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Abstract 

‘Changes of Mind’ can provide insights into the dynamic and continuous processes 

underlying decision making and action selection. Previous studies on Changes of Mind have 

exclusively focused on either perceptual or value-based choice. This thesis investigates the 

flexible neurocognitive mechanisms that shape voluntary actions, which require integration of 

internally-generated (endogenous) intentions and externally-cued (exogenous) sensory or value-

based information. When information is noisy or changes dynamically, agents sometimes change 

their voluntary intentions and/or change the movements that are required to implement intentions 

into action. Continuous movement trajectories were used to capture both types of Change of Mind 

during ongoing action execution, revealing that ‘Changes of Intention’ are more frequent when 

intentions are weak or when the cost of pursuing an intention is high. These findings could be 

qualitatively reproduced by an attractor network model that continuously integrates endogenous 

and exogenous information over time, occasionally switching from one attractor state to a 

different one later on. In an fMRI study, the neural dynamics of intention reversals were 

investigated, providing evidence that neural patterns in a fronto-parietal network change 

dynamically to incorporate new decision- and action-relevant evidence after action onset. Finally, 

while behavioural flexibility is advantageous in many situations, an important hallmark of 

voluntary control is intention pursuit despite external changes or challenges. For example, people 

often need to persevere in the face of effort. Patients with post-stroke fatigue showed reduced 

perseverance compared to healthy controls when goal pursuit required continuous effort, which 

may cause adverse health-related outcomes. In conclusion, this thesis provides new insights into 

the continuous neurocognitive mechanisms that shape voluntary actions as they unfold. 

Reversibility of intentions allows agents to adjust their own actions to the current context, while 

stability of intentions is necessary for successful goal pursuit. Hence, volition requires balanced 

integration of endogenous intentions with dynamically-changing exogenous information. 
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Significance statement 

Voluntary actions form a crucial part of our everyday life and are essential to our experience 

as responsible agents. Only through our actions can we control events in the outside world. Hence, 

one of the key questions in the field of cognitive neuroscience is how people generate intentions, 

and implement these intentions into motor actions. A particularly intriguing aspect of this is how 

the neurocognitive system allows for dynamic Changes of Mind. That is, when new information 

is obtained, how does the brain reverse an already made decision? And how is such a decision 

reversal translated into changes in ongoing action execution? Many theories of voluntary action 

differentiate between goals vs. means of actions, but there are few systematic experimental studies 

of the relation between them. Here, we present the first systematic framework for studying the 

shielding vs. updating of intentions, as well as movements.  

A large range of converging methods was used, ranging from the measurement of 

continuous movement kinematics, computational modelling, through to neuroimaging techniques 

and a study on patients with post-stroke fatigue, in order to investigate the dynamic and continuous 

processes that shape voluntary actions as they evolve. Our findings show that the need to change 

an ongoing action plan can drive changes in the intention itself, in particular, when intentions are 

weak or are associated with costly movements in terms of time or effort. This provides important 

new insights into the reciprocal interplay between higher-order decision-making processes, and 

lower-level aspects related to movement execution. Hence, Changes of Mind provide a window 

into the fundamental neurocognitive mechanisms that shape behaviour, bridging the gap between 

decision-making and motor neuroscience.  

Finally, our findings point to a crucial importance of a balance between flexibility and 

stability of intentions. Disturbances in this balance may be directly linked to a large range of 

neurological and psychiatric conditions, such as rigidity of behaviour in obsessive compulsive 

disorder or impulsivity in attention deficit hyperactivity disorder. Moreover, motivational deficits, 

such as apathy and fatigue can cause a reduction in sustained voluntary action, and hence, 

impairments in goal pursuit with potential consequences for rehabilitation and quality of life. This 

thesis paves the way for future studies into disturbances in the component processes underlying 

flexible action selection, with the potential to develop new diagnostic tools and interventions.  
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Introduction 

1.1 General introduction 

Adaptive behaviour in a complex world requires continuous and dynamic decision-making 

processes. ‘Changes of Mind’ (CoM) are a striking example of our ability to flexibly reverse 

decisions after commitment to an initial choice, and change our actions accordingly. This 

flexibility can be highly advantageous in that it allows us to correct erroneous actions, and adjust 

our behaviour to the current context. For example, a CEO might need to change business strategies 

in response to changes in market demand. Yet, in other cases, decisions need to remain stable over 

time regardless of the current context. For example, deciding to quit smoking, go to the gym more 

regularly, or learn a new language – goal attainment often requires continuous pursuit of an 

intention. Understanding the mechanisms underlying the flexibility vs. stability of decisions, and 

their implementation into action, is highly relevant as choice reversals can have important 

implications for behavioural outcomes. The aim of this thesis is to investigate the dynamic and 

continuous neurocognitive mechanism underlying CoM. While the term ‘Change of Mind’ has 

many connotations, within the context of this thesis, it is defined as a reversal of one or more 

aspects of an initial action decision. More specifically, the focus of this thesis is on CoM in 

voluntary action.  
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1.1.1 What are voluntary actions?  

Before addressing the topic of CoM in voluntary action, we first need to define what we 

mean by volition. In voluntary actions, people generate internal (endogenous) decisions about 

how to act, rather than merely following prepotent external (exogenous) cues or instructions 

(Passingham, 1987; Brass & Haggard, 2008; Haggard, 2008; Fried, Haggard, He, & Schurger, 

2017). Internal decisions may be based on one’s own goals, preferences or memory (Passingham, 

1987; Haggard, 2008; Fried et al., 2017), and hence, are relatively independent from immediate 

external sensory cues. This ‘freedom from immediacy’ allows for deliberation and top-down 

control (Shadlen & Gold, 2004; Haggard, 2008) and is in sharp contrast to reflexes, which have a 

strong and direct stimulus-response link. Furthermore, as opposed to habits, voluntary actions are 

reasons-responsive and goal-directed, causing a higher demand for action planning and 

monitoring in volitional compared to habitual control (Fried et al., 2017). Finally, voluntary 

actions are typically accompanied by a subjective ‘Sense of Agency’ – the phenomenological 

experience of feeling in control over one’s actions and their outcomes (Gallagher, 2000; Pacherie, 

2008; Haggard & Tsakiris, 2009; Chambon, Sidarus, & Haggard, 2014). Sense of Agency is more 

pronounced in self-generated compared to externally-triggered actions (Haggard, Clark, & 

Kalogeras, 2002; Moore, Wegner, & Haggard, 2009). It is a crucial aspect of the conscious 

experience of our ‘self’ and enables us to feel responsible for our own actions and their 

consequences (Haggard & Tsakiris, 2009; Moretto, Walsh, & Haggard, 2011).  

Voluntary actions require agents to make decisions about multiple action parameters, such 

as what to do, when to do it and whether to do it at all (Brass & Haggard, 2008). The current thesis 

is primarily concerned with the processes underlying what components of action selection, i.e., 

decisions about which one of two alternative courses of action to execute. In particular, what are 

the neurocognitive mechanisms that allow people to change their mind and switch from action A 

to action B? While this might be closely related to the decision about whether or not to execute 
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action A, the inhibitory processes underlying such whether decisions have been addressed in detail 

by previous studies and are not the main focus of this thesis (Brass & Haggard, 2007; Kühn, 

Haggard, & Brass, 2009; Walsh, Kühn, Brass, Wenke, & Haggard, 2010; Parkinson & Haggard, 

2013, 2014, 2015). 

1.1.2 Neural basis of voluntary action 

It has been suggested that voluntary actions are generated in a distinct medial pathway of 

action selection, whereas externally-triggered (exogenous) actions result from lateral premotor 

areas (Okano & Tanji, 1987; Passingham, 1987; Haggard, 2008; Passingham, Bengtsson, & Lau, 

2010; Krieghoff, Waszak, Prinz, & Brass, 2011). While premotor cortex receives direct inputs 

from sensory areas, medial frontal areas have widespread connections to other cortical areas and 

the limbic system, which provide internal information about physical and emotional states, 

motivation, and memory (Passingham et al., 2010). Although a strict dissociation of lateral and 

medial action pathways has been challenged (Nachev, Kennard, & Husain, 2008; Nachev & 

Husain, 2010; Hughes, Schütz-Bosbach, & Waszak, 2011), a large number of neuroimaging, 

stimulation and patient studies have provided converging evidence that medial frontal cortex 

(MFC) is crucially involved in the generation of voluntary actions. For example, preparation and 

initiation of voluntary movement has been linked to activity in the supplementary motor area 

(SMA), pre-SMA, cingulate cortex and medial prefrontal cortex (Deiber, Honda, Ibañez, Sadato, 

& Hallett, 1999; Cunnington, Windischberger, Deecke, & Moser, 2003; Soon, Brass, Heinze, & 

Haynes, 2008; Fried, Mukamel, & Kreiman, 2011; Zapparoli et al., 2018). In addition to voluntary 

decisions about when to act, MFC appears to be involved in generating voluntary what decisions 

(Bode, Bogler, & Haynes, 2013; Soon, He, Bode, & Haynes, 2013; Zapparoli et al., 2018). More 

specifically, the pattern of neural activity in MFC predicts endogenous decisions between 

alternative choice options, such as images of different object categories (Bode et al., 2013) or 

more abstract decisions about whether to add or subtract two numbers (Soon et al., 2013). 
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Additionally, such ‘free’ decisions are encoded in parietal cortex, including precuneus, angular 

gyrus and supramarginal gyrus (Bode et al., 2011; Soon et al., 2013; Zapparoli et al., 2018). It has 

been proposed that precuneus may contribute to endogenous choice by resolving conflict when 

alternative options appear to be equal, hence preventing behavioural stalemate (Bode et al., 2013). 

However, the specific contributions of parietal and frontal cortex to voluntary action remain 

largely unclear. A recent functional magnetic resonance imaging (fMRI) study suggests that 

parietal cortex is specifically involved in voluntary what decisions, whereas MFC forms an 

‘intentional hub’ that integrates all three what, when and whether components of voluntary action 

(Zapparoli et al., 2018).  

In addition to neurophysiological and -imaging approaches, patient studies can provide 

unique insights into the neurocognitive mechanisms that underlie voluntary action by identifying 

specific patterns of impaired volition (Kranick & Hallett, 2013). For example, tics/Tourette 

syndrome and anarchic hand syndrome are characterised by reduced voluntary control. Anarchic 

hand syndrome is typically caused by fronto-median lesions, including the SMA, that result in a 

loss of voluntary control over movements of the contralesional limb (Marchetti & Della Sala, 

1998). Other neurological conditions affect patients’ subjective Sense of Agency over their 

actions, rather than movement control per se. For example, in alien hand syndrome, patients do 

not experience actions of the affected limb as their own (Kranick & Hallett, 2013). As opposed to 

anarchic hand syndrome, alien hand syndrome is typically caused by lesions in parietal cortex 

(Marchetti & Della Sala, 1998), which appears to be critical for conscious movement intention 

(Desmurget et al., 2009; Desmurget & Sirigu, 2009) and Sense of Agency (Farrer et al., 2008; 

Chambon, Wenke, Fleming, Prinz, & Haggard, 2012; Ritterband-Rosenbaum, Nielsen, & 

Christensen, 2014). Similarly, delusions of control in schizophrenia are characterised by a reduced 

Sense of Agency and may be the result of impaired connectivity between lateral parietal cortex – 

specifically, angular gyrus – and frontal areas (Voss, Chambon, Wenke, Kühn, & Haggard, 2017). 
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In conclusion, volition is associated with specific behavioural, neuroanatomical and 

neurophysiological markers that dissociate voluntary actions from purely externally-triggered 

actions. However, previous studies have often treated volition as a single cognitive ‘event’ leading 

to a single action, and hence, have used paradigms that may only provide limited insights into the 

complex and dynamic mechanisms underlying real-life actions. While some authors have 

acknowledged that voluntary actions evolve in time (Brass & Haggard, 2008; Schurger, Sitt, & 

Dehaene, 2012; Filevich & Haggard, 2013), few studies have investigated the neurocognitive 

mechanisms that allow for reversals of action decisions after movement onset.  

1.1.3 Changes of Mind (CoM) 

Previous studies on voluntary action have largely focused on a) the processes that lead up 

to an action before its initiation or b) the mechanisms that are involved in the evaluation of an 

action after it has been completed. For instance, research investigating the neurocognitive 

mechanisms prior to action has revealed how voluntary action decisions are generated (Bode et 

al., 2011; Bode et al., 2013; Soon et al., 2013), at which point in time these decisions enter 

consciousness (Libet, Gleason, Wright, & Pearl, 1983; Libet, 1985; Haggard & Eimer, 1999; Soon 

et al., 2008; Bode et al., 2011), and how voluntary decisions are implemented into motor action 

(Rushworth, Walton, Kennerley, & Bannerman, 2004). By contrast, studies on mechanisms after 

action completion have investigated the evaluation of action outcomes with respect to predicted 

outcomes (Blakemore, Wolpert, & Frith, 2000; Sato & Yasuda, 2005), post-action inference about 

prior intentions (Wegner, 2002; Wegner, Sparrow, & Winerman, 2004; Aarts, Custers, & Wegner, 

2005), or the experience of responsibility for consequences of an action (Moretto et al., 2011; 

Caspar, Christensen, Cleeremans, & Haggard, 2016). In fact, action-related processes are often 

separated into prospective mechanisms that occur before action onset and retrospective 

mechanisms occurring after action completion (Moore et al., 2009; Chambon et al., 2014). By 

contrast, less is known about the processes that occur during ongoing action execution – in 
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particular with regard to continuous decision processes that allow people to change their mind 

after an action has already been initiated, but before it has been fully executed. This may be largely 

due to the nature of paradigms that have typically been used to study volition. More specifically, 

there are five main characteristics of real-life voluntary actions, which are essential to 

understanding how voluntary actions unfold over time, but which have not been captured by many 

previous studies. The study of CoM offers one way to address these important topics:  

1) Extended time span: While previous paradigms have often operationalised voluntary actions 

in terms of discrete and fast key presses, real-life actions are continuous and can take seconds, 

minutes, hours or weeks to complete. This prolongs the time period in between prospective 

and retrospective mechanisms, providing many opportunities for potential decision reversals 

during ongoing action execution.  

2) Large number of affordances: Previous paradigms have often limited action choices to 

decisions about when to press a single button, or which one of two buttons to press. In real life, 

a significantly larger number of possible courses of actions (affordances) co-exist at a given 

point in time. The ability to flexibly switch between those alternatives may be particularly 

relevant when actions are initiated based on uncertain or incomplete information. 

3) Counterfactual outcomes: Different affordances may be associated with different action 

outcomes. Given the exclusive and serial nature of actions, pursuing one action outcome often 

means momentarily forfeiting another one. Consequently, voluntary actions can have several 

counterfactuals, and the mere notion of "I could have done otherwise", is an important hallmark 

of volition (Kulakova, Khalighinejad, & Haggard, 2017; Rens, Bode, & Cunnington, 2018). In 

fact, people sometimes “do otherwise” and switch to an alternative course of action. Failures 

to switch may cause feelings of regret when the outcome of a chosen action is unsatisfactory 

(Frith & Haggard, 2018). 
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4) Hierarchical organisation: Voluntary actions are driven by higher-order goal intentions that 

specify a desired action outcome (e.g., “I want to eat an apple”). These goals then need to be 

implemented into specific motor actions through lower-level processes involved in movement 

selection and planning (e.g., reaching for an apple). Hence, voluntary actions are organised in 

a hierarchical manner and CoM may occur on each level of the hierarchy. That is, decision 

reversals may either reflect a change in what goal is selected, or a change in how the goals is 

implemented into action (see section 1.4.2 below).  

5) Multiple sources of information: Voluntary actions need to integrate several pieces of 

information from different sources, including rewards and costs associated with an action, 

bodily states, and memories. Additionally, information from the external environment needs 

to be taken into account in order to select an appropriate action in a given situation. For 

example, external contexts can impose constraints on voluntary decisions by limiting the 

number of affordances. Hence, voluntary actions may be more accurately described as a mix 

of various endogenous and exogenous factors, rather than being entirely internally generated. 

Importantly, each source of evidence may change dynamically over time, which can potentially 

trigger CoM. 

The need to integrate external information for successful action selection implies that 

perceptual processes are highly relevant for voluntary action. In fact, one aspect that will be further 

explored throughout this thesis is that CoM about endogenous actions may be triggered by 

changes in the external environment – or changes in how the external environment is perceived. 

Consider a person that intends to cross the road (voluntary intention). The person needs to take 

into account whether the traffic light is red or green (perceptual information) in order to select an 

appropriate course of action (stop vs. cross the road). If the traffic light changes just as the person 

approaches the crossing, a quick change of action might be necessary (e.g., if the traffic light 

switches to red: Stop). In some situations, the perceptual information might be perturbed by noise 
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(e.g., fog), introducing uncertainty in the perpetual decision about the traffic light. Moreover, 

perceptual information may be a lot more complex than the mere colour of a traffic light, which 

further increases difficulty of the perceptual decision. For example, in the absence of a traffic 

light, the person needs to consider how many cars are coming from each direction, how fast they 

are going, if they are accelerating or not etc. A large number of studies has investigated such 

difficult perceptual decisions and has provided evidence that people continuously evaluate 

incoming sensory signals and sometimes change their mind about an initial perceptual choice 

(e.g., Resulaj, Kiani, Wolpert, & Shadlen, 2009). Hence, before further considering CoM in 

voluntary action, studies on CoM in perceptual decision making will be reviewed as these can 

provide important insights into theoretical and practical aspects of studying decision reversals and 

their underlying neurocognitive mechanisms. 

1.2 CoM in perceptual decision making 

Most previous studies on CoM in perceptual decision making have used the random-dot 

motion (RDM) task. In this task, participants have to judge the direction of moving dots by 

reaching for a target that corresponds to the observed net dot motion (e.g., left target for leftwards 

moving dots; Figure 1.1). Choice difficulty varies according to the dot-motion coherence, i.e., the 

percentage of dots that move into the same direction. On some trials, participants’ movement 

trajectories indicate a CoM, i.e., the response is initiated towards one target (e.g., on the left), but 

is then redirected and ends in the other target (e.g., on the right; Resulaj et al., 2009; Albantakis 

& Deco, 2011; Albantakis, Branzi, Costa, & Deco, 2012; Burk, Ingram, Franklin, Shadlen, & 

Wolpert, 2014; Moher & Song, 2014; van den Berg et al., 2016). These findings provide strong 

evidence that perceptual information continues to be evaluated after an initial choice has already 

been implemented into action, which can occasionally induce a CoM if evidence in favour of the 

alternative choice option is obtained after response onset.  
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Figure 1.1. Changes of Mind in the random-dot motion task. Participants 
judge the net motion direction of the dots by reaching for the corresponding 
left/right target. Continuous movement trajectories occasionally indicate a 
Change of Mind, e.g., a switch from the left to the right target (red 
trajectories). Due to sensorimotor delays, Changes of Mind occur even when 
the stimulus disappears at response onset (adapted from Resulaj et al., 2009).  

 

Importantly, by measuring continuous movement trajectories to capture CoM, these studies 

provided evidence that decision-making processes can run in parallel to action execution. 

Interestingly, CoM in the RDM task occurs even when the external stimulus disappears at action 

onset (Resulaj et al., 2009). This is due to sensorimotor delays (‘non-decision time’), causing 

evidence presented right before action onset to be processed while the action is executed. Hence, 

the onset of an action does not mark the end of a decision process, and in fact, does not require 

the decision to be finalised. Instead, findings of perceptual CoM during action are in line with 

theories proposing that decision making and action selection operate in a parallel and integrated 

manner, rather than being discrete and serial processes (Cisek, 2007; Yoo & Hayden, 2018).   
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1.2.1 Factors influencing perceptual CoM  

Variables that influence the frequency of CoM can provide further insights into the 

mechanisms that shape decisions as they evolve. In the RDM task, CoM is most frequent when 

the initial decision was erroneous or when response initiation was fast – and hence, when little 

evidence had been acquired by the time of the initial choice (Resulaj et al., 2009; Albantakis et 

al., 2012; van den Berg et al., 2016). Moreover, CoM is most likely when dot-motion coherence 

is relatively low (Resulaj et al., 2009). If motion coherence is high, CoM is rare because initial 

choices are usually correct and later sensory evidence further supports the initial choice. However, 

CoM does not necessarily increase monotonically with lower coherence since post-decision 

evidence may not be strong enough to drive a decision reversal when motion coherence is too low 

(Resulaj et al., 2009).  

Together, these findings point to a strong link between CoM and processes involved in 

performance monitoring and error correction (Yeung & Summerfield, 2012). In fact, curved 

trajectories in the RDM task share characteristics with ‘partial errors’ – i.e., early activation of an 

incorrect motor response, which is later on overwritten by the correct response (Coles, Scheffers, 

& Fournier, 1995; Dshemuchadse, Scherbaum, & Goschke, 2013). Moreover, it has been 

proposed that CoM is closely linked to our subjective confidence that the initial decision was 

correct, given new post-decision information (Fleming, Putten, & Daw, 2018). In line with this, a 

study by van den Berg et al. (2016) showed that the very same sensory evidence that contributes 

to perceptual CoM also underlies changes in confidence about that decision. Hence, at least in the 

case of perceptual choice, CoM may largely reflect corrections of initial decisions that are 

erroneous, or that we do not feel confident about.  

However, not all errors are corrected. One important reason for this is that decision reversals 

can be costly since a) one might erroneously switch from a correct to an incorrect decision if 

evidence in favour of a decision reversal is not sufficiently strong, and b) CoM can incur a 
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temporal or effort cost. Consequently, CoM decisions are typically conservative in that they 

require more than simply a reversal of the direction of evidence (Resulaj et al., 2009). 

Additionally, the reversal criterion is modulated by the motor cost associated with CoM. More 

specifically, when response targets in the RDM task are far apart from each other, corrective 

movements are more costly, and hence, the frequency of CoM decreases (Burk et al., 2014; Moher 

& Song, 2014). The cost associated with CoM has been reported to affect decision-making 

processes at both early and late stages. That is, in the study by Burk et al. (2014), far targets caused 

participants to apply a more conservative CoM criterion, i.e., stronger post-decision evidence was 

required to drive decision reversals. Conversely, Moher & Song (2014) found that motor costs 

already affected decision making during earlier stages of the decision process. More specifically, 

in their study, participants’ initial responses were slower when response targets were far, 

suggesting a more conservative speed-accuracy trade-off, which in turn reduced the risk of a costly 

decision reversal later on. The findings of the two studies are not mutually exclusive – presumably, 

motor costs are continuously evaluated throughout the decision process, just like sensory 

evidence. Consequently, it seems plausible that motor costs can affect decision making at several 

different stages, affecting both the initial decision as well as later decision reversals. More 

importantly, both studies provide converging evidence that the possibility to change one’s mind 

(and the cost associated with that) affects the underlying decision-making process itself. 

1.2.2 Models of perceptual CoM 

All previous studies on CoM in perceptual decision making share the assumption that 

decision reversals are the result of continuous evaluation of information after an initial choice has 

already been made. However, the precise mechanism of this continuous process is debated. Two 

main types of computational models of CoM have been proposed: Bounded accumulator models 

(Resulaj et al., 2009; Burk et al., 2014; van den Berg et al., 2016) and attractor network models 

(Albantakis & Deco, 2011; Albantakis et al., 2012; Yan, Zhang, & Wang, 2016). Both models 
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have been applied in several different domains of decision making and can accurately predict 

choice behaviour and response times across a large range of tasks (for an overview, see Deco, 

Rolls, Albantakis, & Romo, 2013). More recently, both models have been extended in order to 

account for decision reversals.  

In accumulator models (Figure 1.2A), evidence for each choice option is accumulated over 

time until a decision boundary is reached (Smith & Vickers, 1988; Ratcliff & Rouder, 1998). Due 

to fluctuations in noisy perceptual stimuli, evidence accumulation sometimes initially crosses one 

boundary, but then reverses in favour of the alternative choice option causing a CoM (e.g., Resulaj 

et al., 2009). This model directly accounts for time-accuracy trade-offs that can explain the effect 

of several variables on the frequency of CoM. For example, Moher & Song (2014) proposed that 

reduced frequency of CoM under high cost can be explained by increasing the decision boundary 

in an accumulator model. High decision boundaries require more evidence to be obtained in order 

to reach a decision, and consequently, to reverse a decision. This reduces the likelihood that 

sufficient post-decision evidence is accumulated to cause a CoM. However, interestingly Resulaj 

et al. (2009) proposed that CoM decisions are subject to a different boundary that is separate from 

the initial decision boundary (BCoM, Figure 1.2A). Reaching that second CoM boundary typically 

requires more evidence in favour of the alternative choice option than was needed for the initial 

decision (Resulaj et al., 2009; Burk et al., 2014; van den Berg et al., 2016). This is because CoM 

in the RDM task incurs motor costs due to longer path lengths of corrective movements. 

Accordingly, the further away the targets are from each other, the further away the CoM bound is 

shifted, explaining why far targets cause fewer CoMs than close targets (Burk et al., 2014). 
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Figure 1.2. Computational models of CoM. A) Bounded accumulator (drift diffusion) model where 
relative evidence in favour of a choice option (e.g., left) is accumulated over time. After an initial 
bound has been reached, evidence continues to be accumulated due to sensorimotor delays (non-
decision time). Occasionally, this causes the accumulator to reach a CoM boundary (red) after response 
initiation, indicating a decision reversal. B) Attractor network model with two nodes representing 
neural populations that selectively respond to left/right motion stimuli. Firing rates of each population 
are updated continuously based on the external input and excitatory/inhibitory connections. CoM 
occurs when one population of neurons reaches the firing threshold first, but later on, the alternative 
population wins the competition and reaches the threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly to accumulator models, attractor network models propose that a decision variable 

dynamically evolves over time until a decision threshold is reached (Wang, 2002, 2008). 

However, in attractor network models, the diffusion process occurs in a non-linear manner. 

Attractor networks typically consist of several nodes, which represent different neural populations 

that respond selectively to specific inputs (e.g., left vs. right dot motion; Figure 1.2B). The firing 

rate of each node encodes the decision variable and is updated continuously over time. 

Importantly, different nodes are connected through excitatory or inhibitory connections. Hence, 

the current state of a given node does not only depend on direct external inputs, but also on its 

inputs from other neural populations – or in case of auto-connections, on its own previous state. 

A response is made if one of the neuron pools reaches a fixed firing rate threshold. Due to self-

sustaining dynamics, the network evolves into an ‘attractor state’ where firing rates remain 
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relatively stable over time. However, crucially, when noise is high or when the system is 

perturbed, the network can switch from one attractor state to a different one later on, indicating a 

CoM (Moreno-Bote, Rinzel, & Rubin, 2007; Albantakis & Deco, 2011; Albantakis et al., 2012; 

Yan et al., 2016). That is, after an initial decision has been made, the firing rate of the alternative 

pool increases and reaches the threshold, causing the network to switch to a different attractor 

state (Figure 1.2B). The likelihood of attractor states to change varies with the degree of noise in 

the external input, but also depends on intrinsic fluctuations within the network, which in turn are 

a function of neural noise and the network’s connectivity architecture (Albantakis & Deco, 2011; 

Yan et al., 2016). For example, strong self-excitatory connections can render attractor states more 

stable.  

Both accumulator and attractor network models can account for commonly observed effects 

on CoM (e.g., Resulaj et al., 2009; Albantakis & Deco, 2011). For example, in both models, CoM 

is more frequent when the initial decision is erroneous because noise causes the wrong choice 

option to be reached first, but sufficient evidence in favour of the correct option is acquired over 

time due to the actual signal in the stimulus. Furthermore, both types of model predict that CoM 

occurs more frequently when the decision threshold is low, i.e., when only a small amount of 

evidence can drive a decision/decision reversal. Finally, in both types of models, decision 

reversals require relatively strong countermanding evidence after commitment to an initial choice. 

In accumulator models, this is implemented through a separate CoM boundary that is shifted away 

from the initial boundary. By contrast, attractor network models assume a fixed threshold for both 

initial decisions and subsequent decision reversals. However, due to inhibitory connections, the 

initially-chosen option suppresses competing choice alternatives, which consequently require 

more evidence to reach the firing threshold.  

The differences and potential (dis-)advantages of accumulator vs. attractor network models 

have been debated extensively in the literature (e.g., Wang, 2008; Deco et al., 2013). For example, 
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it has been proposed that attractor network models can easily be extended beyond 2-alternative 

choice tasks by simply adding more possible attractor states according to the number of choice 

options (Albantakis et al., 2012). By contrast, in some types of accumulator models, 

implementation of more than 2 choice options is less trivial, such as in drift diffusion models 

where the decision variable represents the relative evidence in favour of a given choice option 

(Tsetsos, Usher, & McClelland, 2011). However, other types of accumulator models (e.g., race 

models) assume independent accumulation for each choice option, and hence, can easily be 

extended to multiple-choice problems. Furthermore, it has been proposed that attractor networks 

are more biologically plausible than accumulator models due to their non-linear dynamics that are 

inspired by real neural circuits (Wang, 2008). However, biological plausibility is difficult to 

quantify and test directly. Moreover, some types of accumulator models share characteristics of 

networks. For example, in ‘leaky competing accumulator models’ (Usher & McClelland, 2001), 

evidence accumulation is imperfect due to leakage, or decay, over time. Additionally, in these 

models, alternative accumulators have mutual inhibitory connections, as in attractor networks. 

Hence, the two types of modelling approaches are not necessarily exclusive. Nevertheless, a main 

advantage of network models is that they can consist of several modules (or layers), and hence, 

allow for integration of a large range of decision variables that are encoded in different neural 

populations (Christopoulos, Bonaiuto, & Andersen, 2015). By contrast, traditional accumulator 

models only accumulate a single source of evidence (e.g., sensory evidence from an RDM 

stimulus), while other sources of information (e.g., motor costs) are modelled through their effects 

on a static decision threshold, rather than being treated as a decision variable per se (Burk et al., 

2014; Moher & Song, 2014). 

Hence, attractor network models might provide an appropriate approach to model CoM in 

voluntary action, where endogenous intentions need to be continuously integrated with sensory 

and value-based information. In Chapter 3 of this thesis, a novel attractor network model will be 
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proposed that consists of several nodes that continuously and dynamically integrate voluntary 

intentions, sensory evidence and motor costs in order to inform choices between several 

competing action alternatives. 

1.2.3 Neural basis of perceptual CoM 

While there is an extensive literature on the neural mechanisms underlying perceptual 

decisions (for a review, see Gold & Shadlen, 2007; or Hanks & Summerfield, 2017), only very 

few studies have specifically investigated the neural basis of CoM (Bollimunta, Totten, & 

Ditterich, 2012; Kiani, Cueva, Reppas, & Newsome, 2014; Fleming et al., 2018). With regard to 

perceptual choice in general, many previous studies have suggested that accumulation of sensory 

evidence may be encoded in posterior parietal cortex (Shadlen & Newsome, 2001; Kayser, 

Buchsbaum, Erickson, & D'Esposito, 2009; Bollimunta et al., 2012; O’Connell, Dockree, & Kelly, 

2012), and frontal regions, including dorsolateral prefrontal cortex (Kim & Shadlen, 1999; 

Heekeren, Marrett, Bandettini, & Ungerleider, 2004) and motor areas involved in implementing 

perceptual decisions into actions (Gold & Shadlen, 2000; Donner, Siegel, Fries, & Engel, 2009). 

Yet, the role of these areas in driving perceptual CoM has only received attention more recently. 

This may largely be due to the fact that CoMs are usually rare, with a typical frequency of 5–10%, 

even under conditions that maximize the likelihood of decision reversals, e.g., high uncertainty 

and time pressure (Resulaj et al., 2009; Albantakis & Deco, 2011; Moher & Song, 2014). 

Furthermore, CoM usually occurs spontaneously, with little experimental control over whether or 

not a decision reversal occurs on an individual trial. This is particularly true for CoMs that result 

in overt reversals of behavioural responses. Hence, studies investigating the neural mechanisms 

of CoM have focused on covert decision reversals by measuring changes in neural activity in areas 

tracking perceptual evidence (Bollimunta et al., 2012; Kiani, Cueva, et al., 2014). For example, 

using an RDM task, Kiani et al. (2014) showed that neural activity in prefrontal cortex 

dynamically encodes the evolution of a decision variable within a given trial. This decision 
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variable (i.e., neural activity patterns) occasionally reversed, indicating a CoM before the decision 

was implemented into overt behaviour. The authors verified that these CoMs observed on a neural 

level were behaviourally relevant, rather than reflecting pure noise. That is, the state of the internal 

decision variable accurately predicted overt behaviour in trials where responses were prompted 

early on in the trial. Furthermore, in line with previous studies, neural reversals were more likely 

when the perceptual decision was difficult and when the initial choice was erroneous. This 

suggests that neural activity patterns reliably tracked a perceptual decision variable in real time as 

decisions evolved, occasionally signalling changes in internal decision states based on new 

evidence. Hence, CoM may result directly from the neural processes that continuously evaluate 

perceptual evidence during decision formation.  

Additionally, a recent fMRI study in humans investigated the brain areas involved in post-

decision evaluation of sensory evidence and its effect on subjective ratings of confidence (Fleming 

et al., 2018). Given that both confidence and CoMs are, at least to some extent, driven by the 

strength of sensory evidence (van den Berg et al., 2016), confidence judgments can serve as a 

graded measure of processes that might be very closely linked to discrete CoM/no-CoM 

behaviour. In an RDM task, the authors manipulated the amount of perceptual evidence in favour 

of the correct choice, after participants had already committed to an initial decision. Participants 

were then asked to rate their confidence in the decision after having acquired the additional 

evidence. Posterior MFC tracked post-decision evidence – specifically, the probability that the 

initial decision was correct. Interestingly, activity in MFC showed a positive relation with post-

decision evidence in errors, but a negative relation in correct responses. This indicates that this 

area may be specifically engaged when an erroneous action needs to be revised based on new 

evidence – in line with previous studies implicating posterior MFC in error monitoring and 

correction (Carter et al., 1998; Mars et al., 2005). Hence, MFC may contribute to perceptual CoM 

by informing error correction after an initial choice has already been made. Finally, Fleming et al. 
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(2018) found that a distinct area in the lateral anterior PFC mediated the effect of post-decision 

evidence on subjective confidence ratings, suggesting that this area transformed updates in 

decision variables into metacognitive judgments about one’s own choices. However, this study 

did not explicitly investigate how exactly post-decision evidence tracked by MFC and subjective 

confidence represented in lateral anterior PFC contribute to, and possibly interact, in order to 

cause overt CoM.  

1.3 CoM in value-based decision making  

In addition to external sensory input, voluntary actions rely on value-based representations 

about the rewards and costs associated with an action. Similarly to CoM in perceptual choice, 

previous studies have shown that value-based decisions, for example between different food 

items, can change dynamically after an initial choice has already been made (Folke, Jacobsen, 

Fleming, & De Martino, 2016; Voigt, Murawski, & Bode, 2017). In analogy to the effects of 

confidence in perceptual decisions, Folke et al. (2016) showed that people change their mind more 

frequently when their confidence in an initial value-based decision is low, for example when 

choice values are highly similar for alternative options. Hence, in both perceptual and value-based 

choice, decision reversals are more likely when evidence in favour of the initial choice was 

relatively weak. 

Updates in value-based decisions are particularly relevant when values of competing choice 

options are uncertain and/or change dynamically, for example, in probabilistic reversal learning 

(Izquierdo, Brigman, Radke, Rudebeck, & Holmes, 2017), or foraging in dynamic environments 

where agents commonly face decisions between exploitation of a previous choice vs. exploration 

of alternative choice options (Cohen, McClure, & Angela, 2007; Humphries, Khamassi, & 

Gurney, 2012; Rushworth, Kolling, Sallet, & Mars, 2012). Several brain areas have been shown 

to continuously track competing choice values in these scenarios, including posterior parietal 
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cortex (Sugrue, Corrado, & Newsome, 2004), frontopolar cortex (Boorman, Behrens, Woolrich, 

& Rushworth, 2009), ventromedial frontal cortex (Tsuchida, Doll, & Fellows, 2010; Economides, 

Guitart-Masip, Kurth-Nelson, & Dolan, 2014; McGuire & Kable, 2015), and anterior cingulate 

cortex (Cohen et al., 2007; Camille, Tsuchida, & Fellows, 2011; Boorman, Rushworth, & 

Behrens, 2013; Kolling, Wittmann, & Rushworth, 2014; Kolling, Behrens, Wittmann, & 

Rushworth, 2016; Kolling, Wittmann, et al., 2016; Shenhav, Cohen, & Botvinick, 2016). 

Interestingly, patients with lesions in fronto-median areas are not typically impaired in learning a 

single choice value, but show a specific pattern of impairments in updating value representations 

when reward contingencies change dynamically, and hence, need to be updated continuously 

(Fellows & Farah, 2003). 

However, most of these studies have investigated discrete actions, rather than CoM during 

ongoing movement. Moreover, choice reversals in these paradigms occur across several trials, or 

even blocks – and hence, are the result of relatively slow updates, e.g., during learning. However, 

choice values can be updated on a much faster time scale. For example, in a recent (unpublished) 

study, Voigt, Murawski, Speer, and Bode (2018; bioRxiv) proposed that choice values are 

dynamically updated while decisions are made. The authors measured choice-induced preference 

– i.e., the phenomenon by which choice behaviour can increase the subjective value of a chosen 

option, especially when the decision was generated endogenously (Festinger, 1957; Sharot, 

Velasquez, & Dolan, 2010). Choice-induced preference had previously been proposed to be driven 

by cognitive dissonance that causes a retrospective increase in value after a choice was made 

(Festinger, 1957). By contrast, Voigt et al. showed that choice values are already adjusted while 

choices are generated, suggesting that value-based information can be updated in a highly 

dynamic manner as decisions evolve. These online updates of values, and subsequent preference 

changes, could be predicted from activity in precuneus and dorsolateral prefrontal cortex. 

