
1

Learning Universal Adversarial Perturbations with
Generative Models

Jamie Hayes and George Danezis
University College London

j.hayes@cs.ucl.ac.uk
g.danezis@ucl.ac.uk

Abstract—Neural networks are known to be vulnerable to
adversarial examples, inputs that have been intentionally per-
turbed to remain visually similar to the source input, but cause a
misclassification. It was recently shown that given a dataset and
classifier, there exists so called universal adversarial perturbations,
a single perturbation that causes a misclassification when applied
to any input. In this work, we introduce universal adversarial
networks, a generative network that is capable of fooling a target
classifier when it’s generated output is added to a clean sample
from a dataset. We show that this technique improves on known
universal adversarial attacks.

I . I N T R O D U C T I O N

Machine Learning models are increasingly relied upon for
safety and business critical tasks such as in medicine [22], [30],
[41], robotics and automotive [28], [32], [40], security [2],
[17], [38] and financial [13], [18], [36] applications. Recent
research shows that machine learning models trained on
entirely uncorrupted data, are still vulnerable to adversarial
examples [7], [12], [23], [24], [35], [37]: samples that have
been maliciously altered so as to be misclassified by a target
model while appearing unaltered to the human eye.

Most work has focused on generating perturbations that
cause a specific input to be misclassified, however, it has been
shown that adversarial perturbations generalize across many
inputs [35]. Moosavi-Dezfooli et al. [19] showed, in the most
extreme case, that given a target model and a dataset, it is
possible to construct a single perturbation that when applied to
any input, will cause a misclassification with high likelihood.
These are referred to as universal adversarial perturbations
(UAPs).

In this work, we study the capacity for generative models to
learn to craft UAPs on image datasets, we refer to these net-
works as universal adversarial networks (UANs). We show that
a UAN is able to sample from noise and generate a perturbation
such that when applied to any input from the dataset, it will
result in a misclassification in the target model. Furthermore,
we show perturbations produced by UANs: improve on state-of-
the-art methods for crafting UAPs (Section IV-A), have robust
transferable properties (Section IV-D), and reduce the success
of recently proposed defenses [1] (Section V).

I I . B A C K G R O U N D

We define adversarial examples and UAPs along with some
terminology and notation. We then introduce the threat model
considered, and the datasets we use to evaluate the attack.

A. Adversarial Examples

Szegedy et al. [35] casts the construction of adversarial
examples as an optimization problem. Given a target model,
f , and a source input x, which is classified correctly by f as
c, the attacker aims to find a perturbation, δ, such that x+ δ
is perceptually identical to x but f(x+ δ) 6= c. The attacker
tries to minimize the distance between the source image and
adversarial image under an appropriate measure. The problem
space can be framed to find a specific misclassification in
a targeted attack, or any misclassification, referred to as a
non-targeted attack.

In the absence of a distance measure that accurately captures
the perceptual differences between a source and adversarial
image, the `p metric is usually minimized [35]. Related work
commonly uses the `2 and `∞ metrics [3], [4], [6], [10], [14],
[16], [19], [20], [42]. The `2 metric measures the Euclidean
distance between two images, while the `∞ metric measures the
largest pixel-wise difference between two images (Chebyshev
distance). We follow this practice here and construct attacks
optimizing under both metrics.

A UAP is an adversarial perturbation that is independent of
the source image. Given a target model, f , and a dataset, X ,
a UAP is a perturbation, δ, such that ∀x ∈ X , x+ δ is a valid
input and Pr(f(x+ δ) 6= f(x)) = 1− τ , where 0 < τ << 1.

B. Threat Model

We consider an attacker whose goal is to craft UAPs against
a target model, f . The adversarial image constructed by the
attacker should be visually indistinguishable to a source image,
evaluated through either the `2 or `∞ metric.

Our attacks assume white-box access to f , as we backprop-
agate the error of the target model back to the UAN. In line
with related work on UAPs [19], we consider a worst-case
scenario with respect to data access, assuming that the attacker
has knowledge of, and shares access to, any training data
samples. We will not discuss the real-world limitations of that
assumption here, but will follow that practice.

C. Datasets

We evaluate attacks using two popular datasets in adversarial
examples research, CIFAR-10 [15] and ImageNet [29].

