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Abstract 

The brain’s visual and navigational systems are thought to be involved in distinct neural 

processes. Yet, it is known that neurons in areas involved in the formation of spatial 

representations, such as the hippocampus, are also influenced by visual signals. In this 

Thesis I asked whether a similar influence exists in the opposite direction, namely whether 

navigational signals influence processing in primary visual cortex (V1) and in six higher 

visual areas. In parallel, given that little is known about the role of higher visual areas, 

especially during behaviour, I will seek to characterise their functional properties and 

differences across conditions of increased behavioural complexity, from passive viewing of 

drifting gratings all the way to virtual navigation. 

In the first Results chapter, Chapter 3, I will demonstrate that during running through a 

virtual reality environment, visual responses as early as in V1 are strongly influenced by 

spatial position. From Chapter 4 onward, together with V1 I will also focus on 6 higher 

visual areas (LM, AL, RL, A, AM and PM). Specifically, I will attempt to probe activity in 

these areas across a wide spectrum of conditions: passive viewing of drifting gratings 

(Chapter 4); active engagement in virtual reality (Chapter 5) and passive viewing in virtual 

reality (Chapter 6). The results presented in Chapters 5 and 6 will suggest that spatial 

modulation is present across visual areas specifically during active behaviour. Finally, in 

Chapter 7 I will ask whether activity in V1, AL and the posterior parietal cortex (PPC) 

depends on yet another navigational variable, distance run, and how is this dependence 

different between areas. 

In summary, by combining ideas and approaches from research in vision and navigation, 

I will seek to provide new, intriguing evidence about how neurons across the visual cortex 

combine visual with navigation-related signals to inform behaviour.  
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Impact Statement  

How the brain works is a fundamental question, that has always fascinated the scientific 

community as well as the general audience. Today, much of our insight on the brain’s 

mechanisms originates from studies on the visual system and the navigational system, 

which are two of the most studied pathways in neuroscience. Yet we do not know how 

they work together.  

In this Thesis I addressed this question and provided several lines of evidence indicating 

that signals from the brain’s navigational system interact with visual signals much earlier 

than expected. I believe these findings will interest a wide range of neuroscientists, 

including and beyond the large communities who study vision or navigation. In fact, the 

importance of some of the findings presented here was recently appreciated by the Nature 

scientific journal, and I am glad to mention that our manuscript ‘Coherent encoding of 

subjective spatial position in visual cortex and hippocampus’ has been accepted for 

publication. Having our manuscript accepted by such a prestigious, multidisciplinary 

scientific journal is already a proof of the potential impact of our findings to the scientific 

community. 

In addition, I believe that these findings will also be beneficial beyond the scientific 

community. I hope that my results obtained here from experiments in mice, will eventually 

be mapped on our brains and perhaps will provide some new insight on the origins of 

neuropathological disorders. Indeed, in light of a new, fascinating era in neuroscience, we 

are now starting to recognise that many of the brain’s areas, traditionally thought to 

function independently, are actually strongly interacting with each other; dysfunction of 

these interactions may be the cause of several disorders. Along these lines, in this Thesis I 

provide evidence suggesting that the early visual system is influenced by the brain’s 

navigational system. I am certain that these new ideas will be of interest to the broad 

audience and will contribute towards a revision of our current knowledge on the 

fundamental mechanisms underlying cortical processing.   
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 General introduction 

Decades of research have provided valuable insight into the functional and anatomical 

properties of the brain’s visual system. According to a simplified, textbook-like summary of 

the visual system’s properties, visual input impinging on the retina travels through the 

lateral geniculate nucleus (LGN) of the thalamus into the primary visual cortex (V1). From 

V1, visual information is then distributed to higher order structures, and, depending on 

task demands, it is processed by a specialised set of higher visual areas. Indeed, the visual 

system possesses multiple visual streams, that function in parallel and project to diverse 

downstream targets (Nassi and Callaway, 2009).  

Most of the knowledge on the existence of parallel visual streams stems from studies in 

the primate cortex (Milner and Goodale, 2008), and in fact the first traces of evidence came 

from human studies in second world war patients back in the 1960s. In 1969, Newcombe 

(Newcombe, 1969) observed that subgroups of patients exhibited distinct task performance 

deficits depending on whether they had gunshot wounds in the parietal or temporal lobe. 

Patients with parietal lesions could not perform visuospatial tasks, but they were still able 

to perform visual recognition tasks, whereas patients with temporal lesions performed well 

in visuospatial tasks, but poorly in visual recognition tasks. After this initial report, decades 

of research in primates were to follow, until a refined view on the existence of parallel 

streams was eventually brought forward by Goodale and Milner in 1992 (Goodale and 

Milner, 1992). According to this view, the visual system possessed two anatomically and 

functionally distinct pathways, both arising from V1; the ‘what’ pathway is involved in 

visual perception and it enables us to perceive features such as shape, orientation, size and 

faces; the ‘where’ pathway is involved in vision for action, and it allows us to process spatial 

context, such as location, distance and motion  (de Haan, Jackson, and Schenk, 2018). 
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Since then, this model proposed by Milner and Goodale has inspired numerous studies 

to investigate the functional specificity of visual pathways in primates, and continues to be 

inspiring to date. Nevertheless, based on current knowledge, this model is indubitably an 

oversimplification. This notion is particularly highlighted in the recent review by (Galletti 

and Fattori, 2018). Here the authors summarise evidence from primate and human studies 

suggesting that the ‘where’ pathway is further divided into two sub-streams. Importantly 

though, they underline that none of the processing cortical streams should be viewed as an 

ensemble of interconnected areas dedicated to only one function. Instead, in view of 

modern theories proposing that the brain’s functions arise from networks of broadly 

interconnected neurons, it is argued that the same neurons participate in more than one 

processes by dynamically changing their function depending on context. 

The ability of neurons to dynamically change their function depending on behavioural 

context has been emphasised in various ways by yet another considerable set of studies in 

primates focusing on top-down influences (for a review on top-down influences on visual 

processing see Gilbert and Li, 2013. Although an exhaustive enumeration of the relevant 

literature is beyond the scope of this introduction, it should be mentioned that thanks to 

these top-down influences, which can take many forms, neurons at the earlier processing 

stages can modulate their activity to reflect specific perceptual demands. Neurons in the 

visual cortex, for instance, can convey different information about the same visual scene 

through influences by several factors, varying from attention or expectation to learning and 

memory (Gilbert and Li, 2012).  

If activity in visual cortex can be influenced by such a broad range of cognitive 

processes, then it is intriguing to hypothesise that it may also be influenced by navigation-

related signals during visually-guided navigation.  

Navigation, or in other words, one’s ability to find her way in an environment is a 

function of paramount importance, and as such, it is conserved across species. Unlike the 

origins of our knowledge on visual processing though, which came from studies in the 

primate and cat, much of the insight on the neural mechanisms underlying navigation 

originated from studies in the rat. Since the pivotal study of John O’Keefe in the 1970s 

(O’Keefe, 1976), numerous studies have utilised a plethora of real environments and mazes 

to dissect the principles of navigation in the rat. Instead, studying navigation in a real 

environment in humans and primates was less straightforward (although see for eg. 

(Matsumura et al., 1999) on monkeys performing a real translocation task). Therefore, 
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pivotal studies seeking for the existence of a spatial cognitive map in primates (Rolls, 

Robertson, and Georges-François, 1997) and humans (Ekstrom et al., 2003) turned to 

different experimental designs, such as free-viewing memory tasks (Rolls, Robertson, and 

Georges-François, 1997) or virtual reality environments (Burgess, Maguire, and O’Keefe, 

2002).  

The use of virtual reality to probe navigation in mice was introduced a bit later 

(Dombeck et al., 2007; Harvey, Collman, Dombeck, and Tank, 2009). In this configuration, 

mice ran through a virtual reality environment while head-fixed. Head-fixation thus 

eliminated motion artefacts and enabled accurate measurement of neural activity during 

behaviour. The introduction of head-fixation experiments in mice coincided with the 

development of powerful genetic tools, which allowed monitoring of large neural 

populations using optical techniques as well as the precise, but reversible, perturbation of 

neural activity with the use of optogenetic methods (Zeng and Madisen, 2012). These 

technical advances marked the era when the mouse would become an increasingly useful 

model organism for probing neural mechanisms underlying various demanding cognitive 

processes, such as visual perception or visually-guided navigation. And indeed, it turned out 

that mice were able to perform behaviours more complex than what was previously 

appreciated.  

By building upon the invaluable insight provided by two parallel streams of research on 

vision and navigation, in this study we employed the technical advantages of the mouse 

model, to probe the influence of navigation-related signals across the visual cortex, and we 

found that these signals powerfully modulate visual responses during active behaviour. It 

remains to be seen whether similar mechanisms exist in other species.  Nonetheless, since 

visually-guided navigation is a behaviour widely conserved across species, we hope this 

study will provide new evidence on the fundamental principles underlying sensory 

processing during this behaviour.  

Below I summarise our knowledge on topics presented here, based on research 

performed in rodents. I will first refer to studies demonstrating the modulation of activity 

in V1 by non-sensory factors, similar, in the broad sense, to top-down influences found in 

primates. I will then talk about existing evidence indicating the anatomical and functional 

organisation of visual areas in the mouse. Next, I will enumerate the few studies that 

investigated the role of higher visual areas during behaviour, with a specific emphasis on 

navigation. I will also briefly discuss the little evidence available on the functional 
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differences between V1 and higher visual areas in the mouse, an important piece of 

knowledge if we want to continue talking about a potential organisation of the mouse 

visual areas into hierarchical processing streams. Finally, I will briefly discuss our main 

hypothesis on the transformation of visual signals into navigational signals and give an 

overview of the Results Chapters 3 to 7.    

1.1 Activity in V1 is modulated by non-sensory factors 

Activity as early as in V1 of the rodent is rapidly modulated by a broad-range of non-

sensory factors. Indeed, V1 neuronal responses can be powerfully shaped by factors such 

as attention (Zhang et al., 2014), learning (Jurjut, Georgieva, Busse, and Katzner, 2017; 

Makino and Komiyama, 2015; Poort et al., 2015), reward expectancy (Poort et al., 2015; 

Shuler and Bear, 2006) or behavioural state (Niell and Stryker, 2010). For instance, learning 

of a behaviourally-relevant stimulus induces improved sensory processing performed by 

neurons selective for that stimulus (Jurjut, Georgieva, Busse, and Katzner, 2017; Poort et 

al., 2015); anticipation of a rewarding (Shuler and Bear, 2006) or aversive event (Makino 

and Komiyama, 2015) is reflected in the emergent timing activity of many V1 neurons; and 

locomoting behaviour is associated with enhancement of visually-evoked responses and an 

increase in the LFP gamma power which is a hallmark of arousal (Lee et al., 2014; Niell and 

Stryker, 2010). Thus, these studies, together with others, have provided compelling 

evidence that processing in V1 goes beyond the reliable representation of purely sensory 

stimuli; and that in fact, higher-level functions, originally thought to occur at a later 

processing stage, are already present much earlier along the sensory processing pathway.  

Much of what we know today about the effect of behavioural context on visual 

processing in the mouse comes from studies investigating the influence of a simple 

behaviour: locomotion. Following Niell & Stryker (2010), numerous studies sought to 

characterise the multifaceted influence of this simple behaviour on V1 neuronal activity. 

For example, the increase in cortical gain observed during locomotion is associated with 

subthreshold effects: during locomotion, large-amplitude, low-frequency fluctuations of the 

membrane potential are suppressed, resulting in reduced membrane potential variability 

(Bennett, Arroyo, and Hestrin, 2013); furthermore, the membrane potential of excitatory 

and most inhibitory cell types shifts towards more depolarised potentials (Polack, 

Friedman, and Golshani, 2013). In addition, the locomotion-induced increase in cortical 

gain is observed not only in the orientation tuning (Niell and Stryker, 2010) but also in the 

contrast response functions (Lee et al., 2014). Beyond a uniform increase in cortical gain, 
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locomotion is also associated with a decrease in the strength of surround suppression 

encountered by V1 neurons during visual stimulation, thereby affecting spatial integration 

(Ayaz, Saleem, Schölvinck, and Carandini, 2013; Erisken et al., 2014). It also exerts a 

stronger influence in the activity of neurons preferring high spatial frequencies, thereby 

enhancing spatial resolution (Mineault, Tring, Trachtenberg, and Ringach, 2016). Finally, 

locomotion increases the amount of visual information encoded by the V1 population via 

two mechanisms: an increase in the firing rate (Dadarlat and Stryker, 2017), and a decrease 

in noise correlations (Dadarlat and Stryker, 2017; Erisken et al., 2014). Taken together, 

these findings indicate that the effects of locomotion go beyond a global change in cortical 

gain. Thus, locomotion cannot be considered the sole epiphenomenon of arousal for a 

discussion see (Niell, 2015). In fact, two studies that further investigated the effects of 

locomotion on V1 activity, attempted to disentangle arousal from locomotion (Reimer et 

al., 2014; Vinck, Batista-Brito, Knoblich, and Cardin, 2015). These studies revealed that 

although some effects are exclusively related to increased arousal, others are mediated by 

locomotion per se. These results pointed towards the dual nature of locomotion: it is partly 

the hallmark of an internal state, but also a physical variable with an important role in visual 

processing (Wekselblatt and Niell, 2015).   

If locomotion plays such a key role in visual processing, then an important question 

arises: how are locomotor signals combined with visual signals under more natural 

conditions, such as during navigation? Indeed, during navigation the world around us 

changes as we move. To investigate the modulation of V1 activity during navigation, 

several studies have implemented behavioural paradigms in virtual reality (Keller, 

Bonhoeffer, and Hübener, 2012; Saleem et al., 2013); one advantage of such paradigms is 

that they allow active engagement with the sensory environment, since the animal’s self-

motion (speed) controls the update of the visual scenes (Poort et al., 2015); a second 

advantage, is the precise control of the visual scenes falling on the retina, since the animals 

are head-fixed. By exploiting the advantages of a virtual reality environment, Saleem et al. 

2013 showed that the firing rate of most neurons was well predicted by a continuous model 

accounting for both position along the virtual reality corridor and speed. To further 

disentangle modulation by virtual and running speed, they replayed previous sessions to the 

animal regardless of its running behaviour (‘open-loop condition’), and found that many 

neurons combined running and virtual speed equally. On the other hand, Keller et al. 2012 

sought to characterise mismatch signals between self-motion and visual flow in the context 
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of predictive coding and found that responses of approximately 10% of V1 neurons were 

time-locked to the brief perturbations (halts) of the visual flow.   

Overall, thanks to this plethora of studies on V1 activity during behaviour, not only 

have we obtained a good grasp of the basic properties of the early visual system in the 

mouse, but we are also now starting to unravel its neural processes underlying rich 

behaviours. Yet, much less in known about the functional and anatomical organisation of 

areas beyond V1, let alone their role in guiding behaviour. In the following sections I first 

enumerate pivotal studies that attempted to dissect the organization of higher visual areas 

in the mouse. I then review studies that sought to reveal the functional properties of higher 

visual areas using classic stimuli. Finally, I outline our current knowledge on the role of 

higher visual areas in the rodent during complex behaviours.    

1.2 Functional and anatomical organisation of higher visual 

areas in the mouse 

1.2.1 Identification of higher visual areas in the mouse 

The first study to precisely parcellate the mouse visual cortex into V1 and 9 higher 

visual areas based on anatomy and receptive field mapping was the study by Wang and 

Burkhalter in 2007 (Wang and Burkhalter, 2007). By injecting three anterograde tracers at 

V1 sites representing distinct parts of the visual field, the authors showed that 9 out of 15 

V1 targets, areas POR, P, LM, LI, AL, RL, A, AM and PM, contained complete 

representations of the visual field (Figure 1-1). In addition, all these areas had larger 

receptive fields than V1. 

In the years to follow, two major studies sought to determine the exact number and 

boarders of higher visual areas using functional methods. Garrett et al. used intrinsic 

optical imaging to obtain maps of retinotopy together with an automated method which 

defined boarders between areas based on the reversal of the retinotopic gradient (Garrett, 

Nauhaus, Marshel, and Callaway, 2014; Juavinett et al., 2017). The authors identified 8 out 

of 9 areas reported by Burkhalter et al.; specifically, their approach did not classify A as an 

actual higher visual area. They also listed two new areas for the first time in the mouse, M 

and LLA. Interestingly, the authors of this study also reported that higher visual areas 

exhibited biases in visual field coverage. For instance, areas in lateral visual cortex, such as 

LM, AL or RL have representations of visual space that are more biased towards the 

centre. Instead, areas of the medial visual cortex, such as PM or M, have representations 
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that are more biased towards the periphery. This bias in each area’s representation of visual 

space is rather emphasized in a later study by Zhuang et al (2017). Here the authors 

highlight that none of the higher visual areas represents the whole visual field. In fact, even 

areas immediately adjacent to V1, represent a distinct portion of the visual field. With 

respect to the list of retinotopically organised regions in the mouse, the same study listed 4 

additional regions of cortex (termed ‘patches’). These patches were MMA, MMP, RLL and 

part of the retrosplenial cortex (RS). Thus, to date the posterior cortex contains 16 

retinotopically organised regions (V1, LM, LI, AL, LLA, RL, A, AM, PM, M, P, POR, 

MMA, MP, RLL, RS), and there is still a possibility that new regions may be added in the 

future.   

 

Figure 1-1: Identification of the mouse higher visual areas. 
Projections from V1 to higher visual areas were identified with the use of three anterograde tracers 
(yellow, green, red) injected at different retinotopic positions in V1. Adapted from Wang & Burkhalter 
(2007). Abbreviations: A, anterior; AL, anterolateral; AM, anteromedial; LI, laterointermediate; LM, 
lateromedial; P, posterior; PM, posterior medial; POR, postrhinal; RL rostrolateral; V1, primary 
visual cortex.    

 

Because the set of regions classified as retinotopically organised may not be exhaustive, 

and also because just the retinotopic organisation of an area does not necessarily imply it is 

an actual higher visual area, it is important that additional criteria are met for the 

identification of a set of higher visual areas in the mouse (Glickfeld and Olsen, 2017): these 

criteria could be functional, based for example on evidence for functional specialisation; 

alternatively, these criteria could be based on anatomical connectivity, whether for instance 

higher visual areas receive input from the higher-order visual thalamic nucleus, LP. 
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1.2.2 Functional specialisation of higher visual areas 

The functional specialisation of higher visual areas has been the focus of several studies 

(Andermann et al., 2011; Van den Bergh, Zhang, Arckens, and Chino, 2010; Marshel, 

Garrett, Nauhaus, and Callaway, 2011; Murakami, Matsui, and Ohki, 2017; Roth, 

Helmchen, and Kampa, 2012; Smith et al., 2017; Tohmi et al., 2014). All these studies have 

used similar stimulation protocols to probe the spatiotemporal selectivity of each area. 

Spatiotemporal selectivity is then used as evidence indicating whether an area belongs to 

one of two putative processing streams: a stream specializing in object recognition (the 

‘what’ or ventral stream); a stream specializing in motion perception (the ‘where’ or dorsal 

stream). For instance, an area belonging to the ventral stream, should have high spatial and 

low temporal acuity, therefore it should prefer high spatial and low temporal frequencies. 

Conversely, areas involved in action guidance should have the opposite preference: they 

should be tuned to high temporal and low spatial frequencies.  