However, this was only true for choice items that were encoded in memory and were associated 
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with hippocampal activity. Hence, value representations stored in memory may serve as internal 

cues guiding future behaviour, which may be particularly relevant for endogenous action selection 

(Voigt et al., 2018). Hence, there are dynamic reciprocal relations between endogenous actions 

and value-based representations, where actions can drive changes in subjective value, which then 

in turn inform future actions. 

1.3.1 Temporal/effort costs 

Finally, value-based decisions need to integrate both rewards and potential costs. Actions 

typically incur a cost in terms of effort and/or time associated with a given movement (Kurniawan 

et al., 2010; Shadmehr, de Xivry, Xu-Wilson, & Shih, 2010). As mentioned above, this can affect 

action selection in perceptual decision-making tasks (Burk et al., 2014; Moher & Song, 2014). 

However, costs also need to be weighed against potential rewards in value-based choice. It has 

been proposed that this is achieved through temporal/effort discounting, i.e., a decrease in the 

subjective value assigned to a reward as a function of its associated cost (Samuelson, 1937; 

Hartmann, Hager, Tobler, & Kaiser, 2013).   

Effort may be a particularly interesting type of cost because deciding to invest physical 

effort to obtain a reward is directly linked to motivational aspects of behaviour. That is, 

overcoming effort costs not only requires hedonic ‘liking’ of a prospective reward, but an 

incentive ‘wanting’, which drives goal-directed behaviour (Berridge, Robinson, & Aldridge, 

2009). Motivational deficits, such as apathy, are commonly observed in neurological and 

psychiatric conditions (Husain & Roiser, 2018), e.g., Parkinson’s disease (Starkstein et al., 1992; 

Chong et al., 2015), stroke (Starkstein, Fedoroff, Price, Leiguarda, & Robinson, 1993; Mayo, 

Fellows, Scott, Cameron, & Wood-Dauphinee, 2009; Caeiro, Ferro, & Costa, 2013), depression 

(Treadway, Bossaller, Shelton, & Zald, 2012), and schizophrenia (Hartmann et al., 2014).  
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Many previous studies on effort-based decision making measure participants’ willingness 

to initiate an effortful action, e.g., squeezing a hand-held dynamometer with high force, in order 

to gain a reward (Hartmann et al., 2013; Chong et al., 2015). However, crucially, goal-directed 

behaviour often requires perseverance – i.e., the willingness to maintain an effortful action over 

long periods of time, instead of cancelling the action or changing to an easier, alternative course 

of action (Holroyd & Coles, 2002; Meyniel, Safra, & Pessiglione, 2014; Kolling, Wittmann, et 

al., 2016). It has been proposed that initiating vs. maintaining an effortful action are dissociable 

processes that rely on partially distinct mechanism (Holec, Pirot, & Euston, 2014; Meyniel et al., 

2014). Specifically, deciding to initiate an action requires integration of anticipated effort and 

rewards, for example, based on external effort cues. Overestimation of prospective effort may 

underlie difficulties of action initiation observed in patients with depression or ‘auto-activation 

deficit’, causing an overall reduction in self-generated voluntary actions (Meyniel et al., 2014; 

Bonnelle et al., 2015). By contrast, maintaining an effortful action over time requires integration 

of experienced effort during action execution. This needs to be updated continuously as the action 

evolves. Meyniel et al. (2014) proposed an accumulator model, in which effort accumulates during 

ongoing action execution until a threshold is reached, causing the person to take a rest to refill 

resources. The higher the rate of effort accumulation, the earlier execution of an effortful action 

is stopped, and hence, this accumulator process can be directly linked to the decision about 

whether or not to maintain an ongoing effortful action. The rate of accumulation in turn depends 

on both the objective effort requirements that cause muscles to fatigue over time, but also the 

subjective experience of the exerted effort (Meyniel et al., 2014; Müller & Apps, 2018). Hence, 

effort-based decisions have to be updated continuously according to one’s current bodily and 

motivational state. Disturbances of these processes, e.g., exaggeration of experienced effort in 

chronic fatigue (Nadarajah & Goh, 2015; Kuppuswamy, 2017), may cause difficulties in persistent 

voluntary action. In Chapter 5 of this thesis, we report findings of reduced perseverance in 

voluntary goal pursuit in patients with post-stroke fatigue.  
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1.4 CoM in voluntary action 

The studies reviewed above have focused on decision making in the context of perceptual 

or value-based choice. The aim of the current thesis is to extend the investigation of dynamic 

decision reversals to the field of voluntary action. As mentioned above, there are certain 

characteristics that may render voluntary action a particularly interesting field of investigation 

with regard to CoM: 1) extended time spans, providing many opportunities for decision reversals 

when new information is obtained, 2) large number of affordances, and hence, several alternative 

courses of action to switch to, 3) counterfactual outcomes, i.e., CoM can change the consequences 

of an action, 4) CoM may occur on different hierarchical levels of action, and hence, affect higher-

order goal intentions or lower-level movements, and 5) voluntary actions need to integrate 

multiple sources of information, which may change dynamically over time. These characteristics 

may render voluntary actions particularly prone to decision reversals. Additionally, the fact that 

CoM can cause changes in action outcomes means that whether or not an agent changes an 

ongoing action can have important individual or social consequences (Gollwitzer & Oettingen, 

2012; Goschke, 2014). Beyond such practical implications, there are important theoretical reasons 

for studying CoM in voluntary action.  

1.4.1 Why study CoM in voluntary action? 

First, by extending the investigation of CoM to voluntary action, we can gain new insights 

into the mechanisms driving decision reversals in other domains, beyond perceptual and value-

based decision making. Previous studies on CoM have focused on a single source of evidence 

(e.g., perceptual or value-based information) that is continuously evaluated over time. By contrast, 

voluntary actions need to take into account a large variety of sources of information, including 

internally-generated intentions, value-based representations about rewards and costs of action 

alternatives, and external information about context. Consequently, studying CoM in voluntary 
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action can provide new insights into how several different endogenous and exogenous sources of 

evidence interact over time to inform decision reversals. 

Furthermore, we cannot assume that the findings from previous studies on perceptual CoM 

hold true for voluntary decisions. In fact, there are several reasons to assume that whether or not 

a decision was made endogenously may affect later decision updates. For example, as mentioned 

above, endogenous choice – but not externally-instructed choice – can increase subjective value, 

which can in turn strengthen commitment to an initial choice (Sharot et al., 2010; Voigt et al., 

2017). In fact, traditional theories of volition consider the will to be a strong ‘determining 

tendency’ that can, for example, overwrite habitual responses (Ach, 1935). Hence, voluntary 

intentions may be strong and less susceptible to CoM. However, others have proposed that, 

compared to externally-instructed intentions, self-generated intentions are held more flexibly 

(Salvaris & Haggard, 2014), are associated with indecision and vacillation (Kaufman, Churchland, 

Ryu, & Shenoy, 2015), and can be updated more easily (Fleming, Mars, Gladwin, & Haggard, 

2009). This may be related to the fact that voluntary decisions often do not have objectively correct 

or incorrect choice options. Hence, voluntary actions are relatively underdetermined by evidence, 

which may cause agents to ‘keep their options open’ in case more evidence informing action 

selection is obtained later on.  

However, previous studies suggesting that voluntary intentions are flexible have focused 

on basic motor decisions about which one of two keys to press – with little to no consequences 

for participants. Yet, there are cases where intentions are of greater personal relevance, e.g., when 

choosing one’s future career path, or similar ‘goal intentions’. In these situations, self-generated 

intentions may be stronger, and hence, less prone to decision reversals. In other words, the degree 

to which intentions are reversible might depend on the strength of intention, which in turn may 

vary gradually. Hence, by studying changes in intentions, we can learn more about the conditions 

under which intentions are maintained vs. abandoned, which may provide important insights into 
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what intentions are and how ‘determining’ they may be. Thus, measuring CoM may be a suitable 

approach to capture intentions as a continuous, gradual and reversible phenomenon. Similarly, 

other fields of psychology, e.g., memory research, have long-standing traditions of studying 

representations by investigating how and why they change over time (Atkinson & Shiffrin, 1968).  

More generally, studying CoM in voluntary action cannot only shed light on the specific 

mechanisms underlying decision reversals, but might also provide novel insights into volition 

itself that might otherwise be difficult to gain. Previous studies have investigated endogenous 

action as a serial and discrete event (e.g., by measuring single keypresses), and hence, have taken 

single snapshots of voluntary action. However, in order to capture the evolution of actions, we 

need to apply continuous measures (Spivey, 2007; Song & Nakayama, 2009; Dshemuchadse et 

al., 2013; Gallivan & Chapman, 2014). The existing literature on CoM in perceptual and value-

based decision making provides a good example of what can be gained by studying actions as 

continuous phenomena. For example, previous studies have shown how decision-relevant 

information is evaluated over time (Resulaj et al., 2009), how initially erroneous decisions are 

corrected during ongoing action execution (Dshemuchadse et al., 2013), and how decision criteria 

are flexibly adjusted in the face of motor costs (Burk et al., 2014; Moher & Song, 2014). As a 

consequence, these studies have been able to redefine and extend existing models of decision 

making and its underlying neural mechanisms. Hence, studying CoM cannot only provide insights 

into decision reversals themselves, but may also enable a better understanding of the more general 

mechanisms underlying voluntary action – e.g., how intentions are generated and transformed into 

actions, how they are re-evaluated after action onset, or how intentions (or changes in intentions) 

shape the subjective Sense of Agency over an action.  

In summary, there are important practical and theoretical implications of studying CoM in 

voluntary action. Before addressing the specific questions this thesis aims to answer, we need to 

first specify in more detail what we mean by CoM in the context of voluntary action, and how 
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exactly this can be measured. Given that voluntary actions require integration of multiple sources 

of information, and involve decisions about multiple action parameters (Brass & Haggard, 2008), 

there are many different ways in which agents may change their mind about a voluntary action. 

Hence, in the following, an important distinction between different types of CoM will be discussed 

before practical challenges of measuring CoM in voluntary action are addressed.  

1.4.2 Hierarchical decision making: Goals vs. movements 

Several theories propose that decisions about different aspects of action are organised in a 

hierarchical manner (Hebb, 1949; Mele, 1992; Cooper & Shallice, 2000; Botvinick, 2008; 

Pacherie, 2008; Kouneiher, Charron, & Koechlin, 2009; Cisek, 2012). Pacherie (2008) 

differentiates between distal (D), proximal (P) and motor (M) intentions (Figure 1.3A). Distal 

intentions refer to abstract, higher-order action goals, e.g., deciding to eat pizza for dinner. 

Proximal intentions are lower-level sub-goals, i.e., steps that are required to achieve higher-order 

goals, such as preparing pizza dough. Finally, motor intentions represent the precise motor actions 

that are necessary to achieve proximal and distal intentions, e.g., kneading pizza dough. Hence, 

while distal intentions refer to the goal of an action with respect to its outcome, proximal and 

motor intentions are the means of reaching that overarching goal. Specification of motor intentions 

is largely guided by contextual and sensorimotor information that is provided by exogenous input 

from the environment. For example, kneading the dough requires knowledge about the current 

location of the dough, its weight etc. By contrast, distal intentions are often generated based on 

one’s own goals, preferences, and beliefs (Pacherie, 2008), and hence, may be endogenous. The 

translation of abstract endogenous goals into specific movements can be achieved through an 

internal inverse model that computes the motor commands required to reach a desired state 

(Kawato, 1999; Wolpert & Ghahramani, 2000; Pacherie, 2008). 
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Figure 1.3. Hierarchical models of goals and movements. A) Pacherie’s hierarchy of intentions. 
B) Cisek’s model of multi-level decision making with parallel competition between higher-
order goals and lower-level motor representations, and integration of information across both 
levels. C) Extended multi-level model where multiple movement alternatives are nested within 
each goal. Changes of Mind can occur on each hierarchical level, and hence, a distinction 
between Changes of Goals/Intentions and Changes of Movements can be made. 
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Similarly to Pacherie’s hierarchical model of intentions, Cisek (2012) differentiates 

between higher-order abstract goals and lower-level motor representations, and proposes that 

action selection depends on parallel and integrated decision making on both levels of the hierarchy 

(Figure 1.3B). That is, different goal representations compete against each other, and at the same 

time, motor representations associated with each goal compete for execution. On each level, costs 

and rewards inform the competition between alternative goals/movements. Decisions are made 

through a ‘distributed consensus’, i.e., integration of information across both levels. That is, 

reciprocal connections allow information on one level of the hierarchy to bias the competition on 

the other level. Intuitively, the decision to select goal A biases the selection of the corresponding 

movement A. However, crucially, movement representations also inform higher-order goals. That 

is, the means of how to reach a goal might inform what goal to select, e.g., by providing 

information about the cost associated with each movement (Cos, Bélanger, & Cisek, 2011; Cisek, 

2012; Christopoulos et al., 2015). For example, the effort associated with kneading pizza dough 

might be taken into account when deciding whether to make pizza, or instead, pursue a different 

goal that may be easier to achieve (e.g., cooking pasta). Hence, this model assumes that motor 

representations play an active part within the decision-making process. In line with this, it has 

been shown that multiple movement alternatives are already activated before a final decision 

between abstract goals has been made (Cisek & Kalaska, 2002, 2005; Gallivan & Wood, 2009; 

Chapman et al., 2010; Stewart, Gallivan, Baugh, & Flanagan, 2014; Gallivan, Barton, Chapman, 

Wolpert, & Flanagan, 2015), allowing motor representations to be integrated effectively into the 

decision-making process (Cisek, 2007, 2012).   

Finally, in the model by Cisek, each goal is directly associated with a single movement. 

However, in many situations, a given goal may have multiple movement alternatives (Figure 

1.3C). In fact, according to Hebb’s principle of motor equivalence, several possible movements 

can result in the same outcome (Hebb, 1949). Hence, there are different ways of reaching a given 
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goal, such as making pizza vs. ordering takeout from an Italian restaurant. Consequently, goals 

and movements may be organised in a nested hierarchical structure, where competition between 

higher-order goal intentions occurs in parallel to competition between multiple movement 

alternatives that are nested within each goal. Note that in the following, the words ‘intention’ and 

‘goal’ are used interchangeably, and hence, within this thesis, intentions are referred to as higher-

order goals, as opposed to lower-level motor intentions.  

Importantly, CoMs can occur on each level of the hierarchy, and hence, can affect distal 

goal intentions or movements (Figure 1.3C). An agent might change a higher-order intention 

(e.g., eating pasta instead of pizza), but can also change the means required to implement that 

intention into action (e.g., ordering pizza delivery instead of making the pizza oneself). According 

to the principle of motor equivalence (Hebb, 1949), changing movements associated with the same 

intention does not change the outcome of an action (pizza). By contrast, when changing the 

intention, action outcomes change (pizza vs. pasta). Hence, CoM on a higher hierarchical level 

has different consequences from CoM on a lower level. Furthermore, CoM on each level may 

depend on different mechanisms and pieces of information. As mentioned above, lower-level 

movements may be strongly guided by sensorimotor information and motor costs associated with 

a given movement, whereas goals may more strongly depend on endogenous factors. Hence, a 

change in sensorimotor information (e.g., available kitchen equipment) can trigger a Change of 

Movement, whereas endogenous changes (e.g., change in food preferences) may trigger Changes 

of Intention. Crucially, however, due to reciprocal connections between goals and movements 

(Cisek, 2012), CoM on one level of the hierarchy might trigger changes on the other level. That 

is, if goals change, typically movements need to be changed (kneading dough for pizza vs. boiling 

water to cook pasta). More interestingly, new information obtained on the motor level may also 

inform changes in higher-order goals. In particular, costs associated with movements may drive 
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changes in the goal itself. For example, if both means of obtaining pizza are costly (e.g., effort of 

kneading pizza dough vs. long delivery time for pizza), one might choose to cook pasta instead. 

Hence, CoM about abstract goal intentions may not be completely independent from CoM 

about motor intentions and vice versa. Yet, movements vs. goals have traditionally been studied 

in separation. Research on movements has typically focused on very basic motor aspects of 

actions, such as movement kinematics and motor control in simple reaching tasks, without 

requiring decisions about higher-order goal intentions (e.g., Wolpert & Ghahramani, 2000). 

Conversely, research on goals has focused on abstract voluntary intentions with respect to 

personal health-related or professional goals, regardless of low-level motor aspects (e.g., 

Gollwitzer & Oettingen, 2012). In the following section, the two lines of research will be briefly 

reviewed with a specific focus on studies that have investigated changes on the level of 

movements or goals, respectively.  

1.4.3 Changing movements 

A large body of research suggests that the motor system is highly flexible, allowing for fast 

and efficient changes between alternative movement commands. This is typically measured using 

double-step reaching tasks (e.g., Goodale, Pélisson, & Prablanc, 1986; Buch, Mars, Boorman, & 

Rushworth, 2010) or cued switch paradigms (e.g., Nachev, Rees, Parton, Kennard, & Husain, 

2005; Fleming et al., 2009; Obhi, Matkovich, & Chen, 2009). These paradigms have in common 

that participants initially prepare (or execute) one movement, but then receive an external cue that 

requires them to switch to an alternative movement. For example, in double-step tasks, 

participants have to reach for a target. After having initiated a movement towards a given target, 

the target occasionally changes its location, requiring participants to generate an updated motor 

command to change the ongoing movement. Hence, this is a sensorimotor change, which is in 

some way similar to CoM in the RDM task. That is, based on new sensory information (target 
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location/dot-motion direction), a switch to an alternative motor command is required. However, 

double-step reaching tasks minimise perceptual decision-making demands and focus more 

strongly on aspects related to motor re-programming.  

Changing movements requires updates of motor commands in primary motor cortex, which 

in turn relies on dynamic re-programming of motor plans in a network of areas including pre-

SMA, premotor cortex, inferior frontal gyrus and basal ganglia (Wise & Mauritz, 1985; Leuthold 

& Jentzsch, 2002; Nachev et al., 2005; Buch et al., 2010; Neubert, Mars, Buch, Olivier, & 

Rushworth, 2010; Pastor-Bernier, Tremblay, & Cisek, 2012; Kaufman et al., 2015; Roberts & 

Husain, 2015; Saberi-Moghadam, Ferrari-Toniolo, Ferraina, Caminiti, & Battaglia-Mayer, 2016). 

The mechanisms through which these areas drive changes in motor output involve both 1) 

inhibitory activity that cancels an initial motor plan and 2) excitatory activity that initiates the new 

motor plan (Mars, Piekema, Coles, Hulstijn, & Toni, 2007; Buch et al., 2010). Interestingly, it has 

been shown that the very same neural circuits in premotor cortex that programmed an initial 

response during motor planning are also involved in changing motor plans later on – when target 

locations change before movement onset (Wise & Mauritz, 1985), or even during ongoing 

movement execution when online changes are necessary (Pastor-Bernier et al., 2012; Kaufman et 

al., 2015). This indicates a remarkable continuity of the processes that shape movements as they 

evolve.  

Reprogramming of movements incurs a cost, resulting in response slowing and larger P3 

amplitudes in the EEG when a switch from one motor plan to another one is necessary (Fleming 

et al., 2009; Orban de Xivry & Lefèvre, 2016). However, the motor system has several 

mechanisms in place that make motor switches as efficient as possible. For example, under target 

uncertainty, labile motor plans are generated, which can be reprogrammed more flexibly to 

accommodate new motor commands (Gallivan, Bowman, Chapman, Wolpert, & Flanagan, 2016). 

Similarly, when motor intentions are generated endogenously, they are kept more flexible than 
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when they are instructed, further facilitating switching (Fleming et al., 2009). Additionally, the 

motor system operates in a highly parallel manner where alternative movement representations 

can be activated simultaneously (Jentzsch, Leuthold, & Ridderinkhof, 2004; Cisek, 2007; Stewart 

et al., 2014; Gallivan et al., 2015). Such parallel motor representations have been observed in 

dorsal premotor cortex (Cisek & Kalaska, 2002, 2005; Pastor-Bernier & Cisek, 2011), posterior 

parietal cortex (Baldauf, Cui, & Andersen, 2008; Cui & Andersen, 2011) and anterior intraparietal 

area (Baumann, Fluet, & Scherberger, 2009; Gallivan & Wood, 2009). Once a movement has been 

initiated, alternative movement representations remain activated, even when the action alternative 

is not available anymore in the external environment (Filevich & Haggard, 2013). This suggests 

that the motor system does not only represent a single movement that is currently selected for 

execution, but instead, maintains representations of counterfactual motor actions that are available 

in a current context. This in turn can facilitate switches between different movements after action 

onset (Fleming et al., 2009).  

1.4.4 Changing goal intentions 

In paradigms measuring changes of movement, action goals are typically relatively basic 

(e.g., reaching the target) and remain constant throughout the task. Hence, these studies have not 

addressed why, when and how people change higher-order abstract goals. Instead, goal 

representations have often been studied in the context of social and motivational psychology, 

where distal intentions are assumed to be of high personal or social relevance (Gollwitzer & 

Oettingen, 2012). For example, people may intend to quit smoking, or pursue a certain career. The 

stability of such distal goals may directly depend on the strength of the intention to reach a given 

goal (Ajzen, 1991). However, as Ajzen’s ‘theory of planned behaviour’ states: People do not 

always act according to their own goals – even when they have strong intentions – because they 

may experience a lack of perceived control over their behaviour, or they can encounter 

“intervening events [that] may produce changes in intentions” (Ajzen, 1991, p. 185).  
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Indeed, successfully pursuing a distal intention over time requires ‘shielding’ that goal from 

alternative competing goals and other factors that may hinder goal attainment, such as distracting 

stimuli or temptations (Mischel, 1974; Gollwitzer & Oettingen, 2012). Gollwitzer (1999) 

proposed that goal shielding can be achieved through ‘implementation intentions’, i.e., 

specification of concrete if-then plans. Implementation intentions are conceptually similar to 

proximal/motor intentions – that is, they formulate specific actions that are required to reach a 

given goal. Importantly, Gollwitzer suggested that planning these actions in advance facilitates 

goal-directed responses when encountering a critical situation. For example, the goal to quit 

drinking alcohol is more likely to be achieved when having pre-planned what to order at the bar 

or how to respond when being offered a drink. This idea has been supported by a large range of 

experimental evidence showing that implementation intentions can help to reduce alcohol 

consumption (Armitage, Rowe, Arden, & Harris, 2014), promote healthy and sustainable eating 

habits (Adriaanse, Vinkers, De Ridder, Hox, & De Wit, 2011; Loy, Wieber, Gollwitzer, & 

Oettingen, 2016), increase physical activity (Bélanger-Gravel, Godin, & Amireault, 2013), break 

unwanted habits (Webb, Sheeran, & Luszczynska, 2009) or reach other long-term behavioural 

goals (for a review, see Wieber, Thürmer, & Gollwitzer, 2015). Importantly, this supports the idea 

of reciprocal interactions between decisions about what to do and how to do it (Figure 1.3B–C), 

in that early specification of lower-level plans can affect higher-order abstract goals. 

Research on goal attainment usually focuses on scenarios where goal pursuit is the optimal 

behaviour. In fact, changing or ‘giving up’ on a goal in these scenarios is viewed as a failure of 

self-control (Mischel, 1974; Steimke et al., 2016) or ‘weakness of the will’ (Gollwitzer, 2014). 

However, adaptive behaviour requires a balance between stability and flexibility of intentions, 

where abandoning an initial goal can sometimes be advantageous, for example, to prevent 

escalation of commitment to a costly course of action (Staw, 1981). Additionally, failure to de-
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activate goals upon completion can cause interference with new goals (Anderson & Einstein, 

2017; Walser, Goschke, Möschl, & Fischer, 2017). 

Hence, the ability to disengage from one’s own goals may indicate flexibility, rather than 

weakness, of the will. Accordingly, ‘goal-shifting’ may be related to more general mechanisms 

underlying flexible cognitive control, such as in task-switching, mental set-shifting, or belief 

updating (Miyake et al., 2000). For example, in task-switching paradigms, participants have to 

switch forth and back between two concurrent task goals, such as adding vs. subtracting two 

numbers. Similarly to switching between alternative motor commands, switching between tasks 

causes performance costs, including slower RTs and higher error rates on switch compared to 

non-switch trials (Allport, Styles, & Hsieh, 1994; Kiesel et al., 2010). While changes in 

movements largely rely on brain areas closely connected to motor areas, task switching 

additionally recruits brain areas involved in abstract task and rule representations, such as 

dorsolateral and medial prefrontal cortex (Gu et al., 2007; Hyafil, Summerfield, & Koechlin, 

2009; Schuck et al., 2015). 

Many psychiatric and neurological conditions are associated with imbalances in goal 

flexibility vs. stability (Goschke, 2014). For example, ruminative tendencies typically observed 

in depression are associated with reduced flexibility in goal-shifting tasks, but improved 

performance in tasks that require goal maintenance (Altamirano, Miyake, & Whitmer, 2010). 

Similarly, obsessive compulsive disorder (OCD) is associated with a high degree of rigidity, as 

indicated by repetitive and persistent thoughts and behaviour (Gu et al., 2007; Meiran, Diamond, 

Toder, & Nemets, 2011). In both depression and OCD, rigidity in task-switching paradigms is 

correlated with reduced engagement of anterior PFC (Remijnse et al., 2013). By contrast 

impulsivity is associated with a tendency to act before sufficient evidence for a given action has 

been accrued (Frank, Samanta, Moustafa, & Sherman, 2007), which may also increase the 

likelihood to switch to an alternative action when new stimuli are encountered. For example, 
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impulsivity in attention deficit hyperactivity disorder (ADHD) or Parkinson’s disease, is related 

to increased behavioural variability (Hauser, Fiore, Moutoussis, & Dolan, 2016), reduced long-

term goal pursuit and ‘distractibility’, which can be improved through implementation intentions 

(Gawrilow, Gollwitzer, & Oettingen, 2011). Furthermore, in Parkinson’s disease, administration 

of dopaminergic medication increases cognitive flexibility, but at the same time, increases 

impulsivity (Cools, Barker, Sahakian, & Robbins, 2003), suggesting that cognitive and 

behavioural flexibility are subject to a common underlying neural mechanisms that may rely on 

the dopaminergic system (Durstewitz & Seamans, 2008). Hence, by studying the mechanisms 

underlying changes in goals, important insights can be gained that are relevant with regard to 

disturbances of the mechanisms that govern the balance between flexibility vs. stability, and can 

cause impairments in several mental disorders.  

1.4.5 Challenges of studying CoM in voluntary action 

According to the hierarchical models reviewed above, the distinction between different 

types of CoM in voluntary action seems essential. Hence, when measuring CoM, we need to 

carefully specify what type of CoM is captured – i.e., changes of motor intentions and/or changes 

of distal intentions. Most previous studies have exclusively focused on either sensorimotor 

changes, or changes about higher-order goal intentions, respectively. By contrast, less is known 

about how exactly information is integrated across both levels of the hierarchy, and how dynamic 

changes on one level affect changes on the other level. In Chapter 2 of this thesis, a new paradigm 

will be introduced that allows us to dissociate sensorimotor action updates from changes in higher-

order distal intentions, and investigate their reciprocal relations.  

In addition to defining what CoM is measured, we need to consider how a given CoM is 

triggered: Endogenously or exogenously. By definition, voluntary actions involve an endogenous 

decision component. It has been proposed that endogenous decisions are the result of 



 53 

 

accumulation of ‘internal’ evidence, similar to accumulation of sensory evidence in perceptual 

choice (Schurger et al., 2012; Bode et al., 2014; Khalighinejad, Schurger, Desantis, Zmigrod, & 

Haggard, 2018). Consequently, CoM about endogenous decisions may be driven by changes in 

accumulated internal evidence. However, we have little to no experimental control over such 

internal signals. While in RDM tasks, experimenters can manipulate precisely how much evidence 

the decision maker gets in favour of each choice alternative, this is not possible for endogenous 

decisions. In fact, voluntary actions are sometimes described as being ‘spontaneous’ or ‘freely 

capricious’ (Libet et al., 1983). To solve this, previous studies investigating changes of voluntary 

intentions have largely focused on tasks in which behavioural switches were instructed by external 

cues – allowing for direct experimental control over switch rates (Fleming et al., 2009; Obhi, 

Matkovich, & Chen, 2009). However, externally-instructed CoM requires changing from an 

internal to an external mode of action selection. Hence, in these situations the final action is 

exogenous rather than endogenous. While these studies are an important step towards a better 

understanding of the flexibility of actions, we also need to consider scenarios in which the decision 

to reverse or pursue an initial intention is itself endogenous. In this thesis, a new approach will be 

introduced in order to provide new insights into the continuous nature of voluntary actions where 

both the initial action selection as well as later action updates are endogenous. More specifically, 

in all experiments reported in this thesis, decision reversals are induced by noisy or changing 

external information after participants have made an initial voluntary decision. Crucially, in 

contrast to previous studies, these external changes do not contain an explicit instruction about 

whether to stay or to switch. Instead, changes in external information can provide a new context 

triggering re-evaluation of an initial decision, which may or may not cause a CoM. In that sense, 

CoM can be seen as a matter of updating intentions and actions based on new contextual 

information. 
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1.5 Summary & thesis overview 

In summary, systematic investigation of CoM is relatively sparse, and to date, has 

exclusively focused on either perceptual or value-based decisions. While previous studies have 

provided important evidence showing that people constantly evaluate information and can adjust 

their actions accordingly, endogenous components of action selection have often been neglected. 

Hence, there are several open questions about the continuous processes that shape voluntary 

action, and studying Changes of Mind may provide a unique opportunity to answer some of these 

questions. In particular, we propose that investigating how intentions are modified can provide 

important insights into what intentions are and how they shape voluntary actions.  

This thesis introduces several innovations in method, and reports novel findings that 

advance the scientific understanding of the dynamic processes underlying volition. In Chapter 2 

of this thesis, a new behavioural paradigm will be proposed that allows us to measure when people 

change a voluntary intention, and/or change the movements required to implement the intention 

into action. Our results show that the need to change an ongoing movement can sometimes trigger 

a change in the intention itself, and these dynamic updates in turn depend on the strength of the 

initial intention and trade-offs with its associated motor costs. In Chapter 3, an attractor network 

model will be introduced that can capture these different types of CoM by dynamically integrating 

multiple action-relevant sources of information that can either cause a Change of Movement or a 

Change of Intention. In Chapter 4, an fMRI study will be reported that measured the neural 

dynamics through which endogenous intentions are integrated with changing external 

information. This study revealed dynamic neural codes in a fronto-parietal network, which enables 

flexible updates in higher-order voluntary intentions. Finally, in Chapter 5, pursuit of voluntary 

intentions was studied in patients with post-stroke fatigue, providing evidence for reduced 

perseverance in these patients when goal pursuit required continuous investment of effort. 
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Two ways to change your mind – Effect of intentional strength 

and motor costs on Changes of Intention 

2.1 Introduction 

The aim of the current chapter is to investigate the dynamic mechanisms underlying 

changes in a) higher-order goal intentions vs. b) lower-level movements. As mentioned in the 

general introduction, voluntary actions require abstract goals to be translated into specific 

movements. In many scenarios, multiple goals may be available and each goal can be associated 

with several movement alternatives, requiring decision-making processes on each level of the 

hierarchy to select an appropriate action (Cisek, 2012). Movement selection largely relies on 

external sensory information (e.g., location of goal object), whereas goal intentions may be more 

strongly guided by endogenous decisions. On each level, information can change dynamically, 

suggesting two dissociable types of CoM during voluntary action (Figure 1.3C): 1) Changes of 

Movement that represent changes in how a goal is implemented into action without changes in the 

goal itself, and/or 2) Changes of Intention that correspond to changes in what goal is selected.  

Changes of Movement may occur when new sensory information from the environment is 

obtained, requiring the inverse model to compute a new motor command (Kawato, 1999; Wolpert 

& Ghahramani, 2000). This is similar to CoMs that have previously been reported in the RDM 

task (Resulaj et al., 2009; Moher & Song, 2014; van den Berg et al., 2016). That is, when dot-

motion coherence is low (sensory evidence is weak and noisy), participants occasionally initiate 

a movement towards one target, but later on redirect the ongoing movement towards the other 
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target. This is a sensorimotor change, suggesting that low-level aspects of action selection are 

updated continuously and dynamically. Furthermore, it has been shown that when the motor costs 

of corrective movements are high (e.g., far target distance), these CoMs occur less frequently 

(Burk et al., 2014; Moher & Song, 2014). Hence, Changes of Movement are directly informed by 

sensory information and cost information associated with a given movement.  

However, previous studies have not captured changes in higher-order voluntary goal 

intentions – henceforth referred to as Changes of Intention. Such changes regarding higher-level 

voluntary intentions should directly depend on the strength of the initial intention (Ajzen, 1991; 

Sheeran, Webb, & Gollwitzer, 2005; Fleming et al., 2009). That is, the stronger the initial intention 

is, the less likely a person should be to reverse the intention later on. Intentional strength in turn 

might depend on choice values (Rushworth, 2008), such as a strong preference for one goal over 

another, or confidence regarding the internal decision (Folke et al., 2016). Yet, few goals are worth 

pursuing at any cost. Specifically, achieving a goal often involves effort- or time-related motor 

costs (e.g., Treadway, Buckholtz, Schwartzman, Lambert, & Zald, 2009; Shadmehr et al., 2010) 

that may induce Changes of Intention. Finally, the probability of pursuing a distal intention may 

depend on the extent to which the intention has been translated into specific action plans 

(‘implementation intentions’, Gollwitzer, 1999; Achtziger, Gollwitzer, & Sheeran, 2008). That is, 

intentions might be less likely to be changed once they have been translated into precise motor 

commands by the inverse model. Importantly, effects of motor costs and motor planning on 

Changes of Intention would suggest that movement-related information is continuously integrated 

with higher-order intentions to inform dynamic decision reversals across both levels of the 

hierarchy. 

Finally, while previous studies have captured objective changes in actions induced by 

decision reversals (e.g., changing movement trajectories), effects of CoM on our subjective Sense 

of Agency (SoA) have not previously been measured. Changing an ongoing movement could 
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reduce SoA by making actions feel ‘dysfluent’ (Wenke, Fleming, & Haggard, 2010; Sidarus & 

Haggard, 2016). Whether changing an endogenous, higher-order intention would affect SoA is 

less clear. Previous research suggests that distal action goals boost SoA (Metcalfe, Eich, & Miele, 

2013; Vinding, Pedersen, & Overgaard, 2013). Consequently, deviations from initial intentions 

might decrease SoA. However, on an alternative view, changing an intention might require 

additional voluntary control, or a stronger exertion of will (Ach, 1935), and thus, people may 

experience stronger SoA when going against, or ‘vetoing’ an initial intention (Libet, 1999). 

Finally, reconstructive theories view conscious intentions as mere retrospective confabulations 

(Wegner, 2002). People appear to experience actions as intentional, even when they were not part 

of an initial plan, or are not even their own (Wegner et al., 2004; Aarts et al., 2005). This view 

would predict that reversals of endogenous intentions should not affect SoA at all. Hence, the link 

between Changes of Intention and SoA can provide important new insights into the role of 

voluntary intentions in shaping our actions and the conscious experience of control we perceive 

over them.  

In the current study, participants performed a novel version of the RDM task in which they 

had to integrate the perceptual decision about dot-motion direction (left/right) with an endogenous 

intention about which colour to paint the dots. Based on previous studies, we expected to observe 

perceptual CoM regarding the dot-motion direction (e.g., Resulaj et al., 2009). Importantly, the 

current paradigm allowed us to differentiate between trials in which perceptual updates only 

resulted in updates of the movement (Change of Movement), or additionally, an update of the 

initial colour intention (Change of Movement + Intention). In two experiments, we tested the 

hypotheses that the frequency of Changes of Intention is higher when initial intentions are weak 

(Exp. 1), when the motor cost of intention pursuit is high (Exp. 2) and when advance motor 

preparation is not possible (Exp. 1 and 2). Additionally, in both experiments, subjective reports of 

SoA were obtained to investigate the effect of CoM on the phenomenology of action.  
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2.2 Experiment 1 

2.2.1 Methods 

2.2.1.1 Participants 

The study was approved by the UCL Research Ethics Committee. Participants provided 

written informed consent prior to the study. Based on pilot data (N = 13), a power calculation was 

conducted to determine the sample size required to obtain a percentage of CoM that is significantly 

greater than zero across participants. With an observed effect size of d = 0.67, α = .05, and β = .8, 

the analysis resulted in N = 16. In anticipation of attrition, 21 right-handed participants were 

recruited through the ICN subject database. One participant did not reach the performance 

criterion in the training session (see below) and another participant withdrew after training. Two 

further participants were excluded, one due to technical issues during data collection and one due 

to strategic decision delay in the task (see below). The final sample consisted of 17 participants 

(13 female, age: M = 22.6 yr, SD = 3.1). Participants received £7.50/hour and a performance-

based reward.  

2.2.1.2 Apparatus and stimuli 

The experiment was programmed in Matlab R2014a and the Psychophysics Toolbox 

(Brainard, 1997). RDM stimuli were generated using the Variable Coherence RDM code 

(https://shadlenlab.columbia.edu/resources/VCRDM.html). At each video frame, 7 dots were 

presented and displaced 3 frames later at a screen refresh rate of 60 Hz. The percentage of dots 

that were displaced in the same direction determined the motion coherence. The RDM stimuli 

were presented in a central, square aperture (4.5° x 4.5°) and motion direction (left/right) was 

assigned randomly for each trial. Target circles of 1.8° diameter were located at a distance of 9.6° 

from the centre of the screen (x = 6.0°, y = 7.5°). Target colours were blue/green/pink/orange of 

https://shadlenlab.columbia.edu/resources/VCRDM.html
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comparable perceived luminance. Participants were seated approximately 60 cm from a computer 

screen and moved a cursor to the targets using a Wacom Intuos Pro pen tablet. Movement 

trajectories were recorded at a sampling frequency of 125 Hz. 

