised chunk learn-

ing based on a unique computational framework that differs from any of the previous propos-

als. In this mechanism, neural networks learn the low-dimensional dynamical trajectories

embedding stereotyped responses to recurring segments (chunks) of a temporal input. We

achieve this mechanism in a framework of cortical computation [27, 28] by extending reser-

voir computing (RC) to unsupervised learning. RC is a high-dimensional dynamical system

consisting of a recurrent neural network, readout units, with feedforward and feedback projec-

tions between them, and supervised learning in its original form [29]. We were able to attain

unsupervised learning in a pair of independent RC modules supervising each other without

any external instructive signal. As a consequence, they learned to mimic, or predict, the prefer-

ential responses of partner modules to chunks in a given temporal input.

Reservoir computing for chunking
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The primary interest of this study was determining the novel computational mechanism to

segment information streams. However, an unexpected finding included a surprising similar-

ity between the temporal response patterns of readout units in our model and a functional sub-

type of basal ganglia neurons, called stop cells, which are observed after habituation [7–9].

This finding suggests that the proposed paradigm of sequence processing has a biological

relevance.

Results

Reservoir computing modules with mutual supervision

To demonstrate the basic framework of our model, we first consider the case where the input

sequence alternates a single chunk (i.e., a-b-c-d) and random sequences of discrete items,

which are chosen from the remaining 22 letters of the English alphabet (e to z) (Fig 1A). In

reality, each letter may correspond to a brief stimulus in any sensory modality, such as a brief

tone signal, and is given to the model through phasic activation of a specific input neuron

(Iμ(t) in Eq 4 in the Methods) with slow rise and decay constants (Fig 1B). Thus, the number of

input neurons coincides with that of letters. The random sequence components are introduced

to unambiguously define the initial and end points of a chunk, and their lengths vary with

every repetition cycle within the length range of 5 to 8.

Our network model comprises two mutually non-interacting RC modules, each of which

consists of a recurrent network (reservoir) of rate-based neurons and a readout unit. Each RC

module receives an identical input sequence (Fig 1C). Each reservoir neuron receives a selec-

tive input from one of the input neurons and hence has a preferred stimulus. As shown later,

however, this constraint is not essential for chunking and can be relaxed. Within each

Fig 1. Learning of a single chunk repeated in random sequence. (a) Input sequence repeating a single chunk. In this

example, the chunk is composed of four alphabets (a, b, c, d). The components and lengths of random sequences

varied during the repetition of chunks. (b) Example responses are shown for input neurons. (c) In the dual RC model,

two non-identical reservoirs are activated by the same set of input neurons. Readout weights of each RC system

undergo supervised learning with a teaching signal given by the output of the partner network. (d) and (e) Pre- and

post-learning trial averaged activities of a readout unit are shown, respectively. Shaded intervals designate the

presentation periods of the chunk. The other readout unit exhibited a similar activity pattern. (f) Readout activity was

trained with many-to-one input projections. The fraction of input neurons projecting to a reservoir neuron was 10%

(red), 40% (green) and 70% (black).

https://doi.org/10.1371/journal.pcbi.1006400.g001
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reservoir, all neurons are mutually connected and project to a readout unit, which projects

back to all neurons belonging to the same reservoir. Note that the two reservoirs have different

recurrent wiring patterns and hence are not identical. The activity of each readout unit z(t) is

given as a weighted sum of the activities r(t) of the reservoir neurons projecting to the readout:

z(t) = wTr(t). Note that one readout unit per reservoir is sufficient for learning a single chunk.

We will consider more complex cases later. The weight vector w is modifiable through the

FORCE learning algorithm [29], whereas the recurrent and feedback connections are non-

plastic because the model can solve the present task without modifying these connections. The

initial states of the reservoirs are weakly chaotic as in the previous model [29]. See the Methods

for details of the model and values of the relevant parameters.

A unique feature of the present model is that the output of each readout unit is used as a

teacher signal to train the readout weights of the other reservoir module, implying that the two

RC modules supervise each other. As a consequence, although the FORCE learning per se is a

supervised learning rule, the entire network, which we call the "dual RC system," is subject to

unsupervised leaning because teaching signals originate from the system itself. The details of

the teaching signals will be shown later.

Chunk learning from a random sequence

The design of the teaching signals is the key for successful chunk learning in the present

model. The teaching signals should be symmetric with respect to the interchange of the two

readout units, and should be determined such that the two systems stop learning when the two

readout units output similar response patterns. In other words, the teaching signals eventually

become identical between the two RC modules during learning. The following teaching signals

fi enable chunk learning in the proposed dual RC system:

fiðtÞ ¼ ½tanhðẑ jðtÞ=bÞ�þ: ði; j ¼ 1; 2; i 6¼ jÞ ð1Þ

where ẑ i is the normalized output of the i-th readout unit (Methods), the threshold linear func-

tion [x]+ returns 0 if x≦0, and [x]+ = x if x>0, and the constant was set as β = 3. Defining error

signals as ei(t) = zi(t) – fi(t), we trained the pair of RC modules through the FORCE learning

algorithm until the error signals become sufficiently small (typically, about 0.01) and the read-

out weights converge to equilibrium values (within small fluctuations). The sigmoidal function

allows the system to learn nontrivial solutions zj(t) 6¼ 0, while maintaining the outputs (and

hence the teaching signals) to be finite during learning. Furthermore, the saturation part of sig-

moidal function prevents the model from responding too strongly to a specific chunk and

makes it easier to detect all the chunks embedded in the input sequence. This activity regulation

is particularly important in the learning of multiple chunks studied later. The threshold linear

function makes the outputs positive; these nonlinear transformations greatly improved the per-

formance of learning. Importantly, the teaching signals do not explicitly contain information

about the structure and timing of chunks in the input sequence. This dual RC system converged

to a state of stable operations when the two RC systems produced similar teaching signals