The first study to probe spatiotemporal tuning differences between V1 and LM in 

mouse (termed V2L) found that V1 and LM were very similar in their spatial and temporal 

frequency tuning (Van den Bergh, Zhang, Arckens, and Chino, 2010).  Beyond LM, the 

first two studies to probe spatiotemporal tuning in more than one higher visual areas in the 

mouse were Marshel et al. (2011) and Andermann et al. (2011). Using wide-field imaging 

and 2-photon microscopy in anaesthetised mice, Marshel et al. (2011) analysed the tuning 

properties of neurons in V1 and 6 HVAs, LM, AL, RL, AM, PM and LI. They found that 5 

out 6 HVAs preferred higher temporal frequencies than V1; only PM preferred lower 

temporal frequencies than V1. On the other hand, PM and LI were found to prefer higher 

spatial frequencies. The high temporal tuning of AL and the high spatial tuning of PM were 

also observed in awake mice (Andermann et al., 2011). In this study PM and AL were 

further discriminated based on peak speed preference, with PM preferring lower speeds 

than AL. Two following studies in anaesthetised mice confirmed the results reported 

previously (Roth, Helmchen, and Kampa, 2012; Tohmi et al., 2014). Roth et al. (2012) 

agreed that neurons in PM were mainly tuned to high spatial and low temporal frequencies 

(although, in the same study they also report a subpopulation in PM broadly tuned to low 

spatial frequencies). The study by Tohmi et al. (2014) confirmed the high velocity tuning 

for AL. It also showed that LM, RL and AM preferred higher stimulus velocities than V1.  

More recently, two studies focusing on the development of higher visual areas provided 

additional evidence on each area’s spatiotemporal preferences (Murakami, Matsui, and 
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Ohki, 2017; Smith et al., 2017). Murakami et al. (2017) considered 3 additional areas: POR, 

P and A. They found that POR and P, together with LI and PM, preferred high spatial and 

low temporal frequencies. In contrast, A, together with RL, were tuned to higher temporal 

frequencies than any other area, as well as to low spatial frequencies. AM and AL had 

somewhat different properties compared to the aforementioned studies (compare with 

Marshel et al. (2011) and Tohmi et al. (2014)). AM was the only area in their dataset 

preferring high temporal but also high spatial frequencies (Marshel et al. (2011) reports 

preference for low spatial frequencies). AL was not tuned to high temporal frequencies as 

previously reported. It rather had intermediate properties, but it still preferred higher 

temporal frequencies than V1. Like AL, LM also had intermediate properties. It preferred 

slightly higher temporal frequencies than V1, but lower than AL; it also preferred moderate 

spatial frequencies. Similar were the results on LM’s spatial frequency preference based on 

the developmental experiments by Smith et al. (2017). During development, neurons in LM 

responded moderately stronger to both low and high spatial frequency stimuli. In contrast, 

neurons in PM responded more strongly to high spatial stimuli over time.  

The broad tuning of LM has also been reported by the few existing studies asking how 

functional specialisation in higher visual areas arises (Glickfeld, Andermann, Bonin, and 

Reid, 2013; Matsui and Ohki, 2013). Indeed, axonal projections from V1 to LM have no 

selectivity for spatial frequencies and exhibit only a modest bias towards lower temporal 

frequencies. Instead, axonal projections from V1 and LM to areas PM and AL exhibit 

spatiotemporal frequency biases that match the preference of these areas. Specifically, 

axonal V1 and LM boutons in AL prefer low spatial and high temporal frequencies; 

whereas V1 and LM boutons in PM prefer high spatial and low temporal frequencies. 

These results indicate that spatiotemporal selectivity arises, at least in part, from the 

functional specificity of axonal projections from V1, and it is most likely further refined 

through feedforward projections from other higher visual areas such as LM.  

Taken together these findings demonstrate that higher visual areas have distinct 

functional properties. Most studies report that PM, LI, P and POR prefer low temporal and 

high spatial frequencies, whereas AL, RL, AM and A prefer high temporal and low spatial 

frequencies. Instead, less clear-cut is LM’s preference. Some studies report higher temporal 

frequency tuning compared to V1; others find that that LM is broadly tuned and more 

similar to V1 compared to other areas.  
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Less conclusive have been the attempts of classifying an area as ventral-like or dorsal-

like based on its direction tuning properties. For instance, it is expected that an area 

involved in motion processing (i.e. dorsal-like) should also contain more cells with high 

direction selectivity compared to V1. According to Marshell et al. (2011) this is indeed the 

case for AL, RL and AM. High direction selectivity for these areas plus for LM was also 

demonstrated by Tohmi et al. (2014) and confirmed by Juavinett et al.(Juavinett and 

Callaway, 2015). for AL, AM and LM (but not for RL). On the other hand, Andermann et 

al. found lower direction selectivity in AL and PM compared to V1, whereas Roth et al. 

(2012) found similar direction selectivity between V1 and PM. Similar discrepancies were 

observed in the degree of orientation selectivity. Marshel et al. (2011) and Tohmi et al. 

(2014) reported higher orientation selectivity in LM, AL, RL and AM than in V1. LI was 

the only area with lower orientation selectivity than V1 (Marshel, Garrett, Nauhaus, and 

Callaway, 2011). In contrast, Andermann et al. found no difference in orientation selectivity 

between V1 and AL; also, consistent with the later study by Roth et al. (2012), they found 

no difference in orientation selectivity between V1 and PM. Overall, there has been 

considerable disagreement between studies about the orientation and direction tuning of 

higher visual areas. This disagreement can be attributed to the different stimulation 

protocols which may drive areas differently depending on their spatial and temporal 

frequency preference (Glickfeld and Olsen, 2017). 

A few studies have attempted to identify dorsal-like and ventral-like streams based on 

other criteria, such as responsiveness to the global motion of plaids (Juavinett and 

Callaway, 2015) or correlations in response magnitude (Smith et al., 2017). In the study by 

Juavinett et al., the authors stimulated V1, LM, AL, RL and AM in anaesthetised mice with 

plaids moving in 12 different directions. Since plaids are composed by two drifting gratings 

of different orientations, the authors asked whether neurons in these 5 areas were 

responding to the direction of motion of the two gratings (‘component’ cells) and/or to the 

perceived motion of the plaid as a whole (‘pattern’ cells). They found that all areas 

contained component cells. The results were less conclusive about the existence of pattern 

cells in the mouse visual cortex. Nevertheless, based on a small number of pattern cells 

found in LM and RL, the authors proposed that LM and RL may be part of the motion-

processing stream. To reconcile these findings with previous anatomical data (Wang, Gao, 

and Burkhalter, 2011; Wang, Sporns, and Burkhalter, 2012), which indicated that LM 

contributes to the ventral stream, the authors propose that LM, similarly to the primate V2, 

is part of both the dorsal and the ventral pathway. In the second study by Smith et al.(2017) 
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the authors recorded simultaneously from V1 and areas LM, AL, RL, LI and AM/PM (AM 

and PM were merged into a single area). Based on the correlations in response magnitudes 

between areas, two functional clusters were identified: one cluster comprised of LI and 

LM; a different cluster comprised of AL, RL and AM/PM. Because the clustering of areas 

into two groups was the same as the one reported previously by Wang et al. 2011 and 2012, 

the authors concluded that the LM-LI cluster corresponds to a ventral-like subnetwork, 

whereas the AL-RL-AM/PM cluster corresponds to a dorsal-like subnetwork.  

Overall, these studies have elucidated some of the aspects of the functional specificity of 

the mouse HVAs, based on properties which in classic primate studies have revealed the 

differential specialization of non-primary cortical areas for either object recognition or 

motion perception. Nevertheless, additional studies are required before concluding that the 

distinct properties found in the mouse higher visual areas do actually indicate the existence 

of areas specialised in either object or motion perception.       

1.2.3 Anatomical connectivity to and from higher visual areas 

 

Figure 1-2: Connectivity between higher visual areas in the mouse 
Summary of the optical density connections between higher visual areas. Adapted by Wang, Sporns, 
and Burkhalter, 2012. Note that each higher visual area projects to all other higher visual areas. 
However, based on the strength of their projections, higher visual areas are clustered into the 
ventral or dorsal substream.  

Unlike the primate visual cortex, the mouse V1 has strong projections to at least 9 

higher visual areas, LM, AL, RL, A, AM, PM, LI, P and POR (Wang and Burkhalter, 2007; 

Figure 1-1). The fact that V1 projections are distributed across several higher visual areas 
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could suggest that, unlike primates, higher visual areas in the mouse are not hierarchically 

organised. Nevertheless, the opposite has been suggested by several studies that sought to 

investigate connections to and from higher visual areas (D’Souza et al., 2016; Wang and 

Burkhalter, 2013; Wang, Gao, and Burkhalter, 2011; Wang, Sporns, and Burkhalter, 2012; 

Figure 1-2).  

For instance, areas LM and AL, which receive the strongest projections from V1(Wang 

and Burkhalter, 2007), seem to have a special role along the visual pathway; they are 

considered the ‘gateways’ of the ventral and dorsal stream respectively (Wang, Gao, and 

Burkhalter, 2011; Wang, Sporns, and Burkhalter, 2012). According to these two studies, 

LM is more strongly connected to V1, LI, P and POR, and this set of visual areas 

preferentially projects to entorhinal and temporal association regions. Instead, AL is more 

strongly connected to areas RL, AM, A and PM, and this set of visual areas preferentially 

projects to the retrosplenial, secondary motor and anterior cingulate cortex. Thus, despite 

the two areas sharing the same border, they have distinct connectivity profiles and 

therefore different roles in visual processing. 

The same group of investigators has provided additional anatomical evidence for the 

existence of a dorsal and a ventral pathway in the mouse (Wang and Burkhalter, 2013). 

Specifically, the ventral cluster of areas LM, LI, P and POR sends non-negligible 

projections to the superficial layers of the superior colliculus, which are known to be 

involved in visual processing. Instead the dorsal cluster of areas RL, AM, A and PM sends 

sparse projections to the superficial layers of the superior colliculus, but also to the deeper 

layers involved in premotor activity.    

A few other anatomical features have served as evidence that some higher visual areas 

lie at distinct hierarchical levels. LM for example, is thought to be the homologue of 

primate V2, because it is the only area sharing the vertical meridian with the lateral portion 

of V1 (Wang and Burkhalter, 2007). In addition, whereas higher visual areas typically 

receive indirect input through the pathway from the superior colliculus to the lateral 

posterior nucleus of the thalamus, LM is the only higher visual area receiving direct input 

from the lateral geniculate nucleus (Oh et al., 2014). Finally, LM has stronger feedback 

projections to V1 than AL (Wang, Gao, and Burkhalter, 2011), and overall stronger 

feedforward projections to other higher visual areas (D’Souza et al., 2016), suggesting that 

LM is at the lower level of the hierarchy after V1. In addition to determining the 

hierarchical position of LM, the later study by D’Souza et al. also probed the hierarchical 
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position of PM. The authors used anterograde tracing to label axonal terminals from V1, 

LM and PM to 9 higher visual areas. They then used the density of axon terminals in layer 

1 as a proxy for feedback projections, and the density of axon terminals in layers 2 to 4 as a 

proxy for feedforward projections. They found that the projections that LM sent out were 

more than those it received back. On the other hand, PM had similar amounts of 

feedforward and feedback projections. Given these findings, the authors concluded that 

LM lies at the bottom of the hierarchy among higher visual areas, followed by PM.  

Taken together, numerous anatomical and functional studies have provided valuable 

evidence on the anatomical and functional properties of higher visual areas in the mouse. 

Nevertheless, an important question still remains open: what is the type of transformations 

taking place in the higher visual areas in the mouse? Providing answers to this question is 

essential before concluding that, similar to the primate, higher visual areas in the mouse are 

segregated into parallel processing streams. To tackle this question, future effort should be 

directed towards probing higher visual areas during behavioural tasks. Indeed, only a 

handful of studies have attempted to probe the role of higher visual areas during behaviour 

(see for e.g. Funamizu, Kuhn, and Doya, 2016; Itokazu et al., 2018), with the vast majority 

of those focusing on the posterior parietal cortex (PPC), an area thought to overlap, at least 

in part, with the higher visual areas, RL, A and AM. Given the proposed overlap between 

the PPC and the higher visual areas RL, A and AM (Wang, Gao, and Burkhalter, 2011), 

perhaps additional insight can be drawn from the numerous studies on the rat PPC during 

complex behaviours (see for e.g. McNaughton et al.; Nitz, 2006; Whitlock et al., 2012). 

Along these lines, in the following section I will summarise our current knowledge on the 

role of higher visual areas, including PPC, in the rodent during behaviour. Given the main 

focus of the current study on virtual navigation, particular emphasis will be given to studies 

investigating the neural processes underlying navigation in the rodent.   

1.3 Activity in higher visual areas during behaviour 

In contrast to the considerable amount of evidence on the influence of locomotion on 

V1 activity, few studies have assessed the effects of locomotion on higher visual areas 

(Andermann et al., 2011; Huh et al., 2018; Lecoq et al., 2014). By comparing epochs of 

running versus resting, this handful of studies reported that the increase in behavioural 

gain, previously observed in V1 (Niell and Stryker, 2010), was also present in LM (Lecoq et 

al., 2014), AL and PM (Andermann et al., 2011), with responses in AL being more strongly 

modulated by spontaneous running than responses in PM (Huh et al., 2018). To date, there 
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are no studies on higher visual areas assessing the effects of locomotion beyond the 

modulation by behavioural state. Therefore, additional studies are required to fully 

characterise the influence of locomotion in higher visual areas. 

Besides locomotion, there is little evidence on the role of higher visual areas during 

more complex behaviours. If the mouse visual system is indeed composed of different, 

hierarchical processing levels, then a plausible hypothesis is that during complex behaviours 

some higher visual areas may be devoted to the multiplexing of sensory with non-sensory 

signals.  

A promising candidate for such an integrative function is the PPC, a cortical region 

involved in a broad spectrum of behaviours, from decision making processes to navigation 

see for e.g. Harvey, Coen, and Tank, 2012; Krumin, Harris, and Carandini, 2017. Notably, 

PPC overlaps, at least in part, with three higher visual areas: RL, AM and A (Glickfeld and 

Olsen, 2017; Wang, Gao, and Burkhalter, 2011), therefore it is reasonable to think that its 

function somehow relates to visual processing. Indeed, inactivation of the PPC in rats 

results in decreased performance during a visually-guided decision-making task (Raposo, 

Kaufman, and Churchland, 2014). This decrease in visual performance is causally linked to 

the disruption of visual processing taking place in the PPC, rather than to disrupted 

accumulation of evidence (Licata et al., 2017). In addition, performance in a memory-

guided visual discrimination task is affected when PPC is optogenetically inhibited during 

stimulus presentation, but it remains unchanged if PPC is inhibited during the delay period 

(Goard, Pho, Woodson, and Sur, 2016). Instead, performance does not change when 

inactivating PPC during a decision-making task based on auditory evidence (Raposo, 

Kaufman, and Churchland, 2014), and in fact PPC is minimally involved in the choice 

behaviour based on auditory evidence accumulation (Erlich et al., 2015). Taken together, 

these results demonstrate that the activity in the PPC is more sensitive to visual, rather than 

auditory, task features, consistent with its anatomical overlap with higher visual areas. In 

addition, it appears that PPC is not necessary for performance during the delay-working 

memory epoch of a visual discrimination task. 

So far, I outlined recent studies in rodents that shed light on the role of PPC during 

complex, nonnavigational tasks. What is the role of PPC during navigational tasks? During 

a virtual navigation, working memory task in mice, PPC neurons encode a specific decision 

at a specific moment in time, thereby forming sequences of activity at the population level 

(Harvey, Coen, and Tank, 2012). Therefore, unlike non-navigational tasks, in which PPC is 
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not involved in working memory (Goard, Pho, Woodson, and Sur, 2016), PPC does 

encode choice during a memory-guided navigation task. Following a different approach, a 

later study by Krumin et al (2017), showed that when mice make decisions in a visually-

guided virtual navigation task, PPC neurons encode navigational variables, such as position 

and heading, again highlighting the important role of PPC during navigation.  

The involvement of PPC during navigation highlighted by the two aforementioned 

studies in mice builds upon the long-standing view that the rodent PPC plays an important 

role during navigation. Evidence supporting this view originate mainly from studies in rats 

stemming back to the 90s (Save and Poucet, 2009). The original study by  McNaughton, 

1994 (McNaughton et al., 1994) found that the activity of many PPC cells reflected various 

self-motion variables, such as forward motion, turning or running. Importantly, neuronal 

activity did not solely reflect motor responses; some cells encoded combinations of motor 

variables with spatial variables, suggesting that PPC neurons integrated movement with 

spatial context. The ability of PPC neurons to code for complex motor behaviours was also 

demonstrated in a later study (Nitz, 2006), where it was shown that during navigation in 

labyrinth-like mazes the activity of PPC neurons coding for movement formed sequences 

that reflected the routes traversed by the animal. Therefore, PPC neurons encode self-

motion. These signals can occur up to 500 ms before the execution of movement, when 

rats forage in an open arena (Whitlock et al., 2012). Instead, when rats are engaged in a 

goal-directed task in a hairpin maze, PPC neurons change their tuning for self-motion to 

tuning for spatial position. The anticipatory activity of PPC neurons preceding movement 

was also demonstrated in the study by Wilber et al. (2014). Cells exhibiting this anticipatory 

activity performed mixed coding of head direction together with visual cue direction. 

Notably, modulation by the visual cues was also observed in cells coding for self-motion 

only, suggesting that the motion-related firing of these cells may be influenced by optic 

flow (Wilber et al., 2014). Overall, these studies suggest that PPC neurons combine self-

motion signals together with visuo-spatial features in the environment and point towards 

an integrative role of the PPC during navigation. 

How could this integrative function in the PPC be useful for navigation? One 

hypothesis is that the combined, head and cue direction information is then further 

combined with distance information giving rise to landmark vector cells in the 

hippocampus  (Wilber et al., 2014). To date, it is not clear whether coding for distance 

information takes place in the PPC. Wilber et al. reported that very few cells in the PPC 

coded for goal distance during a navigation-to-hidden-goal task. In contrast, in a later 
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study, goal-distance was reliably decoded by activity in PPC, as well as in PM, during an 

auditory virtual navigation task (Funamizu, Kuhn, and Doya, 2016). Even in the absence of 

auditory cues, goal distance could still be decoded from the population activity in the two 

areas, suggesting predictive activity, but in the presence of auditory cues, decoding errors 

were reduced, suggesting refinement of encoding activity by sensory input.  

Taken together, these findings underline the multifaceted role of PPC during complex 

behaviours. Although it is still debated which higher visual areas are part of the PPC, 

existing evidence on the function of the PPC during visually guided behaviours point 

towards an area involved in the transformations of visual with self-motion signals during 

navigation; such transformations could well be assigned to a higher visual area. However, 

drawing conclusions on the functional role of higher visual areas based solely on studies on 

the PPC is inadequate. Additional effort is required towards deciphering the functional role 

of the various higher visual areas during complex behaviours.   

1.4 Differences between V1 and higher visual areas during 

behaviour  

In the previous section I summarised our current knowledge on the role of higher visual 

areas during behaviour, by mainly extrapolating from studies in the rat PPC. Even fewer 

are the studies that used behavioural tasks to compare V1 to areas thought to lie higher in 

the sensory processing stream. Yet, such a comparison is crucial before drawing 

conclusions on whether hierarchical processing streams do exist in the mouse visual 

system.  

Few recent studies sought to characterise the differences between V1 and PPC (Goard, 

Pho, Woodson, and Sur, 2016; Pho et al., 2018) or AL/A/AM (Itokazu et al., 2018). 