The CIFAR-10 dataset consists of 60,000, 32×32 RGB
images of different objects in ten classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck. This is split
into 50,000 training images and 10,000 validation images.

ar
X

iv
:1

70
8.

05
20

7v
3

 [
cs

.C
R

]
 5

 J
an

 2
01

8

2

Fig. 1: Overview of the attack. A random sample from a normal distribution is fed into a UAN. This outputs a perturbation,
which is then scaled and added to an image. The new image is then clipped and fed into the target model.

Our pre-trained models: VGG-19 [31], ResNet-101 [9], and
DenseNet [11], used as the target models, score 91.19%,
93.75%, and 95.00% test accuracy, respectively. State-of-the-art
models on CIFAR-10 are approximately 95% accurate.

We use the validation dataset of ImageNet, which consists of
50,000 RGB images, scaled to 224×224. The images contain
1,000 classes. The 50,000 images are split into 40,000 training
set images and 10,000 validation set images. We ensure classes
are balanced, such that any class contains 40 images in the
training set and 10 images in the validation set. Our pre-trained
models: VGG-19 [31], ResNet-152 [9], and Inception-V3 [34],
used as the target models, score 71.03%, 78.40%, and 77.22%
top-1 test accuracy, respectively.

I I I . U N I V E R S A L A D V E R S A R I A L N E T W O R K S

A. Attack Description

An overview of the attack is given in Figure 1. Let a
UAN model be denoted by U , and a target model by f . U
takes as input a vector, z, sampled from a normal distribution
N (0, 1)100, and outputs a perturbation, δ. This is then scaled
by a factor ω ∈ (0, ε

‖δ‖p
], where ε is the maximum permitted

perturbation and p = 2 or ∞. In practice, we start with a small
ω (e.g. ω = ε

10·‖δ‖p
) and increment this value whenever the

training loss plateaus. The scaled perturbation δ′ = ω · δ, is
added to an image x from a dataset X , to produce an adversarial
image. This is then clipped into the target model’s input range
before being fed into the target model, f , which outputs a
probability vector, ρ 1. If arg maxi f(x) 6= arg maxi f(δ′+x), a
successful adversarial example has been found. Since U(z) is
not conditioned on any image in the dataset, U learns how to
construct image independent adversarial perturbations, namely
universal adversarial perturbations.

Given an input x ∈ X , let the class label predicted by f
be c0. For non-targeted attacks, any misclassification in the
target model suffices, thus, the non-targeted attack aims to
maximize the most probable predicted class other than c0. Our
non-targeted loss function is adapted from works by Carlini
and Wagner [4] and Chen et al. [5], and is given by:

Lnt = log[f(δ′ + x)]c0 −max
i6=c0

log[f(δ′ + x)]i
︸ ︷︷ ︸

Lfs

+α ·
∥∥δ′
∥∥
p︸ ︷︷ ︸

Ldist

(1)

1If f outputs logits instead of a probability vector, we take the softmax of
the logits.

The first term in (1), Lfs, is minimized when the adversarial
predicted class is not c0. This is adapted from the Carlini and
Wagner loss function [4] that introduces a confidence threshold,
κ. If we want universal adversarial perturbations that cause
misclassifications with high confidence, we stop minimizing
only when:

κ > max
i 6=c0

log[f(δ′ + x)]i − log[f(δ′ + x)]c0

In specifying a confidence threshold for adversarial examples,
(1) becomes:

Lnt = max{log[f(δ′ + x)]c0 −max
i6=c0

log[f(δ′ + x)]i,−κ}+ α ·
∥∥δ′
∥∥
p

(2)

In all experiments we set κ = 0, and so stop optimizing once
an adversarial example is found. To minimize the perturbation
applied to an image, Lfs is summed with a distance loss,
Ldist = α · ‖δ′‖p, where α ∈ R+; this minimizes the norm
of the universal adversarial perturbation. The logarithmic term
in Lfs is necessary since most target models have a skewed
probability distribution, with one class prediction dominating
all others, thus the logarithmic term reduces the effect of this
dominance.

For a targeted attack, we compute a universal adversarial
perturbation that transforms any image to a chosen class, c.
Under this setting, we optimize using the follow loss function:

Lt = max{max
i 6=c

log[f(δ′ + x)]i − log[f(δ′ + x)]c,−κ}+ α ·
∥∥δ′
∥∥
p
,

(3)

The full description of the UAN model is given in Table I
and hyperparameters used in experiments are given in Table II.