(hence similar outputs) that were consistent with the temporal structure of the input sequence

(S1 Fig). The readout units did not respond to the chunk before learning (Fig 1D). After learn-

ing, the responses of the readout units were tested for the input sequences that had not been

used for the training. The test sequences contained the same chunk “a-b-c-d,” but the random

sequence part was different. Given these inputs, the readout units exhibited steady phasic

responses time-locked to the chunk (Fig 1E). The readout activity piled up gradually in the

beginning of the chunk, rapidly increased at its end, and then returned to a baseline level. The

selective responses to the chunk were also successfully learned when each reservoir neuron was

Reservoir computing for chunking
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innervated by multiple input neurons. As shown in Fig 1F, the system succeeded in learning

when randomly-chosen 10% or 40% of input neurons projected to each reservoir neuron, but

failed when the fraction was 70%. Thus, responses of the individual reservoir neurons should be

sufficiently independent of each other to robustly capture the recurrence of chunks.

Learning of multiple chunks

We can extend the previous learning rule for learning multiple chunks without difficulty. To

show this, we embedded three chunks into a random input sequence (Fig 2A, top). The three

Fig 2. Readout activity after learning detects multiple chunks. (a) Top, Three chunks a-b-c-d (red), e-f-g-h (green),

and i-j-k-l (blue) separated by random sequences are recurred at equal frequencies in input. Bottom, The three chunks

are repeated without the intervals of random sequences. (b) Each reservoir was connected to three readout units. (c)

Selective readout responses to the individual chunks (colored intervals) were self-organized. Input contained random

sequences. The responses are colored according to their selectivity to the chunks. (d) The same chunks were repeated

without breaks by random sequences. Previous models of chunking typically processed such input sequences. (e)

Readout activities formed with (left) and without (right) random sequence intervals were averaged over the recurrence

of chunk “a-b-c-d”. (f) Time evolution of average readout weights is shown at every step of learning with (gray) and

without (black) random sequence intervals.

https://doi.org/10.1371/journal.pcbi.1006400.g002
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chunks had the same occurrence probability of 1/3. To process this complex input sequence,

we made two modifications to the previous model. First, each reservoir was connected to three

readout units (z1, z2, z3 for the 1st reservoir and z4, z5, z6 for the 2nd reservoir), each responsi-

ble for the learning of one of the three chunks (Fig 2B). Second, we modified the teaching sig-

nals as follows:

faðtÞ ¼ ½tanhððẑa0ðtÞ � g
P0

c¼4;5;6
ẑ cðtÞÞ=bÞ�þ ða ¼ 1; 2; 3Þ ð2Þ

fbðtÞ ¼ ½tanhððẑb0ðtÞ � g
P0

c¼1;2;3
ẑ cðtÞÞ=bÞ�þ ðb ¼ 4; 5; 6Þ ð3Þ

where a’ and b’ refer to the corresponding readout units of the partner RC modules (i.e., a’ = a
+3 and b’ = b-3), and dashes in the second term indicate that the corresponding readout unit

should be excluded from the summation. The constant γ was set as 0.5. Thus, teaching signals

were exchanged between the RC modules as in the previous case. Each readout unit receives a

triplet of teaching signals from the partner network, in which one is cooperative and the other

two are competitive (S2A Fig). These signals allow each readout unit to adopt to a specific

chunk, but the chunk to be learned by a readout unit is not a priori specified because the teach-

ing signals are symmetric with respect to the permutation of indices per reservoir. A further

extension of the learning rule to an arbitrary number of chunks is straightforward.

As in the case with a single chunk, each readout unit displayed a ramping activity selective to

a specific chunk, signaling successful chunk learning (Fig 2C). During this learning, teaching

signals also self-organized such that each pair of the readout units eventually exhibited a selec-

tive response to a specific chunk, indicating that the teaching signals work adequately (S2B Fig).

The complex form of teacher signals looks somewhat biologically unrealistic, but they can easily

be implemented by inhibitory neurons (S2C Fig: see Methods) to generate chunk-selective pha-

sic readout responses (S2D Fig). Below, inhibitory neurons are not explicitly modeled.

The question then arises whether the RC system could also learn multiple chunks when they

occur continuously without temporal separations by random sequences. To study this, we

trained the model by using input sequences in which three chunks appear randomly and con-

secutively with equal probabilities, without any interval of random sequences (Fig 2A, bottom).