During a visual discrimination task, V1 is dedicated to the processing of visual input, 

whereas PPC coded for both the sensory input and the behavioural choice (Goard, Pho, 

Woodson, and Sur, 2016). In addition, visual input elicited robust responses in V1 during 

both conditions of active engagement in the task and passive viewing (Pho et al., 2018). 

Instead, the majority of PPC neurons responded robustly only during active engagement; 

PPC neurons also changed their selectivity to match the new target stimulus after reversal 

of the task contingency, thus suggesting that unlike V1, activity in the PPC reflects the 

learned task context. In another study, in which mice were trained to perform a visually-

guided eye movement task, the authors demonstrated that, unlike V1, areas RL/A/AM 
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were connected reciprocally to a small portion of the secondary motor cortex involved in 

eye movements (Itokazu et al., 2018). Correspondingly, RL/A/AM coded for both eye 

movement and visual signals, whereas V1 population was biased towards purely visual 

activity.  

Overall, it appears that during visually guided, non-navigational tasks V1 activity is 

restricted to the processing of visual information, whereas higher level functions reflecting 

task demands arise in a subset of higher visual areas. It remains to be seen whether similar 

differences also exist between V1 and higher visual areas other than PPC, and whether 

such differences are still present during visually-guided navigation. 

1.5 The hypothesis: transformation of visual signals into 

navigation signals 

During visually-guided navigation the brain has to transform visual information encoded 

by the visual system into spatial information encoded by the navigational system. This 

transformation involves transitioning across different reference frames. For instance, 

information processed by the early visual system can be best described in a reference frame 

centred to the eye. Indeed, the receptive fields of neurons in the early visual system are 

measured in units of degrees in visual space, because they are invariant to eye orientation. 

In other words, when the direction of gaze changes, the receptive fields move with the eye. 

On the other hand, information processed by the brain’s navigational system, for example 

by the hippocampus, can be best described in a reference frame centred to the world. 

Indeed, neurons in this area called ‘place cells’ (O’Keefe and Dostrovsky, 1971) represent 

one’s position with respect to the external environment, or equivalently, these 

representations are fully invariant to one’s body orientation. Therefore, for visual 

information to guide navigation, it is required that visual, eye-centred representations are 

transformed into spatial, world-centred representations. 

Early studies in monkeys sought to dissect the neural circuits involved in coordinate 

transformations (Cohen and Andersen, 2002). For instance, the original study by Andersen 

and Mountcastle (1983) demonstrated that neurons in PPC performed coordinate 

transformations from an eye-centred reference frame to a head-centred reference frame. 

Specifically, it was hypothesised that for such transformations to exist, visual responses 

should no longer depend only on the angle x relative to the eye; they should also depend 

on the angle y relative to the direction of gaze, such that visual responses would become 
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invariant in a head-referenced frame. To test this hypothesis, the authors measured the 

receptive fields of the recorded neurons at varying gaze angles and found that visual 

responses were strongly modulated by the direction of gaze. Because different subsets of 

neurons coded for different combinations of stimulus position and gaze direction, 

effectively the whole PPC population coded for all possible stimulus locations relative to 

eye and gaze direction, resulting in a representation of the visual scene that was invariant 

with respect to the head, rather than just the eye.  

What is the mechanism underlying the dependence of PPC visual responses on the gaze 

angle? One characteristic of this dependence is that it is multiplicative, namely it exerts an 

effect on the magnitude of the visual response, without affecting the neuron’s selectivity 

(i.e. the neuron’s preferred location to fire maximally). This effect is reminiscent of gain 

modulation phenomena, which allow sensory signals to be combined with modulatory 

effects non-linearly(Salinas and Abbott, 2001). Consider for instance the influence of visual 

responses by the direction of gaze described above (Andersen and Mountcastle, 1983). This 

influence can be well described by the product of two functions: the neuron’s response 

profile f(x), which depends on the angle x relative to the eye and the modulatory factor g(y), 

termed the ‘spatial gain field’, which depends on gaze angle y. Then the firing rate of the 

neuron, r, is of the form: r = f(x)g(y), with g(y) depending on y linearly (Andersen, Essick, 

and Siegel, 1985).In addition, this non-linear, multiplicative behaviour can arise from a 

network with recurrent connections, where neurons with similar tuning properties should 

excite each other, whereas neurons with different tuning properties should inhibit each 

other (Salinas and Abbott, 2001). 

Overall, the aforementioned studies demonstrated that PPC neurons were able to 

perform transformations in multiple reference frames and proposed ‘gain fields’ as the 

appropriate theoretical framework for describing such operations. Based on existing 

evidence up until then, such gain fields operated in egocentric (eye or head), rather than 

allocentric, reference frames. Nevertheless, given the existence of place cells in 

hippocampus, which encode the animal’s position in allocentric coordinates (with respect 

to the world), it is reasonable to ask which brain area upstream of the hippocampus and 

downstream of the PPC transforms information from an egocentric to an allocentric 

reference frame. To isolate allocentric from egocentric gain fields, Snyder, Grieve, Brotchie, 

and Andersen (1998) asked whether visual responses at identical retinal locations in 

monkeys were affected by one of two types of transformations: 1. Rotation of body under 

head, which resulted in rotation of a reference frame with respect to the body, but not to 
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the world; 2. Rotation of body and head, which resulted in rotation of a reference frame 

with respect to the world, but not to the body. They found that most responses in area LIP 

were modulated by rotations of body under head, whereas most responses in area 7a were 

modulated by rotations of both body and head. These results suggested that body- and 

world-referenced gain fields were anatomically segregated, with LIP representing visual 

information in a body-centred reference frame and 7a in a world-centred reference frame. 

Importantly, the discovery of world-referenced gain fields in area 7a indicated that the 

brain is able to transform visual information from an egocentric-retinal reference frame 

into an allocentric-world reference frame, a process particularly useful during navigation. 

Overall these studies have provided powerful insight into the neural mechanisms 

underlying the transformations of information into multiple reference frames. Yet, it 

remains an open question how visual information transforms into navigation-related signals 

during visually-guided navigation. Here we hypothesised that similar to the gain fields 

found in monkeys, visual responses in the mouse may be modulated by spatial context 

during navigation. Consider for instance a cell that ‘likes’ the plaids. If the plaids are placed 

at two different locations in an environment, then this cell should respond similarly at the 

two locations -purely visual response- (Figure 1-3 left). Instead, if spatial location plays a 

role, then the visual response should be different at different locations although the 

presented stimulus is the same (Figure 1-3 right). 

 

 
To test this hypothesis, we recorded visual responses in V1 and 6 higher visual areas 

while mice ran head-fixed through a linear corridor in virtual reality. The corridor had a 

pair of landmarks, a grating and a plaid, that repeated twice, so that a purely visual neuron 

would respond similarly in those positions. However, many neurons as early as in V1 

preferred to fire more strongly to the landmarks in one position. These results suggest that 

Figure 1-3: Hypothesis on the 
modulation of visual responses by 
spatial location. 
Left: A visual cell that ‘likes’ the plaids 
exhibits the same response each time a 
plaid passes through its receptive field. 
Right: Hypothetical modulation of the 
visual response shown on the left by 
spatial location. Although the visual 
stimulus is the same, the cell responds 
differently at two different locations. 
Images with gratings and plaids represent 
segments of an environment -linear 
corridor. 
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visual responses are modulated by spatial context, and that this modulation arises as early 

as in a primary sensory area in the mouse.  

   

1.6 Brief overview 

With this review I have hopefully provided the reader with an adequate literature 

background and hinted on the questions I will address in the next chapters. Following a 

similar format like the one introduced here, I will first present results on the modulation of 

V1 by yet another factor, spatial context (Chapters 3). I will next characterise responses in 6 

higher visual areas, LM, AL, RL, A, AM and PM, across a wide spectrum of conditions: 

passive viewing of drifting gratings (Chapter 4); active engagement in virtual reality 

(Chapter 5) and passive viewing in virtual reality (Chapter 6). In Chapters 5 and 6 I will also 

ask whether the degree of spatial modulation is the same across areas. Finally, in Chapter 7 

I will ask whether activity in V1, AL and the PPC depends on another navigational variable, 

distance run, and how is this dependence different between areas. 

In summary, by combining ideas and approaches from research in vision and navigation, 

I will seek to provide new, intriguing evidence about how neurons across the visual cortex 

combine visual with navigation-related signals to inform behaviour. My hope is that these 

findings will extend beyond the mouse, shedding light on the fundamental principles 

underlying sensory processing across species during navigation.  
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 Methods 

All experimental procedures were conducted under personal and project licenses issued 

by the Home Office, in accordance with the UK Animals (Scientific Procedures) Act 1986. 

For calcium imaging experiments in the linear virtual corridor and during stimulation 

with drifting gratings, we used double or triple transgenic mice expressing GCaMP6 in 

excitatory neurons (5 females, 1 male, implanted at 4-6 weeks). The triple transgenics 

expressed GCaMP6 fast (Madisen et al., 2015) (Emx1- Cre;Camk2a-tTA;Ai93, 3 mice). The 

double transgenic expressed GCaMP6 slow (Wekselblatt, Flister, Piscopo, and Niell, 2016) 

(Camk2a-tTA;tetO-G6s, 3 mice). For calcium imaging experiments in the circular virtual 

maze we used 4 double transgenics expressing GCaMP6 slow (4 males). 

2.1 Surgical procedures 

4-8-week mice were implanted with an 8 mm circular chamber and a 4 mm craniotomy 

was performed over the left or right visual cortex under isoflurane anaesthesia (between 

1% and 2% depending on animal size and the stage of surgery). Before any operation, 

animals were injected subcutaneously with Rimadyl (0.5 mg/ml) and intramuscularly with 

Colvasone (0.2 mg/ml). Bulk of hair was removed with an electric razor, the head was 

fixed with the use of earbars, the skin was disinfected with iodine and a local anaesthetics 

(lidocaine) was applied on the scalp. Subsequently, an incision was made exposing the 

cranium on the left or on the right, such that both lambda and bregma were visible. The 

periostium was removed and the posterior muscles were gently retracted, so that an 8 mm 

headplate could be safely attached on the bone instead of the skin or the muscle. The skin 

in the periphery and the sutures were fixed with Vetbond. Craniotomy was performed by 

repeatedly rotating a biopsy punch and was shielded with a double coverslip (4 mm inner 
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diameter; 5 mm outer diameter). Post-surgery, some mice were allowed to recover for 7 

days before being water restricted.  

2.2 Visual stimulation 

2.2.1 Maps of retinotopy 

To measure retinotopy we presented a 14o-wide vertical window containing a vertical 

grating (spatial frequency 0.15 cycles/o), and swept (Kalatsky and Stryker, 2003; Yang, 

Heeger, and Seidemann, 2007) the horizontal position of the window over 135o of azimuth 

angle, at a frequency of 2 Hz. Stimuli lasted 4 s and were repeated 20 times (10 in each 

direction).  We obtained maps for preferred azimuth by combining responses to the 2 

stimuli moving in opposite direction, as previously described (Kalatsky and Stryker, 2003). 

2.2.2 Neuropil receptive fields  

To obtain neuropil receptive fields, on each recording session we presented sparse 

uncorrelated noise for 5min. The screen was divided into a grid of squares of 4 x 4 degrees 

size. Each square was turned on and off randomly at a 10Hz rate. At each moment in time 

2% of the squares were on. To compute the neuropil receptive fields, the field of view was 

segmented into 5x5 patches (100µm x 100 µm surface per patch). For each patch, we first 

averaged the raw fluorescence across the patch’s pixels. We then computed the stimulus-

triggered average of the averaged raw fluorescence trace. The response was further 

smoothed in space and its peak was defined as the patch’s receptive field centre.       

2.2.3 Drifting gratings 

For visual stimulation with drifting sinusoidal gratings two experimental protocols were 

used: a direction-selectivity protocol, where drifting gratings had varying orientations; a 

spatial-temporal frequency protocol, where drifting gratings had varying spatial and 

temporal frequencies. In all protocols, stimulus contrast was 100% and stimulus diameter 

was 40 deg. Within each session stimulus position was adjusted to match the centre of the 

receptive fields obtained from the neuropil.  

In the direction selectivity protocol, we presented drifting gratings at 12 directions (30 

deg step). Each grating had temporal frequency of 2Hz and spatial frequency of 0.04 cpd. 

Each stimulus presentation lasted 2 s, followed by a 3 s blank period, and was repeated 10 

times. On each repeat, the 12 stimuli plus a blank were presented in pseudorandom order.  
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In the spatial-temporal frequency protocol, we presented a vertical, rightward drifting 

grating at 4 spatial frequencies (0.02, 0.04, 0.08 and 0.16 cpd) and 5 temporal frequencies 

(0.5, 1, 2, 4 and 8 Hz). Each stimulus presentation lasted 4 s, followed by a 3 s blank 

period, and was repeated 10 times. On each repeat, the 20 stimuli plus a blank were 

presented in pseudorandom order.     

2.3 Virtual reality set-up 

2.3.1 Linear corridor 

Animals were head-fixed in the centre of 3 LCD monitors placed at a 90deg angle to 

each other, 19 cm away from each screen, so that visual scenes covered the visual field by 

135 deg in azimuth and 42 deg in elevation. Animals ran through the virtual environment 

by locomoting on a polystyrene wheel which allowed movement along a single dimension 

(forwards-backwards). The animal’s running speed was captured online by a rotary encoder 

(2400 pulses/rotation, Kübler, Germany).  

 

Figure 2-1: Virtual reality apparatus and design of the virtual corridor  
a, b. Animals were head-fixed in the centre of 3 LCD monitors placed at a 90deg angle to each 
other. Animals ran through the virtual environment by locomoting on a linear, polystyrene wheel. 
The virtual reality environment was controlled online with a rotary encoder. In rewarded sessions, a 
drop of water was delivered to the animal through a water spout. Licks were controlled with a lick 
detector.  
c. The virtual corridor had two landmarks (a grating and a plaid) that repeated after 40 cm, creating 
two visually-matching segments (red and blue bars).  
d. Example screenshots, showing the visual similarity of the virtual corridor at two pairs of 
positions spaced 40 cm apart.  
  

In the closed-loop condition, online measurement of running speed was used to control 

the update of the visual scenes. Upon reaching the 100th cm of the corridor, animals were 

presented with a grey screen for an inter-trial period of 3 to 5 s, after which they were 

placed back at the beginning of the corridor for the next trial. The duration of each trial 

depended on how long it took the animal to reach the end of the corridor. Trials in which 



44 
 

animals did not reach the end of the corridor within 30 s were timed-out and excluded 

from further analysis. A typical session consisted of more than 50 trials. In the open loop 

condition, mice were presented with a previous closed-loop session, while still free to run 

on the wheel. 

The VR environment with visually-matching segments was a corridor of 8 cm width and 

height and a 100 cm length -short corridor-. The background textures of the ceiling, floor 

and walls were filtered white noise. A grating or a plaid, 8 cm wide each, alternated in the 

sequence grating-plaid-grating-plaid at 20, 40, 60 and 80 cm from the start of the corridor.  

In the visually-identical environment, mice ran the same distance as before (100 cm) and 

were also placed back at the start of the corridor after 3-5 s presentation of a grey screen. 

The same four landmarks were also centred in the same positions as before. However, the 

corridor was extended to 200 cm length, repeating the same sequence of landmarks. The 

virtual reality software was modified to render only up to 70 cm ahead of the animal, 

ensuring the visual scenes were strictly identical in the sections between 10 - 50 cm and 50 - 

90 cm; the white noise background also repeated with same 40 cm periodicity. 

2.3.2 Circular maze 

Animals were head-fixed in the centre of 3 IPAD LCD screens, 11 cm away from each 

screen, so that visual scenes covered the visual field by 135 deg in azimuth and 42 deg in 

elevation. As in the linear maze, animals ran through the virtual track by running on a 

wheel that allowed movement in the forwards-backwards dimension. Their running speed 

was captured online by a rotary encoder.   

Animals ran over and over again through a virtual circular maze. They were only 

presented with a grey screen for an inter-trial period of 3 to 5 s if they licked more than 6 

times in the wrong place. After the end of the grey screen period animals were placed back 

at the same position on the maze. A typical session consisted of more than 80 trials.  

The virtual reality environment was an ‘open’ circular maze with 400 cm full length. 

Visual landmarks were three ‘tunnels’ of 12 cm perimeter, L1, L2 and L3. Landmark L1 was 

placed at the reward zone and alternated between a grating or a plaid on each half cycle. 

Landmarks L2 and L3 (a plaid and a grating) were placed at 40cm and 60 cm away from the 

reward zone. The background textures were filtered white noise.  
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2.4 Behaviour & training 

2.4.1 Linear corridor 

Mice used for imaging in the linear corridor (short or long) ran freely with no specific 

task.  

Before recordings in the short corridor mice (4 animals) were placed in the virtual 

environment, typically for 3 days and for up to one week, until they were able to run for at 

least 80% of the time within a single session. Two of the mice were motivated to run with 

water rewards, by receiving ~3 μl water with the use of a solenoid valve (161T010; 

Neptune Research, USA). One animal received rewards at random positions along the 

corridor. The other received rewards at the end of the corridor. To control for the effect of 

the reward on V1 responses, no reward was delivered in some sessions (n = 8 sessions; 2 

animals).    

Prior to recordings in the long corridor, mice (2 animals) were first exposed to 5 

sessions in the short corridor, then placed in the long corridor and allowed to habituate to 

the new environment for another two or three sessions before the start of recordings. One 

mouse was motivated to run with a reward delivery placed at 100 cm.  

2.4.2 Circular maze  

Mice (n = 4 animals) were trained to lick in a specific location on every half cycle, the 

reward zone. Trials in which animals did not perform well, i.e. they licked more than six 

times on a single trial, were timed-out and excluded from further analysis. We also excluded 

trials in which the animals were not engaged in the task, i.e. when they ran without licking. 

Animals were rewarded for correct licks with ~3 μl water using a solenoid valve (161T010; 

Neptune Research, USA), and licks were monitored using a custom device that detected 

breaks in an infrared beam.  

To train mice to perform the task we used a progressive training procedure which lasted 

approximately 4 to 5 weeks. Initially, animals were allowed to familiarise with running on 

the wheel while head-fixed. At this stage animals were rewarded if they moved for a few 

seconds. After mice learned to control the wheel, they were rewarded every time they 

passed through the reward zone. After this, we introduced trials where the animal was 

rewarded only when it actively licked in the rewarded region of the corridor without 

‘punishing’ the animal with a time-out if it licked at the wrong place (‘bad licks’). In the 
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next stages we progressively reduced the number of bad licks down to 6. Animals were 

considered to have learned the task if they were able to perform at least 50 correct trials 

within a session.  

2.5 Pupil tracking 

We tracked the eye of the animal using an infrared camera (DMK 21BU04.H, Imaging 

Source) and a zoom lens (MVL7000, Navitar) at 25 Hz. Pupil position and size were 

calculated by fitting an ellipsoid to the pupil for each frame using a custom software. X and 

Y positions of the pupil were derived from the centre of mass of the fitted ellipsoid.    

2.6 Imaging techniques 

2.6.1 Widefield calcium imaging 

For widefield imaging we used a standard epi-illumination imaging system (Carandini et 

al., 2015; Ratzlaff and Grinvald, 1991) together with an SCMOS camera (pco.edge, PCO 

AG). A Leica 1.6x Plan APO objective was placed above the imaging window and a 

custom black cone surrounding the objective was fixed on top of the headplate to prevent 

contamination from the monitors’ light. The excitation light beam emitted by a high-power 

LED (465 nm LEX2-B, Brain Vision) was directed onto the imaging window by a dichroic 

mirror designed to reflect blue light. Emitted fluorescence passed through the same 

dichroic mirror and was then selectively transmitted by an emission filter (FF01-543/50-25, 

Semrock) before being focused by another objective (Leica 1.0 Plan APO objective) and 

finally detected by the camera. Images of 200 x 180 pixels, corresponding to an area of 6.0 

x 5.4 mm were acquired at 50 Hz.   