We define the relative perturbation, ζp =
‖δ′‖

p

‖x‖p
; the value

of the norm of δ′ over the norm of the original image, x.
We set ζp = 0.04 in all experiments 2 3. For all experiments
in Section IV, we report the error rate of the target model
on adversarial images; a perfect attack would achieve an error
rate of 1.00, while a perfect classifier achieves an error rate of
0.00.

2Code available at https://github.com/jhayes14/UAN
3Note, this is equivalent to the experimental settings in Moosavi-Dezfooli

et al. [19] of ε = 10 for p =∞, and ε = 2000 for p = 2.

3

TABLE I: UAN model architecture. IS refers to the image
size: 32 for CIFAR-10 experiments and 224 for ImageNet
experiments.

Layer Shape

Input 100
Deconv + Batch Norm + ReLU 256× 3× 3
Deconv + Batch Norm + ReLU 128× 5× 5
Deconv + Batch Norm + ReLU 64× 9× 9
Deconv + Batch Norm + ReLU 32× 17× 17
Deconv + Batch Norm + ReLU 3× 33× 33
FC + Batch Norm + ReLU 512
FC + Batch Norm + ReLU 1024
FC 3× IS × IS

TABLE II: UAN hyperparameters.

Parameter Dataset

CIFAR-10 ImageNet

Learning Rate 2 · 10−4 2 · 10−4

Beta 1 0.5 0.5
Beta 2 0.999 0.999
Batch Size 128 64
Epochs 500 150
`p loss weight (α) 4.0 4.0

I V. E VA L U AT I O N

A. Comparison with previous work

We now compare our method for crafting UAPs with two
state-of-the-art methods:
• Moosavi-Dezfooli et al. [19] constructs a UAP iteratively;

at each step an input is combined with the current
constructed UAP, if the combination does not fool the
target model, a new perturbation with minimal norm
is found that does fool the target model. The attack
terminates when a threshold error rate is met.

• Mopuri et al. [21] develop a method for finding a UAP
for a target model that is independent of the dataset. They
construct a UAP by first starting with random noise and
iteratively update it to over-saturate features learned at
successive layers in the target model, causing neurons
at each layer to output useless information to cause
the desired misclassification. They optimize the UAP by
adjusting it with respect to the loss term:

L = − log(

K∏

i=1

l̄i(δ)), such that ||δ||∞ < γ,

where, l̄i(δ) is the average of the output at layer i
for perturbation δ, and γ is the maximum permitted
perturbation.

Table III compares our UAN method of generating UAPs
against the two attacks described above for both CIFAR-10
and ImageNet, in a non-targeted attack setting. We consistently
outperform both attack methods. UAPs for the ImageNet
and CIFAR-10 datasets are given in Figure 2 and Figure 3,
respectively. A selection of adversarial images for the ImageNet
dataset is given in Figure 9.

(a) VGG-19 (b) ResNet-152 (c) Inception-V3

Fig. 2: UAPs generated by a UAN for ImageNet.

(a) VGG-19 (b) ResNet-101 (c) DenseNet

Fig. 3: UAPs generated by a UAN for CIFAR-10.

B. Transferability

An adversarial image is transferable if it successfully fools
a model that was not its original target. Transferability is a
yardstick for the robustness of adversarial examples, and is the
main property used by Papernot et al. [23], [24] to construct
black-box adversarial examples. They construct a white-box
attack on a local target model that has been trained to replicate
the intended target models decision boundaries, and show that
the adversarial examples can successfully transfer to fool the
black-box target model.

To measure the transferability properties of perturbations
crafted by a UAN, we create 10,000 adversarial images
(constructed via the `∞ metric) - one for each image in the
CIFAR-10 validation set - and apply them to a target model that
was not used to train the UAN. Table IV presents results for
transferability of a non-targeted attack on three target models
- VGG-19, ResNet-101, and DenseNet. We find that UAPs
crafted using a UAN do transfer to other models. For example,
a UAN trained on VGG-19, and evaluated on ResNet-101, the
error rate is 61.2%, a drop of just 5.4% from evaluating on
the original target model (VGG-19).