Thus, the same RC system as before could easily learn multiple chunks (Fig 2D). A notable dif-

ference was that, outside of the chunks, the readout activity decayed faster for undisturbed

sequences than for temporally separated ones (Fig 2E). In fact, learning proceeded faster for the

former sequences (Fig 2F), suggesting that learning is more effective when chunks are not dis-

rupted by random sequences. Throughout this study, one learning step corresponds to 15 sec.

Selective recruitment of reservoir neurons for chunk learning

Next, we investigated how the activities of reservoir neurons encode chunks. Here, the net-

work was trained on sequences containing three chunks and random sequences. In each reser-

voir, a subset of neurons selectively responded to each chunk after learning (S3A Fig).

Therefore, we classified reservoir neurons into three ensembles according to the selectivity of

their responses to each chunk (Methods). Some reservoir neurons responded to more than

one chunk, but they were excluded from the following analysis for the sake of simplicity. Each

neural ensemble received slightly stronger inputs from the specific chunk it encoded, which

then determines the selectivity of the encoding ensemble (S3B Fig). Through learning, the neu-

ral ensemble encoding a particular chunk developed stronger projections to the corresponding

readout unit compared with other neural ensembles (S3C Fig). Consistent with this, the distri-

bution of readout weights was more positively skewed in encoding ensembles than in non-

encoding ensembles (S3D Fig). Moreover, the readout unit projected back to the

Reservoir computing for chunking
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corresponding encoding neuron ensemble more strongly than to the other ensembles (S3E

Fig). Because feedback connections were not modifiable, these results imply that readout con-

nections were strengthened between readout units and reservoir neurons that happened to

receive relatively strong feedback from the readout unit.

The role of low-dimensional network dynamics in chunk learning

To gain further insight into the mechanism of chunking, we explored the low-dimensional

characteristics of the dynamics of reservoir networks. In our model, the two RC modules,

termed R1 and R2, are thought to mimic others. This would be possible when the two recurrent

networks receiving the same input sequence predict the responses of other modules well. To see

how this prediction is formed, we calculated the principal components (PCs) of the post-learn-

ing activity of trained recurrent networks in the example shown in Fig 1. After learning, the low-

est principal component (PC1) but not the other PCs, of each reservoir resembled the phasic

response of the corresponding readout unit during the presentation of chunks (Fig 3A, left).

The learned trajectories wandered in the low-dimensional PC space outside the chunks where

teacher signals vanished, while, inside the chunks, non-vanishing teacher signals rapidly con-

strained both trajectories in narrower regions showing similar PC1 values (Fig 3A, right). This

behavior is understandable because the eigenvalues of PCs decay rapidly (Fig 3B). Interestingly,

the correlation coefficient between each PC and the readout activity decayed more dramatically

(Fig 3C). Accordingly, the direction of readout weight vector was more strongly correlated with

that of PC1 compared to other PCs (Fig 3D). These results suggest that the low-dimensional

characteristics of neural dynamics play a pivotal role in encoding the chunks.

We then determined to what extent the responses of R1 and R2 are represented by the low-

dimensional dynamical characteristics of R1. We calculated the PCs of recurrent network

dynamics in R1, and expanded its population rate vector and readout weight vector up to the

M-th order of these PCs (M≦ NG). Then, we reconstructed the output of R1 by using the M-th

order rate vector and the M-th order weight vector on the low-dimensional subspace spanned

by the first M PCs (Methods). In Fig 3E, we calculated the differences between the recon-

structed R1-output and the full outputs of R1 (within-self difference) and R2 (between-partner

difference). Before learning, both differences remained large as M was increased. After learn-

ing, the “within-self” difference rapidly decreased for M< 30–40 and then gradually

approached zero. The “between-partner” difference also rapidly dropped for relatively small

values of M, but it stopped decreasing for M> 50, remaining at relatively large values. These

results suggest that R1’s reservoir, as well as R2’s reservoir, learns to mimic the partner’s

response by using the low-dimensional characteristics of its recurrent neural dynamics.

The role of low-dimensional neural dynamics in a broad range of computation was recently

explored in a class of recurrent network models with a minimal connectivity structure [30],

which is a combination of a low-rank structured matrix and a random unstructured matrix.

The low-rank matrix may be trained to give task-related low-dimensional dynamics whereas

the random matrix may generate chaotic fluctuations useful for learning. The RC system can

be approximately viewed as such a network, where the product of readout weight vector and

feedback weight vector (JGZ)Tw defines a rank-one matrix and recurrent connections in the

reservoir gives a random matrix. It will be intriguing to study the present chunk learning in

the theoretical framework.

Network- and chunk-size dependences of learning

Chunk learning may be easier and more accurate if chunks were shorter or network size is

larger. However, we did not find a sharp drop of performance when the size of chunks was

Reservoir computing for chunking
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increased. To observe this, we first measured learning performance for two chunks with the

sizes 4 and 7 by varying the network size. Instantaneous correlations were calculated between

the activity of a readout unit and a reference response pattern, which takes the value 1 during

the presentation of a chunk and is 0 otherwise, every 15 s during learning and were averaged

over 20 independent simulations. Note that the maximum value of the correlation was 0.5 if

the readout activity grows linearly from 0 to 1 during the chunk presentation. S4A Fig shows

the correlations for input sequences containing the short or long chunk in networks of sizes

NG = 30, 300, and 500. Correlations were nearly zero before learning, but reached similar max-

imum values approximately within ten steps of learning. The average value of the correlations

Fig 3. Principal component analysis of recurrent networks. Each recurrent network consists of 300 neurons. (a)

Left, Activities of two reservoir networks are projected onto the top five eigenvectors of the correlation matrix. Shaded

areas indicate the intervals of the presentation of chunks. Numerals on the right side show the variances explained.