2.2.1.3 Colour RDM task 

Participants performed an adapted version of the RDM task (Figure 2.1). At the beginning 

of each trial, participants freely chose between two colours (random pair of 

blue/green/orange/pink). Participants were instructed to say the chosen colour in their head, and 

on 10% of trials, they were prompted to say their choice out loud. Once they had chosen a colour, 

they clicked on a central fixation cross and after a random delay of 700–1000 ms, the RDM 

stimulus and 4 targets, 2 of each colour, appeared. Using the touch pad, participants then had to 

move the cursor to the target that matched both the perceived dot-motion direction and their 

endogenous colour choice (e.g., left blue target). In most trials, targets of the same colour were 

arranged diagonally – e.g., the top-right and bottom-left targets were blue while the top-left and 

bottom-right targets were green, or vice versa (randomly assigned).   
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Figure 2.1. Colour RDM task. Participants generated an endogenous colour intention (1) that had 
to be integrated with the sensory input of the RDM stimulus (2). Responses were indicated by 
moving the cursor to the target that matched both the colour intention and dot-motion direction 
(3). Continuous movement trajectories were measured during response execution allowing for 
online classification of ‘Changes of Movement’ (CoMov) and ‘Change of Movement + Intention’ 
(CoMov+Int). Once participants reached the target, 25/50/75/100% of the dots were painted in 
the colour of the hit target (4). On some trials, participants were asked to provide SoA judgements 
(5a) or to estimate the percentage of dots that matched their initial colour intention (5b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In analogy to the original RDM task, CoM was defined as a decision reversal regarding the 

dot-motion direction (e.g., an initial response towards a target on the right followed by a switch 

to a left target). Importantly, the current paradigm allowed us to differentiate between trials in 

which perceptual CoM only resulted in 1) a Change of Movement while the initial colour intention 

was pursued (CoMov; e.g., switch from right-blue to left-blue target), or 2) a Change of Movement 

that additionally involved a Change of Intention (CoMov+Int; e.g., switch from right-blue to left-
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green target). These two types of CoM were discriminated online based on movement trajectories: 

If the cursor position exceeded 10% of both the x- and y-distance towards a given target, but then 

ended in the diagonally opposite target (of the same colour), the trial was classified as CoMov. If 

it ended in the horizontally neighbouring target (of different colour), it was classified as a 

CoMov+Int. Due to the diagonal target arrangement, intention pursuit (CoMov) was associated 

with longer movement paths than switching to the neighbouring target of different colour 

(CoMov+Int). Hence, when participants changed their mind about the dot-motion direction, they 

could save motor costs by switching to the target that did not match their initial colour choice.  

Importantly, while participants were instructed to generate colour intentions at trial start, 

they were not explicitly told that they had to maintain their initial colour choice throughout the 

trial. In particular, participants did not receive any instructions as to whether they should stick 

with their initial colour intention when they changed their mind about the dot-motion direction. 

Instead, in trials with perceptual CoM, the decision between a) switching to the other target of the 

same colour or b) switching to the nearby target of different colour was endogenous. This enabled 

us to capture spontaneous Changes of Intention. Furthermore, the importance of pursuing colour 

choices was ambiguous on purpose to allow us to capture inter-individual differences in 

intentional strength – that is, the importance, or weight, a given participant assigned to the colour 

choice relative to the perceptual choice. For example, a participant who considered colour choices 

to have little task relevance, would generate weaker intentions, and should be less likely to stick 

with an initial colour choice when facing the higher cost of colour pursuit in CoM trials. By 

contrast, a participant who considered perceptual and colour choices to be of equal importance 

would be more likely to pursue an initial colour choice when updating an ongoing movement 

based on a perceptual decision reversal. Finally, note that there was no reason for participants to 

switch to another colour unless they had changed their mind about the dot-motion direction, and 

hence, switched between left/right targets. Consequently, switches between the two targets of 
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different colour on the same side of the screen (i.e., vertical switches) were not considered real 

Changes of Intention within the context of the current task.  

500 ms after participants reached a target, 25/50/75/100% of the dots from the last 3 video 

frames were presented in the colour of the hit target (1 sec). The remaining dots were shown in 

the other colour option of that particular trial. In 33% of trials and after every CoM, participants 

were then asked "How much control did you experience over the colour of the dots?" (SoA 

judgment), which they replied to on a visual analogue scale ranging from "none" to "a lot". In 

20% of the remaining trials (i.e., ~13%), they were asked "What percentage of dots was painted 

in the colour you chose?". The outcome judgments were included to motivate participants to pay 

attention to the action outcomes, and hence, render colour choices more meaningful within the 

context of the task. However, given that outcome judgments never appeared after CoM (which 

was always followed by SoA ratings), we did not further analyse them. Importantly, after CoM, 

the percentage of dots painted in the chosen colour was always 50% to avoid that differences in 

action outcome confound effects of CoM on SoA. 

Trials varied according to three conditions differing in coherence of the RDM stimulus 

and/or the target arrangement. In test trials (70%), motion coherence was low, with the precise 

value being determined individually prior to the experiment to ensure around 60% perceptual 

choice accuracy. Furthermore, in these trials, targets of the same colour were presented in 

diagonally-opposite corners to induce higher motor costs for CoMov (intention pursuit) compared 

to CoMov+Int (Change of Intention) when a perceptual CoM occurred. In easy trials (10%), 

targets were also arranged diagonally, but motion coherence was high (80% coherence) rendering 

the perceptual decision very easy. Finally, in conflict trials (20%), motion coherence was as high 

as in easy trials (80%), but both targets of the same colour were on the same side of the screen. 

Consequently, in roughly half of the conflict trials, there was a conflict between intentional colour 

choice and dot-motion direction (e.g., a participant had chosen blue, both blue targets appeared 
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on the right side, but the dots moved to the left). In this case, participants were instructed to 

respond according to the dot motion, and hence, move to a target that did not match their own 

colour choice. Thus, perceptual choices took priority over colour intentions. 

As mentioned above, in 90% of trials, participants were not asked to verbalise their colour 

choice at trial start, and colour choices were inferred from movement trajectories instead (e.g., if 

the movement was initiated towards a green target, a choice for green was inferred). This 

minimised demand characteristics that might discourage participants from changing their initial 

colour choice when having to say it out loud. Yet, this raises the question whether participants 

indeed chose a colour at trial start (frame 1, Figure 2.1), or instead, delayed their decision to 

stimulus onset (frame 2, Figure 2.1). The conflict trials allowed us to address this question: If 

participants generated initial colour intentions, colour-motion mismatches would induce response 

conflict. Consequently, RTs and error rates would, on average, be higher in conflict than easy 

trials even though the perceptual decision was equally easy in both conditions. These performance 

costs would be driven by trials in which conflict occurred. However, the inference is based on 

mean performance, and does not require explicitly identifying which specific trials involved 

conflict and which did not. Note that no response costs would be observed if participants did not 

make colour choices at trial start since, in that case, participants would simply respond based on 

dot motion direction without any conflict induced by colour choices. Thus, the average 

performance cost in conflict relative to easy trials served as an indicator of 1) whether, overall, 

participants generated initial colour intentions and 2) how strong colour intentions were for each 

individual as indicated by the degree of their performance cost in conflict compared to easy trials. 

In 50% of trials within each condition, targets were presented immediately after colour 

choice (early targets). In the other 50%, they appeared simultaneously with the dots, i.e., 700–

1000 ms after colour choice. Early targets allowed for advance motor preparation, i.e., participants 

could pre-activate the motor commands associated with the two targets corresponding to their 
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chosen colour. For example, if a participant chose blue, and the blue targets appeared in the top-

right and bottom-left locations, movements towards these targets could be prepared before dot-

motion onset. This was not possible for late targets, in which no information about target locations 

was available before dot onset.  

After a short practice block, participants were given 1h to complete as many trials as 

possible (M = 358.2, SD = 37.5). To motivate participants to be fast and accurate, they won 1 p 

for every correct perceptual choice. After each block of 30 trials, participants received feedback 

about their perceptual choice accuracy. There was no trial-by-trial error feedback, but a "too 

slow!" message was shown if response initiation exceeded a certain deadline or if the target was 

not reached within 3 sec after response initiation. In order to induce fast response initiation, the 

response deadline was initially 1000 ms, but decreased by 50 ms after every block if a participant 

had less than 10% trials with CoM and less than 15% misses. Reaction times (RTs) were defined 

as the point in time at which the cursor left a central circle of 1.1° diameter, at which point the 

RDM stimulus disappeared. Previous studies showed that, due to sensorimotor delays, CoM 

occurs even when the external stimulus is removed at action onset (Resulaj et al., 2009). 

2.2.1.4 Training session 

Participants had to pass a training session the day before the actual experiment. They were 

trained on the original 2-choice RDM task until they reached 70% accuracy in trials with 35% 

motion coherence. One participant failed to reach the criterion and was not invited for the 

experimental session. All other participants performed 160 additional trials with randomly varying 

motion strength (5–65% coherence) in order to obtain stable performance. Finally, an alternating 

staircase procedure was administered (see Moher & Song, 2014 for details) to determine the 

motion coherence at which a participant’s accuracy was ~60% (coherence: M = 11.8% SD = 
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4.1%). This level was chosen to maximize the frequency of perceptual CoM (Resulaj et al., 2009). 

During training, trial-by-trial error feedback (red dots) was provided. 

In both the training and test session, participants were instructed to fixate the central cross 

throughout each trial. Electrooculography was used to monitor eye movements and, whenever 

necessary, participants were reminded to keep fixation.  

2.2.1.5 Data analysis 

Movement trajectories were analysed in Matlab R2014b. All trials that had been classified 

as CoM during the task were inspected individually. Trials with double CoM (0.56%) or initial 

movement trajectories that were not clearly directed towards one of the targets (e.g., circular 

trajectories or vertical movement initiation; 0.13% of trials) were excluded from all analyses.  

Furthermore, velocity profiles were analysed. Note that participants might have initiated a 

response in any direction in order to comply with the short response deadline, subsequently 

choosing a target only after having left the home position. In that case, curvature away from the 

initial trajectory would not be a CoM, as the initial trajectory would not reflect commitment to a 

specific target. Completely excluding any element of strategic delay for individual trials is 

difficult. However, frequent stopping shortly after movement initiation even in trials with straight 

trajectories would clearly indicate strategic decision delay. One participant stopped in 28.6% of 

straight trajectories, with an average stop duration of 351.2 ms and was therefore excluded from 

all analyses. Such stopping was rare in all other participants (stop frequency: M = 7.4%1, SD = 

5.2%; stop duration: M = 157.9 ms, SD = 40.8 ms). 

                                                      
1 Note that this percentage is highly comparable to the percentage of trials with CoM, and hence, can be 

attributed to decision uncertainty and vacillation, rather than strategic decision delay. 
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Given the small percentage of trials with CoM, mixed-effects logistic regression (MELR) 

models were used for analyses of CoM frequency (Bagiella, Sloan, & Heitjan, 2000). Model 

fitting was performed using Maximum-likelihood estimation with the lme4 package (Bates, 

Maechler, Bolker, & Walker, 2014) in R (R Development Core Team, 2015). Binomial models 

with a logit link were specified. To investigate CoM, two types of binary outcome variables were 

analysed: Either no-CoM (0) vs. CoM (1) for analyses of overall frequency of perceptual CoM 

(regardless of type of CoM), or CoMov (0) vs. CoMov+Int (1) for analyses of different types of 

Change of Mind within CoM trials. Participants were modelled as random intercepts. Including 

random slopes in addition to random intercepts did not change any of the results and only one of 

the models performed significantly better when random slopes were added. Hence, all models 

reported contain random intercepts only. Parameter estimates b and 95% profile confidence 

intervals are reported in log-odds space, and odds ratios (OR) are reported to facilitate 

interpretation. Statistical inference was performed by comparing models with vs. without a given 

fixed effect using likelihood-ratio tests. Satterthwaite approximation for degrees of freedom was 

used (Kuznetsova, Brockhoff, & Christensen, 2015). All other analyses (comparison of means 

with ANOVAs/t tests) were performed in IBM SPSS Statistics for Windows, version 21 (Corp, 

Released 2012). For RT analyses, only correct trials within +/- 3 SD of the individual’s average 

RT in each condition were included.  

2.2.2 Results 

2.2.2.1 Task performance 

In test trials, perceptual choice accuracy was 56.6% (SD = 9.1%), which did not differ 

significantly from the target accuracy of 60% (t(16) = 1.54, p = .144, Cohen’s d = 0.37). Crucially, 

perceptual choice accuracy was significantly worse in test trials than in easy trials (M = 93.4%, 

SD = 7.0%, t(16) = 20.13, p < .001, d = 4.88) and RTs were significantly slower in test (M = 570.5 
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ms, SD = 58.3 ms) than in easy trials (M = 534.2 ms, SD = 41.5 ms, t(16) = 3.99, p = .001, d = 

0.97).  

2.2.2.2 Changes of Mind 

In order to investigate how difficulty of the perceptual decision affected CoM, we first 

analysed the effect of trial condition (easy/test) on the overall frequency of perceptual CoM (no-

CoM/CoM), regardless of whether it was a CoMov or CoMov+Int. An MELR model with trial 

condition as a fixed effect (dummy-coded with easy trials serving as baseline) showed that trial 

condition had a significant effect (χ2(1) = 45.69, p < .001), with the likelihood of CoM being 

higher in test compared to easy trials (b = 1.84, 95% CI [1.19, 2.63], OR = 6.27).  

Crucially, within CoM trials, two different types of CoM can be distinguished: A switch 

between diagonally opposite targets (of the same colour) indicates CoMov, whereas a switch 

between horizontally neighbouring targets (of different colour) represents CoMov+Int. Figure 2.2 

shows single-trial movement trajectories in test trials of an individual participant. The average 

frequency of CoMov and CoMov+Int in test and easy trials is illustrated in Figure 2.3A.  
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Figure 2.2. Single-trial movement trajectories in test trials. Movement trajectories of 
one participant are shown. For illustration purposes, trajectories were mirrored such 
that the initial movement was always directed towards the upper right target, but ended 
in a different target depending on the class of movement trajectory (black: no Change 
of Mind; blue: Change of Movement; green: Change of Movement + Intention). 
Dashed lines indicate the coordinates that were used as criteria for CoM classification. 

 

Figure 2.3. Changes of Mind in the colour RDM task. A) Percentage of trials classified as ‘Changes 
of Movement’ (CoMov) and ‘Change of Movement + Intention’ (CoMov+Int) in test and easy trials. 
B) Percentage of conflict trials with diagonal and horizontal movement corrections of partial errors 
that were induced by mismatches between colour intentions and dot-motion direction (mean +/- 1 
SEM; ** p < .01, N = 17). C) Correlation across participants between RT costs in conflict trials and 
frequency of Changes of Intention (relative to overall percentage of CoM). 
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In order to investigate the relative frequency of CoMov vs. CoMov+Int, only trials with 

CoM were included in an MELR, with CoMov (0) vs. CoMov+Int (1) as outcome variable and 

trial condition (easy/test) as a fixed effect. The effect of trial condition was not significant (b = -

0.13, 95% CI [-1.93, 1.67], OR = 0.88, χ2(1) = 0.02, p = .890), suggesting that perceptual 

uncertainty only affected whether or not a perceptual CoM occurred, but did not affect whether 

participants changed their mind about their colour intention. Interestingly, in test trials, CoMov 

was more frequent (M = 5.9%, SD = 5.5%) than CoMov+Int (M = 1.7%, SD = 2.2%), as indicated 

by an intercept that was significantly lower than 0 (b0 = -1.56, 95% CI [-2.47, -0.89], OR = 0.2, z 

= -4.42, p < .001). Hence, when changing a movement based on new sensory evidence, 

participants pursued their colour intention more often than switching to the target of different 

colour, despite the extra motor costs of diagonal compared to horizontal movement adjustments. 

A similar trend was observed in easy trials, although overall CoM frequency was low in this 

condition and the intercept was not significantly different from 0 (b0 = -1.43, 95% CI [-3.30, 0.43], 

OR = 0.24, z = -1.50, p = .132). 

2.2.2.3 Did participants generate initial colour intentions? 

The fact that, overall, participants were reluctant to giving up their colour intentions 

suggests that they assigned a relatively high importance to colour choices in the task. Additionally, 

we analysed conflict trials to further investigate whether participants indeed generated colour 

intentions at trial start, even on trials where they did not have to verbalise their choice. In conflict 

trials, perceptual choice accuracy was descriptively lower (M = 90.5%, SD = 7.2%) and RTs were 

significantly slower (M = 549.7 ms, SD = 45.8 ms) than in easy trials (accuracy: M = 94.1%, SD 

= 6.8%, t(16) = 2.11, p = .051, d = 0.51; RTs: M = 534.2 ms, SD = 41.5 ms, t(16) = 2.51, p = .023, 

d = 0.61). These response costs were present even when only trials with early target onset were 

analysed (accuracy: MΔ = 3.63%, SDΔ = 7.27, t(16) = 2.06, p = .056, d = 0.50; RTs: MΔ = 29.7 ms, 

SDΔ = 32.7 ms, t(16) = 3.74, p = .002, d = 0.91), suggesting that the effects were not simply driven 
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by participants being surprised about the uncommon target configuration in conflict trials. Instead, 

response costs in conflict trials showed that, overall, participants generated initial colour 

intentions, which on some conflict trials did not match the RDM direction, hence inducing 

response costs. Moreover, movement trajectories in conflict trials indicated that participants 

occasionally initiated a response towards one target, but then adjusted the movement to end in 

another target, similar to CoM in test/easy trials (Figure 2.3B). In conflict trials, movement 

adjustments presumably reflect partial errors in colour-motion mismatch trials. That is, 

participants initiated responses towards their chosen colour, but then corrected themselves to 

respond according to the dot motion as instructed. In line with this, an MELR, with no-CoM vs. 

CoM as outcome variable and trial condition (easy/conflict) as a fixed effect showed that 

corrective movements in conflict trials occurred significantly more often than perceptual CoM in 

easy trials, despite dot-motion coherence being matched in both conditions (b = 1.09, 95% CI 

[0.39, 1.92], OR = 2.97, χ2(1) = 9.93, p = .002). This confirms that corrections in conflict trials 

were not merely induced by perceptual noise, but instead, can only be explained by conflict 

induced by mismatches between colour intention and perceptual input.  

Note that, in conflict trials, participants could adjust movements in two ways (Figure 2.3B) 

by either switching to the diagonally opposite target (similar to CoMov in test trials) or the 

horizontally neighbouring target (as in CoMov+Int). In an MELR with trial condition as a 

predictor (easy/conflict, with conflict trials as a reference level) and diagonal (0) vs. horizontal 

(1) movement corrections as outcome variable revealed a significantly positive intercept (b0 = 

1.74, 95% CI [0.97, 3.24], OR = 5.71, z = 3.46, p < .001), indicating an overall preference for 

horizontal over diagonal movement corrections in these trials. This suggests that participants were 

sensitive to the higher motor costs of diagonal movement corrections and preferred less costly 

horizontal corrections. The fact that, in test trials, participants preferred diagonal (CoMov) over 

horizontal (CoMov+Int) movements showed that participants were generally willing to overcome 
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these motor costs to pursue their colour intentions when possible. However, the relative frequency 

of CoMov relative to CoMov+Int in test trials varied across participants (M = 77.4%, SD = 22.1%). 

Thus, participants may have differed in how much weight they assigned to the colour choice 

relative to the perceptual task, and hence, how strong their colour intentions were. 

2.2.2.4 Effect of intentional strength on Changes of Intention 

We tested whether participants with stronger colour intentions showed fewer Changes of 

Intention out of all test trials with CoM. Individuals’ average response costs in conflict compared 

to easy trials served as an indicator of the strength of colour intention, with higher response costs 

indicating stronger intentions. Since only 9/17 participants made errors in conflict trials, we 

focused on RT costs as an indicator of the strength of colour intention. The difference in RTs in 

conflict–easy trials was correlated with the relative frequency of Changes of Intention out of all 

CoM ( % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝐼𝐼𝐼𝐼𝐼𝐼
% 𝐶𝐶𝐶𝐶𝐶𝐶

) in test trials. As predicted, we found that, across participants, higher RT costs 

in conflict trials (i.e., stronger colour intentions) were associated with fewer Changes of Intention 

in test trials (Spearman’s ρ(15) = -.50, p = .043, 95% CI [-.07, -.76]; Figure 2.3C).  

2.2.2.5 Effect of advance motor preparation 

In order to check whether the frequency of either type of CoM was affected by target onset, 

and hence, the time participants had to implement colour intentions into motor commands, an 

MELR analysis was conducted for test trials only. Including target-onset time as a fixed effect 

(early/late, dummy-coded with early targets as reference level) did not significantly improve 

model performance compared to a model with random effects only. This was true for both a model 

with no-CoM vs. CoM as outcome variable (b = 0.10, 95% CI [-0.14, 0.33], OR = 1.10, χ2(1) = 

0.62, p = .432), as well as for a model with CoMov vs. CoMov+Int as outcome variable (b = 0.40, 

95% CI [-0.21, 1.02], OR = 1.48, χ2(1) = 1.62, p = .203). This suggests that the opportunity to 
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plan movements prior to dot motion onset did not have an effect on whether or not people changed 

their mind about the dot-motion direction, nor on the type of CoM they showed when changing 

their mind.  

2.2.2.6 Potential effect of target confusion 

One potential alternative interpretation of trials classified as CoMov+Int needs to be 

addressed. It is possible that participants switched to a target of different colour because their 

initial movement was erroneously directed towards a target that did not match their colour choice 

due to difficulties in target detection. In that case, curved trajectories would not represent a 

genuine Change of Intention, but rather a correction of an initial colour error. However, a 

significant number of CoMov+Int was observed across participants even in test trials with early 

target onset (M = 1.37%, SD = 1.85%, t(16) = 3.06, p = .008, d = 0.74), even though participants 

had 700–1000 ms to identify target-colour locations in these trials. Moreover, participants were 

rewarded based on perceptual choice only, and hence, switching between horizontal targets 

merely based on colour would result in a potential monetary loss. Instead, if target confusion 

occurred, participants should switch to the target of different colour on the same side of the screen 

(rather than to the horizontally neighbouring target). In this case the trajectory was not classified 

as CoMov+Int2. These vertical movement corrections were indeed observed on 3.24% of test trials 

(SD = 2.56%) and occurred significantly more often in late- than early-onset test trials (b = 1.18, 

95% CI [0.79, 1.59], OR = 3.25, χ2(1) = 38.76, p < .001). This suggests that, when participants 

confused target colours due to difficulties in target detection, they switched to the target of 

different colour that was on the same side of the screen. By contrast, switches to the horizontally 

                                                      
2 Trials with vertical movement corrections (between targets on the same side of the screen) were 

considered as no-CoM trials in all analyses. Excluding these trials does not change any of the results.  
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neighbouring target (CoMov+Int) presumably represent genuine Changes of Intention that were 

caused by an initial CoM about the dot-motion direction, rather than target confusion.  

2.2.2.7 Effect of CoM on SoA 

Trial numbers for CoM were generally low, in particular for CoMov+Int, which only 

occurred on ~2% of trials. Additionally, 5 participants did not show any CoMov+Int. Hence, in 

order to have a sufficiently large sample, the effect of CoM on SoA was analysed across 

Experiments 1 and 2 (see section 2.3.2.4), rather than for each experiment separately. 

2.2.3 Discussion Experiment 1 

In a novel paradigm, two types of CoM in voluntary action were dissociated based on 

movement trajectories: 1) ‘Changes of Movement’ in which participants changed decisions about 

exogenous stimuli, requiring them to update motor commands while still pursuing their initial 

endogenous intention and 2) ‘Changes of Movement + Intention’ where movement updates did 

not only reflect decision reversals about exogenous stimuli, but additionally, a change of the initial 

endogenous intention. Although the frequency of CoM was generally very low, we observed 7.6% 

CoM in test trials, which is clearly comparable with previous studies reporting 2–15% CoM in 

trials with comparable motion coherence (Resulaj et al., 2009; Moher & Song, 2014; van den Berg 

et al., 2016). Further, several areas of cognitive theory, e.g., memory research, rely strongly on 

data from infrequent errors – no doubt because errors are highly informative about the processes 

generating performance (Loftus, 2005). Finally, the frequency of CoM varied systematically 

across trial conditions. Specifically, in line with previous studies on perceptual decision reversals, 

we found that CoM was more frequent when sensory noise was high, and hence, when initial 

responses were initiated based on weak sensory evidence. Crucially, we found that the need to 

update an ongoing movement based on new sensory information occasionally induced a change 
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in the higher-order goal intention, suggesting that movement reprogramming triggered a re-

evaluation of the initial goal itself.  

Our results further showed that the frequency of Changes of Intention was inversely related 

to the strength of participants’ initial intentions. More specifically, some participants generated 

stronger colour intentions as indicated by a high performance cost under endogenous-exogenous 

conflict. These participants were more likely to pursue their initial intention when adjusting an 

ongoing movement. Inter-individual differences in intentional strength reflected the importance, 

or weight, participants assigned to colour choices in the task, relative to the dot-motion judgment. 

These differences in turn were presumably caused by differences in demand characteristics based 

on individuals’ interpretation of the instructions (Orne, 1962), or the subjective value participants 

assigned to the colours (Rushworth, 2008), e.g., based on preferences for certain colours. Note 

that our design did not allow us to capture variability in intentional strength on a trial-by-trial 

basis, but rather, the strength of the colour choices throughout the task. However, intentions can 

vary in strength within people, and it is likely that this would affect the likelihood of a person 

changing an intention in a given situation (Fleming et al., 2009; Salvaris & Haggard, 2014). 

In a second experiment, we manipulated the trade-off between intentions and their 

associated motor costs on a trial-by-trial basis by varying target distances within participants. We 

hypothesised that the frequency of Changes of Intention increases when the cost of pursuing the 

initial intention is high relative to changing the intention. This would provide more direct evidence 

that intention reversals can be caused by high motor costs associated with intention pursuit. 

Furthermore, it would establish a means to experimentally induce a higher frequency of Changes 

of Intention.  
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2.3 Experiment 2 

2.3.1 Methods 

2.3.1.1 Participants 

Based on the same power calculation as for Experiment 1, we aimed for a sample size of 

16 participants in Experiment 2. Twenty-one right-handed participants were initially invited for 

the experiment. Three participants did not reach the performance criterion during training and two 

further participants were excluded due to poor performance in the test session (> 15% errors or 

misses in easy trials), resulting in a final sample of 16 participants (11 female, age: M = 23.2 yr, 

SD = 2.9).  

2.3.1.2 Task 

The task was identical to Experiment 1 with the following exceptions (Figure 2.4): Target 

distance varied on a trial-by-trial basis within participants in order to manipulate the relative motor 

cost of intention pursuit after a perceptual CoM (Figure 2.4A). In 50% of trials of each condition, 

the targets of different colour were far (18°; i.e., far horizontal distance), whereas in the other 50% 

of trials, the targets of different colour were close (6°; i.e., close horizontal distance). To eliminate 

visual differences in target detection, the distance of targets from the centre was constant across 

conditions, i.e., for close horizontal targets, vertical distance was far and vice versa. Importantly, 

in the far-target condition, path lengths for CoMov and CoMov+Int were roughly equal, whereas 

in the close-target condition, path length was shorter for CoMov+Int while it was the same as in 

the far-target condition for CoMov (Figure 2.4B). Hence, in the close-target condition, switching 

to the target of different colour allowed participants to save motor costs, rendering intention 

pursuit relatively more costly than in the far-target condition. This should increase the frequency 

of Changes of Intention in the close- compared to the far-target condition, in which CoMov and 
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Figure 2.4. Design of Experiment 2. Manipulation of horizontal target distance. A) Target locations in 
Experiment 1 and 2. B) Distance from the diagonal/horizontal target as a function of travelled distance 
(assuming straight movement trajectories towards targets). In the far-target condition, costs associated 
with each target were roughly equal, whereas in the close-target condition, the target of different colour 
was closer, hence rendering intention pursuit relatively more costly. C) Predicted effect of target distance 
on frequency of Changes of Intention in Experiment 2.

CoMov+Int were equally costly (Figure 2.4C). In order to enhance the differences in motor costs 

between target-distance conditions, the cursor speed was 1.8 times slower than in Experiment 1, 

increasing overall travel distance of movements.  
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As in Experiment 1, CoM was classified online when movement trajectories exceeded 10% 

of both the x- and y- distance from one target, but then ended in another target. Due to the different 

target locations, the absolute coordinates that had to be exceeded differed between target distance 

conditions (Figure 2.4A). This ensured that CoM classification was not biased by differences in 

movement angles across target distance conditions. 

In addition to target locations, target onset times were changed in Experiment 2. In 80% of 

test trials, targets were presented early (700–1000 ms before dot motion onset). This ensured a 

large percentage of test trials in which participants had enough time to identify the target colours. 

If participants switch to a target of different colour in this condition, the switch is unlikely due to 

target confusion, but rather represents a Change of Intention. In the remaining 20% of test trials, 

target onset was late (i.e., simultaneous with dot onset), which enabled us to investigate if the 

frequency of Changes of Intention was higher when participants were not able to prepare 

movements associated with the chosen colour prior to dot motion onset.  

 

After a training session (see Experiment 1), participants were invited for two identical 

experimental sessions of 1.15h each, in which they completed an average of 815.6 trials in total 

(SD = 57.2). The duration of Experiment 2 was increased compared to Experiment 1 in order to 

obtain a sufficient number of CoMov and CoMov+Int for each target distance condition. 

2.3.1.3 Data analysis 

Movement trajectories that were classified as CoM were visually inspected, and trials with 

double CoM (0.83%), or trajectories that were not clearly initiated towards one target (0.47%) 

were excluded from all analyses. Movement velocities indicated that none of the participants 

showed strategic decision delay. 
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2.3.2 Results 

2.3.2.1 Task performance 

As in Experiment 1, accuracy of the perceptual choice was significantly lower in test trials 

(M = 58.5%, SD = 5.2%) compared to easy trials (M = 96.2%, SD = 3.4%, t(15) = 26.54, p < .001, 

d = 6.64), and perceptual CoM occurred more frequently in test (M = 10.3%, SD = 9.9%) than 

easy trials (M = 3.3%, SD = 4.1%, t(15) = 3.15, p = .007, d = 0.79). Furthermore, in trials where 

participants did not have to verbalise their colour choice, accuracy showed a trend towards being 

lower in conflict (M = 93.1%, SD = 5.7%) than easy trials (M = 95.7%, SD = 3.5%; t(15) = 1.89, 

p = .078, d = 0.47). In contrast to Experiment 1, no difference in RTs was observed between 

conflict trials (M = 560.8 ms, SD = 47.5 ms) and easy trials (M = 563.0 ms, SD = 48.5 ms, t(15) 

= 0.38, p = .712, d = 0.09). However, the rate of misses (i.e., trials in which movement initiation 

exceeded the response deadline) was numerically increased in conflict trials (M = 3.3%, SD = 

3.3%; easy trials: M = 2.0%, SD = 3.1%; t(15) = 1.29, p = .216, d = 0.32). Additionally, there were 

significantly more corrective movements in conflict trials (M = 5.5%, SD = 6.3%) than there were 

CoM in easy trials (M = 3.4%, SD = 5.5%, t(15) = 3.51, p = .003, d = 0.88) suggesting that, as in 

Experiment 1, participants generated initial colour intentions that resulted in response costs when 

external information did not match the endogenous intention. 

2.3.2.2 Effect of motor costs on Changes of Intention 

In order to investigate the effect of target distance on the likelihood of CoMov vs. 

CoMov+Int, an MELR model with target distance as a fixed effect (far/close, dummy-coded with 

far distance as reference level) was conducted for test trials. It revealed a significant effect of 

target distance (χ2(1) = 15.47, p < .001), with CoMov+Int occurring more often in the close- than 

far-target condition (b = 0.76, 95% CI [0.38, 1.16], OR = 2.15). Interestingly, target distance did 

not have a significant effect in a model with no-CoM vs. CoM as outcome variable (b = 0.06, 95% 



 79 

 

CI [-0.08, 0.20], OR = 1.06, χ2(1) = 0.70, p = .404). Hence, target distance did not affect whether 

or not participants changed their mind about the dot-motion direction, but affected whether or not 

participants pursued their initial colour choice when a perceptual CoM occurred.  

2.3.2.3 Effect of advance motor preparation 

In order to investigate the effect of advance motor preparation on CoMov vs. CoMov+Int, 

target-onset time was included as a fixed effect (early/late, with early onset as reference level) in 

addition to target distance (Figure 2.5). This model revealed no significant main effect of target 

onset (b = -0.05, 95% CI [-0.82, 0.67], OR = 0.95, χ2(1) = 0.02, p = .902). However, there was a 

trend for an interaction between target distance and target-onset time (b = 0.78, 95% CI [-0.14, 

1.74], OR = 2.19, χ2(1) = 2.75, p = .097). In order to further investigate this interaction, the effect 

of target distance on CoMov+Int and CoMov was investigated separately for trials with early and 

late target onset. Relative to no-CoM trials, the likelihood of CoMov+Int increased significantly 

for close compared to far targets in both the early-target condition (b = 0.48, 95% CI [0.12, 0.84], 

OR = 1.61) , χ2(1) = 6.95, p = .008) and late-target condition (b = 0.96, 95% CI [0.33, 1.65], OR 

= 2.60 , χ2(1) = 9.10, p = .002), with the effect being descriptively stronger in the late-target 

condition. Additionally, in the late-onset condition, CoMov significantly decreased (relative to 

no-CoM) for close compared to far targets (b = -0.46, 95% CI [-0.83, -0.09], OR = 0.63 , χ2(1) = 

5.94, p = .015), which was not the case in early-onset trials (b = 0.02, 95% CI [-0.16, 0.19], OR = 

1.02 , χ2(1) = 0.04, p = .836). Consequently, the relative frequency of Changes of Intention out of 

all CoM tended to increase more strongly with close targets in the late-target condition than in the 

early-target condition.  
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2.3.2.4 SoA judgments (Exp. 1 & 2) 

To analyse SoA judgments, the data were collapsed across both experiments to increase 

power (N = 33). SoA ratings were rescaled to reflect the position on the scale as a percentage. In 

test trials without CoM, SoA ratings increased linearly with the percentage of dots matching the 

colour of the hit target (linear contrast: F(1, 32) = 164.91, p < .001, ηp
2 = .837). When including 

experiment as a factor, no significant main effect of experiment, nor any interaction were observed 

(both F < 1). Hence, in both experiments, SoA ratings were sensitive to action outcomes showing 

that participants made appropriate use of the rating scale.  

Figure 2.5. Results of Experiment 2. Percentage of trials with CoMov and CoMov+Int, 
separated by target distance and target-onset time (mean +/- 1 SE; * p < .05, N = 16).  



 81 

 

2.3.2.5 Effects of CoM on SoA 

Next, we investigated if SoA ratings were affected by CoM in test trials. Action outcomes 

were always 50% in trials with CoM. Hence, for no-CoM, only 50% outcome trials were included 

to analyse the effect of CoM on SoA regardless of action outcomes. 

Variability in trial numbers with CoM was high across participants [n CoMov: M = 29.8, 

SD = 37.5, range: 1–159; n CoMov+Int: M = 7.3, SD = 9.0, range: 0–43] and 5/33 participants did 

not show any CoMov+Int. Therefore, linear mixed-effect models were used since they are 

recommended for analysing unbalanced and missing data (Bagiella et al., 2000). Furthermore, 

they allowed us to include continuous predictors that varied on a trial-by-trial level, e.g., 

movement times. Participants were modelled as random intercepts.  

A model was specified that included CoM as a fixed effect (no-CoM/CoMov/CoMov+Int; 

dummy coded with no-CoM trials serving as baseline) and SoA ratings as a continuous outcome 

variable. This model performed significantly better than a model without CoM as a predictor (χ(2) 

= 13.75, p = .001). Post-hoc pairwise comparisons with a Bonferroni-corrected α-level of .05/3 = 

.017 revealed that the effect of CoM on SoA ratings was driven by a significant decrease of SoA 

in CoMov (Figure 2.6A; M = 43.8%, SD = 9.6%) compared to no-CoM (M = 47.1%, SD = 8.1%; 

b = -3.02, 95% CI [-4.62, -1.42], t(2169.9) = 3.70, p < .001), whereas CoMov+Int (M = 44.1%, 

SD = 11.0%) did not differ significantly from no-CoM trials (b = -1.10, 95% CI [-3.49, 1.29], 

t(2161.2) = 0.91, p = .366). The difference between CoMov and CoMov+Int was not significant 

(b = 1.92, 95% CI [-0.48, 1.42], t(2162.2) = 1.57, p = .118). When adding experiment as a 

predictor, no main effect of experiment (χ(1) < .01, p = .924), nor an interaction with CoM (χ(2) 

= 0.33, p = .847) was found, suggesting that the effect of CoM on SoA was comparable across 

both experiments.  
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Figure 2.6. Effect of CoM on SoA. A) Mean SoA ratings for each type of CoM. B) Predicted SoA ratings 
(marginal effects) for a mixed-effects model including movement times as a predictor (± 1SE, N = 33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

As CoM was classified based on movement trajectories, trials differed in terms of pure 

motor aspects. More specifically, movement times (MTs; i.e., time between response initiation 

and target hit) were shorter in no-CoM trials (M = 480.3 ms, SD = 246.8 ms) than in trials with 

CoMov+Int (M = 975.8 ms, SD = 365.6 ms, t(27) = 10.19, p < .001, d = 1.93) and CoMov (M = 

1089.5 ms, SD = 354.9 ms, t(32) = 18.92, p < .001, d = 3.29). To investigate if differences in MTs 

accounted for differences in SoA ratings, individuals’ z-standardised MTs were included as a 

covariate in the model (Figure 2.6B). This revealed a significant main effect of MTs (χ(1) = 24.32, 

p < .001) driven by lower SoA ratings for longer MTs (b = -1.81, 95% CI [-2.58, -1.14]). 