2.6.2 Two-photon imaging 

Two-photon imaging was performed with a standard multiphoton imaging system 

(Bergamo II; Thorlabs) controlled by ScanImage4 (Pologruto, Sabatini, and Svoboda, 

2003). A 970 nm laser beam, emitted by a Ti:Sapphire Laser (Chameleon Vision, 

Coherent), was targeted onto L2/3 neurons through a 16x water-immersion objective (0.8 

NA, Nikon). Fluorescence signal was transmitted by a dichroic beamsplitter and amplified 

by photomultiplier tubes (GaAsP, Hamamatsu). The emission light path between the focal 

plane and the objective was shielded with a custom-made plastic cone, to prevent 

contamination from the monitors’ light. In each experiment, we imaged 4 planes set apart 

by 40 μm. Multiple-plane imaging was enabled by a piezo focusing device (P-725.4CA 
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PIFOC, Physik Instrumente), and an electro-optical modulator (M350-80LA, Conoptics 

Inc.) which allowed adjustment of the laser power with depth. Images of 512x512 pixels, 

corresponding to a field of view of 500x500 μm, were acquired at a frame rate of 30 Hz 

(7.5 Hz per plane). 

2.7 Pre-processing of imaging data 

Pre-processing of raw imaging movies was done using the Suite2p pipeline (Pachitariu et 

al., 2016) and involved: 1) image registration to correct for brain movement, 2) ROI 

extraction, i.e. cell detection, 3) correction for neuropil contamination and 4) spike 

deconvolution.  

To manually curate Suite2p’s output we used two criteria: one anatomical and one 

activity-dependent criterion. One of the anatomical criteria in Suite2p is ‘area’, i.e. mean 

distance of pixels from ROI centre, normalised to the same measure for a perfect disk. We 

used this criterion (area < 1.04) to exclude ROIs likely to correspond to dendrites rather 

than somata. The activity-related criterion is the standard deviation of the cell trace, 

normalised to the standard deviation of the neuropil trace. We used this criterion to 

exclude ROIs whose activity was too small relative to the corresponding neuropil signal 

(typically with std(neuropil corrected trace) / std(neuropil signal) < 2). We finally excluded 

cells with extremely seldom firing (once or twice within a 20 mins session). 

2.7.1 Neuropil correction 

For neuropil correction, we used an established method (Dipoppa et al., 2018; Peron et 

al., 2015).  We used Suite2p to determine a mask surrounding each cell’s soma, the 

‘neuropil mask’. The inner diameter of the mask was 3 µm and the outer diameter was < 45 

µm. For each cell we obtained a correction factor, α, by regressing the binned neuropil 

signal (20 bins in total) from the 5th percentile of the raw binned cell signal. For a given 

session, we obtained the average correction factor across cells. This average factor was used 

to obtain the corrected individual cell traces, from the raw cell traces and the neuropil 

signal, assuming a linear relationship. All correction factors fell within 0.7 and 0.9. 

2.7.2 Deconvolution 

Deconvolution was performed with Suite2p using an L0-based deconvolution approach 

(Pachitariu, Stringer, and Harris, 2017). Using this method, neuropil correction and 

estimation of spike trains were estimated simultaneously, using a model of the form 

(Pachitariu et al., 2016):  



48 
 

𝑭𝒊(𝑡) = [𝒔𝒊 ∗ 𝒌𝒊](𝑡) +  𝑐𝑖𝑵𝒊(𝑡) + 𝑛𝑜𝑖𝑠𝑒 ,  

Where 𝑭𝒊 is the raw fluorescence trace of ROI 𝒊, 𝑵𝒊 is the neuropil trace obtained by 

averaging pixels in a ‘donut’-like area around the ROI, 𝑐𝑖 is the neuropil scaling coefficient 

and 𝒔𝒊 ∗ 𝒌𝒊  is the convolution of the spike train 𝒔𝒊 ≥ 0 with the calcium response kernel 

𝒌𝒊 

𝑐𝑖 and 𝒔𝒊 are then estimated iteratively using the cost function: 

𝐶𝑜𝑠𝑡(𝒔𝒊, 𝑐𝑖) =  ‖𝑭𝒊 − 𝒔𝒊 ∗ 𝒌𝒊 − 𝑐𝑖 ∙ 𝑵𝒊‖
2 + 𝜆 ∙ 𝐿(𝒔𝒊) , where 𝐿(𝒔𝒊) is the 𝐿0 norm. 

The iterative approach involved two steps: first, 𝑐𝑖 is optimised with simple regression 

while keeping 𝒔𝒊 fixed; second, 𝒔𝒊 and 𝒌𝒊 are optimized with a spike deconvolution method 

while keeping 𝑐𝑖fixed. 

The spike deconvolution method was non-negative deconvolution using exponential 

kernels with a kernel decay similar to the decay time of the Calcium indicator GCaMP6s 

(2s) and an 𝐿0 penalty, i.e . a term that penalises non-zero values.   

2.8 Analysis of responses to drifting gratings 

2.8.1 Pre-processing 

Neuropil-corrected single-cell traces obtained from 4 planes were linearly interpolated to 

match the sampling rate of the imaging session (30 Hz). Single-cell activity was then 

baseline-corrected by subtracting the mean activity, and averaged across the time-window 

when the stimulus was on. 

2.8.2 Skewness 

Since skewness is measure of the asymmetry from the mean of a distribution, we used 

this measure to determine whether a cell was active or not. For each cell, we computed 

skewness, s, from its neuropil-corrected or deconvolved fluorescence trace based on the 

standard formula: 

𝑠 =  
𝐸(𝐹 − 𝜇)3

𝜎3
 

Where 𝐹 is the neuropil-corrected or deconvolved fluorescence trace, 𝜇 is 𝐹’s mean, 𝜎 is 

𝐹’s standard deviation, and 𝐸 is the expected value of the quantity in brackets.   
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2.8.3 Direction selectivity 

Stimulus-evoked responses were obtained by averaging across repeats and by scaling by 

the maximum response value. Each one of these scaled responses corresponded to the 

magnitude of a ‘response vector’, that points towards one of the 12 possible directions 

(step 30 deg). From these response vectors we obtained the vector sum of the responses, 

whose normalised length corresponds to the magnitude of direction selectivity, and its 

direction to the preferred direction of the cell.  

To obtain direction tuning curves, for each cell we fit (using least squares) a model 

function to the average activity for each direction. The model function was the sum of two 

Gaussians that meet at the peak. We used this fitting approach to determine 4 parameters: 

the preferred direction; the height of the response to the preferred direction; the height of 

the response to the non-preferred direction; and the tuning width.    

2.8.4 Spatial-temporal frequency protocol 

To select for responsive cells, we compared the mean activity across repeats during the 

stimulation period to the mean activity during blank trials. We selected cells whose 

maximum activity during at least one stimulus type was two standard deviations higher than 

the mean activity during blank periods. We defined as the cell’s preferred spatial and 

temporal frequency the frequency at which the cell fired maximally, and as the cell’s 

preferred speed the division of its preferred temporal frequency by its preferred spatial 

frequency. 

2.9 Analysis of responses in the linear corridor 

2.9.1 Response profiles as a function of position 

To obtain response profiles as a function of position along the corridor, we discretised 

the position of the animal in 1 cm bins, yielding 100 bins and we calculated the spike count 

map and occupancy map for each neuron. Both the spike count and occupancy maps were 

smoothed by convolving them with a fixed Gaussian window (5 cm width for neuropil-

corrected fluorescence; 4 cm width for deconvolved traces).  Only time points with 

running speeds greater than 1 cm/s were included in further analyses. We only looked at 

responses for which the cross-validated reliability (see below) was higher than 0.01. These 

cells were considered to have activity significantly modulated by position in the corridor. 

To model single-cell activity under the assumption that responses are identical in the two 

segments of the corridor, we fit (using least squares) a model function to the response 
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profile along the visually-matching segment where the cell peaked. The model function was 

the sum of two Gaussians that meet at the peak. To obtain a prediction along the whole 

corridor, we then duplicated the fitted response at ± 40 cm away from the maximum.  

Spatial modulation ratios and spatial modulation indices were measured by splitting the 

dataset into odd and even trials. For each cell, the position of the peak response was 

measured from the response profile averaged across odd trials (‘preferred position’). We 

then obtained the response height at the preferred position and the visually-identical 

position 40 cm away (‘non-preferred position’), using the response profile averaged across 

even trials. Cells which had a maximal response too close to the start or the end of the 

corridor (0-15 cm or 85-100 cm) were not considered for analysis of the ratio of responses. 

Therefore, this excluded cells which responded too close to the start or the end of the 

corridor, which were outside the visually-matching segments.  

For the spatial modulation ratios, we computed the ratio of peak height at the non-

preferred position over the peak height at the preferred position: 

𝑟𝑎𝑡𝑖𝑜 =  
𝑝𝑒𝑎𝑘𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑

𝑝𝑒𝑎𝑘𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑
 

Therefore, 𝑟𝑎𝑡𝑖𝑜 = 0  means response with one peak, whereas 𝑟𝑎𝑡𝑖𝑜 = 1 means 

response with two peaks.    

For the spatial modulation indices, SMI, we used the standard formula: 

𝑆𝑀𝐼 =  
𝑝𝑒𝑎𝑘𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 −  𝑝𝑒𝑎𝑘𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑

𝑝𝑒𝑎𝑘𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 +  𝑝𝑒𝑎𝑘𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑
 

Therefore, 𝑆𝑀𝐼 = 0  means response with two peaks, whereas 𝑆𝑀𝐼 = 1 means 

response with one peak. Note that this is the opposite than the spatial modulation ratio.     

To obtain response profile averages across the population with the highest secondary 

peaks possible, we ignored single-cell activity at the start and end of the corridor (0-15 cm 

or 85-100 cm). 

2.9.2 Two-dimensional response profiles and marginals  

Two-dimensional response profiles with respect to position and/or virtual and running 

speed were calculated as previously described (Saleem et al., 2013).  
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Let yj(t) be the (deconvolved) firing rate measured at time t for a given trial j smoothed 

with a 200 ms Gaussian smoothing window, and pj(t) the independent, continuous variable 

of interest (position, virtual speed, run speed). pj(t) was first discretized into n bins for all 

trials j=1,2,...,m (100 bins for position, 1 cm bin width; 30 bins for speed, excluding 

stationary periods, i.e. speeds less than 1cm/s). We then computed the spike count map 

and occupancy map. Each point in the spike count map was defined as the sum of spikes 

falling in the i-th bin and across all trials m: 

𝑆𝑖 = ∑ ∑ 𝑦(𝑡)𝑡:(𝑝(𝑡)=𝑝𝑖)
𝑚
𝑗=1 ,  𝑝𝑖 = 𝑝1. . . 𝑝𝑛,  

each point in the occupancy map was the total number of values, kij, of the independent 

variable falling within the i-th bin in the j-th trial: 

𝛷𝑖 = ∑ 𝑘𝑖𝑗

𝑚

𝑗=1

 

Both Si and Φi were further convolved with an optimal Gaussian window, ηp(0,σ), of the 

same width, σ, to give rise to the smoothed discretized signal and occupancy maps. The 

optimal smoothing window was the one that maximised the cross-validated prediction 

quality (see below). 

We used the two smoothed quantities to obtain an estimate of each neuron’s activity as a 

function of the variable p, rp 

𝑟𝑝 =
𝑆 ∗ 𝜂𝑝(0, 𝜎)

𝛷 ∗ 𝜂𝑝(0, 𝜎)
 

were '*' denotes convolution. 

We computed 2-dimensional maps in a similar manner, using two independent 

Gaussians for smoothing each independent variable, p and q, and 2-dimensional 

convolution for the estimation of 𝑟𝑝,𝑞.  

To obtain ‘separable’ 2-dimensional maps we applied singular value decomposition on 𝑟𝑝,𝑞.   

The separable model was defined as: 

𝑅𝑠𝑒𝑝 =  𝑼𝟏𝜎𝑽𝟏  

where 𝑼𝟏, 𝑽1 are the left-singular and right-singular vectors respectively, corresponding to 

the largest singular value 𝜎. 
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2.9.3 Response profile prediction quality 

Response profiles were estimated based on 80% of the data (shuffled trials) and tested on 

the remaining 20%. (5-fold cross-validation). For each estimate, a prediction quality, Q, was 

calculated as the fraction of variance in firing rate explained by the response profile: 

Q = 1 −
∑ (𝑦(𝑡) − 𝑦′(𝑡))2

𝑡

∑ (𝑦(𝑡) − 𝜇)2
𝑡

 

where 𝑦(𝑡) is the actual, smoothed firing rate of the neuron at time t, 𝑦′(𝑡) was the 

estimated firing rate for the same time bin and 𝜇 is the mean firing rate of the training data. 

Only neurons with a reliability greater than 0.01 were considered for further analysis 

2.10 Data analysis in the circular maze 

2.10.1 Response profiles 

By inspecting the deconvolved traces obtained from Suite2p, we realised that these had 

the shape of an exponential function. Thus, to obtain spike counts we took the logarithm 

of all peaks in the deconvolved trace and rounded them to the closest integer.  

Response profiles were estimated as described in 2.9.2. The total number of position 

bins was 100 and the bin size 2 cm. Firing rate was smoothed in time with a 250 ms 

Gaussian window. Smoothing in space of the spike count and occupancy map was 

performed with a fixed, 4 cm, Gaussian window. The number of cross-validation folds was 

increased to 20. This enabled estimation of the s.e.m. using Jacknife resampling.  

We defined as responsive, cells whose maximum firing was higher than 2 s.e.m. over the 

mean firing rate in the medium gain condition. To ensure that cells exhibited a similar 

degree of responsiveness across conditions (low, medium and high gain), we calculated the 

Pearson cross-correlation coefficient between responses in different conditions and 

selected response profiles with a correlation coefficient higher than 0.75. The cross-

correlation function was further used to determine the shift (mean and s.e.m.) in the 

response profile at low or high gain relative to the medium gain condition based on the 

position of the maximum peak in the cross-correlogram in each fold of the cross-validation 

procedure.      
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2.10.2 Lick distributions 

To obtain distributions of licks across correct trials, we considered the position of the 

first correct lick and computed ‘lick maps’ as a function of position on the maze as 

previously described in 2.9.2. (smoothing in space with a 4cm Gaussian). The average 

position of first licks was estimated by computing the circular average of the lick 

distribution. The average position in low or high gain was then compared to the average 

position in medium gain, to obtain the shift in the lick distribution as a function of gain 

change.    

2.11 General linear model analysis 

2.11.1 Response kernels to stimuli of different orientations 

To predict responses to drifting gratings of different orientations (12 orientations) we 

used ridge regression with a fixed ridge regression coefficient, λ = 0.01. For each 

orientation we defined a sparse column vector in time, whose values were zero except from 

the timepoints when the corresponding stimulus appeared on the screen. This vector was 

then shifted backward in time by half a second and forward in time by 3.5 s in steps of 0.03 

s, resulting in a stimulus matrix with 120 columns. Stimulus matrices for each orientation 

were pulled together, yielding the design matrix, with dimensions (# of frames) X (120 

shifts x 12 orientations). We used this matrix to predict absolute fluorescence using 5fold 

cross-validation.   

2.11.2 Modelling response profiles in virtual reality 

To assess the spatial modulation of V1 neurons while jointly accounting for all other 

visual and behavioural factors, we fitted the V1 responses to four different general linear 

(or multilinear ridge regression) models of the form: �̂� = 𝑋𝛽,̂ where 𝑋 is an T-by-M matrix 

with T time points and M predictors, �̂� is the predicted calcium trace (T-by-1 array). 

Optimal coefficient estimates �̂� (M-by-1 array) that minimise the sum squared error were 

obtained using: �̂� = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦, where 𝜆 is the ridge-regression coefficient. 

In the full model, the predictor matrix 𝑋 contains several sets of columns: a set of 

spatial basis functions 𝐼𝑖(𝑥𝑡); pupil position 𝑒𝑥𝑡, 𝑒𝑦𝑡; the speed 𝑠𝑡 at 5 time lags; pupil 

diameter 𝑝𝑡 again at 5 time lags; and a step function 𝑟𝑡 indicating reward with 4 time lags. A 

model using all these predictors has the form: 
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𝑦𝑡 = 𝛽0 + ∑ 𝛽𝑖𝐼𝑖(𝑥𝑡)

12

𝑖=1

 + 𝛽𝑒𝑥𝑒𝑥𝑡 +  𝛽𝑒𝑦𝑒𝑦𝑡 + ∑ 𝛽𝑠𝑗
𝑠𝑡+𝜏𝑗

5

𝑗= 1

+ ∑ 𝛽𝑝𝑗
𝑝𝑡+𝜏𝑗

5

𝑗= 1

+ ∑ 𝛽𝑟𝑘
𝑟𝑡+𝜏𝑘

4

𝑘= 1

 

where 𝛽0 is a constant. 

Predictors were defined similarly to Driscoll et al (Driscoll et al., 2017). The first spatial 

basis functions corresponded to regions prior to the visually identical segments:  

𝐼1(𝑥) = {
1 𝑖𝑓 𝑥 ∈ [0,5]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝐼2(𝑥) = {
1 𝑖𝑓 𝑥 ∈ [5,10]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

The basis functions corresponding to visually matching segments consisted of double 

step functions with weights 𝑎 and 𝑏 (defined below): 

𝐼3(𝑥) = {
𝑎 𝑖𝑓 𝑥 ∈ [10,15]

𝑏 𝑖𝑓 𝑥 ∈ [50,55]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Basis functions 𝐼4 … 𝐼10 were defined similarly, to cover the x range 15… 50 and 

55…90. The final two functions 𝐼11 and 𝐼12 covered the non-repeating x ranges [90,95] and 

[95,100]. 

The pupil diameter and eye position predictors were all scaled to lie in a range [-1,1], 

while speed was scaled to the range [0,1]. The pupil diameter and speed predictors were 

lagged with 5 time shifts: 𝜏𝑗 ∈ {−1000 𝑚𝑠 , −500 𝑚𝑠 , 0 𝑚𝑠, 500 𝑚𝑠, 1000 𝑚𝑠} . The 

reward predictor 𝑟𝑡 was defined to be 1 within a 500 ms window of the reward, 0 

otherwise, and was lagged by 𝜏𝑘 ∈ {−1000 𝑚𝑠 , −500 𝑚𝑠 , 0 𝑚𝑠, 500 𝑚𝑠}. 

The four prediction models used different combinations of these predictors. The first 

model, the visual model, relied on just visual predictors 𝐼𝑖, with the constraint that 𝑎 = 𝑏 =

√2 such that the basis functions have unit norm. Therefore, this model resulted in 

responses that repeated in the visually identical segments perfectly. 

The second model, speed model, added the influence of running speed (𝑠𝑡+𝜏𝑘
).    