We also measure the capacity for a UAN to learn to fool an
ensemble of target models. We trained a UAN against VGG-
19, ResNet-101, and DenseNet, simultaneously, on CIFAR-10,
where the UAN loss function is a linear combination of the
losses of each target model. From Table IV, we see that a
UAN trained against an ensemble of target models is able to
fool at comparable rates to single target models.

C. Generalizability

Moosavi-Dezfooli et al. [19] have shown that UAPs are not
unique; there exists many candidates that perform equally
well against a target model. If a UAN is truly modeling
the distribution of UAPs the output should not be unique.
In Figure 5, we measure the MSE (mean square error) and
SSIM (structural similarity index) [39] of U(z1),U(z2) for

4

TABLE III: Comparison of error rates for UAN against Moosavi-Dezfooli et al. [19] and Mopuri et al. [21]. Note that the
Mopuri et al. [21] method for crafting UAPs is only optimized under the `∞ metric. We set ζp = 0.04, this is equivalent to
ε = 2000 for an `2 attack and ε = 10 for an `∞ attack.

Metric Attack CIFAR-10 ImageNet
V G G - 1 9 R E S N E T- 1 0 1 D E N S E N E T V G G - 1 9 R E S N E T- 1 5 2 I N C E P T I O N - V 3

UAN Train 0.689 0.861 0.753 0.889 0.918 0.781

`2

Val 0.695 0.842 0.759 0.860 0.914 0.765

Moosavi-Dezfooli et al. [19] Train 0.672 0.854 0.771 0.894 0.900 0.779
Val 0.670 0.849 0.767 0.886 0.901 0.771

UAN Train 0.649 0.832 0.753 0.849 0.889 0.773

`∞

Val 0.666 0.851 0.750 0.846 0.881 0.771

Moosavi-Dezfooli et al. [19] Train 0.599 0.763 0.684 0.836 0.888 0.750
Val 0.572 0.760 0.679 0.823 0.879 0.738

Mopuri et al. [21] Train 0.219 0.374 0.356 0.407 0.370 0.336
Val 0.201 0.365 0.341 0.411 0.369 0.337

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(a) plane

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(b) car

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

(c) bird

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(d) cat

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(e) deer

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(f) dog

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(g) frog

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(h) horse

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

(i) ship

0 0.02 0.04 0.06 0.08 0.1
2

0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(j) truck

VGG-19 Train
VGG-19 Validation

ResNet-101 Train
ResNet-101 Validation

DenseNet Train
DenseNet Validation

Fig. 4: CIFAR-10 `∞ targeted attack. Each figure shows the error rate as the size of the adversarial perturbation is increased.
This can be interpreted as the success rate of fooling the target model into classifying any image in CIFAR-10 as the chosen
class.

TABLE IV: Error rates for non-targeted CIFAR-10 attack, under
the `∞ metric. UAPs are constructed using row models and
tested against pre-trained column models.

V G G - 1 9 D E N S E N E T R E S N E T- 1 0 1

V G G - 1 9 0.666 0.550 0.612
D E N S E N E T 0.543 0.750 0.648
R E S N E T- 1 0 1 0.514 0.681 0.851

E N S E M B L E 0.499 0.742 0.849

z1, z2 ← N (0, 1)100, z1 6= z2, at successive training steps,
for the ImageNet dataset. Since we expect a high degree of
structure in a UAP, SSIM is measured in addition to MSE, as
it has been argued that MSE does not map well to a human’s
perception of image structure [25], [39].

At the beginning of training, there is litle structural similarity

between U(z1) and U(z2). Throughout training the SSIM
score never increases beyond 0.8, while the MSE continually
increases. While the structural similary of UAPs learned by a
UAN is high, it does learn to generalize to multiple UAPs that
are unique from one another. Similar effects, albeit scaled down
due to the smaller image size, are found for the CIFAR-10
dataset in Figure 10.

Does a UAN that learns to generalize to multiple UAPs
do so to the detriment of attack accuracy? We verify this is
not the case by training a UAN on a fixed noise vector and
comparing to a UAN trained with non-fixed noise vectors. We
found similar error rates for the two settings (see Table V);
there is no loss in accuracy by extending a UAN to output
multiple adversarial perturbations.