Furthermore, the effect of CoM on SoA disappeared (χ(2) = 1.51, p = .470), and the decrease of 

SoA ratings in CoMov compared to no-CoM trials was not significant in the model including MTs 
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(t(2160.0) = 0.04, p = .970). This suggests that the effect of CoMov on SoA was accounted for by 

differences in MTs. Again, no difference in SoA rating was observed in CoMov+Int compared to 

no-CoM trials in the model including MTs (b = 1.44, 95% CI [-2.20, 3.42], t(2168.6) = 1.10, p = 

.273). Finally, there was no significant interaction between CoM and MTs (χ(2) = 2.22, p = .330). 

In fact, longer MTs significantly reduced SoA judgments even when only trials without CoM were 

considered (b = -2.15, 95% CI [-3.58, -0.72], χ(1) = 8.65, p = .003), suggesting that MTs affected 

SoA judgments regardless of whether or not CoM occurred.   

2.3.3 Discussion Experiment 2 

In Experiment 2, the relative motor cost associated with intention pursuit was manipulated 

by varying target distances. When the distance to the alternative target colour was short compared 

to the initially-chosen colour, movement costs for CoMov+Int were low relative to CoMov. This 

caused an increased frequency of Changes of Intention compared to a condition where targets of 

both colours were roughly equally distant. Hence, motor costs influenced whether perceptual CoM 

caused a change in the movement required to realise an intention, or additionally, a change in the 

intention itself. This effect was particularly strong when target onset was late, i.e., when 

participants were not able to pre-select motor plans associated with their colour intentions. Thus, 

when intentions were translated into movement plans only later in the trial, the initial intention 

was more susceptible to cost-induced updates, compared to when participants could plan 

movements in advance.  

Interestingly, advance motor planning did not seem to strengthen the intention itself as this 

would have predicted an overall lower frequency of Changes of Intention in early compared to 

late targets. Instead, the observed interaction between target-onset time and target distance 

suggests that early implementation of intentions into potential motor commands modulates the 

effect of other influencing factors, e.g., costs, on intention updates. Hence, motor planning seems 
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to ‘shield’ intentions (Veling & Van Knippenberg, 2006; Achtziger et al., 2008) from cost-induced 

updates. That is, once people have had adequate time to plan ahead, they seem relatively inured 

to increases in costs of realising their intention. Thus, time since action planning appears to be a 

key factor in how information about movement-related costs is integrated with higher-order 

intentions. Finally, the fact that action costs had a greater effect when targets were presented late, 

compared to when they were presented early, suggests that integration of motor costs occurred 

rapidly and dynamically. That is, even when participants could not anticipate action costs before 

dot-motion onset (late targets), motor costs affected decision making, and in fact, had a stronger 

effect than when targets were presented early. Hence, it seems plausible that motor costs do not 

simply shift a fixed decision threshold prior to action onset (Moher & Song, 2014), but instead, 

are dynamically integrated with other decision-relevant variables as actions evolve.  

Finally, in contrast to previous studies (Burk et al., 2014; Moher & Song, 2014), we did not 

observe an overall increase in perceptual CoM in close compared to far targets. Hence, in our 

study, motor costs did not affect whether or not participants changed an ongoing action, but 

instead, affected which aspects of action selection were changed (goals vs. movements). It is 

possible that in the current study, participants were willing to correct their perceptual choices 

regardless of motor costs, given that they obtained additional monetary rewards for correct 

perceptual choices. Hence, motor costs may have not been sufficiently strong to overwrite 

perceptual decisions. By contrast, voluntary decisions were not associated with monetary 

incentives, and hence, differences in motor costs may have had a stronger impact on intention 

reversals than perceptual CoM per se. More generally, endogenous decisions often do not have an 

objectively ‘correct’ or ‘wrong’ choice options, and hence, participants may have used 

information about motor costs to break the symmetry between equal-appearing voluntary goals 

(Bode et al., 2013). 
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2.4 General discussion 

While previous studies of CoM have focused on exogenous action (e.g., Resulaj et al., 2009; 

Albantakis et al., 2012), the current study investigated changes of voluntary action decisions. In 

Experiment 1, we showed that the frequency of Changes of Intention was inversely related to the 

strength of participants’ initial intentions. In Experiment 2, we found that higher motor costs 

associated with intention pursuit induced more Changes of Intention, especially when participants 

could not implement intentions into precise motor commands prior to dot-motion onset.  

Our results provide evidence for a striking flexibility of intentions in voluntary action. We 

show that agents can adjust motor intentions (Goodale et al., 1986; Fleming et al., 2009; Obhi, 

Matkovich, & Gilbert, 2009), but can also dynamically change endogenous, distal intentions 

during action. On the one hand, this flexibility is highly advantageous in that it allows people to 

flexibly adjust their behaviour to the current context. On the other hand, an important concept of 

the voluntary control of behaviour is the need for intention pursuit over a long period of time – 

e.g., when intending to quit smoking or lose weight. People may give up on these intentions 

because of new stimuli that can trigger decision reversals. For example, addiction relapse is often 

caused by exposure to drug-related external stimuli, in particular in individuals with high 

sensitivity to incentive cues (Robinson, Robinson, & Berridge, 2013). Our results support the 

assumption that the strength of an endogenous intention (e.g., to quit smoking) is an important 

factor for successful pursuit of intentions. Furthermore, goal achievement may be facilitated by 

low costs (e.g., easily-accessible healthy food options) and pre-planning of actions (e.g., "when I 

go to a bar, I will order orange juice"). Our study provides a quantitative laboratory model for 

measurement of these processes, which will facilitate future investigation of the neurocognitive 

mechanisms underlying intention pursuit. In particular, by capturing intentions as a gradual and 

continuous quantity, our paradigm offers a novel approach to investigate the factors that render 

voluntary intentions more flexible vs. stable.      
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2.4.1 Changes of Mind and Sense of Agency 

In both experiments, reduced SoA was observed after Changes of Movement. However, 

this effect was statistically accounted for by differences in movement times between trials with 

vs. without CoMov. Participants may have used movement times as a proxy of (in)efficient motor 

performance or difficulty of action selection, which reduces SoA (Wenke et al., 2010; Sidarus, 

Chambon, & Haggard, 2013; Sidarus & Haggard, 2016). Importantly, our results suggest that SoA 

is not only informed by how efficient the initial action selection was, but additionally takes into 

account the ‘fluency’ of continuous movement execution after initial onset. While previous studies 

have investigated SoA in continuous actions (Wen, Yamashita, & Asama, 2015b; Oishi, Tanaka, 

& Watanabe, 2018), these studies have focused on aspects of performance related to action 

outcomes, e.g., by perturbing sensorimotor feedback. By contrast, the current results suggest that 

SoA is modulated even in the absence of such external perturbations, and takes into account subtle 

indicators of how ‘fluent’ or easy execution of a continuous movement was. Additionally, slower 

movement times may have contributed to a reduction in SoA by prolonging the delay between 

action initiation and action outcomes (Sato & Yasuda, 2005; Wen, Yamashita, & Asama, 2015a), 

hence weakening the perceived causal link between one’s own actions and their sensory 

consequences.  

Interestingly, SoA was not modulated by Changes of Intention. That is, deviating from an 

initial action goal neither decreased (Metcalfe et al., 2013; Vinding et al., 2013), nor increased 

SoA (Ach, 1935; Libet, 1999). Hence, our findings are broadly in line with reconstructive accounts 

of conscious intention, which state that SoA is independent of the actual initial intention and 

instead relies on retrospective inference (Wegner, 2002; Wegner et al., 2004; Aarts et al., 2005). 

As a consequence, SoA does not change when intentions are reversed. Indeed, as action goals are 

updated, predictions about action outcomes may be rapidly adjusted during action (Synofzik, 

Thier, & Lindner, 2006) without any consequences for subsequent inferences informing SoA. 
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However, the absence of any significant effect of Changes of Intention on SoA in our study should 

be interpreted with caution since it is a null result based on low trial numbers. In particular, we 

cannot rule out that strong and sustained intentions may contribute to SoA.  

2.4.2 Conclusion 

Voluntary actions are shaped by continuous decision-making processes that integrate 

external information with endogenous intentions. By investigating this integration process, our 

novel experimental design shed some light on the nature of intentions themselves. Specifically, 

we suggest that endogenous intentions come by degrees, are continuously re-evaluated, and can 

sometimes be changed. The flexible nature of action selection allows agents to dynamically decide 

which intention to pursue and how to pursue it. Insights into the factors that influence behavioural 

flexibility vs. persistence are highly relevant to our understanding of the mechanisms underlying 

goal pursuit and its disturbances, with important social and personal implications. 
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An attractor network model of CoM in voluntary action 

3.1 Introduction 

In Chapter 2 of this thesis, we introduced an adapted RDM task in which participants 

reached for one of four possible targets that matched both their endogenous intention regarding 

target colour and a perceptual decision about dot-motion direction. Continuous movement 

trajectories were measured in order to identify when participants changed their mind about the 

dot-motion direction, which either resulted in a Change of Movement to another target of the same 

colour, or a Change of Movement + Intention that additionally involved a switch to a nearby target 

of different colour. In the current chapter, a new attractor network model will be introduced in 

order to gain more insights into the putative mechanisms underlying CoM in voluntary action. 

Specifically, this model captures how higher-order voluntary intentions, i.e., distal goals of an 

action, are integrated with sensory information from the environment, and also with the costs 

associated with a given movement. Crucially, this integration is dynamic and continuous, which 

can cause a CoM during ongoing action execution. 

As mentioned in the general introduction (Chapter 1), attractor network models might 

provide an appropriate approach to capture such dynamic integration of different decision 

variables. These models are dynamical systems of interconnected neurons whose firing rates are 

updated continuously (P. Miller, 2016). Activity patterns evolve into attractor states that typically 

remain relatively stable over time, however, changes in states can occur due to changes in external 

inputs and/or intrinsic dynamics of the network (Moreno-Bote et al., 2007; Albantakis & Deco, 
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2011; Albantakis et al., 2012; Yan et al., 2016). In addition to the dynamic nature of attractor 

networks, these models allow for integration of various decision variables through 

excitatory/inhibitory connections between different neural populations (Lo & Wang, 2006; Cisek, 

2012; Christopoulos et al., 2015).  

Another important class of models in computational neuroscience are bounded accumulator 

models (Smith & Vickers, 1988; Ratcliff & Rouder, 1998), which have been applied to a range of 

choice scenarios (Deco et al., 2013) and can capture CoM in perceptual decision making (Resulaj 

et al., 2009; Burk et al., 2014; van den Berg et al., 2016). These types of model typically only take 

into account a single source of evidence (e.g., sensory input). Other decision-relevant variables 

(e.g., motor costs) have previously been implemented through changes in static variables, such as 

decision thresholds (Burk et al., 2014). Hence, it is not clear how accumulator models can account 

for multiple sources of information that change dynamically over time. In particular, motor costs 

may need to be evaluated continuously, for example, when costs cannot be fully anticipated in 

advance, or when the current state of an ongoing movement affects its associated cost. Hence, for 

some scenarios, it is unlikely that motor costs simply affect a fixed decision threshold prior to 

action onset. Therefore, in the current model, continuous changes in motor costs were modelled 

as a decision variable that was integrated dynamically into the decision-making process. This was 

achieved by explicitly modelling motor outcomes of the decision process (i.e., continuous 

movement trajectories), which then informed updates in motor costs depending on the current 

location, and hence, distance to each of the choice targets.    

Previous attractor network models of CoM have exclusively focused on decisions about 

perceptual stimuli (Albantakis & Deco, 2011; Albantakis et al., 2012; Yan et al., 2016), even 

though network approaches readily allow for integration of multiple sources of information 

(Christopoulos et al., 2015). Specifically, in previous models, neural network nodes responded 

selectively to left/right dot-motion direction. By contrast, in the task introduced in Chapter 2, 
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participants made choices between 4 targets based on an endogenous colour intention and dot-

motion direction of an RDM stimulus. Furthermore, behavioural results suggested that 

participants took into account information about motor costs when implementing their decisions 

into action. Hence, three main sources of information were integrated: 1) the endogenous intention 

about colour (blue/green), 2) external sensory input (left/right dot-motion direction) and 3) motor 

costs associated with each action alternative. Hence, in this chapter, an extended attractor network 

model is proposed that consists of different types of neural populations representing different 

modalities of information (Figure 3.1): 1) neural populations encoding the voluntary colour 

intention (I1 and I2), 2) neurons that selectively respond to sensory information about left/right 

dot-motion (S1 and S2), and 3) neurons that calculate the movement cost according to the distance 

to each of the 4 target locations (C1, C2, C3, C4). Information from these neural populations is 

combined by action nodes (A1, A2, A3, A4) that integrate all sources of information and specify the 

motor output, i.e., initiation of a movement towards the chosen target location. For example, action 

A1 is selected for execution if the intention is blue (I1 fires at a high rate), if the dots move left (S1 

fires at a high rate), and if the cost of moving to the left-blue target is relatively low (C1 fires at a 

low rate). In other words, the firing rate of each action node reflects the strength of evidence in 

favour of a given action based on the combined information encoded in a distributed network of 

neurons. 
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Figure 3.1. Hierarchical attractor network model of CoM. The network consists of 12 neural nodes that 
encode different pieces of information. Nodes are connected through excitatory (black) or inhibitory 
(red) connections. The action nodes A1 to A4 compete against each other to determine which one of the 
4 choice targets is selected. This competition takes into account information about 1) voluntary intentions 
(blue/green represented by nodes I1 and I2), 2) sensory information (left/right encoded by sensory nodes 
S1 and S2) and action costs (C1 to C4) that depend on the distance d to each target location. Intention 
nodes are represented on a hierarchically higher level than sensorimotor nodes, allowing for top-down 
regulation of the degree of variability in firing rates of the action nodes. All firing rates are updated 
continuously and can change dynamically. Hence, CoM can occur when one action node crosses the 
threshold for movement execution first, but later on, another action wins the competition. Different types 
of CoM can be dissociated based on which action the network switches to when a decision reversal 
occurs (e.g., Change of Movement: A1  A2, or Change of Movement + Intention: A1  A4). 
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Furthermore, in contrast to previous models of CoM, the model introduced here has a 

hierarchical structure that was inspired by theories of intention hierarchy (Pacherie, 2008) and 

multi-level decision making (Cisek, 2012). More specifically, in the current model, colour 

intentions are represented on a hierarchically higher level than sensorimotor information. That is, 

in line with the behavioural task, colour intentions reflect abstract, distal action goals with respect 

to the action outcome (coloured dots). By contrast, sensorimotor information about perceptual 

inputs (dot-motion stimulus) and movement-related costs inform how that goal can be achieved. 

Hence, hierarchy in the current model corresponds to the distinction between what goal to pursue 

vs. how to pursue it, and hence, the distinction between distal vs. motor intentions (Pacherie, 

2008). Hierarchy was implemented as top-down noise regulation in action selection through the 

intention nodes I1 and I2. Specifically, stronger intentions caused a decrease in noise, and hence, 

decreased variability in firing rates of the action nodes A1 to A4. This is in line with previous 

studies showing that voluntary intentions are associated with noise reduction in motor-related 

neural activity (Khalighinejad et al., 2018). Additionally, the implementation of hierarchy through 

noise regulation was inspired by Hierarchical Gaussian Filters, where the degree of noise (or 

‘volatility’) of a hierarchically-lower variable can change over time, depending on the current 

state of a hierarchically-higher variable (Mathys, Daunizeau, Friston, & Stephan, 2011; Mathys 

et al., 2014). 

Within each level of the hierarchy, neural populations that encode the same modality of 

decision evidence (i.e., intention nodes I1 and I2, and sensory nodes S1 and S2) compete against 

each other through lateral inhibition. At the same time, the 4 action nodes compete against each 

other, and hence, determine the final behavioural outcome through a winner-take-all mechanism 

(Cisek, 2007) – or ‘untangling’ of decision inputs into action (Yoo & Hayden, 2018). 

Additionally, connectivity across the two hierarchical levels allows for exchange of information. 

That is, higher-order intentions bias the competition between lower-level action representations, 
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but additionally, motor representations also guide intentions. Specifically, in line with the 

behavioural findings, motor costs associated with each action have inhibitory effects on colour 

intentions. Hence, in the current model, decisions are made through a distributed consensus across 

different hierarchically-organised neural populations (Cisek, 2012).  

Crucially, firing rates are updated continuously and change dynamically. This can cause 

CoM, which may either reflect a change in what intention is pursued and/or a change in how a 

given intention is implemented into motor action based on sensory evidence. For example, the 

network can switch from action A1 to action A2, reflecting a Change of Movement (CoMov), i.e., 

a switch between actions that correspond to different sensory states (S1  S2) but the same colour 

intention (I1  I1). Alternatively, the network might switch from A1 to A4, reflecting a Change of 

Movement + Intention (CoMov+Int), and hence, a change in both the sensory state (S1  S2) as 

well as the colour intention (I1  I2). Finally, a Change of Intention (CoInt) can occur between 

actions associated with different intentions but the same sensory state (e.g., A1  A3). Note that 

these types of CoM were not considered in the behavioural task as we assumed that these (vertical) 

switches reflected colour errors where participants erroneously initiated a movement towards a 

target that did not correspond to their actual initial colour intention (e.g., due to difficulty in target 

detection). This assumption can be tested in the current model. That is, by defining the ‘true’ 

colour intention on a given trial, simulations can be used to analyse whether switches between 

different intentions reflect correction of an initial colour error, or instead, a reversal of an intention, 

e.g., due to cost-induced intention updates when an ongoing movement needs to be changed.  

 The main aim of this chapter is to test whether the proposed computational model can 

account for the behavioural findings reported in Chapter 2. More specifically, systematic 

simulations were performed in order to test the effects of different variables (e.g., strength of 

sensory evidence, colour intention, or motor cost) on the rate of CoMov and CoMov+Int, 

respectively. Hence, our approach can be described as a sensitivity analysis of model outcomes to 
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changes in a given parameter of interest. No formal model fitting was performed, and instead, 

model parameters were defined based on previous models, conceptual/mathematical reasons, and 

consideration of parsimony. Consequently, the precise model parameters and quantitative 

outcomes should be interpreted with caution. Instead, the conceptual validity of the model was 

evaluated qualitatively based on its ability to reproduce the overall pattern of behaviour and the 

different types of CoM observed in the experiments, regardless of the precise quantitative 

accuracy of predictions. 

3.2 Methods 

3.2.1 Model implementation 

The model was implemented in Matlab R2016b. All model code is available on the Open 

Science Framework (https://osf.io/4f895/?view_only=c4e1b3ab60974ce39e7103585dfea97f).  

3.2.2 Network architecture 

The attractor network model consists of 12 neural nodes that are grouped into different 

modules according to the source of information they represent (Figure 3.1):  

1) Two intention nodes (I1, I2) that encode the voluntary intention (blue/green)  

2) Two sensory nodes (S1, S2) that selectively respond to dot-motion direction (left/right) 

3) Four cost nodes (C1, C2, C3, C4) that calculate the cost associated with each action based on 

distance to each target location 

4) Four action nodes (A1, A2, A3, A4) that correspond to the 4 possible action alternatives, and 

hence, location of the choice targets (left/right top/bottom)  

Each node represents a population of neurons whose firing rates change dynamically over 

time. The firing rates of intention nodes (I1, I2) and sensory nodes (S1, S2) depended on model 

inputs whose intensities corresponded to the strength of intention and strength of sensory evidence 

https://osf.io/4f895/?view_only=c4e1b3ab60974ce39e7103585dfea97f
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(i.e., motion coherence), respectively. Firing rates of cost nodes (C1 to C4) depend on the distance 

d to each target location. Hence, intention, sensory and cost nodes are ‘input nodes’ that receive 

direct model inputs. Action nodes did not receive any direct external inputs, but instead, integrated 

information from all other network nodes in order to determine the behavioural outcome (i.e., 

movement trajectory towards one of the 4 targets). Integration of information is achieved through 

neural connectivity. Colour intentions and sensory inputs have excitatory effects on action nodes, 

whereas costs have inhibitory effects. Furthermore, neurons that encode the same modality of 

information, e.g., S1 and S2, but respond selectively to a specific input (e.g., left vs. right dot 

motion) inhibit each other. This mutual inhibition between horizontal nodes (lateral inhibition) 

represents neural competition, which ensures that over time, a single choice option is selected 

through a winner-take-all mechanism that supresses competing choice alternatives.  

The precise strength of connections is to some extent arbitrary and was defined by 

informally exploring different values in order to ensure that one of the action nodes reaches a 

fixed firing rate threshold within a certain time frame (e.g., RTs < 1000 ms). More importantly, 

the relative strength of each connection was chosen based on conceptual reasons and parsimony 

considerations. For example, to reduce the number of free parameters, connections were assumed 

to be symmetric, and hence, I1 and I2 had equally strong connections of +1 onto their 

corresponding action nodes. Similarly, each cost node had inhibitory effects of strength -1 on 

action nodes. Sensory nodes S1 and S2 had slightly stronger connections of +1.5 onto action nodes, 

given that perceptual decisions took priority in the task (see Chapter 2). Furthermore, inhibitory 

competition within each modality was set to -0.5, with the exception of lateral inhibition between 

neighbouring action nodes A1 and A2 (and A3 and A4), which inhibited each other with a strength 

of -1.0. This was because these actions corresponded to diagonally-opposite targets, respectively, 

and hence, movements in either direction were mutually exclusive (i.e., competition is stronger). 

Finally, sensory nodes had self-excitatory connections of +0.25, representing temporal integration 
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of sensory evidence from the dot-motion stimulus (Wong & Wang, 2006; Albantakis & Deco, 

2011). Note that intention nodes did not have self-excitatory connections because in the task, 

initial colour choices had already been made at trial start. Hence, at the point in time when the dot 

stimulus was presented, colour intentions did not require accumulation of new endogenous 

information about colour per se. Instead, intention updates were assumed to depend on the cost 

associated with pursuing the colour choice over time. Hence, cost information was updated 

continuously and had inhibitory (-0.5) effects on intentions. Figure A1 in Appendix A illustrates 

the attractor network including the weight associated with each connection. 

3.2.3 Modelling firing rates 

In order to compute the firing rates of each neural node over time, a mean-field approach 

was used (Wong & Wang, 2006; Yan et al., 2016). That is, instead of modelling individual spiking 

neurons, the overall firing rate of a given neural population (node) was calculated for each point 

in time. Firing rates of each node were updated in time steps of 1 ms and depended on 1) how 

strongly a given node was stimulated (based on external model inputs and excitatory/inhibitory 

inputs from other nodes), 2) the node’s firing rate on the previous time step, and 3) neural noise. 

Hence, the following equations were used to determine the firing rate r of a given node i at time 

point t. 

First, the total stimulation that each node received at time t was calculated (Equation 3.1) 

based on direct external inputs into that node (if any), plus the sum of neural inputs from all other 

nodes (and itself in case of auto-connections). The neural input that node i received from node j 

depended on the firing rate of j at the previous time step weighted by its connectivity to i as defined 

by the weight matrix W:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝐼𝐼 = 𝑠𝑠𝑖𝑖𝑖𝑖,𝐼𝐼 + ∑ 𝑟𝑟𝑗𝑗,𝐼𝐼−1𝑊𝑊𝑖𝑖,𝑗𝑗  12
𝑗𝑗=1                                            (3.1) 
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Updates in firing rates were then computed (Equation 3.2) as a function of the node’s 

previous firing rate, the current stimulation 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝐼𝐼 it received, and a base time constant τ of 100 

ms (Wong & Wang, 2006; Yan et al., 2016) indicating how fast neurons changed their firing rates 

in response to changes in inputs. Hence, using the Euler-Maruyama approximation for differential 

equations (P. Miller, 2016; Hahne et al., 2017), the firing rate of node i at time t was calculated as 

follows:  

𝑟𝑟𝑖𝑖,𝐼𝐼 =  𝑟𝑟𝑖𝑖,𝐼𝐼−1 + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝐼𝐼 −  𝑟𝑟𝑖𝑖,𝐼𝐼−1)𝜏𝜏−1     (3.2) 

Finally random Gaussian noise s was added to the firing rate of each node: 

𝑟𝑟𝑖𝑖,𝐼𝐼 =  𝑟𝑟𝑖𝑖,𝐼𝐼 +  𝑠𝑠𝑖𝑖,𝐼𝐼      with 𝑠𝑠𝑖𝑖,𝐼𝐼~ 𝑁𝑁�0,𝜎𝜎𝑖𝑖,𝐼𝐼2 � and 𝜎𝜎𝑖𝑖,𝐼𝐼2  ≥ 0   (3.3) 

 

The degree of neural noise varied according to σ2, which was initially set to 2 Hz for all 

nodes. However, according to the assumption of top-down noise regulation through higher-order 

intentions, σ2 of each action node A1 to A4 varied as a function of the state of intention nodes I1 

and I2 (Equation 3.4). Specifically, higher firing rates of I1 caused a reduction of noise in its 

associated action nodes A1 and A2. For example, if I1 fired at 50% of its maximum firing rate, noise 

in A1 and A2 was reduced by 50%: 

𝜎𝜎2𝐴𝐴1,𝐼𝐼/𝐴𝐴2,𝐼𝐼 = 𝜎𝜎02 −
𝑟𝑟𝐼𝐼1,𝑡𝑡−1
100

𝜎𝜎02     and     𝜎𝜎2𝐴𝐴3,𝐼𝐼/𝐴𝐴4,𝐼𝐼 = 𝜎𝜎02 −
𝑟𝑟𝐼𝐼2,𝑡𝑡−1
100

𝜎𝜎02      (3.4) 

 

Firing rates were restricted to a range of 0–100 Hz. All neurons started with a background 

firing rate of 10 Hz. Once one of the action nodes reached a fixed firing rate threshold of θ = 40 

Hz (and surpassed all other action nodes by at least 10 Hz to ensure a single winning action), a 

movement was initiated with a motor delay of 180 ms. Movement direction corresponded to the 
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chosen target location and movement speed was constant at 0.7 pixels/ms, resulting in a movement 

duration of ~450 ms for straight movement trajectories, in line with movement times measured in 

Experiment 1 of Chapter 2. Movement execution towards a chosen target continued even if the 

action node dropped below the threshold, unless another action node reached the firing rate 

threshold, in which case the movement was redirected towards the new target choice. Firing rates 

continued to be updated for 380 ms after initial threshold crossing due to a non-decision time 

consisting of sensory delays of 200 ms and motor delays of 180 ms (Albantakis & Deco, 2011). 

This caused decisions to be updated even after initial action onset (Resulaj et al., 2009; Albantakis 

& Deco, 2011). After the non-decision time, firing rate updates were stopped and the movement 

was completed according to the final target choice.   

3.2.4 Model inputs 

External model inputs were simulated at a rate of fin = 60 Hz. Inputs into sensory nodes 

were presented after the sensory delay of 200 ms. The respective strength of inputs into S1 and S2 

corresponded to the strength of sensory evidence, i.e., dot-motion coherence, and was calculated 

as: 

𝑠𝑠𝑖𝑖𝑆𝑆1,𝑆𝑆2 = 𝑓𝑓𝑖𝑖𝐼𝐼 (1 ± 𝑐𝑐𝐶𝐶ℎ
100

),     (3.5) 

with coh corresponding to the % coherence and +/– indicating whether or not motion 

direction corresponded to the neurons’ preferred motion direction. By analogy, inputs into 

intention nodes depended on the strength of the endogenous colour intention col, i.e., the relative 

‘endogenous evidence’ in favour of a given colour:  

𝑠𝑠𝑖𝑖𝐼𝐼1,𝐼𝐼2 = 𝑓𝑓𝑖𝑖𝐼𝐼(1 ± 𝑐𝑐𝐶𝐶𝑐𝑐
100

)     (3.6) 
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Equations 3.5 and 3.6 ensured that model inputs were normalised, and hence, that the total 

input into the network was constant across different levels of sensory/endogenous strength. 

Similarly, the input into cost nodes was set to an equal value of 60 Hz at trial start. Once a 

movement was initiated, costs were updated relative to changes in Euclidean distance between the 

current position and each target location. Consequently, the total external inputs from all three 

sources of information (sensory, endogenous, costs) were balanced, and thus, only the relative 

strength of evidence from each source affected action selection.  

3.2.5 Simulations 

Systematic simulations were performed in order to test how changes in a given model 

parameter affected model outcomes. Each simulation consisted of 30 runs of 1000 trials each. In 

a given simulation, a single model parameter was varied, whereas all other model parameters were 

kept constant. In particular, unless stated otherwise, the model parameters introduced above were 

fixed (e.g., the connections between nodes and their respective weights). By contrast, the strength 

of evidence from each source of input was manipulated, i.e., the strength of sensory evidence from 

the RDM stimulus (coh), the strength of colour intention (col) and the target distance (d) in order 

to 1) test the sensitivity of model outcomes to changes in these input parameters, and 2) test 

whether the model produced patterns of behaviour that were comparable to our findings reported 

in Chapter 2. Furthermore, the effect of different degrees of neural noise was investigated. 

Specifically, the effect of hierarchical noise reduction through voluntary intentions was analysed 

by comparing models with different degrees of hierarchical control. Model performance was 

largely evaluated based on the following behavioural outcomes: 

1) RTs: Point in time of initial response initiation, defined as the time t at which an action 

node first crossed the threshold, plus the motor delay of 180 ms. Trials in which action 

thresholds were crossed before stimulus onset (early responses, ~1%) or more than 1000 
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ms after stimulus onset (misses, ~3%) were excluded. Note that RTs were generally 

slightly faster for erroneous trials, but the patterns of changes in RTs was the same for 

correct/error trials. Hence, reported RTs include both correct and erroneous choices. 

2) Mean % errors: Errors in initial/final target selection. In all simulations, the true correct 

choice was A1 (left-blue). Two different types of errors can be differentiated: 

a) Perceptual errors (i.e., true dot-motion direction is left, but right target is chosen) 

b) Colour errors (i.e., true colour intention is blue, but green target is chosen) 

3) Mean % CoM: Different types of CoM can be differentiated,  

a) Change of Movement (CoMov) where the perceptual decision is changed without a 

change in colour intention (e.g., A1  A2, switch from left-blue to right-blue) 

b) Change of Movement + Intention (CoMov+Int) where both the perceptual decision 

and colour intention are changed (e.g., A1  A4, switch from left-blue to right-green) 

c) Change of Intention (CoInt) where the intention changes without a change in the 

perceptual decision (e.g., A1  A3, switch from left-blue to left-green).  

Note that, although all types of CoM technically involve changes in an ongoing 

movement, for the sake of consistency with the terms used in Chapter 2, ‘Change of 

Movement’ refers to changes involving a perceptual CoM with regard to the dot-motion 

direction (i.e., switch from left to right or v.v.). By contrast, Change of Intention here 

does not involve a perceptual change, but instead corresponds to vertical changes 

between targets of different colour on the same side of the screen.  

4) CoM time: Point in time of CoM relative to first threshold crossing.  

5) % corrective CoM: CoM may reflect corrections of initial errors, either 

a) correcting perceptual error: Both CoMov and CoMov+Int involve perceptual 

switches, and hence, may reflect corrections of perceptual errors 

b) correcting colour error: CoInt and CoMov+Int involve colour switches, and hence, 

may reflect corrections of initial colour errors.    
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3.3 Results 

3.3.1 Overall performance & CoM 

First, in order to validate that the model was able to produce different types of CoM, 

simulations with a default set of fixed parameters were run. The parameters were obtained by 

exploring values of motion coherence (coh) and intentional strength (col) in a range from 0%3, 

3.2% 6.4% 12.8% 25.6% and 51.2% in line with previous models (Resulaj et al., 2009; Albantakis 

& Deco, 2011). Parameters that best matched participants’ overall performance were selected (see 

below). Hence, dot-motion coherence was set to a low value of coh = 3.2% in line with the high 

difficulty of perceptual decisions in the task. The strength of colour intention was set to a high 

value of col = 51.2%, according to relatively strong colour intentions observed in participants as 

indicated by lower frequencies of CoMov+Int than CoMov. Finally, target distances from the 

centre were set to x = 200 and y = 250 according to the target locations used in Experiment 1 of 

Chapter 2.  

Figure 3.2 illustrates model inputs and outputs of an individual simulated trial without 

CoM. Across all simulated trials, the model produced realistic choice behaviour with mean RTs 

of 626.0 ms (SD = 3.7 ms), perceptual errors in 38.3% of trials (SD = 1.7%) and colour errors in 

4.0% of trials (SD = 0.6%). Note that the perceptual error rate is highly comparable with 

participants’ performance in test trials (~40%). Hence, although the motion coherence chosen here 

was lower than the actual coherence levels used in the task, it was selected to approximate 

participants’ overall task performance, rather than the actual dot-motion coherence of the task.  

  

                                                      
3 Note that for 0% coherence/intentional strength, correct choice options were assigned randomly. 
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Figure 3.2. Simulation of a single trial without CoM. External model inputs (top row) are applied to 
intention, sensory and cost nodes (second row). Information is then combined by action nodes (third row) 
that determine the resulting movement trajectory (bottom row). In this example, the model correctly 
selects the left-blue target. After threshold crossing, the corresponding movement is initiated with a motor 
delay of 180 ms, and firing rates continue to be updated for a total non-decision time of 380 ms. 
Furthermore, inputs into cost nodes change after action initiation, according to the distance of the current 
cursor position to each target. Note that updates in cost nodes lag behind updates in action nodes due to 
the motor delay (i.e., costs only start changing 180 ms after a given action node has crossed the threshold). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

 

Importantly, the model was able to capture CoM. Trials with double-CoM (M = 2.5%, SD 

= 0.5%) were excluded to simplify interpretation. The remaining CoM trials (M = 14.5%, SD = 

1.0%) could be classified into CoMov, CoMov+Int, and CoInt. Figure 3.3 illustrates examples of 

individual trials for each type of CoM (Figures A2–A4 in Appendix A illustrate the same example 

trials including the firing rates of input nodes). As in the behavioural experiments, CoMov was 

more frequent (model: M = 9.7%, SD = 0.9%; Exp. 1 Chapter 2: M = 5.9%, SD = 5.5%) than 

CoMov+Int (model: M = 1.5%, SD = 0.4%; Exp. 1 Chapter 2: M = 1.7%, SD = 2.2%). Hence, 

when a perceptual CoM occurred, the model was more likely to switch to another action that 

corresponded to the same colour intention, instead of an action associated with the alternative 

colour intention. Furthermore, CoInt occurred in 3.4% of trials (SD = 0.6%), which is comparable 

to the frequency of vertical movement corrections observed in Experiment 1 (M = 3.2%, SD = 

2.6%). As expected, the majority of CoInt trials (M = 75.0%, SD = 6.3%) reflected corrections of 

initial colour errors. By contrast, only 28.3% (SD = 13.3%) of CoMov+Int involved initial colour 

errors, whereas 64.5% (SD = 13.0%) of CoMov+Int reflected corrections of perceptual errors, 

which additionally involved a switch to the alternative colour. Similarly, 65.3% (SD = 4.5%) of 

CoMov reflected corrections of initial perceptual errors. Hence, as expected, CoMov and 

CoMov+Int were to a similar extent driven by an initially erroneous perceptual choice that was 

subsequently corrected by changing to a target associated with the alternative sensory state (e.g., 

right  left). Whether perceptual CoM resulted in CoMov or CoMov+Int was assumed to be 

driven by factors other than perceptual evidence, such as the cost associated with pursuing the 

initial colour (see section on target distance below). For example, Figure A3 in Appendix A 

illustrates an example where the model initially selects the right-blue action, reflecting a 

perceptual error, which is subsequently corrected by switching to a left target. Instead of switching 

to the left-blue action according to the initial colour intention, the model switches to left-green, 

given that this action is associated with lower costs.  
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Figure 3.3. Model outputs of individual trials with CoM. Firing rates of action nodes (top row) and 
resulting movement trajectories (bottom row) are shown for trials with CoMov (left), CoMov+Int 
(centre) and CoInt (right). Dotted lines in movement trajectories indicate completion of movements 
after firing rates ceased to be updated (i.e., after non-decision time). 

 

 

 

 

 

 

 

 

 

 

 

Note that CoM could only occur within a time window of 380 ms after initial threshold 

crossing based on the non-decision time. On average, CoM occurred 215.1 ms (SD = 6.4 ms) after 

initial decisions, which varied across the different types of CoM: CoInt occurred earlier (M = 

169.2 ms, SD = 16.4 ms) than CoMov (M = 234.1 ms, SD = 10.3 ms) and CoMov+Int (M = 279.0 

ms, SD = 23.2 ms), presumably due to the relatively high strength of colour intentions and the fact 

that intentions were activated prior to sensory inputs, causing colour errors to be corrected early 

on. More interestingly, CoMov+Int occurred slightly later than CoMov, which was expected given 

that differences in motor costs are larger towards the end of the movement (see Figure 3.2, top-

right), and hence, motor costs should be more likely to cause intention reversals the later the CoM 
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occurs. Note that this was also predicted for behavioural results in Chapter 2 (see Figure 2.4). 