The third model, the non-spatial model, added the influence of all other behavioural factors 

we measured: running speed (𝑠𝑡+𝜏𝑘
), reward events (𝑟𝑡+𝜏𝑘

), pupil size (𝑝𝑡+𝜏𝑘
), and the 

horizontal (𝑒𝑥𝑡) & vertical (𝑒𝑦𝑡) pupil position.  
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Finally, the fourth model, spatial model, allowed for an independent scaling of the two 

identical sections of the room. This model allowed 𝑎 ≠ 𝑏, subject to the constraint that the 

spatial basis functions had unit norm. To achieve this, we used exhaustive search over a 

parameter 𝛼 ∈ [0,1], with 𝑎 =
𝛼

√𝛼2+(1−𝛼)2
 and  𝑏 =

1−𝛼

√𝛼2+(1−𝛼)2
. Note that 𝛼 = 0.5 would 

correspond to a purely visual representation with spatial modulation ratio close to 1, while 

𝛼 = 1 or 𝛼 = 0 would correspond to a response only in the first or second segment, and a 

spatial modulation ratio close to 0. 

To fit the parameters, we used the ridge regression coefficient, λ that maximized the 

percentage of variance explained using five-fold cross-validation, searching the values 

𝜆 =0.01, 0.05, 0.1, 0.5 or 1. In the spatial model (where 𝑎 ≠ 𝑏), we performed multiple 

ridge regression fits, searching for the optimal value of 𝛼 using a step size of 0.1, for each 

λ. 

The single cell responses predicted by these models were then processed similarly to the 

original recorded responses to obtain the response profiles and spatial modulation ratio 

predicted by the three models.  The deviation of the model predictions from the original 

data were evaluated by fitting an ellipse to the distribution and quantified using the angle of 

its major axis (the first eigenvector of the covariance matrix).  

2.12 Decoding population activity 

Population activity was decoded using an independent Bayes decoder (Zhang, 

Ginzburg, McNaughton, and Sejnowski, 1998) under the Poisson assumption. Specifically, 

for every time bin, we estimated the probability of being at position 𝑥 given responses 

across the population 𝑅: 

𝑃(𝑥|𝑅) =
1

𝑍
 𝑃(𝑥) (∏ 𝑓𝑖(𝑥)𝑟𝑖

𝑀

𝑖=1

) 𝑒𝑥𝑝 (−𝑡 ∑ 𝑓𝑖(𝑥)

𝑀

𝑖=1

) 

Where 𝑓𝑖(𝑥) is the response profile, 𝑟𝑖 is the spike count of the 𝑖𝑡ℎ(𝑖 = 1 … 𝑀) neuron in 

a time bin. 𝑍 is a normalising constant, which makes the probabilities across positions sum 

to one. 

To account for speed differences as a function of position, the data in medium gain 

were divided into 3 speed ranges based on the medium speed at each position. Decoding 

was then performed independently for each speed range. The decoded posteriors obtained 
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from different speed ranges were pulled together, yielding the decoded posterior as a 

function of time. To avoid overfitting, we used 20-fold cross-validation.  

To obtain the average posterior as a function of position we used a similar approach as 

in 2.9.2. The ‘posterior’ map and occupancy map were smoothed in space with a 4cm 

Gaussian filter.  

The mean and s.e.m. of the decoding error was obtained by aligning the average 

posterior to the actual position of the mouse. The s.e.m. was obtained from the estimates 

of the 20-fold cross-validation using Jacknife resampling.  

To obtain the mean decoding error for each session, the error map was first averaged 

across positions. We then excluded values < 1 and took the circular average of the resulting 

distribution.     
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 Chapter 3 

The mouse primary visual cortex (V1) codes not just visual information, but also carries 

non-visual signals that reflect the animal’s behaviour. The influence of non-visual signals 

on V1 activity has been demonstrated in a variety of active behaviours, from simple 

running to more complex learning tasks (see General introduction). Yet, we do not know 

whether V1 responses are also influenced by signals related to one’s position in the 

environment. The most relevant studies so far have provided valuable insight into the 

comodulation of visual cortex and hippocampus during memory replay or spatial 

behaviour, and have suggested that spatial position may be influencing responses as early as 

in V1 (Ji and Wilson, 2007). However, these studies lack precise control of the visual 

environment and therefore cannot draw firm conclusions on whether V1 indeed carries 

non-visual signals related to spatial position. 

In this chapter I will ask whether neural activity in V1 is influenced by position-related 

signals. To address this question, we carefully designed a virtual environment with two 

visually-matching segments. Given the visually-matching segments, we hypothesised that a 

purely visual neuron which responds in the first segment should have a similar response in 

the second segment. Instead, we find that the majority of V1 neurons respond more 

strongly, or even exclusively, at a specific location in the virtual environment. To establish 

whether the observed modulation is related to the virtual position of the animal rather than 

any other behavioural or visual factor, we performed a series of control experiments. These 

control experiments demonstrated that the modulation of visual responses cannot be 

explained by other task-related features, such as running speed or reward. It also could not 

be explained by visual features, such as pupil size or eye position. To assess the relative 

contribution of spatial position together with these task-related and visual features, we 

developed a ridge-regression model that takes all these factors into account simultaneously. 
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We found that the difference between responses to the visually-matching segments can be 

best explained by spatial position only.  

Given these findings, I conclude that modulation by spatial position is present as early 

as in V1, and propose that cognitive representations of space may well shape early visual 

processing. 

 

3.1 Results 

3.1.1 Spatial modulation of V1 responses 

To assess the influence of spatial position on V1 responses, we used 2-photon calcium 

imaging to record neural activity in V1, while head-restrained mice ran along a corridor in 

virtual reality (Figure 3-1a). The corridor was 100 cm long and contained two prominent 

landmarks repeated twice (Figure 3-1b); a vertical grating placed at 20 cm was followed by 

a plaid at 40 cm, then a second vertical grating was placed at 60 cm and was followed by a 

second plaid at 80 cm. Thus, each landmark was repeated after 40 cm. This repetition 

resulted in two visually-matched segments of the corridor, one from 10 cm to 50 cm and 

another one from 50 cm to 90 cm (Figure 3-1b, c). Despite the corridor having two 

visually-matching segments, visual scenes analysed by neurons with central receptive fields 

would still be different between the first and second segment. This is mainly due to the end 

wall of the corridor, which appears as an expanding grey square as the animal advances 

forward. Instead, visual scenes analysed by neurons with receptive fields in the periphery 

are similar (Figure 3-1c). Therefore, we focused our analysis on those portions of medial 

V1 with receptive field centres >40 deg azimuth. To map these portions of V1 we 

performed wide-field imaging and obtained maps of retinotopy in transgenic mice 

expressing the Calcium indicator GCaMP6 in all excitatory neurons (Figure 3-1d). We 

then placed these mice in virtual reality and used their maps of retinotopy to target specific 

patches of medial V1 across multiple days using two-photon Calcium microscopy (Figure 

3-1e). Thus, this chronic imaging method allowed us to measure the activity of 8,610 

neurons in medial V1 in 4 mice across 18 sessions.   

At this point, we set off to characterise visual response profiles in the virtual corridor. 

Given the repetition of the visual scenes in the two corridor segments, we found, as 

expected, cells responding to their preferred stimulus, grating or plaid, equally (Figure 3-2, 

1st column). These responses matched exactly our predictions based on the repetition of 
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Figure 3-1: Imaging in Virtual Reality  
a. Head-fixed mice ran on a cylindrical treadmill to navigate a virtual corridor presented on three 
visual displays.  
b. The virtual corridor had two landmarks (a grating and a plaid) that repeated after 40 cm, creating 
two visually-matching segments (red and blue bars).  
c. Example screenshots, showing the visual similarity of the virtual corridor at two pairs of 
positions spaced 40 cm apart.  
d. Example retinotopic map of the cortical surface acquired with widefield calcium imaging.  The 
border of V1 and higher visual areas is defined by inversion of the retinotopic map.  
e. Same as in d. with squares denoting the field of view in two-photon imaging sessions targeted to 
medial V1 in an animal (field of view with green frame is shown in the inset). Within these sessions we 
analysed responses from neurons with receptive field centre > 40o azimuth (curve).  

 

visual scenes 40 cm away (Figure 3-2a, dotted line). We also found cells with weaker 

responses in the second segment than the first segment, which is what one might expect 

due to adaptation phenomena (Figure 3-2a, 2nd column). However, we also found 

responses that could not be explained based on pure vision; some cells responded more 

strongly in the second segment than the first segment (Figure 3-2a, 3rd column); even 

more strikingly, other cells responded only once in the virtual corridor (Figure 3-2a, 4th 

column). This initial observation indicates that the visual stimulation induced in virtual 

reality gives rise to diverse response profiles, and that notably, the modulation observed in 

some response profiles cannot be explained based on pure vision.   

How evident is the observed modulation across the neural population? To answer this 

question, we selected response profiles for which variance explained was at least 1% (n = 

4,958) and ordered them as a function of the position where each neuron fired maximally. 

We found that the responses across the population tiled up the whole virtual corridor 

(Figure 3-2b). In addition, most neurons preferred to fire more strongly in one position 

than in the visually matching position 40 cm away. To assess the robustness of this  
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Figure 3-2: Responses in the primary visual cortex (V1) are modulated by spatial position.  
a. Normalised response as a function of position in the virtual environment for eight example V1 
neurons. Dotted lines show predictions if the responses were identical in the two segments of the 
corridor (red and blue bars).   
b. Normalised response as a function of distance in the virtual environment obtained from odd 
trials only, for V1 neurons with receptive field centres >40o azimuth and activity significantly 
modulated by position in the corridor (4,958 of 8,610 neurons; 4 mice). Neurons are ordered based 
on the position of their maximum response. Yellow, red and blue lines indicate position of maximum 
+/- 40 cm.  Red and blue bars are as in a.  
c. Same as b, for the half of the data (even trials) that were not used to order the responses. 
Sequence and scaling of the responses are the same as in b.  
d. Histogram (top) and cumulative distribution (bottom) of the spatial modulation ratio (the ratio of 
secondary response 40 cm away from peak response, red or blue line in b and c, divided by peak 
response, yellow line in b and c), derived from even trials.   

 

preference for one position, we divided the data between odd and even trials. We used the 

odd trials to order the response profiles and asked whether the same ordering was 

preserved in even trials (Figure 3-2b, c). We found that most neurons exhibited a reliable 

preference for one position along the corridor in both odd and even trials. To further 

quantify this preference, we focused on cells that fired within the two visually-matching 

segments (n = 2,422). Their responses to the landmarks 40 cm from the preferred position 
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were substantially smaller than the responses at the preferred position (Figure 3-3). For 

these cells we also estimated the ‘spatial modulation ratio’ i.e. the ratio of the activity 40 cm 

from the preferred position over the activity at the preferred position. Thus, a ratio close to 

1 indicates that a cell responds similarly to the landmarks, whereas a ratio close to 0 

indicates strong preference for one position in the corridor. We found that the 

corresponding distribution of ratios was significantly biased towards lower values and that 

the median ratio was 0.61 ± 0.31 (median ± m.a.d., in the cross-validated trials). This value 

was significantly < 1 (p < 10-104, Wilcoxon signed rank test). (Figure 3-2d). These results 

indicate a widespread preference of V1 neurons for one location in the virtual 

environment, thereby suggesting that V1 responses are influenced by spatial position. 

 

 

3.1.2 Modulation is not explained by visual or non-visual factors 

Before concluding that V1 responses are indeed influenced by spatial position, it is 

necessary that we rule out any effects by other visual or task-related variables that are 

present in our behavioural paradigm. These variables are either related to the animal’s 

behaviour, such as eye position, pupil size, running speed and reward, or to the design of 

the virtual environment itself, such as visual image, trial onset and trial offset. We first 

focused on variables related to the animal’s behaviour and attempted to control for each 

one of those individually. 

We first focused on the influence exerted by speed because we reasoned that the 

presumable spatial modulation may be merely due to differences in the speed profile as a 

function of position in the corridor. Such differences were particularly evident in rewarded 

Figure 3-3: Spatial averaging of visual cortical activity 
confirms the difference in response between visually 
matching locations.  
a. Mean response of V1 neurons as a function of the distance 
from the peak response location (2,422 cells with peak 
response between 15 and 85 cm along the corridor). To 
ensure that the average captured reliable spatially-specific 
responses, the peak response location for each cell was 
estimated from only odd trials, while the mean response was 
computed from even trials.  
b. Population average of responses shown in a. Lower values 
of the side peaks compared to central peak indicates strong 
preference of V1 neurons for one segment of the corridor 
over the other visually-matching segment (40 cm away from 
peak response). 
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sessions for instance, when the animal had to decelerate to receive a reward (Figure 3-4a 

right). To quantify the effect of speed, we stratified the data into three speed ranges, low, 

medium and high and estimated responses as a function of position for each speed range 

(Figure 3-4b, c). From this analysis it became evident that some responses were not 

affected by speed (Figure 3-4b, c left panel), whereas others exhibited differences in their 

shape or height or in both (Figure 3-4b, c right panel). Therefore, consistent with previous 

studies, speed is influencing visual responses. But does speed also affect the ratio of peaks? 

To answer this question, we followed the same approach as previously, when we used the 

odd trials as the training set for sorting the responses and the even trials as the test set. This 

time the training set consisted of responses at medium speed ranges and the test set of  

 

Figure 3-4: The spatial modulation of V1 responses cannot be explained by speed.  
a. Speed-position plots for all single-trial trajectories in two example recording sessions.  
b. Response profile of example V1 cells in each session as a function of position in the corridor, 
stratified for three speed ranges corresponding to the shading bands in a.  
c. Two-dimensional response profiles of the same example neurons showing activity as a function 
of position and running speed for speeds higher than 1 cm/s. 
d. Cumulative distribution of the spatial modulation ratio after stratifying the data by running 
speed. The two curves corresponding to low (cyan) and high (purple) speeds overlap and appear as a 
single dashed curve. 

 

responses at low and high speed ranges. We first determined the position at which cells 

fired maximally based on the training set, and then obtained ratios of peaks for the two test 

sets. This analysis showed that there was no difference in the cumulative distributions of 
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ratios between low and high speeds (Figure 3-4d). In addition, even within a single speed 

category (medium speed), the spatial modulation ratio was substantially < 1 (0.47 ± 0.22;   

p < 10-33). Therefore, spatial modulation of responses in V1 cannot be explained by speed.  

Another factor that may contribute to the modulation of V1 responses is reward. 

Indeed, it has been previously shown that reward does modulate responses as early as in 

V1 (Poort et al., 2015; Shuler and Bear, 2006). Also, as it was mentioned earlier, the speed 

profile depends profoundly on reward locations, because the animal decelerates every time 

it receives a reward. To account for this factor, we took sessions in which animals ran 

freely along the corridor in the absence of reward (Figure 3-5a, 2 animals, 8 sessions). 

Again, we found that the distribution of spatial modulation ratios was strongly biased 

towards values <1 (0.57 ± 0.37, p < 10-14). Thus, we concluded that the spatial modulation 

of V1 responses could not be explained by reward either. 

 

Figure 3-5: The spatial modulation of V1 responses cannot be explained by reward, 
differences in eye position or in pupil size.  
a. Distribution of spatial modulation ratio for unrewarded sessions (8 sessions; median ± m.a.d.: 
0.57 ± 0.37)  
b. Distribution of spatial modulation ratio for sessions with steady eye position (10 sessions; 
median ± m.a.d.: 0.63 ± 0.33)  
c. Distribution of spatial modulation ratio for sessions with steady pupil size (5 sessions; median ± 
m.a.d.: 0.63 ± 0.33) 

 

Having established that the observed modulation could not be explained by task-related 

factors, we next asked whether visual factors, such as deviations in eye position or pupil 

size played a role. We estimated the ratio of peaks for sessions in which eye position (10 

sessions) or pupil size (5 sessions) were on average constant along the corridor and found 

that the distributions were still biased towards lower values (stable size: 0.63 ± 0.33,             

p < 10-45; stable position: 0.63 ± 0.33, p < 10-27; Figure 3-5b, c). These controls indicate 
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that displacement of the eye from its central position or pupil size cannot account for the 

spatial modulation of V1 responses. 

 

3.1.3  Relative contribution of visual or non-visual features 

So far, I described control analysis that accounted for various confounding factors 

separately. However, this approach does not rule out the possibility that the modulation of 

visual responses is mediated by the joint contribution of all these variables, rather than by 

spatial position per se. In addition, this approach does not rule out the effect of confounds 

intrinsically linked to the virtual environment, such as the effect of trial onset and offset. 

To assess the relative contribution of these variables together with spatial modulation, we 

developed a set of ridge-regression models; these were encoding models of single-cell 

activity where each variable contributed at least one predictor.  

The simplest model, the visual model took into account only responses to the visual 

scenes (which repeat twice), as well as the onset and offset of the trial (which introduce 

visual transients). Importantly, it enforces equal height of the responses to the two identical 

segments, thus it is more appropriate for capturing responses with two equal peaks. The 

second, speed model, additionally took into account running speed. The third, non-spatial model, 

additionally took into account reward times, pupil size, and eye position. Finally, the fourth, 

spatial model, additionally allowed visual responses to the two matching segments to differ in 

amplitude. Thus, it is more appropriate for capturing cells with unequal peaks.  

We fit each model to the activity of each neuron and obtained predictions as a function 

of time (Figure 3-6a). Responses with two unequal peaks could be best predicted only by 

the spatial model. We then asked how well the models could predict the spatial modulation 

ratio. To answer this question, we did the same analysis as we did with the data previously: 

we transformed predictions as a function of time into smoothed predictions as a function 

of position (Figure 3-6b); we sorted these predictions based on the ordered preferred 

position of responses obtained from odd trials and we estimated the spatial modulation 

ratio, i.e. the difference between predicted activity at the preferred position versus 

predicted activity 40 cm away (Figure 3-6c). We found that the most accurate predictions 

of the ordered activity -and consequently of the spatial modulation ratio- was provided by 

the spatial model only. Indeed, when we plotted the predicted spatial modulation ratio 

against the measured ratio, we found that the correlation between the data and the model  
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Figure 3-6: Observed values of spatial modulation ratio can only be modelled using spatial 
position. 
a-b. We constructed four models to predict the activity of individual V1 neurons from successively 
larger sets of predictor variables. In the simplest, the ‘visual’ model, activity is required to depend 
only on the visual scene visible from the mouse’s current location, and is thus constrained to be a 
function of space that repeats in the visually matching section of the corridor. The second ‘speed’ 
model also includes modulation by speed. Because speed can differ between the first and second 
halves of the track, modelled responses need no longer be exactly symmetrical; however, this model 
does not explicitly use space as a predictor. The third ‘non-spatial’ model also includes modulation 
by additional behavioural factors that can differ within and across trials: reward times, pupil size, 
and eye position. These variables can also differ between the first and second halves of the track; 
like the previous two models, this model does not explicitly use space as a predictor. The final 
‘spatial’ model extends the previous model by also allowing responses to the two matching 
segments to vary in amplitude, thereby explicitly including space as a predictor. Example single-trial 
predictions are shown as a function of time in (a), together with measured fluorescence. Spatial 
profiles derived from these predictions are shown in (b). 
c. Cumulative distributions of spatial modulation ratio for the four models (purple curves). For 
comparison, the black curve shows ratio of peaks derived from the data (even trials) (median ± m.a.d:  
visual model: 0.99 ± 0.03; Wilcoxon rank sum test: p < 10-40, speed model: 0.87 ± 0.19; p < 10-40, 
non-spatial model: 0.83 ± 0.18; p < 10-40; spatial model: 0.60 ± 0.27; p = 0.09). 
d. Measured spatial modulation ratio versus prediction of the 3 models. Each point represents a 
cell; red ellipse represents best fit Gaussian, dotted line measures its slope.  The purely visual model 
(top) does poorly, and is only slightly improved by adding predictions from speed, reward, pupil 
size, and eye position (middle).  Adding an explicit prediction from space provides a much better 

match to the data (bottom). r: correlation coefficient; θ: orientation of the major axis of the fitted 
ellipsoid. 
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increased as we went from the simpler, visual model towards the non-spatial model which took 

all measured variables into account (Figure 3-6d; Pearson correlation coefficient r, visual 

model: 0.22, speed model: 0.39, non-spatial model: 0.48, spatial model: 0.60). Yet, the 

model with the highest correlation to the data, was the spatial model. Fits of an ellipsoid to 

the data showed that the orientation of the ellipsoid approached the diagonal only for the 

spatial model, confirming that this is the model that best matches the data (orientation of the 

major axis θ, visual model: 4 deg, speed model: 16 deg, non-spatial model: 19 deg, spatial 

model: 40 deg). Overall, this modelling analysis reinforces the main finding that responses 

in V1 are modulated by spatial context, beyond the influence of other visual and non-visual 

factors. 