Right, The low-dimensional trajectories of the two reservoir modules are shown in the space spanned by PC1 to PC3.

Red/blue or magenta/cyan portions show trajectories during the epoch of non-vanishing or vanishing teacher signals,

respectively. (b) The eigenvalues of PCs are shown in a logarithmic scale. (c) The correlation coefficient between each

PC and the readout activity is shown. (d) The length of readout weights projected onto each eigenvector is shown for

first 100 eigenstates. (e) “Within-self” difference between the R1-output and the projected R1-output (green) and

“between-partner” difference between the R2-output and the projected R1-output (blue) are shown for all the

eigenstates before (dashed) and after (solid) learning. Insets display magnified versions for major eigenstates.

https://doi.org/10.1371/journal.pcbi.1006400.g003
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was generally larger for chunk size 4 than for chunk size 7, but the differences were not signifi-

cant (S4B Fig).

Second, we measured learning performance by varying the size of chunks with the network

size fixed (NG = 300). In this simulation, we alternately presented a single chunk with the size s
and random sequences of the sizes s + 2 to s + 5, where each element of the random sequences

was chosen from a set of 4s elements. Thus, the dual RC system had 5s input neurons. When

the chunk size exceeded 10 (S4C Fig), the value of correlation rapidly dropped, suggesting the

existence of a critical chunk size beyond which learning performance is degraded. For s = 4,

learning performance showed unexpectedly large fluctuations due to some unknown reason.

The explicit evaluation of the critical chunk size requires an analytic approach, which is

beyond the scope of this study.

In addition, a larger network did not necessarily show better performance. The magnitude

of the post-learning instantaneous correlation was not significantly increased when the net-

work size was 200 or greater (S4B Fig). Thus, the performance of chunk learning does not

scale with the network size. This is not so surprising because increasing the size of the reser-

voirs does not necessarily increase the variety of neural responses useful for learning if the size

is already sufficiently large. This seems to be particularly the case in the proposed mechanism

because it heavily relies on the low-dimensional characteristics of neural dynamics (S3A Fig).

Crucial role of noise in chunk learning

We found that external noise plays an active role in successful chunking. We demonstrated

this in the case where the input only contained a single chunk (Fig 4A). In the absence of noise

readout units, phasic responses were still observed, but these responses were not necessarily

time-locked to chunks (Fig 4A, vertical arrow). As shown later, the two RC modules in princi-

ple may agree on an arbitrary feature of the input sequence, which implies the RC system may

converge to a local minimum of learning. Noise may help the system to escape from the local

minima. On the other hand, too strong of noise completely deteriorated the phasic responses

to chunks. Thus, the RC system could learn chunks only when a modest amount of external

noise existed (Fig 4B). In the presence of adequate noise (σ = 0.25), the average weight of the

readout connections rapidly decreased to a small equilibrium value during learning (Fig 4C),

leaving some readout weights much stronger than the majority (Fig 4D). This reduction was

expected because external noise gives a regularization effect on synaptic weights in error-mini-

mization learning [31]. The strong weights were obtained for readout connections from the

reservoir neurons responding to the chunk, hence they were crucial for chunk detection. How-

ever, this was not the case in the absence of noise (σ = 0). We counted the fraction of strong

readout connections that emerged from chunk-encoding reservoir neurons, where strong con-

nections included those that were greater than the standard deviation of the weight distribu-

tion. Such a fraction was significantly larger in the presence of adequate noise than in the

absence of noise. Under strong noise (σ = 1), although the weight distribution becomes more

bimodal, the noise disrupted learning and the system failed to capture the chunks (Fig 4E).

Another possible mechanism in which the external noise would improve the learning per-

formance is that the dynamics of RC modules with weak noise are too far in the chaotic regime

and the external noise suppresses chaos to enable proper chunk learning [32]. To test this pos-

sibility, we compensated a decrease of σ by decreasing the strength of recurrent conections gG,

which weakens the influences of chaos, and investigated whether the deterioration of perfor-

mance is suppressed. The noise intensity was decreased from a modest level (σ = 0.5), and the

values of σ and gG were decreased at the same rate. Although the improvement was not signifi-

cant, the dual RC system better resisted the performance deterioration (Fig 4B), suggesting

Reservoir computing for chunking
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that proper chunk learning requires a certain balance between external noise and chaotic

dynamics.

Though our results so far suggest that mutual supervision enables the RC system to learn

recurring groups of items in a sequence, these results do not indicate how the system chooses

particular groups for learning. The question then arises whether our model detects a “chunk”

if a sequence merely repeats each letter randomly without temporal grouping. To study this,

we constructed a set of input sequences of ten letters, where all the letters appeared equally

often in each sequence. We then exposed the RC system with a readout unit to these sequences.