However, in Chapter 2, we did not find that CoMov+Int occurred later than CoMov (results not 

reported), possibly because the point in time at which decision reversals occurred is difficult to 

estimate in real movement trajectories. In addition to the small trial numbers with CoM, we may 

not have had sufficient power to detect such subtle differences in the timing of decision reversals. 

Hence, compared to purely behavioural measures, the current computational model might enable 

more detailed insights into the precise time course of decision updates and their implementation 

into motor action.  

3.3.2 Effect of sensory evidence 

In order to test how the strength of sensory evidence affected model outcomes, simulations 

were run with varying levels of dot-motion coherence of coh = 0%, 3.2%, 6.4%, 12.8%, 25.6%, 

or 51.2%, while the other parameters were kept constant (col = 51.2%, target locations: x = 200, 

y = 250). In line with previous studies (e.g., Resulaj et al., 2009; Albantakis & Deco, 2011) and 

the findings reported in Chapter 2, higher dot-motion coherence was associated with faster RTs 

and fewer perceptual (but not colour) errors (Figure 3.4A–B). Furthermore, higher dot-motion 

coherence caused a lower frequency of perceptual CoM, i.e., fewer CoMov and CoMov+Int 

(Figure 3.4C). Interestingly, higher dot-motion coherence caused a slight increase in colour errors 

and CoInt – presumably because stronger sensory evidence meant that neural noise more strongly 

affected colour selection. Finally, higher dot-motion coherence caused CoMov and CoMov+Int 

to occur earlier (Figure 3.4D) and more likely to correct an initial perceptual error (Figure 3.4E). 

This is because sensory evidence in favour of the correct choice option was stronger, and hence, 

was obtained faster and was more likely to result in a correct final choice. Hence, temporal 

integration of strong sensory post-decision evidence informed decision reversals in favour of the 

correct perceptual choice, and as a result, improved performance.  
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Figure 3.4. Effect of sensory evidence on model outcomes. Effect of dot-motion coherence (coh) on 
reaction times (A), % errors with regard to perceptual choice and colour choice (B), % of trials with 
different types of CoM (C), time point at which CoM occurred (D), % of CoM involving perceptual 
switch that corrected an initial perceptual error (E), and % of CoM involving colour switch that 
corrected an initial colour error (F) [M ± 1 SD]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Effect of strength of colour intention  

In Experiment 1 of Chapter 2, participants varied in the relative frequency of CoMov+Int 

and participants with stronger colour intentions were less likely to switch colours when changing 

their movements. In order to check whether the model could reproduce this finding, simulations 

with different degrees of intentional strength col = 0%, 3.2%, 6.4%, 12.8%, 25.6% and 51.2% 
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were performed, while the other parameters were kept constant (coh = 3.2%, target locations: x = 

200, y = 250). Note that changes in the strength of intention should have different effects than 

changes in the strength of sensory evidence, not only because they are conceptually different (i.e., 

they are associated with different action alternatives), but also, because of mathematical reasons. 

Specifically, compared to sensory nodes, intention nodes had a) slightly weaker connections to 

action nodes (because of dot-motion priority in the task), b) did not have self-excitatory 

connections and c) exerted top-down control over noise in action selection (see section 3.5 below).  

As predicted from our behavioural findings, stronger colour intentions were associated with 

a decrease in CoMov+Int and an increase in CoMov (Figure 3.5C). Hence, the relative frequency 

of CoMov+Int out of all perceptual CoM decreased with stronger intentions. Note that stronger 

colour intentions also caused fewer colour errors (Figure 3.5B). However, even when trials with 

colour errors were excluded, CoMov+Int decreased relative to CoMov. This was due to the fact 

that stronger colour intentions shifted the percentage of colour errors that were corrected 

disproportionally towards CoInt, whereas CoMov+Int correcting colour errors were less frequent 

for stronger intentions (Figure 3.5C). Hence, stronger colour intentions did not reduce 

CoMov+Int by reducing the number of colour errors that had to be corrected. Instead, our 

modelling results suggest that, when a perceptual CoM occurred, stronger colour intentions caused 

the model to favour the original colour intention, rather than switching to the alternative colour, 

hence reducing the frequency of CoMov+Int relative to CoMov. Interestingly, strength of 

intention only had a weak effect on the point in time of CoInt, in that CoInt only occurred slightly 

faster for very strong intentions compared to weak intentions (Figure 3.5D). This is presumably 

due to the fact that colour corrections generally occurred very early due to the head start of 

intentions (in both the model and the task), causing a floor effect in the timing of CoInt.    
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Figure 3.5. Effect of intentional strength on model outcomes. Effect of strength of intention (col) on 
reaction times (A), % errors with regard to perceptual choice and colour choice (B), % of trials with 
different types of CoM (C), time point at which CoM occurred (D), % of CoM involving perceptual 
switch that corrected an initial perceptual error (E), and % of CoM involving colour switch that 
corrected an initial colour error (F) [M ± 1 SD]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Importantly, the model could also reproduce reaction time costs observed in conflict trials 

in which both targets of the same colour were located on the same side of the screen (Figure 2.1, 

Chapter 2). In line with the task, motion coherence was set to a high value (coh = 51.2%) to 

simulate conflict trials. Furthermore, the model was changed such that intention nodes mapped 

onto actions corresponding to targets associated with the same dot-motion direction (i.e., blue  
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both left actions A1 and A3; green  both right actions A2 and A4). The true colour intention of a 

given trial was selected randomly in order to induce a mismatch between colour intention and 

perceptual input on ~50% of trials (e.g., intention = green and both green targets are on the right 

side, but dot-motion direction = left). This caused an overall increase in RTs for trials with correct 

perceptual choices (M = 540.9 ms, SD = 1.4 ms) compared to the model without any conflict trials 

(M = 513.0 ms, SD = 1.5 ms). Additionally, RT costs in conflict trials were larger for strong colour 

intentions (col = 51.2%: ∆RT = 27.9 ms) compared to weak intentions (col = 3.2%: ∆RT = 4.3 

ms). Hence, stronger colour intentions caused higher reaction time costs in conflict trials, and at 

the same time, caused fewer Changes of Intention in test trials. Thus, in line with our assumption 

in Chapter 2, inter-individual differences in the strength of colour intentions may have been the 

underlying mechanism causing the observed correlation between RT costs in conflict trials and 

the frequency of CoMov+Int in test trials (Figure 2.3C, Chapter 2).  

3.3.4 Effect of motor costs  

In Experiment 2 of Chapter 2, target distance was manipulated in order to investigate the 

effect of motor costs on CoM. When horizontal target distance was short (close targets), switching 

to the target of different colour when a perceptual CoM occurred allowed participants to save 

costs in terms of time and/or effort. As a result, CoMov+Int was more frequent when horizontal 

target distance was close compared to when it was far, while the overall frequency of CoM was 

not affected by target distance. Hence, motor costs did not affect whether or not a decision reversal 

occurred, but instead, affected which type of CoM occurred. By analogy, simulations with 

different target locations were run where horizontal target distance was either close (x = 100, y = 

300) or far (x = 300, y = 100), while keeping the other parameters constant (coh = 3.2%, col = 

51.2%). Note that target distance from the centre was equal for all targets, and hence, initial costs 

were constant across simulations. Instead, the relative change in costs after action onset varied as 

a function of the target locations. As predicted, the model could reproduce the behavioural finding, 



 111 

 

Figure 3.6. Effect of motor costs on CoM. Effect of relative motor costs (target distance) on 
frequency of CoMov (blue) and CoMov+Int (green) [M ± 1 SD]. Black data points represent 
behavioural results observed in Exp. 2 in Chapter 2. 

showing an increase in CoMov+Int for close compared to far targets, whereas CoMov was slightly 

reduced in close compared to far targets (Figure 3.6). Hence, the relative frequency of CoMov+Int 

out of all perceptual CoM increased with close targets.  
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Importantly, target distance did not affect the rate of perceptual errors (close: M = 38.3%, 

SD = 1.7%; far: M = 38.8%, SD = 1.9%), nor the rate of colour errors (close: M = 3.9%, SD = 

0.6%; far: M = 3.8%, SD = 0.7%). Hence, the same effect of target distance on CoMov+Int was 

observed when trials with colour errors were excluded (results not shown), suggesting that higher 

frequencies of CoMov+Int for close targets cannot be attributed to a potential increase in colour 

errors. Furthermore, RTs were highly comparable across target distance conditions (close: M = 

626.0 ms, SD = 3.7 ms; far: M = 626.1 ms, SD = 3.8 ms). This suggests that target distance (i.e., 

motor costs) directly affected continuous updates of colour intentions after action onset, rather 

than inducing changes in initial action selection.  

Finally, in the behavioural task, the effect of target distance was stronger for trials with late 

compared to early target-onset time (Figure 2.5). Given that the current model did not explicitly 

model target onset, we were not able to directly implement this manipulation in the model. 

Possibly, pre-activation of action nodes corresponding to the chosen colour prior to stimulus onset 

could be used to mimic advance motor planning that presumably occurred in trials with early 

target onset. However, preliminary results indicated that this did not have any effect on the 

difference in CoMov or CoMov+Int in far vs. close targets (results not shown).   

3.3.5 Effects of neural noise 

In all simulations reported above, only parameters concerning external model inputs were 

varied in order to test whether the model produced patterns of results that resembled the 

behavioural findings. However, parameters of the network itself can provide further insights into 

how differences in network properties can affect behavioural outcomes. Of particular interest here 

is the role of neural noise, and more specifically, the assumed role of voluntary intentions in 

regulating the degree of noise in action selection.  
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Figure 3.7. Effect of neural noise on model outcomes. Effect of level of neural noise (σ2) on reaction 
times (A), % errors with regard to perceptual choice and colour choice (B), % of trials with different 
types of CoM (C), time point at which CoM occurred (D), % of CoM involving perceptual switch that 
corrected an initial perceptual error (E), and % of CoM involving colour switch that corrected an initial 
colour error (F) [M ± 1 SD]. 

 

First, the degree of neural noise was varied with σ2 ranging from 0 to 3 Hz (Figure 3.7). 

Higher neural noise decreased RTs at the cost of higher error rates (Figure 3.7A–B). Furthermore, 

as expected, all types of CoM were more frequent for higher levels of noise (Figure 3.7C). Hence, 

neural noise changed the global dynamics of the network, rendering attractor states less stable 

overall. Additionally, higher noise reduced the frequency of corrective CoMs. That is, with higher 

degrees of noise, perceptual CoM was less likely to reflect correction of an initial perceptual error 

(Figure 3.7E) and CoInt was less likely to reflect colour correction, which instead was more 

strongly reflected in CoMov+Int (Figure 3.7F). Hence, the effect of CoM on improving 

performance was smaller the stronger noise fluctuations were within the network.  
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More interestingly, the degree of noise in the current model was not constant throughout a 

given trial. Instead, the degree of noise in action nodes depended on the state of their associated 

higher-order intentions. In order to investigate whether and how hierarchical noise modulation 

affected model behaviour, simulations with varying degrees of hierarchical control were 

compared. This was implemented by adding a coefficient h to Equation 3.4, indicating the degree 

to which noise in A1 to A4 was reduced as a function of the firing rates of intention nodes: 

 𝜎𝜎2𝐴𝐴1,𝐼𝐼/𝐴𝐴2,𝐼𝐼 = 𝜎𝜎02 − ℎ 𝑟𝑟𝐼𝐼1,𝑡𝑡−1
100

𝜎𝜎02    and     𝜎𝜎2𝐴𝐴3,𝐼𝐼/𝐴𝐴4,𝐼𝐼 = 𝜎𝜎02 − ℎ 𝑟𝑟𝐼𝐼2,𝑡𝑡−1
100

𝜎𝜎02           (3.7) 

Simulations with varying degrees of hierarchical control (h = 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3) 

were conducted, where h = 0 corresponds to a model without hierarchy and h = 3 corresponds to 

strong hierarchical control. All other model parameters were kept at their default values (coh = 

3.2%, col = 51.2%, x = 200, y = 250, initial σ2 = 2 Hz).  

Stronger hierarchical control slowed down responses and slightly increased perceptual 

choice accuracy (Figure 3.8A–B). This is in line with the role of noise reported above. That is, 

noise-induced responses tend to be fast and erroneous, and hence, noise reduction through 

hierarchical control reverses this effect. More interestingly, however, the strongest effect of 

hierarchical control was observed for the rate of CoMov, which decreased with higher levels of 

noise reduction (Figure 3.8C). Furthermore, CoMov tended to occur slightly later with stronger 

hierarchical control. By contrast, the other types of CoM were not affected by hierarchy, nor was 

the percentage of corrective CoMs. Reduction in CoMov was largely driven by the fact that 

perceptual error rate was reduced, hence decreasing the need to correct perceptual errors later on. 

However, even when excluding perceptual errors, CoMov was reduced in a model with strong 

hierarchy of h = 3 (M = 1.6%, SD = 0.6%) compared to a model with no hierarchy (M = 4.5%, SD 

= 0.6%). Together, these results suggest that hierarchical control reduced variability in movement 

selection, and hence, in how a given intention was implemented into motor action, without 
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Figure 3.8. Effect of hierarchical control on model outcomes. Effect of degree of hierarchical control 
(h) on reaction times (A), % errors with regard to perceptual choice and colour choice (B), % of trials 
with different types of CoM (C), time point at which CoM occurred (D), % of CoM involving perceptual 
switch that corrected an initial perceptual error (E), and % of CoM involving colour switch that 
corrected an initial colour error (F) [M ± 1 SD]. 

affecting selection of the intention itself. Note that the degree of these effects varied with 

intentional strength. As expected, for weaker intentions, hierarchical control had weaker effects 

on variability in movement selection, and hence, on reduction of CoMov. The opposite effect was 

observed when varying the level of dot-motion coherence. That is, higher coherence caused 

hierarchical control to have a weaker effect on variability in movement selection (which generally 

had low variability when dot-motion coherence was high).  
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3.3.6 Summary of results 

Table 3.1 provides an overview of the main findings with regard to CoMov and CoMov+Int 

obtained with the current modelling approach. Higher dot-motion coherence decreased the 

frequency of both types of CoM. Stronger intentions reduced the frequency of CoMov+Int, but 

increased the frequency of CoMov. Higher relative costs of intention pursuit had the opposite 

effect, in line with the assumption that intention pursuit depends on a trade-off between voluntary 

intentions and their associated costs. Finally, higher levels of neural noise increased the frequency 

of both types of CoM, and noise reduction through higher-order intentions specifically reduced 

the frequency of CoMov, but did not affect CoMov+Int. 

 

 

Table 3.1. Summary of model results. 

 

 

 

 

 

 

Model parameter % CoMov % CoMov+Int 

↑ dot-motion coherence (coh) ↓ ↓ 

↑ intentional strength (col) ↑ ↓ 

↑ relative cost of intention pursuit (d) ↓ ↑ 

↑ neural noise (σ2) ↑ ↑ 

↑ hierarchical noise reduction (h) ↓ = 
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3.4 Discussion 

While previous computational models of CoM have exclusively focused on perceptual 

choice (Resulaj et al., 2009; Albantakis & Deco, 2011), the attractor network model introduced 

here captures the dynamic integration of different sources of information that can drive different 

types of CoM in voluntary action. Specifically, the model continuously integrates higher-order 

endogenous intentions with lower-level sensorimotor information in order to guide decisions 

between multiple available courses of action. Dynamic fluctuations can cause changes in attractor 

states, i.e., transitions from one action alternative to a different one during ongoing movement 

execution. These changes can either reflect reversals about perceptual decisions requiring a 

change in how to implement an intention into action, and/or a change in what intention to 

implement. Which type of CoM occurs depends on the combined neural activity in a network of 

neurons whose respective firing rates encode endogenous intentions, perceptual inputs, motor 

costs, and action representations. Interconnectivity between neural populations allows for decision 

making through a distributed consensus where various pieces of relevant information are 

integrated in a dynamic manner in order to guide action selection (Cisek, 2012; Yoo & Hayden, 

2018). 

 Systematic simulations showed that the model could qualitatively reproduce the pattern 

of behavioural results reported in Chapter 2. More specifically, we tested how sensitive multiple 

features of model outcomes were to variations in parameters. The model accurately predicted that 

high noise in sensory evidence increases the overall likelihood of perceptual CoM, whereas the 

strength of intention and its trade-off with associated motor costs determines whether that change 

results in a Change of Movement or a Change of Movement + Intention. The model also produced 

Changes of Intention that did not involve a perceptual CoM – in line with the vertical movement 

corrections observed in Chapter 2. As expected, these types of changes were largely driven by 

initial colour errors, which may have occurred due to difficulty in target detection in the task. By 
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contrast, Changes of Movement + Intention largely reflected a deviation from the original 

(correctly-selected) colour target when an ongoing action had to be changed based on new sensory 

evidence from the RDM stimulus. Whether or not perceptual CoM resulted in a change in the 

colour intention depended on motor costs. That is, in line with the behavioural findings, the model 

predicted more intention reversals when the cost of intention pursuit was high relative to the cost 

associated with switching to a nearby target of different colour. 

 Hence, the model proposed here provides a valid framework for the continuous and 

dynamic integration of multiple sources of information that guide voluntary action. Furthermore, 

neural networks may be a biologically plausible account of the non-linear dynamics underlying 

action selection in the brain (Christopoulos et al., 2015). Neural populations in the current model 

may broadly correspond to functionally-specialised anatomical brain regions. Specifically, the 

sensory nodes S1 and S2 are analogous to neural populations in posterior parietal cortex (e.g., 

lateral intraparietal cortex) that accumulate sensory evidence based on inputs from direction-

sensitive neurons in the middle temporal visual area MT/V5 (Newsome, Britten, & Movshon, 

1989; Shadlen & Newsome, 1996; Gold & Shadlen, 2007). The current model captured this 

process of sensory evidence accumulation in a biologically realistic manner through recurrent self-

excitatory connections allowing for integration of perceptual information over time (Wong & 

Wang, 2006; Cain, Barreiro, Shadlen, & Shea-Brown, 2013). The network nodes encoding 

voluntary colour intentions may reflect regions in MFC and precuneus that have been shown to 

generate endogenous ‘what’ decisions and guide action selection through a medial action pathway 

(Passingham, 1987; Brass & Haggard, 2008; Soon et al., 2013; Zapparoli et al., 2018). Finally, 

action nodes correspond to areas in pre-motor cortex, which generate motor commands that are 

then sent to primary motor cortex to initiate a movement – or change an ongoing movement when 

new information is obtained (Wise & Mauritz, 1985; Buch et al., 2010; Pastor-Bernier et al., 

2012).  
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3.4.1 Role of action representations 

Importantly, action nodes in the current model were not simply a mere ‘output’ system of 

higher-order decision-making areas, but instead, were actively involved in the decision process 

itself by competing against each other taking into account combined information from other neural 

populations. Hence, action nodes served as a neural hub that integrated different sources of 

decision-relevant information and determined which action was selected for execution through a 

winner-take-all competition. In line with previous studies, multiple action representations evolved 

in parallel, in a dynamic and gradual manner depending on the current state of evidence in favour 

of each action (Cisek & Kalaska, 2005; Cisek, 2007; Pastor-Bernier & Cisek, 2011; Selen, 

Shadlen, & Wolpert, 2012; Thura & Cisek, 2014; Yoo & Hayden, 2018).  

Additionally, action nodes had direct access to information about motor costs associated 

with a given movement. Cost representations may be directly encoded within an ‘action space’ in 

dorsomedial frontal brain areas (Walton, Bannerman, & Rushworth, 2002; Rudebeck, Walton, 

Smyth, Bannerman, & Rushworth, 2006; Prévost, Pessiglione, Météreau, Cléry-Melin, & Dreher, 

2010), allowing for efficient and rapid integration of motor costs during ongoing action selection 

(Cisek, 2007). Such efficient encoding of costs in brain regions that are also involved in action 

implementation may be particularly relevant when costs change dynamically, e.g., during 

continuous motor actions where costs can change constantly according to the current position. In 

our task in Chapter 2, participants may in principle have been able to fully anticipate future action 

costs since target locations were revealed at the same time as sensory evidence. Hence, it is 

possible that participants simply changed their decision strategies prior to action onset, for 

example, by applying a more conservative threshold when targets were far (Moher & Song, 2014). 

Indeed, people anticipate motor costs of future courses of action in advance in order to optimise 

movement selection and planning (Cos et al., 2011). However, this may not be efficient in cases 

where a high number of action alternatives co-exist, or when action costs can change dynamically 
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as a function of online updates during execution. In particular, in the current paradigm, the relative 

cost of each of the four action alternatives varied as a function of the state of the action (current 

location). Hence, rather than fully anticipating all potential future action states and their associated 

cost functions, the current model may provide a more efficient account where motor costs are 

updated in an online manner and directly depend on the state of the action representations. Hence, 

motor costs may, at least to some extent, be estimated in parallel to movement generation and 

updating, for example, based on an efference copy of the current motor command and potential 

alternative motor commands (Wolpert & Ghahramani, 2004; Scott, 2012).  

In that context, another advantage of the current model is that it explicitly takes into account 

the resulting motor action, and its effect on subsequent decision updates by causing changes in 

motor costs. In fact, given that in many situations, decision making and action selection are not 

strictly separate and serial processes (Cisek, 2007; Rushworth et al., 2012; Yoo & Hayden, 2018), 

it seems essential to incorporate action representations into models of decision making. Yet, 

previous models of CoM have focused on modelling the point in time when a decision is generated 

(or reversed) based on when a decision variable crosses a given threshold, without considering the 

resulting action itself. Hence, these models have not captured how motor output informs the 

decision process. Although the movement trajectories generated by the current model are very 

simplistic, the model can easily be extended in order to obtain more biomechanically realistic 

movements. For example, instead of assuming constant movement velocity after threshold 

crossing, movement speed could be determined gradually as a function of the current firing rate 

of the winning action node, and hence, the current state of evidence in favour of a chosen action 

(Cisek, 2007; Pastor-Bernier & Cisek, 2011; Selen et al., 2012; Thura & Cisek, 2014; Yoo & 

Hayden, 2018). Additionally, instead of limiting action execution to four categorical movement 

directions, movement kinematics could be defined as the weighted average of movement 

directions where weights depend on the current state of each action node (Christopoulos et al., 
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2015). In line with this, previous studies have provided evidence for spatial averaging of 

movement alternatives in decision making under conflict (Song & Nakayama, 2009; Travers, 

Rolison, & Feeney, 2016) or uncertainty (Hudson, Maloney, & Landy, 2007; Chapman et al., 

2010). These effects could be captured by implementing more detailed motor control policies in 

the current model that incorporate gradual differences in movement speed and direction, and 

hence, capture fine-grained details of realistic movement trajectories and their interaction with the 

decision process itself. This would allow for a more direct comparison of movements (and changes 

in movements) produced by the current model and the actual kinematics measured in behavioural 

paradigms. More detailed insights into the relation between decision processes and motor output 

are highly important to allow for more accurate inferences about the underlying decision-making 

process based on observed movement trajectories. For example, this may be useful to obtain better 

estimates of the point in time at which a decision reversal occurred during an observed movement.    

3.4.2 Hierarchical noise control 

Finally, the current chapter explored the role of the degree of neural noise, and in particular, 

the assumed role of voluntary intentions in reducing noise in movement selection (Khalighinejad 

et al., 2018). Higher noise generally rendered the network more labile, causing faster and more 

erroneous responses, and more CoM overall – in particular Changes of Movement, given the 

additional noise in external perceptual inputs that made perceptual decision reversals particularly 

likely. Top-down noise reduction through voluntary intentions reversed these effects. That is, with 

higher degrees of hierarchical control, response initiation slowed down and caused fewer 

erroneous perceptual decisions about the noisy dot-motion stimuli. Consequently, the need to 

change an ongoing movement later on based on new perceptual evidence was reduced with strong 

intentions. This suggests that voluntary control in the model reflected an increase in deliberation 

time that reduced the need to subsequently adjust movements during ongoing action execution. 



 122 

 

Hierarchical control also resulted in a lower frequency of Changes of Movement that did 

not reflect error corrections. Hence, beyond mere error-related processing, noise reduction caused 

an increased stability in movement selection overall, in line with a recent study showing that 

voluntary intentions are associated with reduced variability in readiness potentials (Khalighinejad 

et al., 2018). Importantly, in the current model, these effects further varied with the strength of 

intentions. Specifically, the effects of top-down noise control were stronger when intentional 

strength was high. Furthermore, the effects were stronger when sensory stimuli were weak. This 

suggests that hierarchical control through volition is particularly effective when intentions are 

strong, and may be especially relevant when sensorimotor noise is high, which may require a 

higher degree of deliberate motor control, for example, to shield movement selection from noisy 

sensory distractions (Kilintari et al., 2018). 

3.4.3 Limitations & open questions 

It remains to be investigated to what extent such hierarchical control through voluntary 

intentions in fact exists, and whether it is indeed implemented through noise reduction. The idea 

of hierarchical organisation in the brain, and within frontal regions, is not new. In fact, in line with 

the current hierarchical architecture, it has been proposed that within the frontal cortex, more 

anterior regions representing abstract information (e.g., goals) exert top-down control over more 

posterior regions involved in lower-level sensorimotor control (R. C. O’Reilly, 2010; Badre & 

Nee, 2017). How exactly such top-down control is implemented is less clear. It has been suggested 

that higher-order areas exert control by ‘gating’ input/output in lower-level areas (Badre & Nee, 

2017). This may in fact be closely linked to noise reduction mechanisms in that higher signal-to-

noise ratio allows for selection of more relevant pieces of information as opposed to noisy 

distractors. However, it raises another question: How exactly can noise reduction be achieved in 

the brain? It has been proposed that the dopaminergic system plays an important role in neural 

noise regulation. For example, the ‘dual-state’ theory proposes that the balance between D1 and 
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D2 receptor activation affects signal-to-noise ratio of neural activity, and hence, may be crucial 

for the balance between stability and flexibility of actions (Durstewitz & Seamans, 2008). 

Specifically, D1 states are characterised by attractors that tend to remain stable, whereas D2 

dominated states are characterised by a higher degree of flexibility. Furthermore, dopaminergic 

medication in Parkinson’s disease is closely linked to cognitive flexibility, but also impulsivity, 

suggesting that the dopaminergic system plays a crucial role in determining the trade-off between 

flexibility vs. stability (Cools et al., 2003; Sinha, Manohar, & Husain, 2013). However, whether 

and how these processes can be modulated through processes involved in voluntary control 

remains an open question. The current model makes novel predictions regarding how such noise 

regulation would affect the frequency of different types of CoM. Hence, CoM may provide a 

useful measure to directly test the role of noise (and its regulation through higher-order intentions) 

for behavioural outcomes, and further investigate the neural mechanisms underlying these 

putative processes.  

The main limitation of the current model may be that it has many free parameters due to 

the relatively high number of nodes and their connections. Although an attempt was made to limit 

model parameters based on reasonable conceptual assumptions, more parsimonious models may 

be able to generate similar outcomes. In that context, formal model fitting would be required in 

order to allow for direct quantitative comparison with other types of models or different network 

architectures. However, the aim of this chapter was of a more conceptual nature, and for this 

purpose, the current model seemed to capture participants’ behaviour sufficiently well, and more 

importantly, could reproduce the predicted pattern of changes in outcomes as a function of 

changes in model parameters.  
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3.4.4 Implications 

In line with our current approach, previous studies have demonstrated how simulations with 

attractor network models can provide important new insights into the putative mechanisms 

underlying behavioural flexibility and its disturbances. For example, it has been shown that 

increases in excitatory activity can render networks unable to terminate a given attractor state and 

transition on to another state, causing repetitive patterns of activity that persist over time (Rolls, 

2012). This may explain intrusive thoughts and repetitive behaviour in OCD, which has been 

linked to high levels of glutamatergic neurotransmission (Maia & McClelland, 2012; Rolls, 2012). 

A similar effect can be caused by increases in NMDA (N-methyl-d-aspartate) receptor 

conductances, which are characterised by slow base time constants, and hence, slower decay of 

excitatory activity over time (Rolls, 2012). Additionally, inhibitory competition also contributes 

to stabilisation of firing rates. For example, reduced GABAergic neurotransmission can render 

attractor states less stable because, under low inhibitory activity, noise-induced changes in firing 

rates can evolve into an attractor state (or a change in attractor state) too quickly (Loh, Rolls, & 

Deco, 2007). This may explain impulsive behaviour or distractibility in ADHD (Lo, Boucher, 

Paré, Schall, & Wang, 2009). Hence, systematic simulations enable a mechanistic understanding 

of how observed patterns of behaviour may be generated in the brain, and how changes in intrinsic 

network properties may account for intra- and inter-individual differences in the flexibility vs. 

stability of action selection.  

3.4.5 Conclusion 

The proposed model offers a novel conceptual framework for the dynamic and flexible 

control of voluntary actions through a network of neural populations that continuously evaluate 

and integrate information. Intrinsic dynamics of the attractor network can account for CoM during 

voluntary action, which may either reflect changes in higher-order endogenous intentions or 
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changes in lower-level movements. The model suggests that different types of CoM may have a 

common underlying mechanism that continuously updates, and integrates, endogenous and 

exogenous information within the same neural circuit. Which type of CoM occurs depends on the 

relative strength of evidence in favour of a given action alternative based on the combined activity 

of different neural modules. Furthermore, hierarchical control through voluntary intentions allows 

for top-down regulation of the balance between flexibility and stability of action selection. The 

model may be a biologically plausible account of the neurocognitive mechanisms underlying 

dynamic control of voluntary action and its disturbances in a wide range of psychiatric conditions. 
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Decoding Changes of Mind in voluntary action – Dynamics of 

choice representations in a fronto-parietal network 

4.1 Introduction 

In Chapters 2 and 3, the cognitive and computational mechanisms of CoM in voluntary 

action were investigated. We showed that endogenous intentions are continuously integrated with 

external information from the environment. Changes in the environment – or in how the 

environment is perceived – can trigger a CoM, which may involve a change in the ongoing 

movement and/or a change in the endogenous intention. Whether or not an intention is changed 

depends on effort or temporal costs associated with pursuing the original intention. The aim of the 

current fMRI study was to investigate the neural mechanisms underlying these dynamic and 

integrative processes. Specifically, this chapter addresses the question of how brain regions 

involved in decision making and action selection integrate new exogenous inputs that provide 

updates about costs and rewards associated with reaching an endogenous goal – and as a 

consequence, may trigger a change with respect to the initial intention. While the neural basis of 

Changes of Movement has been studied extensively (e.g., Wise & Mauritz, 1985; Buch et al., 

2010; Pastor-Bernier et al., 2012; Saberi-Moghadam et al., 2016), the mechanisms underlying 

changes in higher-order endogenous intentions remain largely unclear.  

 Internally- vs. externally-guided actions have previously been attributed to distinct medial 

vs. lateral pathways of action selection, respectively (Passingham, 1987). More specifically, 

voluntary intentions may be generated in media frontal cortex (MFC) and precuneus (Fried et al., 
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1991; Soon et al., 2008; Bode et al., 2011; Fried et al., 2011; Krieghoff et al., 2011; Bode et al., 

2013; Soon et al., 2013; Zapparoli et al., 2018). MFC forms an ‘intentional hub’ that integrates 

various components of voluntary decisions about what to do, when to do it, and whether to do it 

at all, whereas the role of partietal cortex appears to be more specific to voluntary what decisions 

(Zapparoli et al., 2018). Precuneus may contribute to these decisions by resolving conflict when 

choice options appear to be equal, hence preventing behavioural stalemate (Bode et al., 2013). 

Lateral fronto-parietal areas might be important to represent counterfactual choice options after 

an initial voluntary decision has been made, for example in dorsolateral prefrontal cortex (dlPFC; 

Rens et al., 2018). Angular gyrus (AG) has been implicated in shaping the conscious experience 

of voluntary actions by monitoring the implementation of intentions into motor actions and 

generating a predictive model of the upcoming movement (Sirigu et al., 2004; Chambon et al., 

2012). AG might also contribute to monitoring discrepancies between intended and actual action 

outcomes upon action completion (Farrer et al., 2008) and therefore is involved at various stages 

of voluntary action.  

 However, previous studies investigating the role of fronto-parietal areas in volition have 

focused exclusively either on processes prior to action initiation to investigate how and when 

conscious voluntary intentions emerge (e.g., Soon et al., 2008; Chambon et al., 2012), or on 

processes that evaluate actions after they have already been completed (e.g., Farrer et al., 2008). 

Most previous studies have neglected processes that shape voluntary actions as they evolve. 

Consequently, little is known about how changes in external contextual information may lead to 

dynamic updating of evolving voluntary actions – in particular with regard to changes in higher-

order endogenous intentions. This is surprising given that other aspects of action updates, such as 

mere motoric reprogramming of reaching movements, have been studied in great detail (e.g., Wise 

& Mauritz, 1985; Buch et al., 2010; Pastor-Bernier et al., 2012; Saberi-Moghadam et al., 2016). 

Additionally, updating processes have been central to understanding the neuro-cognitive 
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mechanisms underlying other forms of decision making. For example, for perceptual decisions, it 

has been shown that visual areas provide continuous updates of perceptual information (Tong, 

Nakayama, Vaughan, & Kanwisher, 1998; Polonsky, Blake, Braun, & Heeger, 2000), and 

additionally, posterior MFC gradually tracks sensory evidence after an initial decision has been 

made to signal the potential need for action updates (Fleming et al., 2018). For value-based 

decisions, several areas in prefrontal cortex, including MFC (Boorman et al., 2013; Kolling, 

Wittmann, et al., 2016; Shenhav et al., 2016) and frontopolar cortex (Boorman et al., 2009), have 

been shown to continuously track the values of competing choice options and indicate the need to 

switch to an alternative option.  

 The current chapter addresses the yet unresolved questions of whether and how neural 

representations of voluntary decisions, which are at the core of our experience of being free agents, 

change as new contextual information becomes available and needs to be integrated. Multivariate 

pattern analysis (MVPA) for fMRI data provided an optimised tool for this because, based on 

activity patterns in various decision-related brain areas, we could directly decode a) the transition 

from initial endogenous decisions to later decision updates in a new external context, and b) the 

specific contextual information that was integrated to form the final decisions. By using cross-

classification analyses, we further show in which brain regions neural representations of decisions 

remained stable despite changes in external context, or instead, changed when integrating new 

contextual evidence. Finally, functional connectivity analyses revealed how updated information 

represented in distinct brain areas may be integrated to guide action updates. In our task, 

participants first made endogenous decisions about arbitrary action goals (i.e., moving towards a 

face or a house stimulus), but then received new external information that changed the costs and 

rewards associated with achieving the endogenous goal while the decision unfolded – sometimes 

prompting a Change of Mind. Our results show that fronto-parietal areas not only generate 

endogenous intentions prior to action, but additionally, update and revise voluntary intentions 
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continuously throughout an ongoing action by integrating new decision- and action-relevant 

information.  

4.2 Methods 

4.2.1 Participants 

The study was approved by the Melbourne University Research Ethics Committee, and all 

participants provided written informed consent prior to the study. Participants were right-handed, 

healthy, with no history of psychiatric or neurological illness, and no contraindication for MRI. 

Initially, 37 participants were recruited for a behavioural training session (26 female, age: M = 

23.3 yr, SD = 4.8). Based on performance criteria (see below), 30 participants were re-invited for 

the fMRI session. Of those, one participant withdrew after training, one participant was excluded 

due to excessive movement, and three participants were excluded because they did not meet the 

performance criteria in the fMRI session (see below). Hence, 25 participants (16 female, age: M 

= 23.4 yr, SD = 5.2) were included in the final fMRI data set. Participants received $10 for the 

behavioural session and $45 for the fMRI session, plus a small performance-based reward they 

could win in each session (max $5).  

4.2.2 Apparatus and stimuli 

The experiment was programmed in Matlab R2014a and the Psychophysics Toolbox 

(Brainard, 1997). Greyscale images of faces and houses (170 x 170 pixel) of equal luminance and 

spatial frequency were presented on a black background. Participants indicated their choices on a 

HHSC 2x2 button box, using their left and right index and middle fingers, which corresponded to 

four possible target positions (top/bottom left/right).  
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4.2.3 Double-step choice task 

Participants performed a computer-based decision-making task (Figure 4.1), in which they 

could win points. For each 50 points they won, they received an additional 10 cents at the end of 

the study. At the beginning of each trial, two images of a face and a house were presented centrally 

either left/right or above/below a fixation cross for 1–2 sec and participants had to make an 

endogenous decision between the two images (initial decision period). After a jittered delay of 3–

9 sec, the images were presented in two of four possible target locations. Target locations were 

assigned randomly (counter-balanced within blocks) with the restriction that the two images 

always appeared in neighbouring locations (e.g., house in top-left and face in top-right location). 