3.1.4 Pixel-by-pixel identical visual environment 

In the previous section I demonstrated that task-related or visual factors are not 

sufficient to explain the spatial modulation of V1 responses. However, this analysis does 

not account for one last confound which is related to the design of the virtual environment 

itself; that is the end wall of the corridor which is constantly expanding as the animal 

advances forward. The rationale behind this specific design was to create the sense of being 

inside a room of finite dimensions. But this choice came at a cost: that the visual scenes 

processed by cells with central receptive fields were not identical at 40 cm apart. As 

mentioned previously, due to this limitation we chose to analyse responses of cells with 

receptive fields >40 deg. However, although images 40 cm apart are identical ‘within the 

receptive fields’ of these neurons, images outside their receptive fields are not pixel-by-

pixel identical.  

To control for this limitation, we ran additional experiments in a visually-identical virtual 

environment. The environment was a corridor with twice the length of the original one. 

The landmark textures, a grating and a plaid, were now repeated four times in total (Figure 

3-7a). In addition, the distance along the corridor that was visible to the animal was 

reduced to 70 cm, therefore keeping the first and second quarter of the room (every pixel) 

completely identical (Figure 3-7b). Animals ran from 0 cm to 100 cm of this corridor and, 

as before, after an inter-trial interval they started again at position 0 cm.  

Recordings in the visually-identical environment were performed in 2 mice (7 sessions 

in total). As in the original experiments, we targeted portions of V1 that analysed the 

peripheral visual field. Even in the extended ‘identical corridor’ V1 responses were 

modulated by spatial context in both animals (Figure 3-7c). The spatial modulation ratio 
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was again substantially different to 1 (0.62 ± 0.26, p < 10-81, Wilcoxon signed rank test; n = 

1044 cells), confirming that spatial modulation of V1 responses could not be explained by 

visual cues even far outside the classical receptive field. 

 

Figure 3-7: The spatial modulation of V1 responses is not due to end-of-corridor visual cues 

In a virtual corridor of length 100 cm (Figure 3-1b) the scenes from the two repeated sections will 
differ slightly at the perspective vanishing point, as the grey wall at the end of the corridor will 
occupy more pixels in the second section. Even though this point is far from the receptive field of 
the measured neurons, it is important to exclude the possibility that this small visual difference 
could give rise to the position signals measured in V1. We therefore imaged two additional mice in 
a control experiment, where the on-screen view was absolutely identical in the two sections. This 
was achieved by creating a 200 cm corridor, “teleporting” the animal back to the start after 
traversing the first 100 cm, and setting the virtual reality software to provide visibility only up to 70 
cm in the distance.  
a. Diagram of the 200 cm virtual corridor, containing the same grating and plaid as the regular 
corridor, repeated 4 times instead of twice.  
b. Visual scenes from locations within the first 100 cm of the extended corridor, separated by 40 
cm, are visually identical. 
c. Cumulative distribution of the spatial modulation ratio across the two mice that were placed in 
the long corridor (7 sessions, 2 mice; median ± m.a.d: 0.62 ± 0.26; black line). Grey line shows the 
spatial modulation ratio predicted by the “non-spatial” model (which predicts activity from the 
visual scene, trial onset and offset, speed, reward, pupil size and displacement from the central 
position of the eye, see Supplementary Figure 8 below, non-spatial model). The two distributions 
are significantly different (Wilcoxon rank sum test; p<10-14). 

 

3.1.5 Does spatial modulation depend on experience? 

Taken together, these results support the hypothesis that responses as early as in V1 are 

modulated by spatial context. That being the case, it is intriguing to ask how such signals 

emerge. Do these signals become stronger as the animal becomes more familiar with the 

environment?  

To answer this question, we trained 2 animals to run head-fixed in the absence of any 

visual stimulus, and sought to measure V1 activity the very first time they experienced the 

virtual environment. We monitored V1 activity in the periphery, in the same field of view, 
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and we found that responses on the first day were different from responses on the second 

day (Figure 3-8). Specifically, the secondary peaks 40 cm away were on average higher on 

the first day, and consequently the ratio of peaks was significantly higher than on the 

second day (Figure 3-8b, c; median ± m.a.d.: first day: 0.71 ± 0.28, second day: 0.56 ± 

0.27; Wilcoxon rank sum test; p = 0.005). Importantly, the difference between the first and 

second day could not be attributed to differences in speed; one animal ran at 13 cm/s on 

average on the first day and at 15 cm/s on the second day; the second animal ran at 16 

cm/s on the first day and at 20 cm/s on the second day. Overall, these preliminary results 

suggest that the observed spatial modulation in V1 becomes stronger over days. Yet, 

additional experiments are required to reveal how this spatial modulation is being inherited. 

 

Figure 3-8: Lower degree of spatial modulation on the first day of exposure to the 
virtual environment.  
a. Normalised response as a function of distance in the virtual environment obtained from even 
trials only on the first (left) and second (right) day in virtual reality, for V1 neurons in the same field 
of view in the periphery (receptive field centres >60o azimuth) and activity significantly modulated 
by position in the corridor (2 mice; first day: 655 of 755, second day: 580 of 662). Neurons are 
ordered based on the position of their maximum response. Yellow, red and blue lines indicate position 
of maximum +/- 40 cm.   
b. Population average of responses shown in a for cells responding to the visually-matching 
segments obtained on the first day (grey) and second day (black) in virtual reality. Lower values of 
the side peaks on day 2 compared to day 1 indicate stronger preference of V1 neurons for one 
segment of the corridor on day 2.  

c. Cumulative distribution of the spatial modulation ratio computed on day 1(grey) and day 2 (black; 
median ± m.a.d: day 1: 0.71 ± 0.28, day 2: 0.56 ± 0.27. The two distributions are significantly 
different (Wilcoxon rank sum test; p = 0.005).  
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3.2 Discussion 

Modulation of V1 activity in the context of running behaviours has been extensively 

investigated, both in the absence (Saleem et al., 2013) and presence of visual stimuli (Niell 

and Stryker, 2010), or even during running through visually-rich virtual reality 

environments (Saleem et al., 2013). Running through virtual reality environments promotes 

engagement with the sensory world giving rise to a more naturalistic visual experience 

(Poort et al., 2015). Yet, how other covariates of this naturalistic experience, beyond 

running, influence V1 activity, has not been systematically investigated.  

Here we asked whether spatial signals, such as the position along the virtual reality 

corridor, influence V1 responses to the corridor’s visual landmarks. Critically, because the 

corridor contained two visually-matching segments, we hypothesised that purely visual 

responses between the visually-matching segments should be similar. Instead, we found 

that many neurons preferred to fire more at a single virtual position, thereby giving rise to a 

response pattern at the population level that tiled up the whole virtual corridor. The tiling 

up of the virtual corridor also revealed that many cells responded more strongly in the 

second half of the virtual environment, suggesting that the observed modulation could not 

be attributed solely to adaptation influences. Nevertheless, other behavioural variables, 

such as running or reward, may have potentially influenced the observed modulation 

(Poort et al., 2015). To assess the influence of these behaviour-related variables, together 

with visual factors (pupil size, eye movements), we modelled these factors as predictors of 

the measured responses. We found that speed exerted the strongest effect. Yet, the 

observed modulation could not be fully explained by speed, neither by the joint 

contribution of all factors together. Finally, the observed modulation could not be 

explained by small differences between the two halves of the corridor, which mostly 

originated from the end grey wall. Taken together, these results point strongly towards the 

influence of visual responses in V1 by spatial signals, and more specifically by the position 

of the animal in the environment. 

Pivotal studies on the changes in sensory responses induced by behavioural and task-

relevant factors have highlighted the underlying role of task engagement or learning 

(Makino and Komiyama, 2015; Otazu, Tai, Yang, and Zador, 2009; Poort et al., 2015). For 

instance, the learning-induced improvement in stimulus selectivity is much more 

pronounced during task engagement than during passive presentation of the same stimuli 

under anaesthesia (Poort et al., 2015). Thus, it seems that task-engagement accentuates 
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non-sensory influences on sensory responses. However, we found that in the absence of 

task, when animals simply ran through the environment without reward, spatial modulation 

was still present, suggesting that even incidental learning of the spatial features of the 

environment, in the absence of a task, is sufficient to modulate V1 responses. To which 

extent learning of the spatial features shapes the spatial modulation of V1 responses 

remains an open question. Here I attempted to provide some insight into this question 

based on preliminary data obtained from learning experiments in two animals. These 

experiments showed that spatial modulation was already present on the first day of 

exposure to the virtual reality environment. However, the degree of spatial modulation was 

lower on the first day compared to the second day. Perhaps the apparent modulation 

observed on the first day can be explained by all other task-related and behavioural factors. 

This is a testable hypothesis I would like to assess using the model presented in Section 

3.1.3. In addition, it would be useful to assess within-session experience-dependent 

changes, by computing response profiles from the minimum number of trials possible. 

Clearly, further experiments and analysis are needed, before concluding on the effects of 

learning on the modulation of visual responses.  

Another important question concerns how similar are the spatial signals observed in V1 

to the spatial signals represented in areas traditionally thought to be involved in spatial 

information processing. In a recent study we showed that V1 and the hippocampus encode 

similar and consistent estimates of the animal’s position and that these encoded positions 

reflect the animal’s subjective estimate of position in the environment (Saleem*, Diamanti* 

et al., 2018). Yet, these results do not establish whether the similarity of signals in V1 and 

CA1 is due to feedforward signals from vision or to feedback signals from navigational 

systems. Given that V1 and CA1 are not connected monosynaptically, we speculate that 

multiple areas may play a role in conveying both feedforward-visual and feedback-spatial 

signals between the two regions. For instance, feedforward signals may be conveyed 

through higher visual areas, whereas feedback signals may be carried through cortical areas 

involved in processing of spatial information, such as the retrosplenial, prefrontal and 

parietal cortex (Wang, Gao, and Burkhalter, 2011). Among these areas the PPC is of 

particular interest, because it is thought to overlap, at least partly, with three higher visual 

areas, RL, A and AM (Wang, Gao, and Burkhalter, 2011). Therefore, it would be interesting 

to ask whether the degree of spatial modulation in these higher visual areas is the same as 

in V1. I will tackle this question in Chapter 5.  
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Our results demonstrate that spatial signals are present as early as in primary sensory 

cortex. To better understand how these signals influence sensory responses and inform 

behaviour under more naturalistic conditions, it would be useful to introduce 2-

dimensional virtual environments (Aronov and Tank, 2014; Chen et al., 2018; Cushman et 

al., 2013), or ultimately record from freely-moving animals in real environments. In such 

experiments, though, precise control of the visual stimuli would have been challenging. In 

this study, instead, precise control of the visual stimulation was made possible thanks to 

head-fixation together with the introduction of a one-dimensional virtual reality 

environment. This experimental design has proved crucial to the detection of spatial signals 

in V1.  
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 Chapter 4 

In the previous chapter I sought to characterise V1 responses in virtual reality and 

demonstrated for the first time, that V1 activity is influenced by yet another non-sensory 

factor: spatial position. These results add to the broad spectrum of behavioural and task-

related factors known to influence V1 responses. Yet, little is known about the impact of 

non-sensory factors on responses in higher visual areas in the mouse, and even more so, 

about the functional role of higher visual areas during behaviour. In the next chapters 

(Chapters 3 to 5) I will address these issues using several experimental protocols of 

increased behavioural complexity.  

In this Chapter I aim to establish a link with previous studies which probed the 

functional properties of higher visual areas with simple visual stimuli. I will thus present my 

own results on these functional properties obtained with the use of similar approaches 

(spatiotemporal frequency and orientation selectivity tuning) (Section 4.1.1). Transitioning 

towards behaviour in virtual reality, I will also compare measured activity in V1 and higher 

visual areas between viewing of simple visual stimuli versus active behaviour in virtual 

reality (Section 4.1.2). 

Overall, this Chapter sets the stage for assessing the functional role of higher visual 

areas during behaviour, which will be discussed in the next chapters.             

4.1 Results 

4.1.1 Visual stimulation with drifting gratings 

4.1.1.1 Orientation and direction selectivity across areas 

To characterise the orientation and direction selectivity across visual areas, we presented 

drifting gratings at 12 different directions of motion (6 orientations, step 30 deg). The 
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spatial and temporal frequency of the stimuli was fixed at 2 Hz and 0.04 cpd respectively. 

Many cells exhibited a clear preference for specific orientations or directions across all 

areas (Figure 4-1a; example cells, black circles). This preference was confirmed by fitting 

the sum of two gaussians to the maximum activity during each stimulus presentation 

(Figure 4-1a, example cells, grey curve).  

We first asked whether the degree of orientation selectivity was the same across areas. 

We obtained distributions of the orientation vector length for each cell and estimated the 

median across the population for each area (Figure 4-1b). The median vector length for 

V1 was higher than the rest of the areas, except from LM (vector length > 0.40 for V1 and 

LM as opposed to vector length ≤ 0.35 for AL, RL, A, AM and PM; K-S test, p <10-10. The 

stronger orientation selectivity for the V1 and LM populations was also reflected in the 

percentage of cells classified as orientation selective, based on a threshold of orientation 

vector length higher than 0.3 (in descending order: LM: 781/1149 = 68%; V1: 6966/10948 

= 64%; RL: 2289/4090 = 56%; A: 766/1357 = 56%; PM: 757/1364 = 55%; AL: 599/1152 

= 52%; AM: 1005/1927 = 52%). We also asked whether orientation selectivity in any of 

these areas was biased towards a specific orientation. We obtained distributions of 

preferred orientations for neurons with orientation vector length higher than 0.3, and we 

found a bias for cardinal versus oblique orientations in V1 (Figure 4-1c ;1-way ANOVA 

across 9 orientations; p<10-10). A similar bias was also observed in AM (1-way ANOVA 

across 9 orientations; p<10-5). No statistically significant bias was observed in the rest of 

the areas (p > 0.01). 

We next focused on the direction selectivity of each area by addressing similar questions 

as for the orientation selectivity. To assess the degree of direction selectivity in each area 

we obtained distributions of the direction vector length and estimated the median across 

the population (Figure 4-1d). As previously, the median vector length for V1 and LM was 

higher than the rest of the areas (vector length = 0.25 for V1 and LM as opposed to vector 

length ≤ 0.23 for AL, RL, A, AM and PM; K-S test, p << 0.001). Also, the percentage of 

direction selective cells (direction vector length > 0.3) was higher for V1 and LM than the 

rest of the areas (in descending order: LM: 504/1149 = 44%; V1: 4615/10948 = 42%; A: 

766/1357 = 36%; AM: 1005/1927 = 35%; PM: 757/1364 = 34%; AL: 391/1152 = 34%; 

RL: 2289/4090 = 31%). Is direction selectivity biased towards a specific direction in any of 

the areas? To address this question, we obtained distributions of preferred direction for 

neurons with direction vector length higher than 0.3 (Figure 4-1e). We observed a bias for 

vertical drifting gratings moving away from the observer in area A, but this bias was not 
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statistically significant. Similarly, we found no significant bias towards a certain direction in 

the rest of the areas.  

 

Figure 4-1: Orientation and direction selectivity across visual areas.  
a. Example direction tuning curves across areas (grey trace) obtained by fitting the sum of two 
Gaussians; black data points: average response to a given orientation  
b. Distributions of single-cell orientation vector lengths across areas (grey dotted line: median across 
the population).  
c. Distributions of preferred orientations across areas for neurons with orientation vector length 
higher than 0.3.  
d. Distributions of single-cell direction vector lengths across areas (grey dotted line: median across the 
population) e. distributions of preferred directions across areas for neurons with orientation vector 
length higher than 0.3.       
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Overall, these results replicate previous findings (Andermann et al., 2011; Marshel, 

Garrett, Nauhaus, and Callaway, 2011; Roth, Helmchen, and Kampa, 2012) demonstrating 

that direction and orientation tuning is a feature present in all areas. Notably, we found a 

bias in V1 for cardinal orientations consistent with Roth et al. (2012). A similar, significant 

bias was also found in AM, but not in the rest of higher visual areas. Our findings also 

demonstrated increased orientation and direction selectivity for V1 and LM, perhaps 

suggesting that these two areas are more similar, and therefore hierarchically closer to each 

other. 

4.1.1.2 Spatial and temporal frequency tuning 

To characterise the spatial and temporal frequency tuning preference across areas, we 

presented vertical drifting gratings at four spatial and five temporal frequencies. We found 

cells with robust responses to a specific range of spatial and/or temporal frequencies across 

all areas, albeit very few of those in area A (Figure 4-2a, Figure 4-3a). To further assess 

the spatial and temporal frequency tuning of individual cells, we obtained maps of average 

stimulus-evoked response at different combinations of spatial and temporal frequencies 

(Figure 4-2b). We then extracted the slice in these maps that corresponded to the 

maximum response in either the spatial or the temporal frequency and sorted them by 

preferred temporal or spatial frequency value (Figure 4-3a, c). Sorting by preferred spatial 

or temporal frequency value revealed the frequencies preferred by the majority of cells. To 

test for within-area biases towards low or high frequencies we also estimated the mean 

response for each frequency value (Figure 4-3b, c)  

In the spatial frequency domain (Figure 4-3a, b), V1 and LM exhibited a bias towards 

the lowest spatial frequency (V1: 923/2956, 31% of cells; LM: 99/336, 29%; mean 

response at lowest frequency significantly different from the mean at all other frequencies, 

1-way ANOVA: p ≤ 0.001). This bias was even more pronounced in areas AL and RL (AL: 

75/174, 43%; RL: 325/882, 37%; mean response at lowest frequency significantly different 

from the mean at all other frequencies, p << 0.001). Areas A and AM contained more cells 

tuned for the lowest frequency (AM: 107/238, 45%; A: 38/95, 40%), but the mean 

response at lowest frequency was different only from the highest frequency (p<10-10). 

Finally, the majority of cells in PM exhibited an equal preference for both the lowest and 

the highest spatial frequency, with 43/142 cells preferring the lowest spatial frequency 

(30%) and 45/142 cells (32%) preferring the highest spatial frequency (no statistically 

significant difference across frequencies).  
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Figure 4-2: Spatiotemporal frequency tuning across areas  
a. Example average responses to drifting gratings of various spatial and temporal frequency across 
areas. Shaded regions are ±s.e.m.  
b. Maps across areas of average stimulus-evoked response in the spatial-by-temporal frequency 
plane. 