We found that the system learned to respond to one of the letters with approximately equal

probabilities (S5A Fig). We then made the occurrence probability of letter “a” twice as large as

the occurrence probabilities of the others and found that the system detected “a” about twice

as frequent as the others (S5B Fig). These results indicate that the learning performance of the

dual RC system relies on the occurrence frequency of repeated features if there are no other

characteristic temporal features in the input sequence.

The frequency dependence of our model partially accounts for the features of sequences

that are grouped into chunks. As demonstrated in Fig 3, a pair of RC modules engage in the

mutual prediction of the partners’ response. This prediction would be easier for the items in

Fig 4. Effects of noise on successful chunk learning. (a) Activity of a readout unit after learning a chunk at different

noise levels: σ = 0 (black), 0.25 (red) and 1 (green). Without noise, the readout unit still learned to respond to a portion

of input, but this portion did not necessarily belong to a chunk (vertical arrow). (b) Learning performance is a non-

monotonic function of the noise level. The optimal performance was obtained at σ = 0.4–0.6 when the scaling factor in

Equation 4 was set as gG = 1.5 (cyan). The effect of noise on the learning performance was not significantly changed

when the scaling factor was simultaneously reduced with the noise level (gray). (c) Evolution of the norm of readout

weights during learning is shown for σ = 0 (black), 0.25 (red) and 1 (green). (d) The distributions of readout weights

from chunk-encoding (red) and non-encoding (blue) reservoir neurons are shown after learning at different noise

levels. Arrows indicate the maximum weight values from the chunk-encoding neurons. (e) The fraction of strong

readout weights (see the main text) from the encoding neurons is shown for different noise levels. The fraction is

significantly larger for σ = 0.25 compared with σ = 0 and 1 (p<0.01, Mann–Whitney U test).

https://doi.org/10.1371/journal.pcbi.1006400.g004
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the input that repeatedly occur in a fixed temporal order. However, the explicit role of tempo-

ral grouping in chunking remains to be further clarified.

We then demonstrate that the RC system can simultaneously chunk multiple sequences

with overlaps, where input sequences share some letters as common items. In some sequences,

common subsequences appeared in the beginning or the end of chunks (Fig 5A), whereas

other sequences involved common subsequences in the middle of chunks (Fig 5D). In both

cases, the RC system (with two readout units) successfully chunked these input sequences

without difficulty (Fig 5B and 5E). Interestingly, the activity of the readout units averaged over

repetitive presentations ceased to increase during the presentation of the overlapping part of

the chunks (Fig 5C and 5F). This seems reasonable as overlapping in part does not contribute

to the prediction of the following items in the chunks and hence needs not be learned.

Chunking sequences of realistic inputs

So far, we have only studied discrete sequences of letters with varying complexity. However,

the applicability of the proposed mechanism is not restricted to this relatively simple class of

Fig 5. Learning chunks with mutual overlaps. (a) Two chunks shared the last component “d” in a random input

sequence. (b) Activities of two readout units were selective to different chunks after learning. (c) The average response

profiles are shown for the two readout units. (d) Two chunks shared the middle components “d-e” in a random input

sequence. (e) and (f), Activities of two readout units and the average response profiles are shown, respectively.

https://doi.org/10.1371/journal.pcbi.1006400.g005
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temporal inputs. We first showed the potential advantage of this mechanism over the conven-

tional statistical methods, considering a system with three readout units (per RC module) for

processing sequence inputs generated by a random walk through a graph (Fig 6A). This was pre-

viously used in examining the learning ability of event recognition by human subjects [23]. Each

node of this graph has exactly four neighbors, and hence is visited by random walk with uniform

transition probabilities over all neighbors. Despite this uniformity, the graph has three clusters

of densely connected nodes, which define the communities in the graph [33, 34]. Human sub-

jects and our model (Fig 6A) can easily chunk these clusters according to community structure,

but machine-learning algorithms based on surprise signals (e.g., [21]) cannot [23].

We further demonstrated that the proposed system can learn to detect two images recurring

in visual input streams with (Fig 6B) and without (Fig 6C) random intervals of Gaussian noise

stimuli. We examined whether learning speed depends on the resolution of images and found

that such a dependence was weak if the network size was unchanged (Fig 6D). Our results

show the potential ability of the proposed mechanism in analyzing the community structure of

a broad class of temporal inputs.

Discussion

Conventional statistical methods of chunking use unequal transition probabilities between

sequence elements as cues for sequence segmentation. In contrast, we propose a conceptually

novel framework in which the neural system self-organizes its internal dynamics to respond

preferentially to chunks (i.e., frequently recurring segments) with a temporal input, rather

than attempts to predict the temporal patterns of input sequences. We achieved this unsuper-

vised learning in a network of paired RC modules mutually learning the responses of the part-

ners. Sequence leaning with RC has been studied in motor control [35–37] and decision

making [38, 39]. Theoretical extensions to spiking neuron networks [40] and/or reward-based

learning [41] have thus been proposed. In this study, we showed that RC can be used for the

unsupervised learning of hidden structure of continuous information streams.