5

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

M
ea

n
sq

ua
re

d
er

ro
r

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 si

m
ila

rit
y

in
de

x

Fig. 5: MSE and SSIM scores of UAPs throughout training a
UAN against VGG-19 for the ImageNet dataset.

TABLE V: Error rates for `∞ attacks on CIFAR-10. We
compare between a UAN trained on fixed noise vectors and a
UAN trained on non-fixed noise vectors.

Fixed z Non-fixed z

V G G - 1 9 0.661 0.666
R E S N E T- 1 0 1 0.859 0.851
D E N S E N E T 0.760 0.750

D. Targeted Attacks

We follow the same experimental set-up as in Section IV-A,
however now the attacker chooses a class, c, they would like
the target model to classify an adversarial example as, and
success is calculated as the probability that an adversarial
example is classified as c. Figure 4 shows, for each class in
CIFAR-10, the error rate of the target model as we allow larger
perturbations. For nearly every class, attacks on ResNet-101 are
most successful, while attacks on VGG-19 are least successful.
This is in agreement with our findings in a non-targeted attack
setting (cf. Table III). Despite VGG-19 being the most difficult
target model to attack, it is the most well calibrated; the error
rate on the training set is nearly identical to the error rate on the
validation set for all classes, while there are small deviations
between these two scores for ResNet-101 and DenseNet.

By looking only at results on VGG-19, one may infer that
the choice of target class heavily influences the error rate (e.g.
crafting UAP’s for the dog and ship classes is more difficult
than others). However, this is not replicated with ResNet-101
or DenseNet. We do not observe any dependencies between
attack success and the target class; the attack success at different
perturbation rates is similar for all classes. Figure 6 shows this
attack applied to a DenseNet target model for the CIFAR-10
dataset for all source/target class pairs. Nearly all attacks are
indistinguishable from the source image. Similar results are
found in Figure 11 and Figure 12 for VGG-19 and ResNet-101
target models, respectively.

Interestingly, all targeted attacks follow a sigmoidal curve
shape. Empirically, we found that for all three target models,
there existed images that were weakly classified correctly

0
1

2
3

4

So
ur

ce
 C

la
ss

 5
6

7
8

0

9

1 2 3 4 5

 Target Class

6 7 8 9

Fig. 6: Our `∞ attack against a DenseNet target model on
the CIFAR-10 dataset, for every source/target pair. Displayed
images were selected at random.

(there was almost no difference between the largest probability
score and probability score at the target class) and strongly
classified correctly (there was three to four orders of magnitude
difference between the probability score at the largest class
and the probability score at the target class). At the beginning
of training, the UAN discovers a perturbation that causes
misclassifications when applied to the weakly classified images,
but takes longer to find adversarial perturbations for the majority
of images, resulting in a long tail at the beginning of training.
With a similar effect taking place at the end of training to find
adversarial perturbations for strongly classified images.

For the ImageNet dataset, we selected three classes at random
and performed a targeted attack. Error rates and selected
samples are given in Figures 13 to 15. We observed that the
generated UAPs resembled the structure of the target class. For
example, a golf ball pattern can be clearly seen in perturbations
in Figure 13.

E. Importance of training set size

So far, we have assumed the attacker shares full access to
any images that were used to train the target model. However
in practice, this may not be the case - an attacker may only
have access to the type or a subsample of the training data. We
therefore evaluate our non-targeted `∞ attack under stronger
assumptions of attacker access to training data.

Figure 7 shows the error rate caused by a UAN trained on
subsets of the CIFAR-10 training set. As expected, training
on more data samples improves the success of the attack;
perturbations from a UAN trained on only 50 images (5 from
each class) fools 17.1% of validation set images in ResNet-
101. The attack is successful when applied to nearly a fifth of
images while only learning from 0.1% of the training set. The
attack succeeds in 80.2% of cases when trained on 20% of the
training set - in other words, there is virtually no difference
in test accuracy when training on between 80-100% of the
training set.

6

50 500 2,000 10,000 Full training set
 (50,000)

Number of training images

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

Fig. 7: Non-targeted `∞ attack against ResNet-101 on the
CIFAR-10 dataset. We vary the number of samples the UAN
is trained on, and report results on the validation set.