 

In the temporal frequency domain (Figure 4-3c, d), we found a bias in V1 for the 

lowest temporal frequency (782/2956, 26% of cells; mean response at lowest frequency 
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significantly different from the mean at two highest frequencies, p<10-10). Instead, most 

higher visual areas except PM showed a bias towards the highest temporal frequency (in 

descending order: AL: 61/174, 35%; A: 33/95, 35%; LM: 106/336, 31%; RL: 277/882, 

31%; AM: 74/238; 31%; mean response at highest frequency significantly different from 

the mean at lowest frequency, p<10-10). Conversely, PM exhibited a significant bias towards 

low temporal frequencies (45/142 cells, 32%; mean response at lower frequency 

significantly different from the mean at the highest frequency, p<10-10).   

 

Figure 4-3 Neurons in visual areas prefer different spatial and temporal frequencies 
a. Average responses to different spatial frequencies at the preferred temporal frequency, sorted 
based on the preferred spatial frequency. (legend continues on next page)  
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b. Average response to different spatial frequencies obtained from the population in a. Error bars 
are ±s.e.m.  
c. Average responses to different temporal frequencies at the preferred spatial frequency, sorted 
based on the preferred temporal frequency.  
d. Average response to different temporal frequencies obtained from the population in c. Error 
bars are ±s.e.m. 

 

Up to now we considered spatial or temporal frequency tuning separately. We next 

sought to determine the number of neurons preferring a specific pair of spatial and 

temporal frequency, by estimating population density maps in the spatial and temporal 

frequency domain (Figure 4-4a). Neurons in V1 had preferences that spanned the whole 

spectrum of spatiotemporal frequencies homogeneously. Instead, in the rest of the areas we 

found biases for a narrow range a spatiotemporal frequency pairs. For instance, most cells 

in LM preferred high temporal and spatial frequencies. Instead, most neurons in AL, A and 

AM preferred high temporal but very low spatial frequencies. Cells in RL were tuned 

towards intermediate to high spatial and temporal frequency values. Finally, most cells in 

PM preferred the lowest temporal frequency and either very low or very high spatial 

frequency.  

 

Figure 4-4 Neurons in visual areas prefer different combinations of spatial and temporal 
frequencies  
a. Population density maps in the spatial and temporal frequency domain across areas  
b. Ratio of preferred temporal frequency over preferred spatial frequency (‘peak speed’). V1, LM 
and PM prefer lower ‘peak speeds’ compared to AL, RL, A and AM.  

 

To further assess the preferred spatiotemporal preferences of each cell, we estimated the 

‘peak speed’, i.e. the ratio of preferred temporal frequency over preferred spatial frequency 

(Figure 4-4b). The ‘peak speed’ tuning across the V1 population was broader compared to 

the higher visual areas. Instead, LM and PM demonstrated sharp tuning towards medium 

or lower ‘peak speed’ ranges respectively. Finally, for areas AL, RL, A and AM, the ‘peak 
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speed’ distribution was skewed towards higher speed values. Among all areas, V1 and PM 

had the lowest median values for ‘peak speed’ (25 deg/sec), then LM, RL and AM followed 

with 50 deg/sec, whereas AL and A had the highest median values at 100 deg/sec (most 

areas except PM had higher median peak speeds than V1; K-S test, p << 0.0001).  

Overall these results confirm previous findings and suggest that areas AL, RL, A and 

AM are functionally distinct from LM and PM. 

4.1.2 Distinct subpopulations respond reliably to drifting gratings or 

in virtual reality 

To obtain a first estimate of the similarity of responses to drifting gratings and during 

active behaviour (closed loop in virtual reality), we used skewness (the third moment, s) as 

a measure of whether a cell is active or not; cells with skewness, s>1 were considered active 

(Figure 4-5a). Although many cells responded in both conditions, there were also distinct 

subpopulations that responded to one condition only, with more cells responding to 

drifting gratings alone than in virtual reality alone. This was probably the case because 

many cells were selective for spatial and temporal frequencies that were not present in 

virtual reality. (Figure 4-5e; (𝑠𝑔𝑟𝑎𝑡𝑖𝑛𝑔𝑠 ≥ 1 & 𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 < 1) versus (𝑠𝑔𝑟𝑎𝑡𝑖𝑛𝑔𝑠 <

1 & 𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 ≥ 1): V1: 26.6% vs 9.1% , LM: 37.1% vs 14.5%, AL: 33.8% vs 9.7%, RL: 

30.9% vs 6.2%, A: 34.3% vs 12.3%, AM: 22.8% vs 11.4%, PM: 17.3% vs 14.8%). The 

existence of distinct subpopulations was also reflected in the relatively low correlations 

between the two conditions. (Pearson correlation coefficient, r: V1: 0.30, LM: 0.10, AL: 

0.25, RL: 0.32, A: 0.32, AM: 0.22, PM: 0.19, p<10-10 in all areas).  

Because these estimates were derived from all cells recorded, perhaps cells active during 

presentation of drifting gratings had stimulus preferences different from the landmarks 

presented in virtual reality. Thus, given that one of the prominent landmarks in virtual 

reality was a vertical grating, we next investigated the skewness relationship between the 

two conditions for cells tuned to this specific type of stimulus. Again, we found that cells 

preferring the vertical grating did not necessarily respond in virtual reality (Figure 4-5e, 

data in red, Pearson correlation coefficient, r: V1: 0.35, p<10-4, LM: 0.26, p = 0.07, AL: 

0.58, p = 0.0001, RL: 0.36, p<10-4, A: 0.34, p=0.007, AM: 0.12, p=0.28, PM: 0.11, p=0.44). 

In fact, we found that most cells preferring the vertical grating were active during 

presentation of drifting gratings only and not during active behaviour (% difference  
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Figure 4-5: Distinct subpopulations respond reliably to drifting gratings or in virtual reality 
a. Normalised fluorescence traces from two example cells during active behaviour (magenta; left) and 
during presentation of a vertical drifting grating at 0.5 Hz and 0.08 cpd (orange; right). Grey bars 
indicate trial duration. s is skewness. 
b. Population average of skewness for each visual area during active behaviour (magenta) or during 
presentation of drifting gratings (orange). Error bars are ± s.e.m. 
c. Normalised fluorescence traces (grey) and predicted responses (orange) for two example cells 
during presentation of drifting gratings at different orientations. 
d. Population average of variance explained for each visual area during active behaviour (magenta) or 
during presentation of drifting gratings at different orientations (orange). Error bars are ± s.e.m.  
e. Skewness of single-cell activity across areas during active behaviour (closed-loop) against 
skewness of single-cell activity during presentation of drifting gratings, for the whole population 
(grey) and for cells preferring the vertical orientation (red). r and p is the Pearson correlation 
coefficient and p-value respectively for cells preferring the vertical orientation.  
f. Skewness index, s, across areas. s close to 1 means high skewness in virtual reality, whereas s 
close to -1 means high skewness during presentation of drifting gratings.  
g. Same as in a. for variance explained. The L-shaped distribution in all areas indicates that most 
cells respond reliably during active behaviour alone or during presentation of drifting gratings alone  
h. Same as in f. for variance explained (‘reliability index’). The reliability index gradually becomes 
more biased away from V1 and LM, towards PM.  
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between cells active during presentation of drifting gratings only versus cells active during 

behaviour only: V1: 25%, LM: 26%, AL: 29% RL: 28% A: 26% AM: 12% PM: 15%).  

The higher responsiveness of cells during presentation of drifting gratings than during 

active behaviour was also reflected in the mean skewness across the population (Figure 

4-5b). Typically, the mean skewness in virtual reality was lower than the mean skewness 

during stimulation with drifting gratings, with the only exception of PM ((mean ± 

s.e.m.)behaviour vs (mean ± s.e.m.)gratings , V1: 2.53 ± 0.02 vs 3.56 ± 0.03, LM: 1.71 ± 0.05 vs 

2.93 ± 0.06, AL: 2.10 ± 0.06 vs 3.23 ± 0.07, RL: 2.24 ± 0.04 vs  3.54 ± 0.04, A: 1.64 ± 0.05  

vs 2.71 ± 0.06, AM 2.23 ± 0.04 vs 2.93 ± 0.05, PM: 3.19 ± 0.07 vs 3.31 ± 0.07). To further 

classify cells as responsive to drifting gratings and/or in virtual reality, we estimated a 

skewness index ((sbehaviour – sgratings )/( sbehavour + sgratings)). Cells with zero skewness index 

responded in both conditions, cells with index of -1 responded to drifting gratings alone, 

whereas cells with index +1 responded in virtual reality alone (Figure 4-5f). The mean 

index across the population was less than zero in all areas, consistent with the observation 

that cells are more responsive to drifting gratings (mean index ± s.e.m.: V1: -0.20 ± 0.01, 

LM: -0.13 ± 0.13, AL: -0.27 ± 0.02, RL: -0.26 ± 0.01, A: -0.23 ± 0.01, AM: -0.14 ± 0.02, 

PM: -0.02 ± 0.01).  

We next assessed the reliability of responses using a measure of prediction quality 

(variance explained, Q): in virtual reality, we estimated the quality of predicting each 

neuron’s activity as a function of position in the virtual corridor (Qbehaviour). For the 

stimulation with drifting gratings, we focused on responses to different stimulus 

orientations, and estimated the quality of predicting each neuron’s activity as a function of 

time (QOri; Figure 4-5c). We then used the relationship between the two measures to ask 

how different the populations of neurons were responding in virtual reality or to drifting 

gratings of different orientations.  

We found two fairly distinct populations: typically cells with reliable responses in virtual 

reality were not responding reliably during the orientation selectivity protocol and vice 

versa (Figure 4-5g). Notably, even cells that were tuned to vertical gratings, a stimulus that 

is also present in virtual reality, exhibited reliable responses to vertical gratings alone for 

most areas, except A and AM (Figure 4-5g, data in red; (% difference between reliable 

responses during presentation of drifting gratings only versus reliable responses during 

behaviour only: V1: 33, LM: 37, AL: 10, RL: 28, A: -8, AM: -1, PM: 0.14). In addition, the 

reliability of responses between the two conditions was not correlated (Pearson correlation 
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coefficient, r; p: V1: 0.14, 0.003; LM: 0.001, 0.99; AL: 0.25, 0.12; RL: 0.06, 0.47; A: 0.09, 

0.51; AM: 0.33, 0.002; PM: -0.13, 0.37).  

To obtain an additional estimate of how the reliability of responses between the two 

conditions varied within and between areas, in each area we estimated the mean prediction 

quality across the population (Figure 4-5d). We found that the mean prediction quality for 

the orientation selectivity protocol was highest in V1 and LM compared to the rest of the 

areas; within V1 or LM, mean prediction quality for orientation selectivity was also much 

higher than the same measure in virtual reality (V1: QORI = 0.138 ± 0.002 vs Qbehaviour = 

0.040 ± 0.001; LM: QORI = 0.193 ± 0.007 vs Qbehaviour = 0.077 ± 0.003). Besides V1 and 

LM, AL and RL exhibited lower prediction quality for orientation selectivity, but still higher 

than the prediction quality in virtual reality (AL: QORI = 0.056 ± 0.004 vs Qbehaviour = 0.031 

± 0.001; RL: Qbehaviour = 0.096 ± 0.003 vs Qbehaviour = 0.031 ± 0.001). Finally, in areas A, AM 

and PM the difference in prediction quality between the two conditions was reversed, with 

responses in virtual reality being on average slightly more reliable than for orientation 

selectivity (A: QORI = 0.017 ± 0.002 vs Qbehaviour = 0.027 ± 0.001, AM: QORI = 0.034 ± 0.002 

vs Qbehaviour = 0.043 ± 0.001, PM: QORI = 0.025 ± 0.002 vs Qbehaviour = 0.032 ± 0.002). 

To further classify single-cell responses as more reliable in virtual reality or during the 

orientation selectivity protocol, we estimated a ‘reliability index’ ((Qbehaviour – QORI)/(Qbehaviour 

+ QORI)). Distributions of the reliability index revealed a trend across areas that was not 

evident previously (Figure 4-5h): V1 and LM had very similar distributions, with almost 

equal numbers of cells having reliable responses during the orientation selectivity protocol 

(reliability index = -1) or during behaviour (reliability index = +1). Beyond V1 and LM, we 

found a gradual bias towards reliable responses in virtual reality. This bias was strongest in 

A. Consistently, the mean ‘reliability index’ increased from V1 and LM towards A (mean 

‘reliability’ index ± s.e.m. in ascending order: LM: 0.06 ± 0.02, V1: 0.15 ± 0.01, RL: 0.27 ± 

0.01, AL: 0.50 ± 0.02, AM: 0.61 ± 0.02, PM: 0.71± 0.02, A: 0.75 ± 0.02). Notably, unlike 

previous findings obtained using skewness, we found few cells responding reliably in both 

conditions (index = 0; V1: 5%, LM: 6%, AL: 3%, RL: 4%, A: 2%, AM: 3%, PM: 2%). 

Moreover, although based on skewness, cells were more active during presentation of 

drifting gratings, based on prediction quality their responses were more reliable in virtual 

reality in most areas, except V1 and LM.  

Overall, these findings suggest that reliable responses during active behaviour are 

distinct from reliable responses during presentation of drifting gratings. This dichotomy 
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cannot be attributed solely to the fact that cells are active only in one condition but not the 

other. In addition, although cells in all areas are typically more active during presentation of 

drifting gratings than during behaviour, they may still respond more reliably during active 

behaviour. This was particularly evident in areas A, AM and PM, suggesting that these areas 

may be more sensitive to task engagement.  

4.2 Discussion 

Over the past decade an increasing body of evidence has revealed that the mouse visual 

cortex comprises of numerous retinotopically organised higher visual areas. At least 6 of 

these areas (LM, AL, RL, A, AM and PM) can be distinguished from one another based on 

classic measures of stimulus tuning, such as spatial and temporal frequency preference.  

In this Chapter, I used well-established stimulation protocols to probe the orientation 

selectivity and spatiotemporal tuning of higher visual areas (Section 4.1.1). By replicating 

previous findings on the preferred spatiotemporal tuning of higher visual areas, I 

confirmed I could use two-photon imaging to target distinct higher visual areas. I also 

asked how reliable were the responses across conditions of different behavioural 

complexity: passive viewing of drifting gratings versus active behaviour (closed loop) 

(Section 4.1.2). I found that most responses were reliable only in one of the two 

conditions. Interestingly, this analysis revealed a progressive reliability bias towards active 

behaviour when moving away from V1 and LM towards areas A and AM. 

I found that V1 and LM had the highest degree of direction and orientation selectivity 

than any other higher visual area. In addition, similar to previous reports, I observed an 

orientation bias in V1 towards cardinal orientations (Roth, Helmchen, and Kampa, 2012). 

In the spatiotemporal frequency domain, I found that V1 was not tuned to a specific 

spatiotemporal frequency range. In contrast, AL was one of the most sharply tuned areas, 

preferring high temporal and low spatial frequencies, as previously reported by Andermann 

et al.(2011). Similar to AL was the spatiotemporal preference of A, consistent with the 

findings by Murakami et al. (2017). Nevertheless, there were also some discrepancies 

between our data and previously published studies. Specifically, V1’s bias in the nasal-

temporal direction was not as clear as previously reported (Hillier et al., 2017; Marques, 

Nguyen, Fioreze, and Petreanu, 2018). In addition, I did not observe a clear bias for PM 

towards high spatial frequencies (Andermann et al., 2011). Despite these discrepancies, our 

findings are consistent to a large extent with previous reports. 
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4.2.1   Consistencies and discrepancies in orientation and direction 

selectivity 

To probe orientation and direction selectivity in V1 and higher visual areas we used 

drifting gratings at a temporal frequency of 2 Hz and a spatial frequency of 0.04 cpd. These 

fixed temporal and spatial frequency values have been one of the limitations in our study, 

because this particular set may not correspond to the range of frequencies preferred by a 

certain area. Indeed, orientation selectivity is tightly linked to the preferred spatial 

frequency and direction selectivity to the preferred temporal frequency, therefore it is 

important that these dependencies are taken into account (Glickfeld and Olsen, 2017). In 

fact, various studies have emphasised that neglect of these dependencies is the main reason 

of disagreement between their findings and others (Andermann et al., 2011; Marshel, 

Garrett, Nauhaus, and Callaway, 2011). Likewise, our result on higher degree of orientation 

and direction selectivity in V1 and LM disagrees with previous studies: Marshel et al. (2011) 

reported better direction selectivity in areas AL, RL, AM; Roth et al. (2012) on the other 

hand reported similar orientation and direction preference in V1 and PM; finally, 

Andermann et al. (2011) saw no difference in orientation selectivity between V1, AL and 

PM, but he did see higher direction selectivity in V1 compared to AL and PM; in fact, 

direction selectivity in AL was minimal. Therefore, our results in direction selectivity are 

consistent with the study by Andermann et al. (2011), which was also done in awake mice. 

Instead, the studies by Marshell et al. (2011) and Roth et al. (2012) were performed in 

anaesthetised mice, which may be another reason for the observed discrepancies. 

We also looked at biases towards a specific orientation or direction of motion. Once 

more, our finding that V1 prefers cardinal directions is consistent with some of the 

previous findings (Roth, Helmchen, and Kampa, 2012), but it is not in agreement with 

Andermann et al. (2011) who reports no explicit bias in V1 or PM. In the rest of the areas, 

we found an overall tendency towards preference for cardinal directions. This tendency was 

statistically significant for AM. However, in contrast to Roth et al. (2012), preference for 

cardinal directions was not statistically significant for PM. Conversely, our result of lack of 

bias for a specific direction in all areas is in disagreement with Hillier et al. (Hillier et al., 

2017), who reports preference of V1 for nasal-temporal direction of motion, and with 

Andermann et al. (2011) who found a bias for upward-downward direction of motion in 

AL, although in the later study the sample size was relatively small.   
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4.2.2 Consistencies and discrepancies in spatiotemporal selectivity 

Consistent with previous anatomical and functional studies, our results suggest that 

higher visual areas have distinct spatiotemporal tuning properties. Specifically, we find that 

areas AL, RL and A are tuned to low spatial and high temporal frequencies. Thus, these 

areas may form a functionally distinct cluster involved in motion processing, as previously 

suggested by Wang et al. (Wang, Sporns, and Burkhalter, 2012) and followed up by the 

functional study of Murakami et al. (Murakami, Matsui, and Ohki, 2017).  On the other 

hand, PM is the only higher visual area tuned to low temporal frequencies (Marshel, 

Garrett, Nauhaus, and Callaway, 2011). In addition, we found that PM prefers both high 

and low spatial frequencies. This preference of PM is in agreement with Roth et al. (2012), 

but not with Andermann et al. (2011) and Marshell et al. (2011), who found only high 

spatial frequency tuning. Finally, LM is tuned to intermediate spatial frequencies but high 

temporal frequencies (Marshel, Garrett, Nauhaus, and Callaway, 2011). Therefore, higher 

visual areas can be distinguished from V1 in that they exhibit spatiotemporal selectivity. 

Indeed, apart from a modest bias towards low temporal frequency (see also Marshel et al., 

2011), V1 ‘s preferences spanned the whole spectrum of spatiotemporal frequencies. 

4.2.3 Passive viewing of drifting gratings versus active behaviour 

In this subsection I demonstrated that the subpopulations with reliable responses to 

drifting gratings of different orientations or during active behaviour were distinct and that 

this dichotomy could not be attributed to the fact that cells became silent when switching 

experimental protocol. Notably, very few cells responded reliably to both conditions even 

in V1. 

The main finding here was the clustering of higher visual areas into distinct groups 

depending on their relative preference to respond reliably to drifting gratings or during 

active behaviour (Figure 4-5h). Specifically, V1 and LM appeared to cluster together, with 

almost equal amounts of reliable responses in both conditions. Beyond V1 and LM, reliable 

responses gradually decreased in AL and RL and eventually reached a minimum in area A. 