Chunking has often been accounted for by predictive uncertainty or surprise [17, 42–44].

However, recent evidence suggests the existence of an alternative mechanism of chunking in

which events are segmented based on the temporal community structure of sequential stimuli

[23]. Indeed, it has been shown that individual items in a sequence are concatenated into an

event when they frequently go together in the sequence. This dual RC system automatically

chunks a continuous flow of stimuli based on temporal clustering structure and the occurrence

probabilities of the stimuli without relying on predictive uncertainty or surprise. In addition,

the model can chunk clusters of sequence elements that cannot be chunked by conventional

statistical methods based on unequal transition probabilities (Fig 6A). Unsupervised chunk

learning was previously modeled by using heteroclinic orbits in a dynamical neural system

[19]. Though this mechanism enables the learning of prescribed chunks, whether it also offers

flexible learning of arbitrary chunks remains unclear.

Our model has some advantages over the previous models of chunking. Our model can

detect multiple chunks embedded into random background sequences. To our knowledge, the

detection of multiple chunks has not been seriously attempted in the presence of various types

of input noise on chunking. Further, as shown in Fig 5 our model can learn multiple partially

overlapping chunks without additional mechanisms, which was also previously difficult. On

the other hand, a weak point is that our model requires specially designed teaching signals,

which depend on the structure of chunks. Related to this, mutually inhibitory teaching signals

were introduced in an ad-hoc manner to prevent multiple readout units from learning the

same chunk. A more flexible mechanism of learning should be further explored.
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Fig 6. Chunking complex temporal inputs. (a) Sequence inputs were generated by a graph with uniform transition probabilities and

community structure. The graph was modified from [23]. (b) Sequence of high -resolution (97x97x3) visual stimuli, where the factor 3

represents the three RGB channels, was chunked. White intervals show periods of Gaussian noise. (c) Sequence of high-resolution (97x97x3)

visual stimuli was chunked. (d) Learning curves are compared for the images shown in (c) between high (black) and low (gray) resolution

versions. The images were repeatedly presented without noise intervals.

https://doi.org/10.1371/journal.pcbi.1006400.g006
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The dual RC system described here shows good performance in the presence of external

noise. Without noise, the system also learns to respond to certain segments of a sequence, but

these segments may not coincide with any of the frequently repeated chunks. An adequate

amount of external noise eliminates such spurious responses and enables the system to

respond to the most prominent features of a sequence, namely repeated chunks. This finding

is interesting because the initial state of the dual RC system is chosen on the so-called “edge of

chaos,” on which weakly chaotic neural dynamics provide an adequate amount of flexibility

for supervised learning [29, 45–46]. Moreover, the present system assumes a similar initial

state, but additionally requires the regularization of synaptic weight dynamics by noise (Fig

4C). Training a recurrent neural network with an explicit regularization term is known to

eliminate the strange neuronal responses that are not observed in the motor cortex [37].

The dual RC system learns sequence in an unsupervised fashion by using two neural net-

works and, in this sense, is similar to Generative Adversarial Network (GAN) in deep learning

[47]. A critical difference, however, exists between the two models. In GANs, a generative net-

work learns to mimic the structure of training data and a discriminative network learns to dis-

tinguish between samples from the training data and those generated by the generative

network. Because the generative model learns to deceive the discriminative model, GANs learn

the structure of data distribution under a conflicting cost function. By contrast, in the dual RC

system, two neural networks learn to help each other for the formation of a consensus about the

structure of temporal inputs. Therefore, our model is conceptually different from GANs.

The structure of our model has an interesting similarity to cortico-basal ganglia loops, where

two reservoirs may represent bi-hemispheric cortical networks and readout units may correspond

to striatal neurons. The responses of readout units and those of striatal neurons in the formation

of motor habits also look similar. Sequential motor behavior becomes more rigid and automatic

over the course of learning and practice, and the basal ganglia is thought to play a pivotal role in

habit formation [9, 48]. For instance, in rats running in a T maze, the majority of dorsolateral

striatal neurons exhibit burst firing when the run is initiated or completed, or both [49]. Similarly,

in mice an increased population of striatal neurons selectively responds to the initial (Start cells),

the last (Stop cells), or both actions in the trained behavioral sequence [7, 8]. In our model, read-

out units respond strongly to the last component of each chunk, similar to the Stop cells. Our

model predicts that the Stop-cell’s response may decrease when two motor chunks have overlap-

ping portions (Fig 5). On the other hand, our model does not show Start cell-like responses.

Whether and how Start cells are formed is an intriguing open question.

The proposed learning scheme works most efficiently when two RC modules are not inter-

connected, but rather work independently. In fact, the performance of chunk learning drops

below 50% of the initial level when the connection probability between the two reservoirs

exceeds about 10% (S4D Fig, see the Methods). This suggests that each RC module can obtain

maximum information about temporal input when it receives the teaching signal completely

from its outside. The existence of inter-reservoir connections implies that some portion of the

teaching signal originates from its inside. Where can such independent networks be located in

the brain? One possibility is that they are represented by mutually disconnected recurrent neu-

ronal networks in a local cortical area. Because they are functionally equivalent, it is unlikely

that they are implemented in functionally distinct areas. Another intriguing possibility is that

they are distributed to functionally equivalent cortical areas in different hemispheres. Indeed,

the inferior frontal gyrus and the anterior insula are bilaterally activated when human subjects

chunk visual information streams [23, 50]. Whether subnetworks of pyramidal cells perform

chunking in these or other cortical areas [51] remains an intriguing open question.