0 5 10 15 20 25 30 35 40
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 M

od
el

 A
cc

ur
ac

y

Fig. 8: A cat-and-mouse game of non-targeted `∞ attacks and
adversarial training for a VGG-19 target model on CIFAR-
10. The upper green points are the target model accuracies
on adversarial images after adversarial training, the lower red
crosses are the target model accuracies on adversarial images
after the attack. The dotted line is target model accuracy on
source images.

We find no significant difference in error rates between a
UAN that has been trained on many data samples and few
data samples. The amount of data samples provided to the
UAN does not significantly impact its ability to learn to craft
adversarial perturbations, all that must be known is the structure
of the dataset on which the target model was trained. We note
that this is in agreement with Papernot et al.’s [24] findings
on the number of source images required to launch attacks on
black-box models.

In addition to measuring attacker success for different
training set sizes, we experimented with different batch sizes,
ranging from 16 to 128, for the CIFAR-10 dataset. However,
we did not observe any significant deviations in the error rate.

V. AT TA C K I N G A D V E R S A R I A L T R A I N I N G

Adversarial training [7], [16] modifies the training of a
model in order to make it more robust to adversarial examples.
During training, the loss function L(θ, x, y) is replaced by
α · L(θ, x, y) + (1 − α) · L(θ, x + δ′, y). By augmenting the
original data to include adversarial counterparts, the model

learns to classify adversarial examples correctly. Non-generative
attacks have shown to be successful against adversarially trained
models, however, recent work [1] suggested that this may not
be the case for UAPs. In [1], adversarial training is successfully
applied to a CIFAR-10 classifier, effectively eliminating the
adversarial effect of UAPs.

In our work, we verified that this is case; adversarial training
eliminates UAP success. However, we find that adversarially
trained models are still vulnerable to UAN trained against the
defended model.

Similarly to Hamm [8], we play a cat-and-mouse game
where (1) a UAN is trained against a target model, and (2) the
target model is retrained with adversial examples crafted from
(1) (denoted ADV TM). This generates a sequence: UAN1
→ ADV TM1 → UAN2 → ADV TM2 → UAN3 → We
let this game play out for many rounds, and claim that if
adversarial training is a defense against UAPs, over many
rounds the classification error on adversarial examples should
tend to zero.

Figure 8 shows such a cat-and-mouse game over 20 rounds
of (1) and 20 round of (2). An adversarially trained target model
is able to classify nearly all adversarial examples correctly,
at any given round. However, attacks against adversarially
retrained models are only somewhat mitigated; there is a
25% reduction is attack success between the first and final
round. After this, the cycle reaches an equilibrium, with no
improvement in successive attacks or defended models.

V I . C O N C L U S I O N

We presented a first-of-its-kind universal adversarial example
attack that uses machine learning at the heart of its construction.
We comprehensively evaluated the attack under many different
settings, showing that it produces quality adversarial examples
capable of fooling a target model in both targeted and
non-targeted attacks. The attack transfers to many different
target models, and improves on other state-of-the-art universal
adversarial perturbation construction methods.

V I I . A C K N O W L E D G E M E N T S

Jamie Hayes is funded by a Google PhD Fellowship in
Machine Learning.

R E F E R E N C E S

[1] Anonymous. Universality, robustness, and detectability of adversarial
perturbations under adversarial training. Submitted to International
Conference on Learning Representations, 2018.

[2] A. L. Buczak and E. Guven. A survey of data mining and machine learn-
ing methods for cyber security intrusion detection. IEEE Communications
Surveys & Tutorials, 18(2):1153–1176, 2016.

[3] N. Carlini and D. Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. arXiv preprint arXiv:1705.07263,
2017.

[4] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In Security and Privacy (SP), 2017 IEEE Symposium on,
pages 39–57. IEEE, 2017.

[5] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. ZOO: Zeroth
Order Optimization based Black-box Attacks to Deep Neural Networks
without Training Substitute Models. ArXiv e-prints, Aug. 2017.

[6] A. Demontis, P. Russu, B. Biggio, G. Fumera, and F. Roli. On Security
and Sparsity of Linear Classifiers for Adversarial Settings. ArXiv e-prints,
Aug. 2017.