Participants then had to press a response key that corresponded to the location of their initially 

chosen option, causing a manikin to move towards the chosen image at a constant and slow 

velocity of 60 pixel/sec (2.2 cm/sec). Only a single key press was required to initiate the movement 

of the manikin. Once the manikin reached the image, participants won 10 points.  
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Figure 4.1. Double-step choice task. Participants made an endogenous face/house decision (initial 
decision period) and then had to navigate a manikin to a target location by pressing the key 
corresponding to the location of the chosen image. On some trials, the images jumped to new locations 
after action onset and participants then had to decide whether to pursue their initial choice or change 
their mind and switch to the alternative option (final decision period). In the main condition of interest, 
images jumped to the diagonally opposite location (diagonal trials), and hence, participants could save 
time by switching to the alternative choice option, instead of pursuing their initial choice. Differences 
in temporal costs were particularly pronounced in the far-distance condition, whereas costs were similar 
in the close-distance condition (bottom). Short trials and trials without/parallel target jumps served as 
control conditions to prevent stereotypical responding.  
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In the majority of trials, both images jumped to a new location once the manikin had 

travelled half the distance (~2.5 sec) towards the initially chosen image. Participants then had to 

press a second response key to redirect the manikin to one of the new target locations. Crucially, 

target relocation did not simply require motor re-programming of actions, but additionally, 

required a second choice with regard to the image identity, and hence, a re-evaluation of the initial 

endogenous intention. Specifically, participants could freely choose to either stick with their initial 

choice (e.g., face for initial face choice) yielding 10 points, or switch to the alternative option 

(e.g., house for initial face choice) for 5 points. Participants were told that they had exactly 1h for 

the experiment in which they should win as many points as possible, and that switching to the 

other option might sometimes allow them to save time and get to the next trial more quickly (and 

hence, complete more trials in the allocated time). By contrast, staying with the initially chosen 

option would win them more points on a given trial. Hence, final decisions depended on a trade-

off between rewards and temporal costs. To allow for analysing brain activity related to 

participants’ final decisions, the manikin stopped moving when the images changed their location, 

and participants had to make their final decisions within a jittered delay period of 3–9 sec (final 

decision period). After the delay, the manikin turned green, which served as a go signal for 

participants to indicate their final decision. 

In the main condition of interest (16/28 trials per run), the images jumped to the diagonally-

opposite locations (diagonal trials), causing the initially chosen option to be further away from 

the current position of the manikin than the alternative option. Hence, participants could save time 

by switching to the other image (CoM) instead of pursuing their initial choice. In order to induce 

CoM on some but not all trials with diagonal jumps, we additionally manipulated the distance 

between the images in order to vary cost-reward trade-offs. The distance of the targets to each 

other was either close (50% of trials) or far (50%). Importantly, the images were always equally 

far away from the centre of the screen, but the difference in distance between them caused 
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differences in the relative temporal cost associated with each image after target jump. In the far-

target condition, the temporal cost of the originally chosen image was roughly twice as large (~7.6 

sec) as for the alternative image (~3.6 sec). Hence, participants should be more likely to change 

their mind. In the close-target condition, the difference in temporal cost was negligible (~7.6 sec 

for choice pursuit vs. ~7.2 sec for CoM), and hence, participants should be more likely to stick 

with their initial choice given the higher reward for intention pursuit. The precise distances were 

adjusted slightly according to each individual’s cost-reward trade-off during practice (see below). 

Finally, in two control conditions, the images jumped in a parallel manner (4/28 trials) or did not 

jump at all (4/28 trials). These trials served to prevent participants from using stereotypical choice 

strategies and anticipating if and how the location of the choice options would change. Following 

a parallel jump, the initial choice option was always closer, regardless of target distance. 

Consequently, participants should always pursue their initial choice in this condition.  

Since we aimed to measure brain activity related to the (abstract) initial choice before target 

locations were revealed, it was essential that participants indeed chose between the face and house 

at trial start (frame 1, Figure 4.1), rather than waiting for target onset (frame 2, Figure 4.1). In 

the instructions, we stressed that participants should always make a choice between the face and 

the house as soon as the two images were presented on the screen, and participants were reminded 

of this instruction between runs. We further used randomly inserted short trials (4/28 per run) to 

ensure compliance with this task instruction. In short trials, the fixation cross turned green and 

participants then had to respond to the location of their chosen image as fast and accurately as 

possible to win 50 points. The choice options were only presented very briefly (200 ms) and 

appeared in diagonally-opposite locations, making it more difficult for participants to select a 

correct response. Participants were instructed that, in order to be fast and accurate, it would help 

them to make a choice at the very beginning of every trial and then focus their attention on the 

choice they made. The point in time at which the fixation cross turned green randomly varied 
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between 0.5–9 sec to ensure that participants focused on their decision throughout the entire initial 

choice period. The reaction time cut-off for short trials was adjusted based on each individual’s 

RT during training, such that each participant responded fast enough in ~3/4 of all short trials. In 

all other trial conditions, participants did not have to respond quickly, but were asked to be as 

accurate as possible. 

4.2.4 Behavioural training session 

Before the fMRI session, all participants were invited for a behavioural training session in 

order to 1) familiarise participants with the task and 2) pre-select participants who followed task 

instructions and showed roughly balanced numbers of CoM and no-CoM trials in the diagonal-

jump condition. The training session consisted of a short practice block followed by 3 blocks of 

28 trials each. In the first 2 blocks, participants had to verbally indicate their choice at trial start, 

which helped participants to get used to making their choice at the very start of each trial and 

enabled us to provide feedback when participants pressed a wrong key (which resulted in a loss 

of 10 points). In the last block, participants were instructed to "say the choice in their head" (as 

they would in the fMRI session). For participants who showed a strong preference for either CoM 

or no-CoM choices, image distances were adjusted after each practice block in order to exaggerate 

differences in costs, and hence, motivate participants to stay or switch more often, respectively. 

However, for all participants who were selected for the fMRI session, highly similar image 

distances resulted (for a given participant, far targets were either 280 or 290 pixels apart, whereas 

close targets were 120 or 93 pixels apart, respectively), meaning that temporal costs were 

comparable across participants (choice pursuit: 7.6 sec for all participants in all distance 

conditions; CoM: either 3.8/7.1 sec or 3.5/7.3 sec in the far/close condition, respectively). 

Participants were invited for the fMRI session if they reached the following performance criteria 

by block 3: 1) 6–10 CoM trials per run (37.5%–62.5%) in the diagonal-jump condition, 2) roughly 

balanced trial numbers for initial face/house choices across all trial conditions (37.5%–62.5% for 
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each choice category), 3) less than 10% errors across all trial conditions, and 4) less than 10% 

early responses during the final decision period (before the manikin turned green).  

4.2.5 fMRI session 

In the fMRI session (2–7 days after training), participants were given 1h to complete as 

many trials as possible. Due to technical issues, one participant only completed 4 runs within that 

time. All other participants were able to complete all 5 runs of 28 trials each. Because participants 

were not required to indicate their choices verbally, no error feedback could be provided. Instead, 

participants were asked to correct themselves when they made an error (which, however, only 

happened on 0.6% of trials), ensuring that the manikin always moved towards the image they 

actually wanted to choose. At the end of the fMRI session, participants were asked 1) on what 

percentage of trials they made a choice at trial start (rather than delaying it to target onset) and 2) 

what strategy they used to decide whether or not to switch to the alternative option when the 

images changed their location. All participants reported that they made initial choices in at least 

90% of trials (M = 97.5%, SD = 3.5%) and that they used information about target distance to 

make CoM decisions.  

4.2.6 fMRI data acquisition 

Functional MRI volumes of the whole brain were acquired using a Siemens Skyra 3T 

scanner. A 20-channel head coil was used and volumes were acquired using gradient-echo EPI 

(38 axial slices, repetition time TR = 2200 ms, voxel size: 3x3x3 mm without gap; echo time TE 

= 30 ms; flip angle 90 degrees). At the end of the fMRI session, high-resolution (1x1x1 mm) 

structural T1 scans were obtained for spatial normalisation.  
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4.2.7 Data analysis 

The first four volumes of each run were discarded by default to avoid magnetic saturation 

effects. All remaining EPIs were pre-processed using standard routines as implemented in SPM 

12 (http://www.fil.ion.ucl.ac.uk/spm/), including slice-timing correction and correcting for head 

motion by realigning to the first image of the first run. No spatial normalisation or smoothing were 

conducted at this stage to preserve the original information structure in each individual’s data. 

General linear models (GLMs) were then estimated for each individual participant using SPM 12, 

and motion correction parameters were included as regressors-of-no-interest. For each GLM, one 

beta map with parameter estimates for each voxel was created for each condition (e.g., face vs. 

house choice) for each of the 5 runs.  

The following a priori defined regions of interest (ROIs) were included in the analyses: 1) 

Inferior occipital gyrus (IOG) and 2) fusiform gyrus (FG), because choice behaviour typically 

correlates with information processing in visual cortex and visual fixations on choice options 

(Krajbich, Armel, & Rangel, 2010). 3) The precuneus (PCUN; Soon et al., 2008; Bode et al., 

2013), 4) angular gyrus (AG; Farrer et al., 2008), 5) medial frontal cortex (MFC; Soon et al., 2008; 

Bode et al., 2013; Soon et al., 2013; Zapparoli et al., 2018), and 6) dorsolateral prefrontal cortex 

(dlPFC; Rens et al., 2018), given their consistent demonstrated involvement in most types of 

decision making, including voluntary decisions. ROI masks were compiled using the Automated 

Anatomical Labelling atlas library (AAL; Tzourio-Mazoyer et al., 2002) in MarsBaR (Brett, 

Anton, Valabregue, & Poline, 2002). Note that MFC and dlPFC correspond to the superior medial 

frontal and mid frontal AAL regions, respectively (all other ROI names are the same as in the 

AAL atlas). Bilateral ROIs were generated by combining unilateral ROIs into a single mask. The 

run-averaged beta estimates were extracted for all voxels within each ROI and served as inputs 

for separate MVPA analyses.    

http://www.fil.ion.ucl.ac.uk/spm/
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The Decoding Toolbox (Hebart, Görgen, & Haynes, 2015) was used for MVPA. A linear 

support vector machine (SVM) with cost parameter C = 1 was trained to classify patterns of brain 

activity from all ROIs according to the categories of interest (e.g., face vs. house choices). A five-

fold cross-validation procedure was used in which each of the runs served as test run once with 

the remaining four runs serving as training samples. Decoding accuracy was then averaged across 

all runs for each subject. Finally, mean decoding accuracies were compared to results obtained 

through permutation tests, and above chance decoding (one-tailed t-tests) is reported after 

Bonferroni-correction for the number of ROIs in each analysis. 

The main analyses focused on brain activity measured during the initial or final decision 

period. Event-related activity locked to stimulus onset (frame 1, Figure 4.1) and target jump 

(frame 4, Figure 4.1) was analysed, respectively. For decoding analyses on initial decisions, all 

trial conditions were included, given that the initial decision period was identical across 

conditions. For analyses of final choices, only diagonal trials were included, given that this was 

the only condition that required reward-cost trade-offs to guide final decisions. Trials with 

erroneous responses during final choice (i.e., responses that did not match either of the two final 

image locations) were excluded (M = 0.5%, SD = 1.0). Additionally, trials with responses that 

occurred too early, i.e., during the delay period were excluded (M = 4.1%, SD = 6.2%) in order to 

avoid capturing any motor-related activity during this time interval.  

4.2.8 Connectivity analysis 

Functional connectivity between fronto-parietal ROIs was investigated in a psycho-

physiological interaction (PPI) analysis (Friston et al., 1997) using the gPPI Toolbox for SPM 

(McLaren, Ries, Xu, & Johnson, 2012). Functional images were pre-processed in the same way 

as for the MVPA analysis, but additionally, spatial normalisation and smoothing were performed. 

To investigate whether connectivity between dlPFC and PCUN/AG/MFC during the final decision 
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period was different for CoM vs. no-CoM trials, the dlPFC was defined as a seed region. First, a 

standard first-level analysis was performed to extract the time course of BOLD (blood-oxygen-

level dependent) signal from dlPFC for trials with vs. without CoM. The interaction between 

dlPFC x CoM was then included as a regressor in a second GLM, together with the main effect of 

dlPFC activity as well as the main effect of CoM and motion correction parameters as regressors-

of-no-interest. A second-level analysis was then performed and parameter estimates were 

extracted for PCUN, AG and MFC using MarsBaR. Both the contrasts CoM > no-CoM and no-

CoM > CoM were analysed.  

4.3 Results 

4.3.1 Behavioural 

All participants made highly balanced face/house choices during the initial decision period 

(face: M = 54.0%, SD = 4.2%, Min = 41.7%, Max = 61.4%). Furthermore, during the final decision 

period, participants had roughly balanced numbers of CoM and no-CoM trials in the diagonal-

jump condition (M = 50.3%, SD = 4.6%, Min = 38.8%, Max = 62.5%). As expected, CoM was 

very frequent in the far-target condition (M = 95.9%, SD = 7.0%) where CoM allowed participants 

to save time. By contrast, in the close-target condition CoM was relatively rare (M = 4.7%, SD = 

7.2%) given that differences in costs were negligible. Furthermore, in parallel trials, only two 

participants erroneously switched to the alternative option in 1–2 trials, respectively, while none 

of the other participants showed any CoM in parallel trials. This suggests that overall, participants 

paid attention to the identity of the chosen images and remembered them correctly throughout the 

course of a trial.  
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4.3.2 Decoding decisions 

fMRI analyses focussed on investigating the specific information about the decision process 

that could be decoded from patterns of brain activity in decision-related regions using MVPA 

(Figure 4.2A). Initial decisions could be decoded significantly above chance from all ROIs 

(Figure 4.2B, top row; IOG: M = 72.6%, SD = 17.2, t(24) = 6.61, p < .001, d = 1.32; FG: M = 

73.5%, SD = 20.1, t(24) = 5.85, p < .001, d = 1.17; PCUN: M = 63.7%, SD = 18.9, t(24) = 3.64, p 

< .001, d = 0.73; AG: M = 62.5%, SD = 17.1, t(24) = 3.66, p < .001, d = 0.73; MFC: M = 65.0%, 

SD = 14.6, t(24) = 5.15, p < .001, d = 1.03; dlPFC: M = 59.2%, SD = 15.0, t(24) = 3.07, p = .003, 

d = 0.61).  
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Figure 4.2. Decoding face/house decisions. A) Decoding approach for initial and final face/house (F/H) 
decisions using SVM classification. Cross-classification across both decision stages allows for investigation 
of the stability of choice representations. Areas that represent choice options regardless of changes in 
decision context should support cross-classification, whereas areas that integrate novel information during 
the course of decision making would not support cross-classification. B) Decoding results: Mean decoding 
accuracies for initial face/house choices (top row) and cross-classification from initial to final face/house 
choices (bottom row). Chance level (dashed line) is 50%. Permutation tests were used for statistical testing. 
Data are represented as mean ± 1SE. *p < .05/6, **p < .01/6, ***p < .001/6 (N = 25). 
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We then tested for each ROI to what extent neural activity patterns for the initial decisions 

remained stable during the transition to the final decision period despite the fact that choice 

options were now displayed in different locations, and participants were already executing the 

action corresponding to their initial choice. Areas that represent choice features independently of 

changes in the external decision context would use similar representations for face/house 

decisions across both decision stages (Figure 4.2A). By contrast, areas that adjust choice 

representations to the current decision context would dynamically change neural patterns, e.g., in 

order to integrate decision information from both phases, rather than simply reflecting face/house 

decisions per se. Cross-classification decoding analyses (Bode et al., 2013) were used for which 

a decoder was trained on neural patterns of initial face/house choices, but was tested on final 

face/house choices (Figure 4.2B, bottom row). Hence, training samples for this analysis were 

identical to the ones used for decoding of initial decisions reported above. Importantly, for final 

decisions, face/house choices were included regardless of whether a CoM occurred to shed light 

on how choices were generally represented when contextual information changed, independent of 

whether or not this required a CoM. Note that cross-classification accuracies were expected to be 

lower than for within-phase decoding, given that training and test patterns were recorded at 

different time periods. More importantly, if decoding accuracies for cross-classification are above 

chance, neural patterns for each choice option are, at least to some extent, similar across the two 

decision stages – indicating stability of neural choice representations. By contrast, substantial 

differences in neural patterns – e.g., because different information was represented during initial 

vs. final decisions – would cause cross-classification to be at chance.  

In IOG and FG, cross-classification was above chance, indicating stable representations of 

choice options across the different decision stages (Figure 4.2B, bottom row; IOG: M = 56.0%, 

SD = 10.0, t(24) = 2.95, p = .004, d = 0.59; FG: M = 58.5%, SD = 13.5, t(24) = 3.26, p = .002, d 

= 0.65). By contrast, cross-classification was not significantly above chance in any of the fronto-



 143 

 

parietal ROIs (PCUN: M = 52.3%, SD = 11.4, t(24) = 1.13, p = .135, d = 0.23; AG: M = 53.6%, 

SD = 13.2, t(24) = 1.21, p = .120, d = 0.24; MFC: M = 45.6%, SD = 12.3, t(24) = -1.85, p = .038, 

d = -0.37; dlPFC: M = 47.3%, SD = 12.5, t(24) = 1.14, p = .132, d = -0.23). Hence, in all fronto-

parietal ROIs, neural choice representations changed from the initial to the final decision phase. 

This suggests that during final decisions, neural patterns in these regions did not encode pure 

face/house decisions any longer, but might potentially predict the external information that had to 

be integrated. In line with this, decoding face/house choices from the final decision stage alone 

was not significant in fronto-parietal regions (all p > .100; data not shown)4. Next, we investigated 

whether these areas indeed incorporated representation about external decision context during 

final choices.  

4.3.3 Fronto-parietal areas integrate new information 

One plausible reason for changes in fronto-parietal neural patterns is that new action- and 

decision-relevant information was available for making final decisions, whereas initial decisions 

were abstract and endogenous. More specifically, during final decisions, the external context 

provided information about 1) target locations, which was required to successfully transform the 

final decision into an appropriate motor action, and 2) target distance, which guided re-evaluation 

of the initial choice based on cost-reward trade-offs. In order to investigate to what extent neural 

patterns in fronto-parietal areas incorporated these new pieces of external information, we 

performed separate decoding analyses for the location of the chosen image (left/right) and the 

distance between the target locations (close/far; Figure 4.3).  

                                                      
4 Note that face/house choices could not be decoded from visual areas during the final decision period 

either (both p > .100), despite successful cross-classification of face/house decisions across stages in these 
areas. This suggests that lower trial numbers for conditions with final decisions (trials = 16) caused the 
classifier trained on final face/house choices to perform worse compared to the (cross-)classifier trained on 
initial decisions that included all trial conditions (trials = 28). Hence, it is likely that some information about 
face/house decisions was still present during the final decision period, but was too weak/noisy to be detected 
by the decoder that was trained on final decisions. 
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Figure 4.3. Decoding decision context during final decisions in 
fronto-parietal ROIs. Mean decoding accuracies (± 1SE) for 
location of the chosen target (top row) and target distance 
condition (bottom row). Chance level (dashed line) is 50%. *p < 
.05/4, **p < .01/4, ***p < .001/4 (N = 25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

The only fronto-parietal ROI found to be predictive of location of the chosen image was 

dlPFC (t(24) = 2.45, p = .011, d = 0.49; all other ROIs: p > .170). This suggests that dlPFC had 

access to information that was required to successfully transform final decisions into motor 

actions. Target distance could be decoded from PCUN, AG and dlPFC (PCUN: t(24) = 3.13, p = 

.002, d = 0.63; AG: t(24) = 2.72, p = .006, d = 0.54; dlPFC: t(24) = 5.68, p < .001, d = 1.14), but 

not from MFC (t(24) = 1.30, p = .104, d = 0.26). Note that target location and distance could also 

be decoded from both ROIs in visual cortex (all p < .001). However, IOG and FG presumably 
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represented these pieces of information in terms of their low-level visual features. Given that 

cross-classification of face/house choices was above chance in visual areas, representations of 

target location and distance did not seem to substantially change, or interfere with, representations 

about the choice options themselves. By contrast, in fronto-parietal areas, integration of 

information about target distance and location towards a decision may explain changes in neural 

patterns during the final decision phase. 

As the distance between the images was constant within a given trial, information about 

target distance condition was already available as soon as the images first appeared in their 

respective locations (target onset; frame 2 Figure 4.1), immediately after the initial decision 

period. AG did not encode target distance at this early point (M = 50.8%, SD = 18.9, t(24) = 0.21, 

p = .417, d = 0.04), but instead, only integrated target distance information when it became 

relevant for the decision-making process – i.e., during the final decision period when participants 

decided to stay/switch. By contrast, PCUN and dlPFC already encoded distance as soon as the 

targets appeared (PCUN: M = 58.9%, SD = 17.6, t(24) = 2.53, p = .009, d = 0.51, dlPFC: M = 

58.7%, SD = 17.7, t(24) = 2.46, p = .011, d = 0.49). This suggests some functional separation 

within the fronto-parietal network in tracking information that is currently relevant for the 

decision process (AG) vs. information that is currently available, but may only become relevant 

later on (PCUN and dlPFC) – possibly in anticipation of a potential future decision reversal. 

4.3.4 Decoding CoM 

The new decision context provided during final decisions was systematically tailored to 

trigger CoMs in trials in which the distance to the originally chosen object was substantially 

higher. Decisions for CoM (no-CoM/CoM; irrespective of face/house) could be decoded 

significantly above chance from all six ROIs (Figure 4.4; IOG: t(24) = 3.31, p = .001, d = 0.66; 

FG: t(24) = 3.35, p = .001, d = 0.67; PCUN: t(24) = 3.97, p < .001, d = 0.79; AG: t(24) = 3.22, p 
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Figure 4.4. Decoding CoM decisions during final decision period. Mean decoding 
accuracies (± 1SE) for CoM/no-CoM decisions. Chance level (dashed line) is 50%. *p < 
.05/6, **p < .01/6, ***p < .001/6 (N = 25). 

= .002, d = 0.64; MFC: t(24) = 3.22, p = .002, d = 0.64; dlPFC: t(24) = 4.61, p < .001, d = 0.92). 

In both visual areas, neural patterns associated with face/house choices could be cross-classified 

from initial to final decisions, suggesting an ongoing tracking of the visual stimulus properties – 

and hence, a dynamic reversal of patterns in CoM trials. Given that distance was the criterion for 

most CoM decisions, and target distance could indeed be decoded from PCUN, AG, and dlPFC 

during the same time period, it is highly likely that these areas integrated initial decision 

information with target distance information to prepare CoM decisions. Interestingly, MFC was 

the only ROI that did not allow for decoding of target distance, even though decoding of CoM 

decisions was significantly above chance in this area. While one has to be careful not to over-

interpret null-results, this finding suggests that processing of target distance and CoM were not 

perfectly correlated at the neural level and should be regarded as separate processes. Hence, we 

next investigated whether the neural representations of CoM in MFC could be explained by some 

CoM decisions not being based on target distance, but instead, being prepared endogenously. 
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4.3.5 Endogenous CoM decisions 

Although overall, CoM decisions were largely based on external information about 

distance, some participants occasionally decided to change their mind (or refrain from doing so) 

independently of target distance. For example, during debriefing, some participants reported that 

they sometimes “particularly liked one of the two images”, thought that “the little man should go 

into the house”, or just “randomly wanted to mix it up from time to time”. These decisions were 

not related to the external task cues, but instead, were generated internally. Hence, decoding CoM 

from MFC, which did not explicitly represent target distance, might have been driven by those 

participants who based their CoM decisions less strongly on target distance, and instead more 

strongly on endogenous factors. To quantify the extent to which each participant’s CoM decisions 

were based on target distance, a sensitivity parameter d’ was calculated according to signal 

detection theory (D. M. Green & Swets, 1966): 

d' = z(hit rate) − z(false alarm rate), 

where hits correspond to CoM in the far-target condition, whereas false alarms correspond 

to CoM in the close-target condition. For participants with hit / false alarm rates of 100% / 0%, 

values were adjusted by -/+ 1% to allow for computation of d’ (Stanislaw & Todorov, 1999). 

Within the context of the current task, d’ does not strictly reflect perceptual sensitivity, but rather 

should be interpreted as an indicator of a participant’s decision-making strategy – i.e., how 

strongly decisions were informed by external information about target distance. Higher d’ reflects 

higher sensitivity of CoM decisions to target distance, while lower d’ reflects higher influence of 

endogenous factors on CoM.  

A median split analysis was conducted, splitting the sample into a high-d’ group (d’: Mdn 

= 4.65, IQR = [4.38, 4.65]) and a low-d’ group (d’: Mdn = 3.08, IQR = [2.79, 3.61]). Note that d’ 

was high in both groups, reflecting that overall, image distance was the most important driving 

factor for CoM (as intended). However, importantly, the difference in d’ was significant between 
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groups (Mann-Whitney U test for non-normal data: Z(22) = 4.27, p < .001), indicating that the 

division into high and low-d’ groups was meaningful. MFC decoding performance for CoM 

decisions was only above chance in the low-d’ group (Figure 4.4; t(11) = 4.24, p = .001, d = 1.23), 

but not in the high-d’ group (t(11) = 0.86, p = .408, d = 0.25), and the group difference in decoding 

accuracies was significant (t(22) = 2.27, p = .034, d = 0.93). Furthermore, when we excluded trials 

in which CoM decisions did not follow target distance, CoM could not be decoded anymore from 

MFC in the low-d’ group (M = 57.5%, SD = 22.2, t(11) = 1.17, p = .267, d = 0.33), suggesting 

that decoding of CoM from MFC was indeed driven by trials in which endogenous decision 

criteria, rather than target distance, were the crucial drivers. 

In order to explore whether any of the other ROIs showed differences between the high- 

and low-d’ group, an ANOVA with the factors ROI (IOG/FG/PCUN/AG/dlPFC) and d’ group 

(low/high) was conducted. No significant main effect of ROI or group was found (both F < 1), 

but the interaction of ROI x group was significant (F(4,1) = 2.87, p = .037, η2 = .115). This was 

driven by the visual ROIs, which showed a non-significant (after Bonferroni-correction) trend in 

the opposite direction (stronger effects for a stronger influence of target distance; IOG: t(22), = -

1.89, p = .072, d = 0.77, FG: t(22) = -1.88, p = .074, d = 0.77). In all other ROIs, decoding 

accuracies for CoM decisions were comparable between the two groups (all p > .350). 

Importantly, both d’ groups had similar trial numbers for CoM/no-CoM decisions (% CoM in 

low-d’ group: M = 50.3%, SD = 6.7; high-d’ group: M = 50.1%, SD = 0.6; t(24) = 0.92, p = .916, 

d = 0.04), and the groups did also not differ in the precise target-distance values (t(22) = .405, p 

= .689, d = 0.17), meaning that these factors cannot explain the group differences in decoding 

accuracies.  
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4.3.6 Functional connectivity during CoM decisions   

After establishing that the fronto-parietal ROIs differed in what decision-related 

information they represented – and presumably contributed to final decisions – we analysed the 

functional connectivity between them. This might provide additional insights into how these areas 

communicated to exchange information to update the unfolding decision process. We focussed on 

dlPFC, which constituted a critical cortical node because it encoded both target location and 

distance during the final decision period, and hence, represented all information relevant to 

implement a CoM. A PPI analysis (Friston et al., 1997) was conducted with dlPFC as a seed 

region. The aim of this analysis was to measure whether functional connectivity between dlPFC 

and PCUN/AG/MFC differed for CoM vs. no-CoM trials during the final decision period.  

First, we established whether fronto-parietal regions showed any functional connectivity 

during final decisions by analysing the main effect of dlPFC BOLD signal on PCUN, AG and 

MFC activity. A significant effect was found in PCUN (b = 0.61, t(24) = 4.51, p < .001) and AG 

(b = 0.65, t(24) = 5.36, p < .001), and a trend was observed in MFC (b = 0.24, t(24) = 1.44, p = 

.082). This indicates that time courses of activity in these areas were correlated, suggesting that 

these areas were functionally connected. More importantly, the PPI effect was analysed to check 

whether the strength of connectivity varied as a function of CoM (Figure 4.5). A significant effect 

(corrected α = .05/3) was found for dlPFC-MFC connectivity, revealing increased connectivity 

for CoM compared to no-CoM trials (b = 0.50, t(24) = 2.80, p = .005). In fact, dlPFC and MFC 

only showed functional connectivity in CoM trials (b = 0.49, t(24) = 2.64, p = .007), but not in 

no-CoM trials (b = -0.01, t(24) = -0.08, p = .531). A similar trend for increased connectivity during 

CoM was found for dlPFC-AG connectivity (b = 0.33, t(24) = 2.15, p = .021), although this effect 

was only marginally significant after correction for multiple comparisons. No effect of CoM on 

dlPFC-PCUN connectivity was observed (b = 0.17, t(24) = 0.89, p = .292).  
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Figure 4.5. Functional connectivity during final decisions. Schematic 
illustrating functional connectivity between fronto-parietal ROIs during the 
final decision period. Psycho-physiological interaction analyses revealed 
that AG and MFC showed increased activity with dlPFC in trials with CoM 
compared to trials with no-CoM. PCUN-dlPFC connectivity was not 
different for CoM vs. no-CoM trials. 

 

 

 

 

 

 

 

 

 

 

 

 

Given that CoM decoding from MFC depended on how strongly decisions were based on 

endogenous factors, we also checked whether modulation of dlPFC-MFC connectivity was driven 

by participants with low d’. As expected, increases in dlPFC-MFC connectivity in CoM compared 

to no-CoM trials were only observed in the low-d’ group (b = 0.74, t(11) = 2.73, p = .010), but 

not in the high-d’ group (b = 0.28, t(11) = 1.07, p = .155). Hence, CoM may be implemented 

through functional connectivity of dlPFC with both AG and MFC, allowing for integration of 

externally-cued information encoded in lateral fronto-parietal areas with endogenous information 

from MFC.  

 

 



 151 

 

4.3.7 Additional analyses – Sub-regions within large ROIs 

Given that some ROIs, especially PCUN, MFC and dlPFC, were relatively large, the main 

analyses were repeated splitting these ROIs into dorsal and ventral sub-regions. The pattern of 

results in each sub-region was comparable to the respective original ROI (Appendix B, Figure 

B1). However, in PCUN, effects tended to be stronger in the dorsal region, whereas in MFC, 

effects were more pronounced in the ventral area. Finally, in dlPFC, decoding of target locations 

was largely driven by the dorsal sub-region, in line with the assumption that information about 

target locations was used by areas involved in the implementation of decisions in motor actions. 

4.4 Discussion 

The current study investigated the neural dynamics that enable agents to integrate new 

information about choice options as endogenous intentions evolve. First, participants were 

required to generate an arbitrary endogenous decision for a visually presented face or house 

stimulus without any choice outcome being associated with rewards at this stage. We derived 

ROIs from previous studies and confirmed that initial voluntary decisions were encoded in MFC, 

PCUN, dlPFC and AG (Brass & Haggard, 2008; Soon et al., 2008; Bode et al., 2011; Krieghoff 

et al., 2011; Bode et al., 2013; Soon et al., 2013; Zapparoli et al., 2018). Additionally, decisions 

could be decoded from visual cortex, presumably due to visual fixation of, and attention to, visual 

features of the chosen image (Krajbich et al., 2010; Voigt et al., 2018). More importantly, we then 

analysed whether and how neural patterns associated with initial endogenous decisions changed 

during the integration of exogenous factors as on some trials the locations of the choice options 

changed, and participants had to re-evaluate their original intention based on new information 

about costs and rewards associated with pursuing or changing the initial decision.  

Our results revealed that neural representations of choice options in visual cortex were 

similar during the initial and final decision period, as indicated by above-chance cross-
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classification between decision stages. Hence, low-level perceptual features of choice options 

were represented in a stable manner that was, at least to some extent, independent from additional 

information that became available, and independent of a change in location. Consequently, 

although sensory areas provide continuous updates of dynamic external stimuli (Tong et al., 1998; 

Polonsky et al., 2000), the underlying neural code appears to be relatively static. By contrast, in 

fronto-parietal cortex, decisions could not be cross-classified between task stages. This cannot 

simply be explained by initial decoding accuracies being slightly lower in fronto-parietal areas 

compared to visual areas. First, decoding accuracies cannot be compared across regions because 

of potentially different underlying coding schemes (Bhandari, Gagne, & Badre, 2018). Second, 

even relatively low initial decoding accuracies would allow for significant cross-classification if 

patterns were sufficiently stable across decision stages. Instead, our findings showed that neural 

codes in fronto-parietal regions changed dynamically between decision phases and represented 

new decision-relevant information, suggesting that integration of novel exogenous information 

occurred during endogenous decision making. 

4.4.1 Dynamic coding in fronto-parietal cortex 

While previous studies have provided evidence for dynamic coding of decisions in fronto-

parietal cortex, these studies have largely focused on tasks where actions were fully instructed by 

external stimuli (Toth & Assad, 2002; Woolgar, Hampshire, Thompson, & Duncan, 2011; Stokes 

et al., 2013; Schuck et al., 2015), rather than involving endogenous choice. Furthermore, previous 

studies have focused on post-decision processes that continuously evaluate a single source of 

evidence – either perceptual (Fleming et al., 2018) or value-based information (Boorman et al., 

2009) – whereas our study shows how dynamic coding in fronto-parietal cortex could contribute 

to integration of several internal and external sources of evidence. This may be particularly 

relevant for voluntary decisions, which need to integrate internally-generated intentions with 

contextual information about alternative courses of action and their respective costs and rewards.  
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Across fronto-parietal areas, we observed differences in what specific information was 

encoded and when it became available. Both parietal ROIs, precuneus and AG, integrated 

information about target distance, which in turn informed cost-reward trade-offs guiding CoM 

decisions. Interestingly, AG did not encode distance information immediately when it was 

available, but only during the final decision period when it became relevant for the decision-

making process. Hence, changes in the external environment may have triggered a re-computation 

of current intentions in AG (Sirigu et al., 2004; Chambon et al., 2012), taking into account new 

information about target distance. By contrast, precuneus started to encode distance information 

as soon as it was available, regardless of whether it was immediately relevant for the current 

decision. There are two possible explanations for this finding. First, given its proximity to 

dorsomedial occipital lobe, precuneus may have represented purely visual information about 

distance (Pitzalis et al., 2006), which was available as soon as the choice options first appeared in 

their respective locations. Alternatively, in line with its role in prospective memory (Burgess, 

Gonen-Yaacovi, & Volle, 2011), precuneus may have started to extract decision-relevant evidence 

early on in order to anticipate future re-evaluation of the current intention. This is particularly 

likely given the high frequency of trials with diagonal image relocation, which in principle 

allowed participants to predict to some extent whether and how actions may need to be changed. 

This explanation would further be in line with other studies showing early decision encoding in 

precuneus (e.g., Soon et al., 2008; Soon et al., 2013). Finally, both precuneus and AG specifically 

represented the distance between images, regardless of their actual locations, suggesting that both 

areas encoded abstract features reflecting decision-relevant information about externally-cued 

rewards and costs associated with each choice option. This suggests that precuneus and AG were 

not simply involved in representing low-level sensorimotor information to transform decisions 

into movements, but instead, provided information guiding the decision process itself.  
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The dlPFC was the only area that encoded both target distance and location, and hence, 

represented decision- as well as action-relevant information. Previous studies have shown that 

dlPFC represents alternative choice options (Rens et al., 2018), and is involved in value updates 

of competing choice alternatives (Izuma et al., 2010; Mengarelli, Spoglianti, Avenanti, & Di 

Pellegrino, 2013). Here we show that these representations can be used to guide switches to an 

alternative choice option when values change. The dlPFC may have directly integrated value-

based updates with action representations in order to guide changes in action selection. In support 

of this, it has previously been proposed that information about decisions and their implementation 

into motor actions can be represented in a common neural space (Cisek, 2007; Thura & Cisek, 

2014; Yoo & Hayden, 2018). Such concurrent representations might allow dlPFC to compute 

action updates in a fast and efficient manner. Additionally, similarly to precuneus, dlPFC already 

encoded distance information at target onset, suggesting a role in integrating currently available 

information to prepare future decision reversals and their implementation into flexible changes in 

action (MacDonald, Cohen, Stenger, & Carter, 2000; Koechlin & Summerfield, 2007). 

4.4.2 Integration of endogenous and exogenous information 

Interestingly, precuneus, AG and dlPFC switched from encoding internal decisions to 

encoding externally-cued information during final decisions. This suggests that neural substrates 

underlying endogenous and exogenous choice may not follow clear neuroanatomical boundaries, 

nor clear dissociations into medial vs. lateral regions (Passingham, 1987; Fried et al., 2017). 

Instead, different modes of decision making may be implemented through different functional 

codes (Yoo & Hayden, 2018), where a given brain area can dynamically change neural 

representations to encode internal or external information, depending on the evidence that is 

currently available. Previous studies have reported response costs when people need to switch 

between internal and external modes of action selection (Obhi & Haggard, 2004). Based on our 

findings, it seems plausible that costs incurred by these switches may at least partially be caused 



 155 

 

by the need to change representations within a given neural structure, rather than switching 

between different structures. 

Nevertheless, in line with the idea that a medial frontal pathway is of particular importance 

for endogenous action selection (Passingham, 1987; Brass & Haggard, 2008; Soon et al., 2008; 

Bode et al., 2013; Fried et al., 2017; Zapparoli et al., 2018), we found that MFC was the only area 

that represented endogenous components of both initial decisions and later decision reversals. 

More specifically, MFC encoded CoM in participants who more strongly considered endogenous 

information, but not in those who exclusively relied on external cues, i.e., target distance. This 

shows that the same choice can result from different sources of information, or different decision 

strategies, and the underlying processes in turn recruit partially distinct neural circuits. Although 

this finding was based on a post-hoc group split, it could not be accounted for by other between-

subject differences, such as overall frequency of CoM. Furthermore, it is unlikely that engagement 

of MFC simply reflected detection of erroneous (no-)CoM decisions (Ridderinkhof, Van Den 

Wildenberg, Segalowitz, & Carter, 2004) since in that case, information about target distance itself 

should still be present in MFC. Instead, our findings suggest that some participants occasionally 

‘detached’ the decision process from external cues and made endogenous CoM decisions. In that 

sense, the observed dissociation in the pattern of MFC activity provides a powerful test of the 

hypothesis that MFC plays a distinct and crucial role in endogenous choice because it isolates the 

specific aspect of the design where endogenous decisions were exposed to exogenous cues that 

were in principle highly informative. Overcoming, or actively going against, such exogenous cues 

may represent a particularly strong aspect of volitional control (Ach, 1935). While it is not clear 

why and how exactly some participants occasionally used these internal strategies for decision 

reversals, our study is the first to capture CoM that is not exclusively guided by externally-cued 

perceptual or value-based information. In this case, just as initial decisions, later decision reversals 

can be generated endogenously, which appears to rely on continuous involvement of MFC. 
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Finally, we tested whether endogenous and exogenous components of decisions may be 

integrated via changes in functional connectivity between regions that encode different sources of 

information (J. X. O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012). We found that 

when participants changed their mind, dlPFC showed increased connectivity with both AG and 

MFC, compared to trials without decision reversals. dlPFC-MFC connectivity was only increased 

in participants who also showed endogenous CoM decisions, suggesting that connectivity between 

the medial action pathway and dlPFC is required to incorporate internally-guided decision 

updates. Although PPI analyses do not reveal causality or directionality of connectivity (J. X. 