In summary, we propose an unsupervised learning system by combining two independent

reservoir computing modules. During learning, the two systems supervise each other to
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generate coincident outputs, which in turn allows the entire system to consistently learn

chunks hidden in irregular input sequences. As chunking is a fundamental step in the analysis

of sequence information, our results have significant implications for understanding how the

brain models the external world.

Methods

Details of the neural network models

In this study, the proposed model is composed of two recurrent networks (reservoirs). Each

recurrent network is composed of NG neurons. Each neuron follows the following dynamics as

i = 1,2,. . . NG,

t _xiðtÞ ¼ � xiðtÞ þ gG
PNG

j¼1
JGGij rjðtÞ þ JGZi zðtÞ þ

PNI
m¼1

JGIim ImðtÞ þ sxiðtÞ; ð4Þ

riðtÞ ¼ tanhðxiðtÞÞ; ð5Þ

where Iμ(t) is the activity of input neurons, ξi(t) is a random (Wiener) process and σ is the stan-

dard deviation. NI is the number of input neurons. The parameter gG determines the complex-

ity of the behavior of the reservoir, and shows chaotic spontaneous activity if gG> 1. The

instantaneous output is given by z(t) = wTr(t), where w is the readout weight vector. The read-

out unit is connected with n reservoir neurons by the readout weights w. The readout weights

are modified according to the FORCE learning rule in which the error between the actual out-

put and the teaching signal is minimized [29]. The activity of the readout unit is transmitted to

the reservoir via the feedback.

The initial values of the readout weights w are generated by a Gaussian distribution with

the mean 0 and variance 1/n. Each element of the feedback coupling JGz is randomly sampled

from a uniform distribution [-1, +1]. In the connection matrix JGG of the reservoir, each ele-

ment is taken from a Gaussian distribution with mean 0 and variance 1/(pNG), where p is the

connection probability of the reservoir neurons. In the connection matrix JGI between input

neurons and the reservoir, each row has only one non-zero element drawn from a normal dis-

tribution of mean 0 and variance 1. We simulated the model with time steps of 1 [ms].

The values of parameters used in simulations are as follows: in Figs 1, 3 and 4 and S1 Fig,

S4C Fig, S4D Fig, and S5 Fig, NG = 300,p = 1,n = 300 and σ = 0.3; in Figs 2 and 6, S2 Fig, and

S3 Fig, NG = 600,p = 0.5,n = 300 and σ = 0.1; in S4A Fig and S4B Fig, p = 1,σ = 0.3 and n = NG

while the values of NG were varied; in Fig 5, p = 1,n = 300, and NG = 800,σ = 0.15 (b) or NG =

500,σ = 0.1 (e). The number of input neurons was NI = 26 in all simulations except S4C Fig, in

which NI was 5s with s being the size of the chunk. In all simulations, τ = 10 [ms] and gG = 1.5.

The learning rate was set as α = 100 because larger values could cause instability in the learning

process. The network was trained typically for several hundreds of seconds except in Figs 2, 5B

and 5E where the simulation time was 5000, 2500 and 25,000 [s], respectively.

Teaching signals mediated by interneurons

In S2D Fig, the teaching signals were generated as

faðtÞ ¼ ½tanhððẑa0ðtÞ � g
P0

c¼4;5;6
ycðtÞÞ=bÞ�þ ða ¼ 1; 2; 3Þ; ð6Þ

where the activities of interneurons were calculated as

t _ycðtÞ ¼ � ycðtÞ þ ẑ cðtÞ: ð7Þ

A similar formula applied to the partner network. Note that a dash in the second term of Eq 6
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indicates that the corresponding readout unit should be excluded from the summation

(S2C Fig).

Connections between the reservoirs

In S4D Fig, the weights of recurrent connections in each reservoir module and those of con-

nections between the modules were sampled from an identical Gaussian distribution with

mean 0 and variance 1/{(1 + q)NG}, where q is the connection probability of inter-module con-

nections. The recurrent connections were all-to-all. The value 1 in the denominator was intro-

duced such that the limit q! 0 gives the disconnected RC modules studied in other panels in

S4 Fig.

Normalized output for teaching signals

In our learning rule, we changed the outputs of readout units such that the mean outputs coin-

cide with zero and the standard deviation becomes unity:

z tð Þ� !ẑ tð Þ ¼
zðtÞ � mðtÞ

sðtÞ
; ð8Þ

where μ(t) and σ(t) were calculated as

m tð Þ ¼
1

T
R t
t� Tzðt

0Þdt0; ð9Þ

s tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T
R t
t� Tzðt0Þ

2dt0 � mðtÞ2
r

; ð10Þ

with a sufficiently long period T (= 15 [s]). The modified output ẑðtÞ was then transformed by

two nonlinear functions to generate the teaching signal shown in the Results.