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

7

[8] J. Hamm. Machine vs Machine: Defending Classifiers Against Learning-
based Adversarial Attacks. ArXiv e-prints, Nov. 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[10] W. He, J. Wei, X. Chen, N. Carlini, and D. Song. Adversarial Example
Defenses: Ensembles of Weak Defenses are not Strong. ArXiv e-prints,
June 2017.

[11] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely con-
nected convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[12] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Adversar-
ial attacks on neural network policies. arXiv preprint arXiv:1702.02284,
2017.

[13] S.-J. Kim and S. Boyd. A minimax theorem with applications to machine
learning, signal processing, and finance. SIAM Journal on Optimization,
19(3):1344–1367, 2008.

[14] J. Kos, I. Fischer, and D. Song. Adversarial examples for generative
models. ArXiv e-prints, Feb. 2017.

[15] A. Krizhevsky. Learning multiple layers of features from tiny images.
2009.

[16] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

[17] T. D. Lane. Machine learning techniques for the computer security
domain of anomaly detection. 2000.

[18] W.-Y. Lin, Y.-H. Hu, and C.-F. Tsai. Machine learning in financial
crisis prediction: a survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(4):421–436, 2012.

[19] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal
adversarial perturbations. arXiv preprint arXiv:1610.08401, 2016.

[20] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2574–2582, 2016.

[21] K. R. Mopuri, U. Garg, and R. V. Babu. Fast feature fool: A data
independent approach to universal adversarial perturbations. arXiv
preprint arXiv:1707.05572, 2017.

[22] Z. Obermeyer and E. J. Emanuel. Predicting the futurebig data, machine
learning, and clinical medicine. The New England journal of medicine,
375(13):1216, 2016.

[23] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[24] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami. Practical black-box attacks against deep learning systems
using adversarial examples. arXiv preprint arXiv:1602.02697, 2016.

[25] T. N. Pappas and R. J. Safranek. Perceptual criteria for image quality
evaluation.

[26] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie. Generative
Adversarial Perturbations. ArXiv e-prints, Dec. 2017.

[27] K. Reddy Mopuri, U. Ojha, U. Garg, and R. Venkatesh Babu. NAG:
Network for Adversary Generation. ArXiv e-prints, Dec. 2017.

[28] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. Computer Vision–ECCV 2006, pages 430–443, 2006.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[30] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C.
Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, et al. Diffuse
large b-cell lymphoma outcome prediction by gene-expression profiling
and supervised machine learning. Nature medicine, 8(1):68–74, 2002.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[32] S. Sivaraman and M. M. Trivedi. Active learning for on-road vehicle
detection: A comparative study. Machine vision and applications, pages
1–13, 2014.

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2818–2826, 2016.

[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[36] T. B. Trafalis and H. Ince. Support vector machine for regression
and applications to financial forecasting. In Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint
Conference on, volume 6, pages 348–353. IEEE, 2000.

[37] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel.
The space of transferable adversarial examples. arXiv preprint
arXiv:1704.03453, 2017.

[38] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing
machine learning models via prediction apis. In USENIX Security
Symposium, pages 601–618, 2016.

[39] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a
new look at signal fidelity measures. IEEE signal processing magazine,
26(1):98–117, 2009.

[40] X. Wen, L. Shao, Y. Xue, and W. Fang. A rapid learning algorithm for
vehicle classification. Information Sciences, 295:395–406, 2015.

[41] Q.-H. Ye, L.-X. Qin, M. Forgues, P. He, J. W. Kim, A. C. Peng, R. Simon,
Y. Li, A. I. Robles, Y. Chen, et al. Predicting hepatitis b virus-positive
metastatic hepatocellular carcinomas using gene expression profiling and
supervised machine learning. Nature medicine, 9(4):416, 2003.

[42] F. Zhang, P. P. Chan, B. Biggio, D. S. Yeung, and F. Roli. Adver-
sarial feature selection against evasion attacks. IEEE transactions on
cybernetics, 46(3):766–777, 2016.

8

TABLE VI: Error rates for non-targeted `∞ attacks on Ima-
geNet.