O’Reilly et al., 2012), it seems plausible that AG and MFC provided dlPFC with information 

about external and internal decision updates, respectively, enabling dlPFC to integrate both 

sources of information in order to guide changes in decision making. Hence, dlPFC may serve as 

a critical node that allows for convergence of external and internal decision updates and their 

implementation into flexible action (Ridderinkhof et al., 2004). 

This flexibility enables agents to adjust their behaviour to the current context. Impairments 

in the processes underlying intention updates may result in escalation of commitment (Staw, 1981) 

or rigidity of behaviour, such as in obsessive compulsive disorder (Gruner & Pittenger, 2017). 

However, in some situations, intentions need to remain stable despite external changes. In fact, 

goal attainment often requires continuous pursuit of an initial intention in the face of challenges 

or costs (Gollwitzer & Oettingen, 2012). Hence, the balance between flexibility and stability of 

intentions is crucial for adaptive behaviour (Goschke, 2014). In our study, participants maintained 

their intentions when costs of intention pursuit were only slightly larger than for CoM. Such 

optimal behaviour may be achieved through the interplay of several fronto-parietal areas that 

weigh different sources of evidence to generate a ‘distributed consensus’ (Cisek, 2012; Yoo & 

Hayden, 2018) about whether or not the original intention should be changed.  
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4.4.3 Conclusion 

Voluntary actions require continuous evaluation, and integration, of dynamically changing 

external and internal information – creating the opportunity, and sometimes the need, to change 

one’s own intention after an action has already been initiated. Our study provides important 

insights into the fundamental processes underlying volition by establishing a direct link between 

an initial intention and the subsequent processes that shape voluntary actions as they evolve. Our 

results show that the fronto-parietal network uses dynamic neural codes in order to continuously 

integrate different sources of evidence informing updates in endogenous decision making. These 

insights into the neurocognitive mechanisms that determine the stability vs. flexibility of voluntary 

intentions are essential for our understanding of the mechanisms underlying adaptive behaviour 

in a complex and dynamic world. 
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Reduced intention pursuit in post-stroke fatigue 

5.1 Introduction 

In Chapter 2 and Chapter 4 of this thesis, we showed that people sometimes deviate from 

their original intention during an ongoing action, in particular when intention pursuit is costly in 

terms of time or effort. This shows that intentions are reversible, and can be changed flexibly. 

However, overall, participants were relatively reluctant to change their own intentions, unless 

costs associated with intention pursuit were substantially higher than costs associated with CoM. 

This was true even though changing an intention did not cause any (Chapter 2) or only very small 

monetary losses (Chapter 4). Hence, voluntary intentions are in essence relatively stable, 

allowing people to pursue their goals even when an easier action alternative is available. Indeed, 

a certain degree of stability is highly important for goal attainment in real life, where intentions 

often need to be pursued over long periods of time despite challenges or distracting factors 

(Gollwitzer & Oettingen, 2012). However, costs in real life can be much larger than costs induced 

in laboratory tasks. In particular, motor actions are typically associated with effort costs that have 

to be overcome in order to reach a goal. For example, hiking up a mountain requires a high degree 

of perseverance. Even attaining goals in daily life, such as getting out of bed to go to work or 

staying healthy, require a certain degree of willingness (or motivation) to invest effort, and ‘giving 

up’ on these goals too readily can lead to adverse outcomes. Insights into the processes underlying 

long-term goal pursuit may be particularly relevant with regard to psychiatric and neurological 

conditions that are associated with motivational deficits, such as apathy, i.e., a reduced willingness 
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to exert effort (Marin, 1990; Bonnelle et al., 2015; Husain & Roiser, 2018). The aim of the current 

chapter is to investigate the link between effort-based decision making and intention pursuit in 

patients with post-stroke fatigue. Specifically, we tested whether chronic fatigue is associated with 

reduced perseverance when intention pursuit requires sustained effort. 

Fatigue is a multidimensional concept that encompasses both objective muscle fatigue (i.e., 

a decrease in muscle force output; Enoka et al., 2011), but also a subjective feeling of being tired 

or exhausted (Nadarajah & Goh, 2015). It typically occurs when effort is exerted for a long period 

of time, and subsequently reduces the willingness to expend further effort (Müller & Apps, 2018). 

Importantly, in healthy people, rest can restore energy levels, and hence, allows for recovery from 

fatigue (Meyniel, Sergent, Rigoux, Daunizeau, & Pessiglione, 2013). However, fatigue can also 

be a pathological, chronic condition where patients experience persistent and extreme tiredness, 

exhaustion, or weakness (Jason, Evans, Brown, & Porter, 2010; Kuppuswamy, 2017). 

Pathological fatigue is common in disease, such as multiple sclerosis, cancer, Parkinson’s disease 

or stroke (Swain, 2000; Levine & Greenwald, 2009; Jason et al., 2010). Post-stroke fatigue (PSF) 

affects between 25 to 85% of stroke patients and is relatively independent of stroke type or 

location (Ingles, Eskes, & Phillips, 1999; Ponchel, Bombois, Bordet, & Hénon, 2015; Cumming, 

Packer, Kramer, & English, 2016). Crucially, PSF is considered a distinct symptom that is 

dissociable from mere motor impairments and other symptoms, such as depression, typically 

observed after stroke (Ingles et al., 1999; Ponchel et al., 2015). PSF predicts poor quality of life 

and higher mortality, and is reported to be one of the most disabling symptoms by 40% of stroke 

patients (Ingles et al., 1999; Naess, Lunde, Brogger, & Waje-Andreassen, 2010; Naess, Lunde, & 

Brogger, 2012).  

It has been proposed that PSF is caused by deficits in sensorimotor mechanisms underlying 

effort processing (Kuppuswamy, Rothwell, & Ward, 2015). More specifically, PSF patients 

perceive their own actions to be more effortful than before the stroke (Flinn & Stube, 2010; 
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Young, Mills, Gibbons, & Thornton, 2013). This may be caused by reduced corticomotor 

excitability observed in PSF, where stronger motivational inputs from higher centres into motor 

cortex are required in order to produce a given movement (Kuppuswamy, Clark, Turner, Rothwell, 

& Ward, 2015). In other words, PSF patients need to invest more subjective effort in order to 

produce the same motor output as healthy people, or as they did prior to stroke. Additionally, 

physical deconditioning typically observed after stroke may contribute to these mechanisms by 

reducing muscular strength, and hence, increasing the effort that needs to be invested to produce 

motor actions (Lewis et al., 2011). It has been proposed that physical deconditioning and increased 

effort perception form a vicious cycle that causes a general aversion to effortful activities, which 

may then contribute to the manifestation of fatigue as a chronic symptom (Nadarajah & Goh, 

2015).  

Aversion to effort in PSF may be particularly pronounced for actions that need to be 

maintained over long time periods. In fact, some definitions of chronic fatigue refer to a ‘difficulty 

in […] sustaining voluntary activities’ (Chaudhuri & Behan, 2004), or the ‘inability or difficulty 

to sustain even routine activities’ (Annoni, Staub, Bogousslavsky, & Brioschi, 2008). In line with 

this, self-report questionnaires of PSF include items such as ‘My fatigue prevents sustained 

physical functioning’ (Krupp, LaRocca, Muir-Nash, & Steinberg, 1989). A reduction in prolonged 

voluntary actions may be directly linked to adverse behavioural outcomes in everyday life. For 

example, stroke patients with high levels of fatigue show reduced physical and social activities 

(Ingles et al., 1999; Choi-Kwon, Han, Kwon, & Kim, 2005; Flinn & Stube, 2010; K. K. Miller et 

al., 2013), reduced probability to return to work 2 years post-stroke (Andersen, Christensen, 

Kirkevold, & Johnsen, 2012), and low levels of participation in rehabilitation programmes 

(Michael, 2002; Morley, Jackson, & Mead, 2005; Lerdal & Gay, 2013; Nadarajah & Goh, 2015). 

The latter finding points to a critical issue: Fatigue can impose an additional challenge on recovery 

after stroke by reducing patients’ willingness to pursue rehabilitation or intervention programmes. 
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Hence, better insights into motivational deficits in PSF are highly relevant with regard to recovery 

and quality of life in stroke patients.  

However, previous studies on PSF and its link to motivation have largely relied on self-

report measures or clinical observations (e.g., Shaughnessy, Resnick, & Macko, 2006; Flinn & 

Stube, 2010; Caeiro et al., 2013; Elf, Eriksson, Johansson, von Koch, & Ytterberg, 2016). By 

contrast, laboratory measures of effort-based decision making are surprisingly rare in the PSF 

literature, whereas they are commonly used in other clinical populations that are associated with 

motivational deficits, such as apathy in Parkinson’s disease (Chong et al., 2015), depression 

(Treadway et al., 2012) or schizophrenia (Hartmann et al., 2014). Laboratory decision-making 

tasks can provide more detailed insights into the mechanisms underlying specific impairments in 

effort-based choice by controlling for confounding factors, such as motor impairments, and 

avoiding potential biases associated with self-report measures. Previous laboratory studies of 

effort-based decisions have typically used binary choice tasks that, on each trial, require a single 

decision based on anticipated rewards and costs (e.g., Prévost et al., 2010; Hartmann et al., 2013; 

Chong et al., 2015). Here, a slightly different approach is introduced to capture participants’ 

willingness to maintain effortful actions in order to reach a goal, rather than measuring the 

willingness to initiate a brief effortful action (c.f., Meyniel et al., 2014). Specifically, in a double-

step choice task, PSF patients and healthy control subjects generated voluntary goal intentions 

and then had to implement their intentions into effortful actions by squeezing a hand-held 

dynamometer. Intention pursuit required effortful actions to be maintained for several seconds, 

whereas CoM occasionally allowed participants to take a short-cut to a nearby option that only 

required a shorter duration of effort exertion. This task may provide a more sensitive measure for 

potential motivational impairments in patients with chronic fatigue, because it relates directly to 

the self-reported difficulties that patients face. We hypothesised that PSF is associated with 

reduced perseverance, causing patients to give up on their own voluntary intentions more readily, 



 163 

 

and hence, show an increased frequency of CoM compared to healthy controls. This would suggest 

that chronic fatigue after stroke is not only associated with sensorimotor impairments 

(Kuppuswamy, Rothwell, et al., 2015), but additionally, motivational deficits linked to changes 

in effort-based decision making.  

Furthermore, the task allowed us to gain more detailed insights into the mechanisms 

underlying motivational deficits in PSF. Specifically, we tested whether effort-based decisions in 

PSF patients depended on whether effortful actions had to be executed with the hand that was 

affected by the stroke (contralateral to stroke side) or the unaffected (ipsilateral) hand – while 

controlling for differences in motor performance between the two hands. Lateralisation of effort-

based decisions would suggest that choices are directly linked to lower-level movement aspects 

related to contralesional motoric impairments observed in hemiplegic stroke (Cramer, Nelles, 

Schaechter, Kaplan, & Finklestein, 1997; Mani et al., 2013). By contrast, if no differences between 

affected and unaffected hands are observed, effort-based decisions likely depend on higher-order 

mechanisms that are common to actions generated in both hemispheres, rather than being 

lateralised to contralesional limbs that are affected by motoric impairments. This would be in line 

with the assumption that PSF itself is generalised (Macko et al., 1997) and with the 

conceptualisation of motivation as a global, energizing drive (Hull, 1943; Kouneiher et al., 2009).  

5.2 Methods  

5.2.1 Participants 

The study was approved by the London Bromley Ethics Committee (REC reference 

number: 16/LO/0714). Participants provided written informed consent prior to the study. Fifteen 

post-stroke fatigue patients (PSF) were recruited through the National Hospital for Neurology and 

Neurosurgery (NHNN), Queen Square. One patient withdrew from the study after block 1 of the 

behavioural task, reporting pain in her hand, and the data from that patient were excluded from all 
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analyses. Hence, a final sample of 14 PSF patients was tested (13 right-handed). Age-matched 

healthy control subjects (CTLs; n = 17, all right-handed) were recruited through the ICN subject 

database.  

All PSF patients were screened prior to the study based on the following criteria: They were 

first-time, hemiplegic (ischaemic or haemorrhagic) stroke patients with fatigue scores higher than 

4 on the Fatigue Severity Scale (FSS; Krupp et al., 1989), in line with previous studies using the 

same cut-off for high levels of chronic fatigue (Kuppuswamy, Clark, et al., 2015). Strokes 

occurred at least 3 months prior to the study (M = 42.0 months, SD = 31.5, range = 7 months – 

10.2 years). Furthermore, patients had no other neurological disease, had depression scores ≤ 11 

(moderate depression) on the Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 

1983) and were not taking anti-depressants. Additionally, grip strength and manual dexterity of 

the hand affected by the stroke had to be at least 60% of the unaffected hand in order to ensure 

that patients had relatively high motor abilities and would be able to perform the task. Manual 

dexterity was assessed using the 9-hole peg test (Kellor, Frost, Silberberg, Iversen, & Cummings, 

1971). Within the PSF group, 6 patients had left-hemispheric and 8 patients had right-hemispheric 

stroke. Table 5.1 provides an overview of sample characteristics for CTLs and PSF patients.  

 

Table 5.1. Demographic information and screening questionnaires [M (SD)]. 

Asterisks indicate significantly higher scores in PSF patients than CTLs. +p < .1, ***p < .001 

 

 

 

 n Female Age FSS HADS 
depression 

HADS 
anxiety 

CTL 17 11 
60.5 

(8.0) 

2.2 

(1.2) 

4.4 

(2.9) 

4.7 

(3.1) 

PSF 14 6 
60.8 

(11.3) 

5.4*** 

(1.2) 

6.1 

(3.1) 

6.7+ 

(3.1) 
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5.2.2 Apparatus and stimuli 

The task was programmed in Matlab R2014a and the Psychophysics Toolbox (Brainard, 

1997). Choice options were presented as rectangular targets (3.5° x 4.9°) of different colours, and 

were located 10.6° from the centre of the screen. Participants used two Biometrics hand grip 

dynamometers, one in their left and one in their right hand, to indicate choices by squeezing the 

dynamometer corresponding to the location of the chosen target colour. 

5.2.3 Effort-based intention pursuit 

Participants performed a double-step choice task in which they could win points (Figure 

5.1). On each trial, participants first made a free choice between two colour options (random pair 

of blue/green/red/yellow). Colour options were presented above/below the centre of the screen 

and participants said their chosen colour out loud. The two colours were then presented in target 

locations on the left and right side of the screen – either at the top or bottom (counterbalanced). 

Participants’ task was to navigate a manikin on the screen to the chosen colour by continuously 

squeezing a dynamometer with their left or right hand, depending on the location of their chosen 

colour. For example, if the colour choice was blue and blue appeared on the right side, participants 

had to squeeze with their right hand (regardless of whether the colours appeared at the top or 

bottom of the screen). If participants used the wrong hand, a warning message appeared and the 

trial was repeated. A minimum force of 60% of an individual’s left/right maximum voluntary 

contraction (MVC) was required in order to move the manikin towards the chosen colour. 

Importantly, participants had to maintain the required squeeze force to move the manikin at a slow 

and constant velocity of 2.1°/sec towards the chosen colour. Once the manikin reached the target 

location (~5 sec), participants won 10 points. If the applied force dropped below 60% MVC, the 

manikin stopped until the required force was reached again. Participants were asked to try and 

avoid this by maintaining the required level of force once the manikin had started moving.  
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Figure 5.1. Effort-based intention pursuit task. Participants made a voluntary decision between two 
colours (e.g., green). They then had to navigate a manikin to the location of the chosen colour by 
continuously squeezing a dynamometer with the left or right hand, depending on to the location of 
the chosen colour (e.g., green = right). On some trials, the colours jumped to a new location once the 
manikin had travelled half the distance towards the initial choice. Participants then had to decide 
whether to pursue their initial intention (green; 10 points) or change their mind and switch to the 
alternative colour (blue; 5 points). They then had to indicate their final decision by continuously 
squeezing with the hand corresponding to the location of their final colour choice until the manikin 
reached the target.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 2/3 of trials, the manikin stopped after having travelled half the distance (2.5 sec) towards 

the initial choice and participants were asked to stop squeezing. Both colour targets then jumped 

to the other side of the screen – i.e., from the two top locations to the two bottom locations or v.v. 

This required participants to make a second decision where they could choose to either pursue 

their initial colour choice for 10 points, or instead, switch to the alternative colour (CoM) for 5 
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points. Once participants had made their final decision, they were asked to start squeezing again 

– now with the hand corresponding to the location of their final colour choice (either same or 

different hand as initial choice; see below). Again, participants had to maintain the squeeze until 

the manikin reached the target. 

Final decisions were expected to depend on an effort-reward trade-off. Although the 

amount of force was kept constant throughout the task, effort requirements of intention pursuit vs. 

CoM differed according to how long the effort had to be maintained for, and hence, depended on 

the locations of the final targets. Similar to the paradigm used in Chapter 4, this was manipulated 

by varying 1) whether targets jumped in a parallel/diagonal manner and 2) whether the targets 

were close/far from each other (Figure 5.2A). In diagonal-jump trials (1/3), the alternative colour 

choice was closer than the initially chosen colour, and hence, switching to the alternative colour 

allowed participants to save effort. By contrast, in parallel-jump trials (1/3), the initially chosen 

colour was closer than the alternative colour. Differences in distance, and hence effort, were 

particularly pronounced in the far-target condition (50% of trials), whereas effort requirements 

were similar in the close-target condition (50%). Participants were explicitly instructed that the 

time of the task was not limited, and hence, that longer distances were only costly in terms of their 

associated effort, but not in terms of mere temporal costs.     
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Figure 5.2. Trial conditions and predicted effects of effort on % CoM. A) Effort-reward trade-offs varied 
according to target-jump condition (diagonal/parallel) and target distance (close/far). In diagonal trials, the 
initial choice was further away from the current location than the alternative colour, hence, intention pursuit 
required longer sustained effort than CoM. By contrast, in parallel trials, the initial colour choice was closer 
than the alternative colour, and hence, intention pursuit was less costly. Differences in effort costs were 
particularly pronounced in the far-target condition. B) If CoM decisions are sensitive to final target distance 
(i.e., how long the effort associated with the final choice had to be maintained for), CoM should be more 
frequent in diagonal > parallel trials, in particular when targets are far compared to when they are close. By 
contrast, if final decisions merely depend on muscle fatigue of the hand that implemented the initial choice, 
participants would be more likely to switch in parallel > diagonal trials, given that this allowed for a switch 
to the alternative response hand, rather than continuing to squeeze with the same hand (in particular when 
targets were close, see Figure 5.2A). The predicted effects were hypothesised to be stronger in PSF patients 
compared to CTLs. 
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If participants took into account differences in target distance when making their final 

decisions, CoM should be more frequent in diagonal compared to parallel trials (Figure 5.2B). 

Moreover, in diagonal trials, participants should be particularly likely to switch to the alternative 

colour when the targets were far compared to when they were close. This is because in the far-

target condition, pursuing the original intention was twice as effortful (squeezing for 7.6 sec) as 

switching to the alternative colour (3.8 sec), whereas in the close-target condition, costs were 

similar for intention pursuit (7.6 sec) and CoM (7.1 sec). Crucially, intention pursuit was always 

associated with the same degree of effort, but the cost associated with CoM differed, and hence, 

the relative cost of intention pursuit in diagonal trials was lower in the close- than far-target 

condition. We hypothesised that PSF patients would be particularly sensitive to differences in 

effort, and hence, would be more likely than CTLs to change their intention in diagonal trials, 

especially when targets were far. 

A crucial difference to the paradigm reported in the previous chapter is that in the current 

task, costs may not purely depend on target distance, but also on 1) which hand had to be used to 

implement a given choice (e.g., ipsi- vs. contralateral to the stroke side) and 2) whether or not 

final responses required responding with the same vs. different hand relative to the initial choice. 

Specifically, in diagonal trials, intention pursuit always required a switch between the left and 

right hand, whereas CoM required participants to continue squeezing with the same hand (Figure 

5.2A). It is possible that effort costs did not only depend on distance to the final target locations, 

but also on whether or not a given decision required continuous squeezing with the same hand, 

which may have fatigued during the initial choice. For example, having used the right hand to 

implement the initial decision might render continuous squeezing with the right hand more 

effortful/difficult than switching to the left hand. This may increase overall preference for 

intention pursuit in diagonal trials (regardless of target distance). Hence, diagonal trials alone did 

not allow us to dissociate whether higher overall frequencies of intention pursuit indicated higher 
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willingness to persevere, or instead, simply a preference to switch hands based on muscle fatigue 

after the initial choice. However, parallel-jump trials enabled us to differentiate between these 

alternative explanations (Figure 5.2B). That is, in parallel trials, response mappings were 

reversed: Intention pursuit required squeezing with the same hand, whereas CoM was associated 

with switching hands. Hence, if effort-based decisions merely depended on whether or not 

participants had to continue squeezing with the same hand, participants would show a tendency 

for CoM in parallel trials despite the fact that the initial colour choice was closer. Additionally, 

CoM in parallel trials would be more frequent in the close-target condition, where intention 

pursuit required longer continuous squeezing with the same hand (7.1 sec) than in the far-target 

condition (3.8 sec). Hence, the two alternative explanations made opposite predictions regarding 

the overall frequency of CoM in diagonal vs. parallel trials and regarding the effect of target 

distance on CoM in each condition. This allowed us to test to what extent decisions between 

intention pursuit and CoM depended on target distance associated with final choices vs. on mere 

(muscle) fatigue of the hand that was used to implement the initial choice. 

Participants completed 4 blocks of 12 trials each, resulting in a total number of 48 trials. If 

squeeze force dropped below 60% in more than 25% of the time within a given block, the required 

force level was decreased by 10% in the following block to control for muscle fatigue that may 

occur during the task and could introduce potential confounds, such as frustration due to failure 

to maintain the required force level. 

5.2.4 MVC calibration 

Prior to the task, participants’ MVC was determined separately for each hand. Participants 

were asked to squeeze as hard as possible and hold the squeeze for 6 sec. This was repeated 3 

times for each hand. In each trial, the median force applied during the time period from 2–4 sec 

was extracted, and MCV was defined as the average of that value across the 3 trials. Participants 
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were then presented with a single trial that required them to squeeze at 120% of the MVC of each 

hand. If participants were able to reach that level of force, the calibration procedure was repeated 

and participants were reminded to squeeze at their maximum force during calibration.  

5.2.5 Protocol 

PSF patients were recruited as a sub-sample of an ongoing large-scale study on PSF, and 

hence, completed additional tasks that are not reported here. The study consisted of three separate 

sessions conducted within a time period of 5–6 weeks. All sessions involved a range of clinical 

questionnaires, behavioural tasks and measurement of corticomotor excitability using TMS. The 

task reported here was completed in session 3. Note that most PSF patients (n = 11/14) additionally 

received transcranial direct current stimulation (tDCS) over motor cortex during session 1 (i.e., 

5–6 weeks prior to the data reported here). Because this intervention was not specifically targeted 

at the current research question, and because the task reported here was only conducted on a sub-

set of the larger patient sample, we were not able to control which patients received tDCS in 

session 1. Hence, given the unbalanced sample of patients with tDCS vs. sham stimulation, we 

were not able to test whether tDCS may have affected performance in the current task. Potential 

confounds that the tDCS intervention may have introduced will be addressed in the discussion. 

5.2.6 Analyses 

Statistical analyses were performed using IBM SPSS Statistics for Windows, version 21 

(Corp, Released 2012). For most dependent variables, the assumption of normality was violated 

(as tested with Kolmogorov–Smirnov tests for normality). Hence, given the relatively small 

sample size in each group, non-parametric tests were used for all analyses and medians (Mdn) and 

interquartile ranges (IQR) are reported. Mann–Whitney U tests were applied for between-subject 

analyses and Wilcoxon signed-rank tests were used for within-subject analyses. Two-tailed p-

values obtained by exact tests are reported (α = .05).  
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5.3 Results 

5.3.1 Frequency of effort-induced CoM  

Figure 5.3 illustrates the frequency of CoM, separately for each group (CTL/PSF), target-

jump condition (diagonal/parallel) and target-distance condition (close/far). Both CTLs and PSF 

patients showed higher % CoM in diagonal- (CTL: Mdn = 6.3%, IQR = 0–34.4%; PSF: Mdn = 

56.3%, IQR = 6.3–87.5%) compared to parallel-jump trials (in both groups: Mdn = 0%, IQR = 0–

0%) and the difference was significant in both groups (CTL: Z = 2.67, p = .004, r = 0.48; PSF: Z 

= 2.85, p = .002, r = 0.51). Furthermore, within diagonal trials, both groups showed significantly 

higher frequencies of CoM in the far-target condition (CTL: Mdn = 12.5%, IQR = 0–43.8%; PSF: 

Mdn = 93.8%, IQR = 12.5–100%) compared to the close-target condition (CTL: Mdn = 0%, IQR 

= 0–12.5%, Z = 2.20, p = .039, r = 0.40; PSF: Mdn = 12.5%, IQR = 0–75%, Z = 2.94, p < .001, r 

= 0.53). This suggests that both groups largely based CoM decisions on how long final actions 

had to be maintained for (depending on final target distance), rather than simply on whether or 

not intention pursuit required continuing to squeeze with the same hand (see Methods, Figure 

5.2B). In fact, only 3 participants (1 CTL and 2 PSF) showed CoM in a low number of parallel 

trials, where CoM allowed for switching hands. These CoM only occurred in the close-target 

condition in line with the assumption that motor fatigue of the hand associated with the initial 

choice would be more likely to induce CoM in close than far parallel trials. However, given that 

this occurred extremely rarely, within-trial effects of motor fatigue did not seem to have a 

substantial effect on task performance, neither in CTLs nor PSF patients.    
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Figure 5.3. Frequency of CoM in effort-based intention pursuit task. Boxplots illustrate the median 
% CoM for CTLs (green) and PSF patients (red) in diagonal and parallel trials, separately for each 
target-distance condition. Boxes represent IQRs and whiskers represent 1.5*IQR. Dots correspond 
to individual data points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

More interestingly, group comparisons revealed that in diagonal trials, PSF patients showed 

significantly higher frequencies of CoM than CTLs (collapsed across target-distance conditions: 

Z = 2.33, p = .021, r = 0.42). This effect was driven by the far-target condition (Z = 2.46, p = .017, 

r = 0.44), whereas the group difference was not significant in the close-target condition (Z = 1.33, 

p = .246, r = 0.24). Hence, as hypothesized, PSF patients were more sensitive than CTLs to the 

effort associated with pursuing their initial intentions, rendering patients more likely to change 

their mind in diagonal trials, in particular when targets were far. 

Interestingly, the group difference seemed to be more strongly driven by patients with left-

hemispheric stroke (n = 6) who all switched to the alternative colour in 100% of far diagonal trials. 

By contrast, patients with right-hemispheric stroke (n = 8) showed significantly lower frequencies 

of CoM (far diagonal trials: Mdn = 81.3%, IQR = 3.1–81.3%; Z = 2.90, p = .005, r = 0.78), which 
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was only descriptively higher than CoM in CTLs (Z = 0.91, p = .383, r = 0.24). The observed 

difference between left- and right-hemispheric stroke patients in the current sample needs to be 

interpreted carefully due to the small number of patients in each sub-group. However, given the 

relatively large and consistent difference, it is plausible that stroke side might at least account for 

some of the variance in the frequency of effort-induced CoM.  

5.3.2 No effect of motor performance  

Next, we checked whether higher frequencies of CoM in PSF patients may have been 

caused by potential motor impairments in PSF. Patients and CTLs had comparable MVCs 

(collapsed across both hands, CTL: Mdn = 21.9 kg, IQR = 18.2–30.0 kg; PSF: Mdn = 24.1 kg, 

IQR = 20.0–32.1 kg; Z = -0.52, p = .625, r = 0.09). Additionally, effort requirements were adjusted 

to each individual. Accordingly, motor performance should be highly comparable across 

participants. In order to test this, 2 separate measures of motor performance were analysed (Figure 

5.4). First, we measured the amount of force applied during the time period of each trial where 

participants squeezed with at least 1/3 of their MVC in order to capture the time points at which 

participants tried to squeeze at all. The percentage of time within this period in which participants 

reached the required level of 60% of the MVC was then computed, serving as an indicator of how 

successful participants were in reaching the required force level while they applied any force at 

all (% success, Figure 5.4, left). Note that this measure does not capture time periods where 

participants did not squeeze at all (e.g., to take a brief rest during an ongoing trial). Hence, a 

second measure was used where the time from action initiation to target hit was computed for 

trials without target jump in order to check whether participants differed in rest periods they may 

have taken during the task (movement time, Figure 5.4, right). Note that the manikin speed was 

constant, and hence, slower movement times reflect longer rest durations in which the manikin 

did not move.  
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Figure 5.4. Motor performance. Boxplots illustrate median motor performance in CTLs 
(green) and PSF patients (red) as indicated by the % of time in which participants were 
squeezing successfully above the required effort level (left) and movement times (right). Boxes 
represent IQRs and whiskers represent 1.5*IQR. Dots correspond to individual data points. 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

Although some PSF patients showed slightly reduced motor performance, no significant 

group difference was observed for % success (CTL: Mdn = 86.8%, IQR = 83.6–91.8%, PSF: Mdn 

= 87.4%, IQR = 80.8–92.0%, Z = -0.16, p = .891, r = 0.03), nor movement times (CTL: Mdn = 

5.30 sec, IQR = 5.14–5.37 sec, PSF: Mdn = 5.24 sec, IQR = 5.07–5.76 sec, Z = 0.56, p = .597, r = 

0.10). Additionally, within patients, no significant difference was observed between left- and 

right-hemispheric stroke patients on either measure of motor performance (both p > .100, with a 

descriptive trend for worse performance in right-hemispheric patients). Hence, overall, motor 

requirements were well adjusted to each individual’s motor ability, thus ruling out that potential 
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motor impairments in patients can account for the observed group difference in intention pursuit. 

In line with this, no across-subject correlation was found between % success and % CoM in 

diagonal trials (rS(29) = -.03, p = .885), nor between moment times and % CoM (rS(29) = -.14, p 

= .449). This result suggests that CoM decisions did not depend directly on motor impairments, 

but instead, were related to some factor relatively independent of motor performance ability. 

Although overall motor performance was highly comparable between groups, a slight 

decrease in motor performance was observed across the task in PSF patients, as indicated by a 

significant decrease in % success in the second half of the task (Mdn = 85.8%, IQR = 75.9–91.5 

%) compared to the first half (Mdn = 88.6%, IQR = 83.0–92.6%, Z = 2.23, p = .025, r = 0.40), and 

a descriptive trend for an increase in movement times in the second (Mdn = 5.37 sec, IQR = 5.16–

6.04 sec) compared to the first half (Mdn = 5.13 sec, IQR = 4.98–5.50 sec, Z = 1.73, p = .091, r = 

0.31). By contrast, performance was highly stable in CTLs (both p > .300). Hence, it is possible 

that patients were more likely to change their mind in the second half of the task, due to decreases 

in motor performance, which may have driven the overall group difference. However, in PSF 

patients, % CoM was highly comparable in the first half (Mdn = 62.5%, IQR = 12.5–87.5%) and 

the second half of the task (Mdn = 50%, IQR = 0–90.6%, Z = -0.54, p = .707, r = 0.10), in both 

far and close diagonal trials (both p > .700). Hence, PSF patients used the same decision strategies 

throughout the task, despite slight decreases in motor performance, suggesting that patients’ 

decision strategies for CoM were independent from mere motor performance.   

5.3.3 No lateralisation of effects within patients 

Finally, within patients, the hand contralateral to the stroke side was significantly weaker 

(MVC: Mdn = 20.4 kg, IQR = 15.3–32.9 kg) than the ipsilateral hand (MVC: Mdn = 29.1 kg, IQR 

= 22.2–36.8 kg, Z = 2.48, p = .011, r = 0.45). However, given that MVCs were adjusted to each 

hand separately, no difference in motor performance was observed between the affected and 
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unaffected hand, neither for % success (affected hand: Mdn = 87.6%, IQR = 77.6–92.5%; 

unaffected hand: Mdn = 87.7%, IQR = 78.9–93.0%; Z = 0.47, p = .670, r = 0.08), nor for movement 

times (affected hand: Mdn = 5.28 sec, IQR = 5.05–5.95 sec; unaffected hand: Mdn = 5.16 sec, IQR 

= 5.00–5.57 sec; Z = 1.29, p = .217, r = 0.23). Despite no differences in motor performance, it is 

possible that patients’ CoM decisions depended on whether or not intention pursuit required 

responding with the hand affected by the stroke or with the unaffected hand. That is, even though 

motor ability of each hand was controlled for, subjective fatigue might be lateralised, and hence, 

may disproportionally affect effortful actions with the affected hand. However, in patients, no 

significant difference in % CoM in diagonal trials was found between contralesional (Mdn = 

56.3%, IQR = 12.5–87.5%) and ipsilesional hand (Mdn = 50.0%, IQR = 0.0–87.5%; Z = 1.00, p = 

.531, r = 0.18), which was true for both target-distance conditions (both p > .350). Hence, patients’ 

CoM decisions did not seem to be affected by whether intention pursuit required responding with 

the affected or unaffected hand. Although caution is required in interpreting null results, 

particularly from small samples, effect sizes of differences in CoM were much smaller than effect 

sizes observed for differences in grip strength between contra- and ipsilesional hand. Hence, even 

if there was a small lateralisation of effort-based decisions, this appears to be negligible compared 

to pure motoric effects. Hence, it is unlikely that motivational deficits are lateralised to the same 

extent as motoric impairments, but instead, they seem to affect actions generated in both 

hemispheres.  

5.4 Discussion 

Fatigue is a debilitating symptom that affects a substantial number of stroke survivors 

(Ingles et al., 1999; Nadarajah & Goh, 2015). Previous studies have mainly focused on 

sensorimotor aspects of fatigue, such as physical deconditioning (Lewis et al., 2011), limb 

heaviness (Kuppuswamy, Clark, Rothwell, & Ward, 2016) and changes in corticomotor 

excitability (Kuppuswamy, Clark, et al., 2015). Others have relied on self-report measures to 
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capture motivational deficits associated with PSF, such as self-reported apathy (Caeiro et al., 

2013) or reports of reduced physical, social and professional activities (Ingles et al., 1999; Choi-

Kwon et al., 2005; Flinn & Stube, 2010; K. K. Miller et al., 2013). Here, a laboratory decision-

making task was used in order to test whether PSF is associated with reduced motivation to invest 

continuous effort to reach a goal, while controlling for any potential motor deficits.  

We found that PSF patients showed reduced perseverance in the face of effort compared to 

healthy, age-matched control subjects. Specifically, when pursuing an initial goal required 

sustained physical effort, patients were more likely to switch to an alternative choice option that 

was easier to attain. Patients were particularly likely to give up on their initial goal when the 

relative difference in effort between the two choice options was large (far targets), whereas they 

did not differ from healthy controls when choice options were associated with similar degrees of 

effort (close targets). Note that in both conditions, the absolute effort associated with intention 

pursuit was equal. This is important for two reasons: 1) it suggests that, compared to CTLs, 

patients were more sensitive to differences in effort between action alternatives, rather than simply 

showing a general tendency to give up on intentions when absolute effort was high, and 2) it shows 

that patients were in principle able to overcome effort costs associated with intention pursuit, but 

were only willing to do so when no low-effort action alternative was available. Hence, a reduction 

in sustained physical activity typically associated with PSF (Krupp et al., 1989; Chaudhuri & 

Behan, 2004; Annoni et al., 2008) may not purely reflect a reduced ability, but rather, a reduced 

willingness to maintain voluntary actions over time, suggesting a strong link between chronic 

fatigue and motivational deficits. 

In line with this, we further showed that the observed effects were not due to differences in 

motor abilities between subjects, and could also not be accounted for by the slight reduction in 

motor performance across the task that was observed in PSF patients. Additionally, given that 

movement times were comparable across groups, differences in intention pursuit cannot be 
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explained by potential effects of motor performance on temporal discounting of rewards due to 

longer delays associated with slower movement times (Shadmehr et al., 2010). Instead, reduced 

perseverance in patients was presumably driven by higher experienced effort associated with 

intention pursuit, which consequently influenced effort-reward trade-offs (Müller & Apps, 2018). 

It has been suggested that reduced corticomotor excitability in PSF causes patients to perceive 

their actions to be more effortful (Kuppuswamy, Clark, et al., 2015). That is, in PSF a stronger 

input drive from higher ‘volitional’ centres into the motor cortex is required to produce a given 

level of motor output. This may increase the subjective effort associated with a given action. This 

would explain why patients were less willing to expend effort to pursue their initial intentions, 

even though objective force requirements were matched to each individual’s motor abilities.  