Selectivity of reservoir neurons

In S3A Fig, the activities of all reservoir neurons were first averaged and then normalized. To

define the response selectivity of neurons, we sorted all of the neurons by their mean activation

phases defined as,

t̂ i ¼
T
p

arg
PT

t0¼1
�ri t0ð Þexp i 2pt0

T

� �

PT
t0¼1

�riðt0Þ

" #

ms½ �; ð11Þ

where �rðtÞ is the normalized average response of each cell and T = 2400 [ms]. Each reservoir

neuron generally showed a significantly large and prolonged phasic response to a particular

chunk, which determined the selectivity of the reservoir neuron. We defined a phasic response

as such transient activity that exceeded the threshold value μ + 3σ for more than 100 [ms],

where μ and σ stand for the average and standard deviation of its activity during the presenta-

tion of input sequence. Neurons that were not related to any chunks or responded to multiple

chunks were discarded in the analysis.

Analysis of the low-dimensional dynamics of reservoirs

In Fig 3, we projected the neural responses rR1(t) of recurrent network in R1 onto the M
(≦NG) dimensional subspace:

rR1;MðtÞ ¼ VT
MrR1ðtÞ: ð12Þ
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Here, the (NG×M)-dimensional matrix VM is defined as VM = (φ1
(R1) φ2

(R1) . . .φM
(R1)) in terms

of the λ-th eigenvector of R1 reservoir φλ(R1). Similarly, we projected the readout weight vec-

tors from R1 onto the same subspace as

wR1;M ¼ VT
MwR1: ð13Þ

We then calculated the difference between the actual output of R1 and the output recon-

structed on the subspace as

Ez ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T
R T

0
jzR1ðtÞ � wT

R1;MrR1;MðtÞj
2dt

r

: ð14Þ

The difference between the actual output of R2 and the projected R1-output was calculated in

a similar fashion.

Simulations of visual information streams

In Fig 6B and 6C, we constructed a pair of RC modules each having two readout units. A

stream of two images with high (97x97 pixels x 3 RGB channels) or low (32x32 pixels x 3 RGB

channels) resolutions was used as input, in which the presentations of two images (and Gauss-

ian noise images in Fig 6B) were randomly switched at every 250 ms. Each reservoir neuron

received input from randomly chosen 10% of pixels. In Fig 6D, the low-resolution versions of

the images used in Fig 6C were created at the reduced size of 32 x32 pixels (x 3 RGB channels).

All codes for computer simulations were written in Python 3 and are available at https://

github.com/ToshitakeAsabuki/dualRC_codes.

Supporting information

S1 Fig. Responses of readout neurons during learning procedure. Below, numerical results

are shown for the model simulated in Fig 1. The responses of two readout neurons were ini-

tially incoherent (top). They gradually developed strong coherent responses to the repetition

of a chunk as learning proceeded (middle and bottom).

(EPS)

S2 Fig. Structure of teaching signals for multiple chunk learning. (a) A schematic illustra-

tion for the structure of teaching signals for z1. Since the partner node of z1 is z4, the sign of the

corresponding term in the teaching signal is positive whereas the other terms are negative. (b)

Teaching signals show incoherent activities (top) before learning, while the learning procedure

makes these activities much coherent (middle and bottom). Thick and thin lines represent

teaching signals from the pair of the readouts. (c) Lateral inhibitions by interneurons are mod-

eled. (d) The activities of readouts after learning with interneurons.

(EPS)

S3 Fig. Cell assemblies selected in the reservoirs. (a) The activity of each reservoir neuron

was averaged over repeated trials and normalized by its maximum activity. Neurons were

sorted according to the onset times of their activations to reveal the cell assemblies encoding

the three chunks (Methods). (b) The distributions of input weights onto each cell assembly are

shown for input neurons belonging to the corresponding chunk (solid) and the others

(dashed). The solid and dashed distributions summed over all cell assemblies were significantly

different (p = 0.011, t-test). (c) Temporal evolution is shown for average weights from encod-

ing cell assemblies to the corresponding readout units. (d) Normalized distributions are

shown for readout weights from each cell assembly. (e) The distribution of feedback weights
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from readout units to each cell assembly is shown.

(EPS)

S4 Fig. Learning with different sizes of reservoirs and chunks. (a) The time course and per-

formance of learning are shown for an input sequence involving a single chunk of the length 4

(blue) or 7 (red). Three networks with different sizes (NG = 30, 300, 500) were tested. (b) The

values of the correlation after learning are plotted as a function of the network size. (c) The

dependence of the correlation on the chunk size is shown. (d) The dependence of the correla-

tion on the connection probability between the two reservoirs is presented.

(EPS)

S5 Fig. Learning random sequences of single characters. The model shown in Fig 1 was

exposed to random sequences consisting of 10 characters (a, b, . . ., j). Input sequences had no

apparent temporally grouped subsequences. (a) The counts of simulation trials in which each

character was learned. All characters appeared equally often in input sequences. In total, 300

trials were performed. (b) Similar trial counts were taken when character “a” appeared twice as

often as others.

(EPS)
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