V G G - 1 9 I N C E P T I O N - V 1 [3 3]

UAN 0.846 0.809
Poursaeed et al. [26] 0.801 0.792
Mopuri et al. [27] 0.838 0.904

A P P E N D I X A
A N O T E O N R E C E N T C O N C U R R E N T W O R K

We are unaware of any previous work that studies the
relationship between generative models and universal ad-
versarial perturbations. However, we note that two recent
studies [26], [27] also craft perturbations using generative
models 4. Poursaeed et al. [26] have a similar set-up to our
attack, optimizing under both `2 and `∞ metrics, however,
they did not include a distance minimization term within
the objective function, instead relying a scaling factor before
applying the perturbation to an image. The Mopuri et al. [27]
attack is only optimized using the `∞ metric. They also eschew
a distance minimization term, and instead include a diversity
term within the objective function, so that the objective does
not get stuck in a local minima resulting in a limited number
of effective perturbations. We were unable to obtain source
code for Mopuri et al.’s [27] attack and were unsuccessful
in replicating results, and so we report comparison in results
only on the target models that were shared in both pre-prints,
on ImageNet (since other works only report results on this
dataset for the task of generating UAPs) using the `∞ metric
(see Table VI).

4Poursaeed et al’s. [26] pre-print was made available online 12 hours before
our first version was made available, while Mopuri et al’s. [27] pre-print was
made available three days afterwards.

9

(a) Inception-V3: Fire engine (54.6%), δ′, Wrecker (79.4%)

(b) ResNet-152: Table lamp (87.2%), δ′, Tabby cat (41.9%)

(c) VGG-19: Radio telescope (97.5%), δ′, Great Pyrenees (36.7%)

Fig. 9: Selection of successful adversarial examples (with target model confidence) from non-targeted `∞ attacks on ImageNet.
From left to right: Source image, UAP, adversarial image.

0 20 40 60 80 100 120 140
0

100

200

300

400

500

M
ea

n
sq

ua
re

d
er

ro
r

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 si

m
ila

rit
y

in
de

x

Fig. 10: MSE and SSIM scores of UAPs throughout training a UAN against VGG-19 for the CIFAR-10 dataset.

10

0
1

2
3

4

So
ur

ce
 C

la
ss

 5
6

7
8

0

9

1 2 3 4 5

 Target Class

6 7 8 9

Fig. 11: Our `∞ attack against a VGG-19 target model on the CIFAR-10 dataset, for every source/target pair. Displayed images
were selected at random.

0
1

2
3

4

So
ur

ce
 C

la
ss

 5
6

7
8

0

9

1 2 3 4 5

 Target Class

6 7 8 9

Fig. 12: Our `∞ attack against a ResNet-101 target model on the CIFAR-10 dataset, for every source/target pair. Displayed
images were selected at random.

11

(a) Inception-V3: American egret (95.0%), δ′, Golf ball (98.8%). Overall target model error rate: 0.654

(b) ResNet-152: Binoculars (99.9%), δ′, Golf ball (62.9%). Overall target model error rate: 0.734

(c) VGG-19: Indian cobra (99.9%), δ′, Golf ball (99.7%). Overall target model error rate: 0.514

Fig. 13: Selection of successful adversarial examples (with target model confidence) for targeted `∞ attacks on ImageNet. The
target class was randomly chosen to be Golf ball. From left to right: Source image, UAP, adversarial image.

12

(a) Inception-V3: Pedestal (98.4%), δ′, Broccoli (88.7%). Overall target model error rate: 0.598

(b) ResNet-152: Tibetan mastiff (88.4%), δ′, Broccoli (98.1%). Overall target model error rate: 0.691

(c) VGG-19: Marmot (95.4%), δ′, Broccoli (48.4%). Overall target model error rate: 0.480

Fig. 14: Selection of successful adversarial examples (with target model confidence) for targeted `∞ attacks on ImageNet. The
target class was randomly chosen to be Broccoli. From left to right: Source image, UAP, adversarial image.

13

(a) Inception-V3: Lionfish (89.7%), δ′, Stone wall (54.0%). Overall target model error rate: 0.533

(b) ResNet-152: Pinwheel (99.9%), δ′, Stone wall (47.0%). Overall target model error rate: 0.587

(c) VGG-19: Golf ball (99.9%), δ′, Stone wall (23.7%). Overall target model error rate: 0.447

Fig. 15: Selection of successful adversarial examples (with target model confidence) for targeted `∞ attacks on ImageNet. The
target class was randomly chosen to be Stone wall. From left to right: Source image, UAP, adversarial image.