5.4.1 Global motivational deficits in PSF 

Furthermore, within patients, we did not observe any lateralisation of the effect, and hence, 

no difference in intention pursuit between the contra- and ipsilateral hand with respect to the stroke 

side. This is in line with the assumption that chronic fatigue is generalised, rather than specifically 

affecting actions executed with the limb affected by the stroke (Macko et al., 1997). As a 

consequence, motivational deficits associated with fatigue do not appear to be driven by processes 

that are directly associated with contralesional motoric impairments that are a primary 

consequence of the stroke itself (Cramer et al., 1997; Mani et al., 2013). Instead, the results seem 

to be driven by changes in effort perception that is generated in higher-order centres and is 

common to actions generated in both hemispheres. Previous studies in rats have provided evidence 

for lateralisation of effort-based decisions, showing that unilateral MFC lesions result in a reduced 

willingness to expend effort with the contralesional limb (Croxson, Walton, Boorman, Rushworth, 

& Bannerman, 2014). However, in PSF, changes in effort-based decision making appear to be 

generalised, presumably due to the fact that fatigue itself is not directly linked to a specific lesion 

side or laterality (Macko et al., 1997; Ingles et al., 1999; Cumming et al., 2016). Instead, fatigue 
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may result from secondary neurodegeneration, possibly caused by inflammatory processes after 

stroke (Ponchel et al., 2015; De Doncker, Dantzer, Ormstad, & Kuppuswamy, 2017), that may 

affect higher pre-motor stages that are engaged in global motivation of behaviour irrespectively 

of which hemisphere is involved in executing the action (Hull, 1943; Kouneiher et al., 2009). 

Specifically, a network of areas including dorsal anterior cingulate cortex, dlPFC and insula has 

been proposed to be involved in the subjective evaluation of effort, and in particular, the decision 

whether or not to maintain an effortful action based on integration of internal states and effort-

reward trade-offs (Holroyd & Yeung, 2012; Kolling, Wittmann, et al., 2016; Müller & Apps, 

2018). These areas may take into account the strength of inputs into motor cortex that are required 

to drive a given action.  

The fact that decisions were not lateralised further suggests that increased switching 

frequency in PSF patients was not caused by an avoidance to use the hand affected by the stroke 

due to other potential factors, such as pain (Widar, Samuelsson, Karlsson-Tivenius, & Ahlstrom, 

2002). Additionally, neither control subjects nor PSF patients used decision strategies that 

indicated a preference to alternate hands in order to avoid using the same hand for initial and final 

choice. Hence, our results do not reflect mere peripheral muscle fatigue that may have occurred 

during an ongoing trial (i.e., fatigue of the hand that was used to implement the initial choice). 

Instead, in both PSF patients and healthy controls, intention pursuit depended on the remaining 

effort associated with the final decision, which varied as a function of target distance. Hence, 

reduced intention pursuit in patients seemed to be caused by a strategy that aimed at minimizing 

the total effort (distributed across both hands) of a given trial, rather than simply avoiding to 

continue squeezing with the same hand. This further suggests that the task successfully avoided 

capturing mere ‘state’ fatigue that may have been induced by the task itself (Müller & Apps, 

2018). Instead, our pattern of results suggests that the task measured differences in chronic fatigue 

(or ‘trait’ fatigue) and its effect on the motivation to invest effort to pursue one’s intentions.  
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5.4.2 Alternative explanations & open questions 

Although it is possible that factors other than chronic fatigue may have contributed to 

between-group differences, we can rule out that depression can account for differences in 

motivation (Treadway et al., 2012), given that PSF patients and CTLs did not differ in depression 

scores. Moreover, although, patients showed slightly higher anxiety compared to CTLs, anxiety 

does not appear to be directly linked to effort-based decision making (Treadway et al., 2012; M. 

F. Green, Horan, Barch, & Gold, 2015), and hence, is unlikely to have caused the observed group 

difference. Interestingly, high frequencies of CoM further imply that PSF patients did not have 

any deficits in executive control functions that may have affected their ability to switch goals 

(Mecklinger, Yves von Cramon, Springer, & Matthes-von Cramon, 1999; Shallice, Stuss, Picton, 

Alexander, & Gillingham, 2008; Gläscher et al., 2012). Similarly, our results cannot be explained 

by potential difficulties in motor response switching in PSF patients, given that in close-target 

trials, intention pursuit (and hence, switching of response hands) was comparable between PSF 

patients and healthy controls. Instead, group differences were specific to the far-target condition, 

and hence, appeared to be driven by differences in effort-based decisions. Nevertheless, further 

studies need to test how specific and direct the link between chronic fatigue and effort-based 

intention pursuit is by controlling for a larger range of additional factors and potential 

comorbidities in stroke patients.  

Moreover, the difference between left- and right-hemispheric stroke we observed in the 

current sample should be further investigated in future studies with larger samples. We found that 

left-hemispheric patients showed a stronger reduction in perseverance than patients with right-

hemispheric stroke. Indeed, it has previously been proposed that the left hemisphere is more 

strongly associated with goal-directed behaviour, showing a dominance over the right hemisphere 

in controlling voluntary movements of both sides of the body (Haaland, 2006; Serrien, Ivry, & 

Swinnen, 2006) and a more prominent role in goal-directed as opposed to stimulus-driven 
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attention (Corbetta & Shulman, 2002). Hence, it is plausible that the left hemisphere might be 

particularly relevant in voluntary action control and endogenous goal pursuit.  

5.4.3 Component processes of effort-based decisions 

As opposed to previous effort-based decision-making tasks that have been used to study 

motivational deficits in Parkinson’s disease (Chong et al., 2015), depression (Treadway et al., 

2012), or schizophrenia (Hartmann et al., 2014), the degree of effort in the current study was 

manipulated by varying the duration effortful actions had to be maintained for, rather than varying 

the amount of force per se. While we assumed that the current task would be particularly sensitive 

to potential motivational deficits in PSF, it is possible that typical binary-choice tasks would show 

similar effects in PSF patients. Direct comparisons between these tasks might allow us to further 

disentangle the specific motivational impairments in PSF. For example, simple binary-choice 

tasks capture the willingness to initiate an action based on anticipated costs and rewards. By 

contrast, in the current task, patients always had to initiate an effortful action, but could 

subsequently decide how long to maintain an action for in order to pursue the initial choice. 

Furthermore, given that the amount of force was always constant, decisions did not only rely on 

estimation of future efforts based on visual cues, but also depended on the experienced effort that 

had already been expended. Hence, the different types of decision-making tasks might be able to 

capture distinct aspects of effort-based decision making: 1) Willingness to initiate an action based 

on anticipated effort and 2) willingness to maintain an effortful action based on experienced effort 

during ongoing action execution (Meyniel et al., 2014). Presumably anticipating effort requires 

an internal model of the relation between a movement and the likely effort it will require. This 

model is presumably based on the actual experience of effort. Our study is novel in studying the 

experience of effort directly, rather than decisions based on a previously-learned model of effort. 
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5.4.4 Implications 

Deeper insights into these putative component processes underlying effort-based decisions 

are highly relevant for our understanding of the specific motivational impairments across different 

patient populations, with potential implications for interventions. In particular, deficits in 

perseverance may be highly relevant with regard to intention pursuit in patients’ everyday life. 

For example, giving up on intentions too readily when effort is high may be an underlying cause 

of reduced likelihood to return to work (Andersen et al., 2012) or pursue rehabilitation 

programmes (Michael, 2002; Morley et al., 2005; Lerdal & Gay, 2013; Nadarajah & Goh, 2015) 

in stroke patients with high levels of fatigue. Hence, our results may have important implications 

for quality of life and recovery after stroke. That is, in stroke patients that experience high degrees 

of chronic fatigue, rehabilitation programmes may need to specifically target motivational deficits 

in addition to pure motor impairments. In fact, increasing motivation could increase physical 

activity, which may in turn be able to reduce fatigue (Zedlitz, Rietveld, Geurts, & Fasotti, 2012), 

possibly by breaking the vicious cycle between physical deconditioning and effort aversion.  

This raises the question of how exactly motivation can be increased. The current laboratory 

measure provides a starting point to test the effect of potential interventions on the willingness to 

expend effort in PSF patients. For example, it has been proposed that cognitive-behavioural 

interventions that promote physical activity can reduce fatigue (Zedlitz et al., 2012; Aguiar et al., 

2017; Wu et al., 2017), and hence, may be able to increase intention pursuit. Additionally, if 

reduced corticomotor excitability causes an increase in subjective effort in fatigue (Kuppuswamy, 

Clark, et al., 2015), then increasing excitability, e.g., through tDCS interventions, may be able to 

increase motivation to expend effort. Given the low and imbalanced number of patients with vs. 

without tDCS stimulation in the current sample, we were not able to test this directly. However, 

considering that most patients received tDCS stimulation, and yet, the patient group still showed 

lower intention pursuit compared to CTLs, it is unlikely that tDCS has a strong and long-lasting 
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effect. Furthermore, previous studies investigating the effect of tDCS on PSF suggest that effects 

vary strongly across patient sub-populations (Elsner, Kugler, Pohl, & Mehrholz, 2013; Marquez, 

van Vliet, McElduff, Lagopoulos, & Parsons, 2015; Kubis, 2016). Hence, future large-scale 

studies need to test more systematically if, and under which conditions, tDCS may be an effective 

intervention for PSF.  

5.4.5 Conclusion 

Post-stroke fatigue is a multi-dimensional syndrome that can have wide-ranging 

consequences for patients’ quality of life and recovery after stroke. Our results provide new 

insights into motivational aspects of fatigue, pointing to a deficit in PSF patients to sustain 

voluntary actions in order to reach a goal. These findings suggest a critical role for effort-based 

decision making in intention pursuit and pave the way for future research into the specific 

impairments of the underlying component processes in chronic fatigue, with the potential to 

develop novel interventions. 
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General discussion 

6.1 Summary of findings 

Previous studies on Changes of Mind have largely focused on perceptual decision making 

(e.g., Resulaj et al., 2009; Albantakis & Deco, 2011; Burk et al., 2014; Kiani, Corthell, & Shadlen, 

2014; Moher & Song, 2014; van den Berg et al., 2016). By contrast, the current thesis investigated 

reversals of voluntary action decisions. While voluntary actions have often been studied in 

separation of their external context, the studies presented here explicitly accounted for the role of 

external cues in guiding action selection, for example, by providing sensorimotor information 

relevant for movement selection, or value-based information about rewards and costs associated 

with executing a given action alternative. Specifically, we proposed that voluntary actions are 

characterised by highly dynamic and integrative processes that continuously integrate endogenous 

intentions with sensory and value-based information, even after an action has already been 

initiated. As a result, changes in the external environment can trigger Changes of Mind during 

voluntary actions. 

We assumed that two different types of CoM can occur in voluntary action. First, people 

may change their mind about what endogenous intention to pursue (Change of Intention) and/or 

they may change how to implement the intention into motor action (Change of Movement). This 

is in line with hierarchical accounts of action encoding (e.g., Mele, 1992; Cooper & Shallice, 

2000; Pacherie, 2008; Cisek, 2012). In Chapter 2, a modified version of the random-dot motion 

task was introduced in which participants had to integrate perceptual decisions about dot-motion 
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direction with an endogenous intention about target colour. Analysis of continuous movement 

trajectories indicated if and when participants changed their minds about the dot-motion direction, 

which could either result in a Change of Movement, or additionally, a Change of Intention that 

involved switching to a nearby target of different colour. Changes of Movement + Intention were 

less frequent when colour intentions were strong and when the motor cost of pursuing the intention 

was relatively low. The effects of motor costs were particularly strong when intentions were 

transformed into motor plans at late stages of action preparation. These results suggest that aspects 

related to how intentions are implemented directly inform re-evaluation of intentions themselves.  

 Chapter 3 introduced an attractor network model consisting of multiple neural nodes that 

represented higher-order voluntary intentions, perceptual information from the environment as 

well as actions and their associated costs. Information was integrated through interconnections 

between neural populations. Firing rates were updated continuously, and hence, the model 

occasionally transitioned from one attractor state to a different state, indicating either a Change of 

Movement and/or a Change of Intention. Similarly to our behavioural results, we found that the 

frequency of each type of CoM depended on the strength of intentions and their trade-offs with 

motor costs. Hence, the model provides a biologically plausible neuro-computational mechanism 

through which dynamically changing information from different endogenous and exogenous 

sources is integrated by a network of neural populations that guide action selection in a continuous 

manner.  

In Chapter 4, fMRI was used to investigate the neural dynamics underlying the integration 

of new information, which can trigger changes in voluntary intentions after action initiation. 

Multivariate pattern analysis showed that, in fronto-parietal areas, neural patterns changed 

dynamically as decisions evolved. Precuneus, angular gyrus and dorsolateral prefrontal cortex 

represented new contextual information about rewards/costs to guide the implementation of CoM 

into action. Furthermore, activation patterns in medial frontal cortex predicted decision reversals 
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in participants whose CoM decisions were not exclusively guided by external evidence, 

suggesting a role for this area in continuously providing endogenous cues to inform both initial 

intentions and later intention reversals. Finally, CoM was associated with an increase in functional 

connectivity between the lateral and medial action selection pathways (Passingham, 1987), 

allowing for integration of endogenous and exogenous components of action selection. These 

results suggest that dynamic representation – and integration – of information in a fronto-parietal 

network allows agents to flexibly adjust their actions as they evolve in changing environments.  

Finally, in Chapter 5, we investigated the role of effort-based decisions in intention pursuit. 

Reaching a goal often requires perseverance in the face of effort. Patients with post-stroke fatigue 

showed a reduced willingness to invest continuous effort to pursue their original goal intention 

compared to healthy controls, suggesting that chronic fatigue is associated with motivational 

deficits that cause a reduction in sustained voluntary actions. Importantly, these findings were not 

caused by mere motor impairments in stroke patients, nor by a preference to use the unimpaired 

hand. Instead, our results suggest that, in post-stroke fatigue, subjective effort-reward trade-offs 

are shifted, causing patients to give up on their own intentions more readily when goal pursuit 

requires sustained effort.   

6.2 Theoretical implications 

The studies reported in this thesis capture important characteristics of volition: Voluntary 

actions evolve continuously over time, they compete with alternative courses of action that are 

linked to other possible outcomes, and decisions between these alternatives depend on integration 

of multiple sources of endogenous and exogenous information. The ability to change actions 

allows agents to flexibly adjust their behaviour to the current environmental context, which is 

crucial for adaptive behaviour in a complex and dynamic world. However, importantly, this 

flexibility needs to be counterbalanced by a certain degree of stability of one’s own intentions, 
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which is necessary for successful long-term goal attainment. Hence, voluntary actions require a 

balanced integration of endogenous intentions with dynamically-changing exogenous 

information. Investigating when, why and how people change their minds is a fruitful approach 

to capture the degree of flexibility of voluntary actions, and more broadly, gain novel insights into 

the fundamental neurocognitive mechanisms that generate behaviour. Hence, the findings 

reported in this thesis have several important theoretical implications – both with regard to our 

understanding of the mechanisms underlying CoM, but importantly, also the general processes 

that shape voluntary intentions and their implementation into action. 

6.2.1 Implications for theories of CoM 

First, our results provide new insights into the mechanisms underlying CoM. The current 

studies offer a broader conceptual view on decision reversals by investigating CoM in the context 

of voluntary action, rather than studying mere perceptual decisions. By considering how a 

multitude of sources of information is integrated, we identified dissociable types of CoM – and 

hence, different aspects of action that may be changed during ongoing action execution. The 

distinction between changes in sensorimotor processes vs. changes in endogenous intentions 

seems crucial, given that these types of CoM may have different underlying causes, and may result 

in different consequences. Specifically, CoM driven by perceptual reversals may be re-interpreted 

as a correction of an initially erroneous response based on new sensory evidence (Resulaj et al., 

2009; Yeung & Summerfield, 2012; Fleming et al., 2018). By contrast, voluntary intentions often 

do not have an objectively correct or erroneous choice option. In fact, within the context of the 

current tasks, initial intentions were largely arbitrary and could not be based on some external 

criterion or instruction. Hence, changes in intentions did not simply reflect corrections of an initial 

‘error’, but instead, more broadly reflected adjustments of decisions to a new (action) context that 

provided new information about rewards and costs associated with pursuing the initial intention. 

Thus, Changes of Intention depended more strongly on internal and subjective factors, including 
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the strength of voluntary intentions and motivational aspects. As a result, alterations in these 

internal factors, such as increased subjective experience of effort in chronic fatigue 

(Kuppuswamy, Clark, et al., 2015), are directly linked to decisions about whether or not to pursue 

one’s initial intentions to attain a goal.  

Hence, our studies provide novel insights into the processes that dynamically integrate 

multiple sources of internal and external information in order to guide actions as they evolve. Past 

studies on CoM have neglected such integrative processes, and instead, have focused on decisions 

that are purely driven by perceptual evidence. As a consequence, previous computational models 

of CoM – both accumulator models (Resulaj et al., 2009) and attractor network models 

(Albantakis & Deco, 2011) – have only taken into account a single source of (perceptual) 

information, while disregarding how more complex decisions that involve multiple sources of 

dynamically changing information are generated and updated. The attractor network model 

proposed in the current thesis extends previous models by accounting for multiple action 

alternatives, and competition between them, which is guided by several pieces of hierarchically-

organised endogenous and exogenous information. Hence, the current model captures different 

types of CoM that may occur during ongoing action selection. More broadly, our model suggests 

that a continuous interplay of multiple neural populations is crucial for flexible and dynamic 

actions (Cisek, 2012; Christopoulos et al., 2015; Yoo & Hayden, 2018). Similarly, our fMRI 

results suggest that integration of information in a network of fronto-parietal areas allows humans 

to change voluntary actions as they evolve. These findings provide new insights into fundamental 

principles of information processing in the brain by showing that fronto-parietal cortex uses 

dynamic neural codes in order to represent multiple sources of information that become available 

during ongoing action execution. Thus, studying CoM in voluntary action cannot only provide a 

better understanding of CoM, but also, of the general neurocognitive mechanisms underlying 

voluntary actions. 
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6.2.2 Implications for theories of voluntary action 

First of all, by studying Changes of Intention, we gained novel insights into intentions 

themselves. Within the fields of psychology and neuroscience, there is a tendency to conceptualise 

voluntary intentions either in terms of ‘strong determining tendencies’ (Ach, 1935), or instead, as 

weak and labile motor intentions that can readily be changed (Fleming et al., 2009; Salvaris & 

Haggard, 2014; Kaufman et al., 2015). The results reported in this thesis suggest that intentions 

vary gradually in strength, are evaluated continuously, and can be reversed even when an action 

has already been initiated. Hence, volition is not a uniform and static phenomenon, but instead, is 

in its essence dynamic and malleable. By studying how, when and why intentions change, we can 

gain new knowledge about how ‘determining’ intentions are, and under which conditions they are 

maintained vs. abandoned.  

Our results further suggest that intentions guide ongoing action execution in an online 

manner, rather than being mere retrospective confabulations (Wegner, 2002). That is, when 

intentions change, actions need to be changed, and this in turn can affect the outcome of an action. 

However, conversely, the need to change an ongoing movement can also induce changes in the 

intention itself. Hence, there are strong reciprocal links between lower-level movements and 

abstract goal intentions that determine action selection in a dynamic and interactive manner 

(Cisek, 2012). Thus, our studies fill in a key gap in cognitive theories of voluntary action. 

Specifically, most theories of voluntary action are hierarchical in some sense, for example, by 

distinguishing higher-order goal intentions from details of movement implementation and 

execution (Mele, 1992; Pacherie, 2008; Kouneiher et al., 2009). However, most existing models 

of voluntary action do not have a clear conceptualisation, nor means of measuring, what a goal 

intention is or how strong it is. Instead, theories about voluntary action largely rely on intuitions 

about ends and means. One crucial aspect that has been neglected in particular is the fact that goals 

have a recurrent feedback pathway that allows goals to be changed when they are not worth it, or 
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when an equally-appealing action alternative is available. Whether or not people switch to an 

alternative course of action may be highly informative of how valuable, or strong, the initial goal 

intention was, by providing a measure of how willing people are to invest costs/effort into 

attaining the goal in the long term. Hence, a tractable way to study the dynamic links and 

dependencies between goals and movements allows one to ‘price’ goals in terms of how well they 

are sustained in the face of increased costs of execution. The studies presented in this thesis have 

introduced a novel, systematic laboratory approach to studying goal intentions and their relations 

to the actions that fulfil them. This provides a major advance in providing a clear notion of what 

‘goals’ mean.  

Finally, our findings point to an important contribution of how decisions in voluntary 

action, in addition to what, when and whether aspects of action (Brass & Haggard, 2008). While 

the importance of how aspects in action selection has been recognized for a long time (Goodale 

& Milner, 1992; Kawato, 1999; R. C. O’Reilly, 2010), these types of decisions typically receive 

little attention in the context of voluntary action. This is presumably due to the fact that how 

decisions may largely rely on external, sensory context, or sensorimotor constraints, rather than 

endogenous factors. Indeed, in the current studies, decisions about how to implement intentions 

were mainly guided by sensorimotor aspects. However, crucially, we showed that changes in how 

to implement an intention can induce changes in what intention to select. Hence, how decisions 

play an essential role in shaping endogenous actions, even though these types of decisions 

themselves may be largely guided by exogenous information. In addition to affecting objective 

action selection, how aspects may also play a crucial role in the subjective experience over actions. 

For example, in Chapter 2, reduced Sense of Agency was reported for actions that were 

associated with longer movement times, even when this did not affect the outcome of an action. 

Hence, how a given goal has been achieved (e.g., how ‘fluent’ or easy the executed movement 

was) may in some situations be of greater importance to an agent than what goal has been 
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achieved. Thus, the subjective experience over our own actions depends on a wide range of factors 

other than the outcome that the action caused. These results further suggest that Sense of Agency 

does not merely depend on prospective cues associated with selection of an initial action and 

retrospective inference about outcomes after action completion (Chambon et al., 2014), but 

additionally, takes into account information related to the continuous execution of actions. Finally, 

the mere ability to reverse actions, and potentially choose an alternative course of action, may 

strongly contribute to our general sense that we are ‘free’ and responsible agents. That is, not only 

do we have a notion of “I could have done otherwise” (Kulakova et al., 2017), but in fact, we 

sometimes “do otherwise”, and this may be important to our overall sense of being in control over 

our own actions and their outcomes.  

6.3 Practical implications 

In addition to theoretical implications, studying CoM may have important practical 

implications. In particular, the fact that CoM can affect action outcomes – either in a positive or 

negative way – is highly relevant with regard to personal and social consequences. This is 

especially true for Changes of Intention, which induce a mismatch between the initially-intended 

vs. actual outcome. Whether or not switching to an alternative course of action is desirable largely 

varies with context, and is often difficult to determine for the individual, given that potential action 

alternatives are hypothetical, or counterfactual. Representations of these counterfactuals 

presumably play an important role in feelings of regret over actions that have not actually been 

chosen (Kirkebøen, Vasaasen, & Teigen, 2013; Frith & Haggard, 2018).  

Furthermore, although there may not be a general optimum, or a ‘desirable’ frequency of 

CoM, extremely high or low flexibility is clearly maladaptive and may be linked to 

psychopathology. For example, rigidity of behaviour in OCD (Maia & McClelland, 2012; 

Remijnse et al., 2013; Gruner & Pittenger, 2017) vs. impulsivity (Churchill & Jessop, 2011), e.g., 
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in ADHD (Gawrilow et al., 2011; Hauser et al., 2016), or Parkinson’s disease (Cools et al., 2003; 

Sinha et al., 2013), may represent opposite extremes on the spectrum of behavioural flexibility. In 

fact, disturbances in the balance between goal-shielding vs. goal-switching may be the underlying 

mechanism of a large range of psychiatric and neurological conditions, and hence, understanding 

the processes underlying this balance is crucial to well-being and mental health (Goschke, 2014). 

Additionally, motivational aspects, such as the willingness to persevere when facing costs or 

challenges, are directly linked to CoM regarding one’s own goals. Hence, deeper insights into 

motivational deficits observed in fatigue (Chapter 5 of this thesis), depression (Treadway et al., 

2012), schizophrenia (Hartmann et al., 2014; M. F. Green et al., 2015), or Parkinson’s disease 

(Chong et al., 2015) can be gained by investigating CoM. In addition to improving our 

understanding of the mechanisms underlying these disorders, developing novel tasks that measure 

behavioural flexibility and its relation to motivation could be useful to improve diagnostic tools, 

and may also inform future means of intervention.  

Beyond psychopathology, insights into the mechanisms underlying the flexibility vs. 

stability of our decisions are highly relevant for everyday-life behaviour in healthy populations. 

How can we ensure that people pursue a healthy lifestyle and follow through with their own 

personal goals? Why is it that so many people give up on their New Year’s resolutions? Or what 

does it take to change voters’ minds in political elections? Studying the continuous and dynamic 

decision-making processes that shape our actions provides an important starting point to find 

answers to these questions, and to identify the mechanisms that underlie inter-individual 

differences in decision outcomes. For example, people with extreme political views are less 

susceptible to external influences when making decisions (Brandt, Evans, & Crawford, 2015). 

Similarly, a recent study showed that people’s tendencies to process information in a flexible vs. 

rigid manner predicted their political and societal beliefs, and was linked to their voting choices 

in the Brexit referendum (Zmigrod, Rentfrow, & Robbins, 2018). Hence, real-life decisions can 
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be directly linked to the fundamental mechanisms that determine how people evaluate and process 

information, and how readily they adjust their own decisions based on new evidence.  

In addition to individual factors, environmental variables need to be considered. The current 

thesis points to a critical role of contextual cues in triggering decision updates, e.g., by providing 

information about the costs and rewards associated with CoM. Hence, environments that 

promote/prevent CoM can be created by building certain infrastructures or contexts, for example, 

through ‘nudging’ (Thaler & Sunstein, 2008). For instance, given that switching to an alternative 

option is often costly, defining favourable default options, e.g., for organ donations, can be a 

useful approach for policy makers to guide desirable decision outcomes. An alternative approach 

would be to make CoM easier when it is desirable – e.g., facilitating transitions to a more 

environmentally-friendly life-style by providing low-cost eco-friendly choice options and 

incentivising behavioural change.  

6.4 Limitations, open questions & future directions 

Studying CoM in any decision domain has been challenging due to the typically low trial 

numbers associated with overt CoM (e.g., Resulaj et al., 2009; Albantakis & Deco, 2011; van den 

Berg et al., 2016). Chapter 2 of this thesis similarly faced this limitation. Yet, the increasing 

number of studies on CoM in the literature have provided reason for optimism that the findings 

are reproducible and meaningful. That is, reported frequencies of perceptual CoM in a given RDM 

task condition have been highly consistent across many studies (e.g., Resulaj et al., 2009; 

Albantakis & Deco, 2011; van den Berg et al., 2016), including the current experiments. 

Furthermore, repeated findings of factors that reduce/increase the frequencies of CoM (e.g., motor 

costs; Burk et al., 2014; Moher & Song, 2014) have enabled deeper insights into the basic 

mechanisms that shape decisions as they evolve.  
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Hence, provided that measures are sufficiently reliable, even rare events can be highly 

informative of neurocognitive processes. Consider other examples of relatively rare events, such 

as ‘tip-of-the-tongue’ phenomena (Brown & McNeill, 1966; Schwartz & Metcalfe, 2014), false 

memories (Roediger & McDermott, 1995; Loftus, 2005), or hallucinations (Waters et al., 2012), 

which have been studied extensively, not least because of the crucial insights into general 

functioning they can provide. Hence, deviations from normal or frequent behaviours are of 

particular interest in many domains of psychology as well as psychiatry. Finally, the fact that CoM 

is relatively rare may in itself be an interesting observation that merits future investigation. That 

is, why is it that people seem relatively reluctant to change their minds? To date, the answer to 

this question has largely focused on the role of motor costs associated with correcting an ongoing 

movement (e.g., Resulaj et al., 2009; Burk et al., 2014; Moher & Song, 2014). However, other 

phenomena, such as self-consistency biases (Luu & Stocker, 2018), choice-induced preference 

(Sharot et al., 2010; Voigt et al., 2017), or sunk costs (Arkes & Blumer, 1985) associated with 

making an initial choice may further contribute to this phenomenon.  

6.4.1 Methodological considerations 

Although important insights can be gained from rare events, limited trial numbers may 

nevertheless call for additional rigour in the design of experiments and further need for replication 

of findings. In that context, systematic attempts to increase the frequency of CoM may be useful 

for future research. This is particularly important for studies investigating the neural mechanisms 

of CoM, given the low signal-to-noise ratio of many neural measures, including BOLD signal in 

fMRI (Parrish, Gitelman, LaBar, & Mesulam, 2000; Murphy, Bodurka, & Bandettini, 2007). In 

order to increase trial numbers, and hence power, Chapter 4 of this thesis introduced a novel task 

that aimed to mimic CoM occurring in the RDM task, without relying on spontaneous perceptual 

CoM. That is, in analogy to double-step tasks commonly used to study changes in movements 

(e.g., Goodale et al., 1986; Buch et al., 2010; Saberi-Moghadam et al., 2016), choice targets were 
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relocated to induce action updates. However, importantly, target relocation in the current studies 

did not simply require motor re-programming of actions, but additionally triggered re-evaluation 

of an initial higher-order goal intention, which occasionally induced CoM with regard to the 

intention. This approach provides a new means of studying CoM in a more systematic manner by 

allowing for stronger experimental control over when and how often CoM occurs.  

Yet, target relocation introduced a ‘perturbation’ of the ongoing decision-making process 

through changes in the external context. While this was crucial for the above-mentioned reasons, 

it may raise conceptual questions as to whether CoMs in this task are comparable to the more 

spontaneous CoMs in RDM tasks, which are induced by noisy fluctuations in sensory stimuli. 

Importantly, across all tasks, changes in external stimuli (or in how they were perceived) simply 

induced a need to change an ongoing movement, but did not instruct participants as to whether 

they should change their mind about their own voluntary intentions. Hence, Changes of Intention 

were still to some extent spontaneous and endogenous, even when the need for re-evaluation of 

the intention was induced exogenously. This is an important difference to previous studies 

investigating the flexibility of voluntary intentions, in which external cues explicitly instructed 

participants whether to stay or switch (Obhi & Haggard, 2004; Fleming et al., 2009; Obhi, 

Matkovich, & Chen, 2009; Obhi, Matkovich, & Gilbert, 2009), hence requiring a transition from 

endogenous to exogenous action selection. By contrast, the studies presented here introduced 

changes in external context that had to be integrated with endogenous intentions, rather than 

requiring a switch to purely exogenously-driven action selection. Intuitively, Changes of Intention 

may occur even without any external triggers. In fact, if voluntary intentions are the result of an 

accumulation process that integrates noisy endogenous signals over time (Schurger et al., 2012; 

Khalighinejad et al., 2018), Changes of Intention may occur due to stochastic fluctuations in this 

process even in the absence of external changes. Yet, such spontaneous and purely internally-

driven Changes of Intention may be difficult to capture experimentally. 
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6.4.2 Conceptual considerations – What are CoMs? 

In this context, conceptual questions need to be considered. One important question is to 

what extent switches to an alternative choice option reflected ‘true’ Changes of Intention in the 

tasks presented here. That is, did participants really change their original intention, or did they 

simply change to a different action without changing their actual underlying intention? In other 

words, can actions be separated from intentions? Indeed, in the literature on error processing, it 

has been argued that errors reflect a mismatch between intended vs. actual action (Falkenstein, 

Hohnsbein, Hoormann, & Blanke, 1990; Sato & Yasuda, 2005), suggesting that in some cases, 

intentions can be dissociated from motor actions. Similarly, in the case of CoM, one may argue 

that a person who fails to quit smoking still intends to do so, and hence, that there is a mismatch 

between intention and action, rather than a change with respect to the actual intention. In fact, in 

the computational model, Changes of Intention did not require a complete reversal of decisions 

within the nodes encoding endogenous intentions, but instead, reflected changes between action 

alternatives that were associated with different intentions.  

This opens a larger discussion about what CoM is, and if we need to move away from 

simply measuring CoM through changes in an overt action, and instead, define CoM based on 

covert changes that can be measured on a neural level, e.g., through changes in brain activity that 

is systematically linked to decision variables (Kiani, Cueva, et al., 2014; Kaufman et al., 2015; 

Fleming et al., 2018). While this may be appropriate for certain research questions, this thesis 

specifically focused on CoM that involved changes in action, for the following reasons: 1) 

Humans and non-human animals rarely make decisions that do not involve an action (either 

immediately or delayed). In fact, the neurocognitive systems underlying action selection and 

decision making are so highly interconnected (Cisek, 2012) that studying them in separation may 

only provide very limited insights into the mechanisms underlying cognitive processes. 2) Actions 

allow us to control events in the environment, and hence, are essential to our conscious experience 
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of ourselves as agents. 3) Changes in actions can affect outcomes, and hence, may have important 

implications for the consequences of an individual’s behaviour. 

A final aspect that needs to be addressed is the potential link between CoM and other forms 

of behavioural flexibility, such as exploration vs. exploitation in dynamic and uncertain 

environments (Cohen et al., 2007; Humphries et al., 2012; Rushworth et al., 2012), or updating of 

information during learning (e.g., probabilistic reversal learning; Fellows & Farah, 2003; 

Izquierdo et al., 2017). These phenomena are typically measured via changes in sequential actions, 

or behavioural changes that occur across several trials/blocks, and hence, are driven by relatively 

slow updates. Additionally, in the case of learning, changes are based on feedback, whereas CoM 

can occur before any feedback is provided, and in fact, before an action is completed. Thus, CoM 

occurs on a much faster timescale that is immediately relevant for online action selection during 

ongoing execution. Nevertheless, it seems plausible that different kinds of behavioural flexibility 

vs. stability are, at least to some extent, caused by similar underlying neuro-computational 

mechanism. For example, our results from the fMRI study revealed a fronto-parietal network of 

brain areas that continuously updated information about action alternatives and their associated 

values. Previous studies on value updating, foraging decisions and reversal learning have 

identified similar brain areas (Cohen et al., 2007; Boorman et al., 2009; Tsuchida et al., 2010; 

Camille et al., 2011; Rushworth et al., 2012; Economides et al., 2014; Kolling et al., 2014; 

Shenhav et al., 2016). Hence, brain mechanisms involved in the generation and updating of 

decisions may operate at various timescales to generate different facets of behavioural flexibility. 

We propose that investigating CoM allows for a novel perspective on these processes by capturing 

extremely rapid decision updates, which occur even in the absence of feedback (e.g., due to 

internal dynamics) and have an immediate effect on ongoing movements. These characteristics of 

CoM allow for unique insights into the highly continuous and dynamic nature of decision-making 

processes and their reciprocal relations with the mechanisms that generate motor actions.    
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6.5 Final conclusion 

Humans and non-human animals act in a world full of choices where information is often 

uncertain, complex and can change dynamically. Hence, flexible action selection mechanisms are 

required to allow for continuous adjustment of behaviour to the current context. At the same time, 

actions need to be sufficiently stable to enable goal attainment despite challenges or costs. 

Changes of Mind provide a window into the fundamental processes underlying the flexibility vs. 

stability of decisions. This thesis presents a novel perspective on Changes of Mind within the 

context of voluntary actions and introduces innovative laboratory paradigms that capture the 

dynamic nature of the neurocognitive mechanisms that shape actions as they evolve. We provide 

a more detailed insight into what voluntary intentions (or goals) are, how they can be tracked 

experimentally, and how stable they are, by describing the conditions under which they are 

retained or abandoned. We propose that volition is the result of continuous processes that flexibly 

integrate endogenous intentions with external contextual information and motivational factors 

related to the movements that are required to achieve those goals. Accordingly, voluntary actions 

rely on a network of brain areas that dynamically integrate a variety of sources of information to 

guide choices between alternative competing goals, and also between alternative competing 

actions that aim at achieving those goals. These insights are highly relevant for our understanding 

of the fundamental principles underlying voluntary control of behaviour and its impairments in a 

large range of psychiatric and neurological disorders. 
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Figure A1. Attractor network model with connectivity weights. Strength of neural connections 
between nodes are indicated by the weights associated with each connection. Stronger weights 
correspond to stronger influence of a given node on the firing rate of its target node.   

Appendix A. Supplementary material for Chapter 3 
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Figure A2. Example trial with Change of Movement (with all firing rates). Firing rates of S1 and S2 
illustrate the occurrence of a perceptual CoM that is driving the switch from right to left blue target, 
without a change in the colour intention. 
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Figure A3. Example trial with Change of Movement + Intention (with all firing rates). Firing rates of S1 
and S2 illustrate the occurrence of a perceptual CoM that is driving the switch from right to left target, 
which additionally involves a switch from blue to green, given that the cost associated with the green-
left target is lower than the cost associated with blue-left (see firing rates of C1 to C4).  
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Figure A4. Example trial with Change of Intention (with all firing rates). Due to noise in firing rates, the 
model erroneously selects the left-green target, although I1 (blue) is stronger. The colour error is later on 
corrected in favour of the true colour intention. Note that the model correctly switches to the left-blue, 
rather than the right-blue target, given that the dot-motion correction is left.  
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Figure B1. Decoding results for sub-ROIs. Large ROIs (PCUN, MFC, dlPFC) were split into ventral 
and dorsal sub-regions. The pattern of results in each sub-region largely corresponds to the pattern 
observed in the overall ROI, although in PCUN, decoding accuracies were overall slightly higher in the 
dorsal than the ventral region, and in MFC, decoding accuracies were slightly higher in the ventral 
region. Finally, in dlPFC, final target location was more strongly represented in the dorsal region, 
presumably due to the fact that dorsal regions are more closely located to motor areas that presumably 
used information about target location to transform decisions into actions. 
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