Correspondingly, responses during active behaviour became more reliable in areas A, AM 

and PM, indicating that these areas formed a separate group that responded predominantly 

during active behaviour. Thus, as we move away from V1 we see two gradual changes: a 

decrease in the reliability of responses to drifting gratings; an increase in reliability during 

active behaviour. 
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It has been reported that areas A, AM and PM are biased towards the periphery 

(Zhuang et al., 2017), where the optic flow is higher in virtual reality. Therefore, can the 

increase in reliability during active behaviour for A, AM and PM be due to the fact that 

these areas experience higher optic flow? Indeed, I cannot exclude the possibility that 

retinotopic preference may influence the reliability of responses during active behaviour. 

Nevertheless, the retinotopic bias alone is not sufficient to explain the current result; AL 

for instance, a lateral visual area that is biased towards the central visual field, contains 

more reliable responses during active behaviour than its neighbouring area, LM. In 

addition, the degree of reliability during active behaviour in AL, an area biased towards the 

central visual field, is equal to the degree of reliability in AM.  

Can the decrease in reliability during presentation of drifting gratings be explained by 

differences in spatiotemporal tuning? I believe this is unlikely for the following reasons. 

First, to probe orientation selectivity I used a stimulus with intermediate spatial and 

temporal frequency values (0.04 cpd and 2Hz). These values were outside the range of 

preferred spatial and temporal frequencies in all areas. Second, areas with different 

spatiotemporal frequency tuning, such as A and PM exhibited similar degree of reliable 

responses to drifting gratings. Conversely, areas with similar spatiotemporal frequency 

preference, such as AL and A exhibited different degree of reliable responses, with A 

containing the least reliable responses to drifting gratings.   

Overall, these results indicate the existence of three groups: 1. V1 and LM contain 

almost equal subpopulations with reliable responses to the drifting gratings or during active 

behaviour; 2. AL and RL contain more cells with reliable responses during active behaviour 

than during presentation of drifting gratings; 3. A, AM, and PM exhibit strong bias towards 

reliable responses during active behaviour only. 

Having characterised responses during active behaviour, in terms of skewness and 

prediction quality, in the next chapter I focus on the responses profiles across higher visual 

areas obtained during active behaviour.  
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 Chapter 5 

In Chapter 3 I sought to characterise V1 responses in virtual reality and demonstrated 

for the first time, that V1 activity is influenced by yet another non-sensory factor: spatial 

position. These results add to the broad spectrum of behavioural and task-related factors 

known to influence V1 responses. Yet, little is known about the impact of non-sensory 

factors on responses in higher visual areas in the mouse, and even more so, about the 

functional role of higher visual areas during behaviour.  

To this end, in this chapter, I set off to characterise response profiles during active 

behaviour (closed-loop) as a function of position in the virtual corridor across higher visual 

areas. Specifically, I will address the following questions: is spatial modulation of visual 

responses also present in higher visual areas during active behaviour? If responses in higher 

visual areas are indeed influenced by spatial position, is this modulation stronger or weaker 

compared to V1? 

In the next chapter, I will then focus on responses during play-back of virtual reality 

sessions (open-loop) and ask whether responses during open-loop are different from 

responses in closed-loop. 

By tackling these questions in the current and next chapter, I aim to contribute new 

piece of evidence on the functional role of higher visual areas in the mouse, and ultimately 

provide new insight into the mechanisms underlying higher-level visual processing during 

behaviour.            
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5.1 Results 

5.1.1 Spatial modulation present across higher visual areas in closed-

loop 

Before estimating response profiles, we deconvolved the measured fluorescence signal 

to obtain firing rates for each neuron (2.7.22.8.1  in Methods). For each area, we then 

obtained response profiles as a function of position, as previously described (Section 3.1.1). 

To exclude very noisy response profiles, we selected cells whose response profiles were 

predicted with at least 5% prediction quality (LM: 638 out of 1,503 cells (42%); AL: 441 out 

of 1,741 (25%); RL: 893 out of 5,192 (17%); A: 998 out of 4,126 cells (24%); AM: 1,007 

out of 3,278 cells (31%) ; PM: 508 out of 2,512 cells (20%)). We then divided between odd 

and even trials and sorted response profiles as previously (Figure 5-1a, b). In each area the 

response profiles gave rise to a response pattern across the population that tiled the whole 

virtual corridor. However, the robustness of the response pattern was not the same across 

areas. This became more evident when we estimated the mean response of neurons 

responding to the visually matching segments as a function of the distance from the peak 

response location (Figure 5-1c; LM: 385 cells AL: 227 cells RL: 500 cells A: 473 cells AM: 

528 cells PM: 267 cells). In the ideal scenario where all response profiles were exactly the 

same between odd and even trials, the mean normalised response should have peaked at 

one. Instead, we found that the average peak height was less than 80%. Among all areas, 

peak height was lowest in A, suggesting that responses in this area exhibited the highest 

variability (0.57 ± 0.01). Next to follow were areas PM with average peak height of 0.67 ± 

0.02 and AM with 0.70 ± 0.01. AL and RL had a slightly higher peak height of 0.72 (AL: 

0.72 ± 0.02, RL: 0.72 ± 0.01). Finally, LM had the highest peak height (V1: 0.77 ± 0.01, 

LM: 0.80 ± 0.01).  

To summarise the degree of spatial modulation in each area, we defined the ‘spatial 

modulation ratio’ as the ratio of each cell’s responses at the two visually matching locations 

(±40 cm away from preferred position / preferred position). The median spatial 

modulation ratio was significantly lower than 1 in all areas (Figure 5-1d; median ± m.a.d.: 

LM: 0.43 ± 0.27, AL: 0.50 ± 0.32, RL: 0.35 ± 0.26, A: 0.45 ± 0.36, AM: 0.57 ± 0.32, PM: 

0.52 ± 0.36; Wilcoxon signed rank test: p < 10-13 in all areas). Notably, the fact that 

response profiles tiled the whole corridor indicates that there were many cells that 

preferentially fired maximally in the second visually-matching segment. Therefore, the bias 

towards lower values could not be attributed solely to adaptation effects. The percentage of 
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cells firing in the first half of the corridor ranged between 53% and 58% in most areas, 

except A where the percentage of cells with preferred position in the first half was lower 

(A: 48%, LM: 55%, AL: 58%, RL: 56%, AM: 56%, PM: 57%).  

 

Figure 5-1: Spatial modulation present across higher visual areas in closed-loop  
a. Normalised response in closed-loop as a function of distance in the virtual environment obtained 
from odd trials only, for neurons across higher visual areas with activity significantly modulated by 
position in the corridor. Neurons are ordered based on the position of their maximum response. 
Red and blue lines indicate position at +/- 40 cm from maximum response.  
b. Same as a, for the half of the data (even trials) that were not used to order the responses. 
Sequence and scaling of the responses are the same as in a. (legend continues on next page) 
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c. Normalised response of neurons (with peak response between 15 and 85 cm along the corridor) 
across higher visual areas as a function of the distance from the peak response, obtained by aligning 
responses in b. (top), and population average across these responses (bottom). Red and blue lines 
same as in a. Lower values of the side peaks compared to central peak indicates strong preference 
of neurons in all areas for one segment of the corridor over the other visually-matching segment 
(40 cm away from peak response).  
d. Cumulative distribution for the ratio of secondary response (40 cm away from peak response, 
red or blue line in a) divided by peak response across areas, derived from even trials. 

 

5.1.2 Comparison between V1 and higher visual areas in closed-

loop 

Having established that responses in visual cortex are modulated by spatial position 

during active behaviour, I next sought to compare the degree of spatial modulation 

between higher visual areas and V1. Before tackling this question though, one must be 

cautious of the potential differences in the modulation ratio caused by the differences in 

visual scenes between the centre and the periphery. Specifically, the virtual reality 

environment was by design optimised to drive responses in the periphery, in terms of the 

chosen spatial frequency of the patterns. In addition, although the virtual reality scenes 

were very similar in the periphery, this was not the case in the centre particularly due to the 

grey wall at the end of the corridor.  Given these differences between the central and 

peripheral part of the visual field it was also expected that the response profile patterns 

might be different depending on the receptive field positions of individual neurons. 

To test for this possibility, we first focused on V1, because it was more straightforward 

to distinguish between V1 portions ‘looking’ at the centre (lateral V1) or the periphery 

(medial V1) based on the retinotopic map (Figure 5-2). The response profile patterns 

revealed that responses at the ‘non-preferred’ position+/- 40cm away from the main peak, 

were much more pronounced in medial V1 than lateral V1(Figure 5-2a). Correspondingly, 

we found marked differences in the height of the secondary peaks (Figure 5-2b) and in the 

modulation ratios (Figure 5-2c; median ± m.a.d.: lateral V1: 0.26 ± 0.21; medial V1: 0.53 

± 0.31). From these findings it became evident that an accurate comparison between areas 

was only possible if individual cells had similar receptive field positions.         

To obtain portions of V1 and higher visual areas with similar receptive fields we 

implemented a seed-pixel correlation approach. We used the retinotopic map to choose 

one pixel (‘the seed pixel’) within the borders of each area. We then correlated the RGB 

values of this pixel with the RGB values of all other pixels on the retinotopic map. The 
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correlations of the RGB values gave rise to correlation maps that were clearly distinguished 

from one another based on preferred azimuth (correlation coefficient > 0.6). We used 

these maps together with the borders of individual areas to identify cells with similar 

receptive fields in V1 and each higher visual area. Due to this approach, the receptive fields 

of the chosen neurons were confined within a certain range of azimuth, similar to previous 

reports (Zhuang et al., 2017). This range varied form area to area: the chosen portions in 

LM and AL were biased towards the centre of the visual field, A, AM and PM were biased 

towards the periphery whereas RL lay between. The portions of V1 used to compare 

responses in each area also varied accordingly (Figure 5-3a). 

 

 

Figure 5-2: Retinotopic differences in the degree of spatial modulation in V1 
a. Normalised response as a function of distance in the virtual environment obtained from even 
trials only, for neurons in lateral V1 (receptive field centres < 40 deg; left) or neurons in medial V1 
(receptive field centres > 40 deg).  
b. Population average across the normalised responses of neurons (with peak response between 15 
and 85 cm along the corridor) as a function of the distance from the peak response; magenta trace: 
lateral V1; black trace: medial V1.  
c. Cumulative distribution for the ratio of secondary response divided by peak response, derived 
from the same response profiles as in c.; magenta trace: lateral V1; black trace: medial V1. 

 

We next asked whether the degree of spatial modulation varied between V1 and higher 

visual areas, by performing the same analysis as previously described. We arranged 

response profiles obtained from even trials according to the ‘preferred position’ of 

response profiles in odd trials (Figure 5-3b). We next obtained mean response profiles as a 

function of distance from the preferred position (Figure 5-3c). The mean response 
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profiles replicated our earlier finding that area A contained responses with the highest 

variability. We then divided the activity at ±40 cm away from the preferred position by the 

activity at the preferred position (‘spatial modulation ratio’; Figure 5-3d). Consistent with 

our previous observation in V1, the median modulation ratio of V1 gradually increased 

away from the centre and towards the periphery (c grey curve; V1 median ± m.a.d. 

modulation ratio when comparing with: LM: 0.30 ± 0.28; AL: 0.31 ± 0.30; RL: 0.43 ± 0.29; 

A: 0.57 ± 0.26; AM: 0.56 ± 0.28; PM: 0.58 ± 0.27). The median modulation ratio in higher 

visual areas also increased in a similar manner (Figure 5-3e black curve; LM: 0.38 ± 0.28; 

AL: 0.35 ± 0.27; RL: 0.40 ± 0.32; A: 0.47 ± 0.37; AM: 0.57 ± 0.27; PM: 0.50 ± 0.33). 

Nevertheless, we reasoned that judging differences between areas only from the median 

was not the right measure. Specifically, our cross-validation approach (odd versus even 

trials) could give rise to ratios higher than one and therefore pull the median towards 

higher values. This was particularly evident in A, an area with high variability in the 

responses. We therefore sought to compare differences between distributions instead.    

To assess any differences in the spatial modulation distributions between V1 and higher 

visual areas, we defined the ‘spatial modulation index (SMI)’ ((preferred position – non-

preferred position)/(preferred position + non-preferred position)). Consistent with our 

earlier findings in V1, the degree of spatial modulation in V1 gradually decreased away 

from the centre and towards the periphery (grey trace; Figure 5-3e) Among higher visual 

areas, we found a pronounced bias for SMI = 1 in A, suggesting that this area contained an 

abundance of cells with single-peaked responses. When we compared the V1 distribution 

to the distributions of higher visual areas, we found that the SMI distribution in A and PM 

was statistically higher than portions of V1 ‘looking’ at the same part of the visual field (1-

sided two-sample K-S test, A: p = 0.0005; PM: p = 0.003). In the opposite direction, we 

also found that the SMI distribution in LM was statistically lower than V1 (1-sided two-

sample K-S test, p = 0.002). It should be noted though that cells in these portions of LM 

and V1 have receptive fields towards the centre, where the virtual reality scenes comprise 

mostly of high spatial frequency stimuli and the end grey wall. We found no statistically 

significant differences in the rest of the areas (1-sided two-sample KS test of ratios: LM: 

AL: p = 0.95, RL: p = 0.17, AM: p = 0.89).  
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Figure 5-3: Comparison between V1 and higher visual areas in closed-loop  
a. Correlation maps superimposed on an example retinotopic map. Correlation maps were obtained 
by correlating the azimuth (indicated by an RGB triplet) of a single pixel (‘seed pixel’; white star) 
with the azimuth of all other pixels. Correlation maps for each area were obtained by placing the 
‘seed’ pixel within its border (grey trace together with the border of V1). Correlation coefficients 
lower that 0.6 were set to zero (black regions).  
b. Normalised response as a function of distance in the virtual environment obtained from even 
trials only, for neurons that lie within the ‘transparent’ regions in a and with activity significantly 
modulated by position in the corridor (variance explained >0.05). (legend continues on next page) 
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Neurons are ordered based on the position of their maximum response obtained from odd trials 
(not shown). Red and blue lines indicate position at +/- 40 cm from maximum response. 
c. Normalised response of neurons (with peak response between 15 and 85 cm along the corridor) 
across higher visual areas as a function of the distance from the peak response, obtained by aligning 
responses in b. (top), and population average across these responses (bottom; black trace). For 
comparison, the population average of V1 responses (with peak response between 15 and 85 cm 
along the corridor) is superimposed in grey. The population average across V1 responses differs 
between areas, because it was obtained from neurons that lie within the corresponding transparent 
V1 regions in a. Red and blue lines same as in a.    
d. Cumulative distribution for the ratio of secondary response divided by peak response across 
areas, derived from the same response profiles as in c. (black trace). Cumulative distribution of the 
same ratio for V1 cells falling within the transparent regions in a. is superimposed in grey.  

e. Distribution of the spatial modulation index, s, across areas (black) obtained from cells in c. s = 1 
means response profile with a single peak, s = -1 means response profile with two equal peaks. The 
distribution of the spatial modulation index for the V1 cells falling within the transparent regions in 
a. is superimposed in grey. Note how the spatial modulation is shifted towards lower values in the 
direction from the centre (area LM) towards the periphery (area PM). 

 

Overall, the analysis presented in this section has been crucial for accurately comparing 

the degree of spatial modulation between areas. The only spatial modulation distribution 

that was clearly different with high significance (p < 0.001) was in A. We also found that 

V1 was more strongly modulated than LM. However, given that these cells ‘look’ straight 

in the centre of the visual scenes which contain the grey texture of the end wall, this 

apparent difference could be well explained by the fact that LM has broader receptive fields 

than V1.  

 

5.2 Discussion 

In this Chapter, I demonstrated that responses in higher visual areas during active 

behaviour (closed-loop), are modulated by spatial position. To compare the degree of 

spatial modulation between areas, I focused on subsets of responses with similar preferred 

azimuth. This was crucial given the differences in the degree of spatial modulation 

observed already between medial and lateral V1. This analysis revealed that most of the 

areas exhibited similar degree of spatial modulation to V1. I also found that the only area 

with a weaker degree of spatial modulation than V1 was LM, but this difference can be 

explained by the dependence of spatial modulation by retinotopic preference (see 5.2.1).  

This analysis also revealed that the only area with stronger spatial modulation than V1 

was A. A is anatomically positioned in the antero-medial portion of the visual cortex, a 

cortical region thought to coincide with the PPC. PPC has been shown to encode visuo-
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spatial features of the environment (Krumin, Harris, and Carandini, 2017; Whitlock et al., 

2012) and to integrate these signals together with movement related signals (Whitlock et al., 

2012). Also, PPC sends dense projections to the retrosplenial cortex, which further projects 

to the entorhinal cortex (Whitlock et al., 2012). I propose that this particular function and 

anatomical connectivity of the PPC is reflected in the stronger spatial modulation found 

here in A.   

5.2.1 Effects of retinotopic preference on response profiles 

Consistent with the findings by Zhuang et al. (2017), our retinotopic maps obtained 

with wide-field imaging revealed a bias of higher visual areas towards distinct portions of 

the visual field. Based on these biases, I used a seed-pixel approach to select the maximum 

possible number of cells with similar preferred azimuths. For instance, because LM is 

biased towards the centre (0 to 20 deg azimuth), I placed a seed-pixel at approximately 10 

deg azimuth. Instead, for PM, which is biased towards the periphery, I placed a seed pixel 

at approximately 100 deg azimuth. With this approach also V1 was divided into sub-regions 

depending on the higher visual area in focus. Specifically, by transitioning from lateral 

visual areas such as LM towards medial visual areas, such as AM and PM, the correlated 

portions of V1 also shifted gradually from regions analysing the central part of the visual 

field towards regions analysing the periphery. Notably, we found a concomitant change in 

the effect of spatial position, with the degree of spatial modulation decreasing the further 

away from the centre, in both V1 and higher visual areas.  

Can the lower degree of spatial modulation found in LM compared to V1 be explained 

by LM’s bias towards the central visual field? Consider for instance a cell with a receptive 

field at the centre of expansion. If this is a V1 cell, i.e. a cell with a narrow receptive field, it 

follows that this cell can only ‘see’ the end grey wall. Instead, an LM cell, which has a 

broader receptive field, may also pick up the visual cues outside the grey wall. Therefore, 

the difference in receptive field size between V1 and LM could explain why LM appears to 

be more influenced by vision compared to the portion of V1 analysing the centre. 

The concomitant change in the degree of spatial modulation as a function of preferred 

azimuth poses an interesting question: what could be the reason for this shift? Providing 

definite answers to this question has proven challenging, due to the specific design of the 

virtual environment. Indeed, although I can claim that the peripheral part of the visual 

scenes is visually-matching at 40 cm away, this is not necessarily the case for its central 

portion due to the end grey wall. In addition, to render the virtual corridor with a 3d 
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perspective, landmarks appearing close to the centre of expansion had to be small and of 

high spatial frequency. Therefore, it is conceivable that mice cannot even see these visual 

stimuli appearing far away. To better understand the difference in the degree of spatial 

modulation between the centre and the periphery, additional experiments are required 

aiming at precisely mapping the receptive fields of neurons in virtual reality. 

The results presented so far from experiments in virtual reality focused on closed-loop. 

But how different could the responses be during play-back of virtual reality sessions (open-

loop)? This will be the focus of the next Chapter.  
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 Chapter 6 

Having established that spatial modulation is present across visual areas, and in 

particular more pronounced in A during closed-loop, I will now focus on open-loop. In 

this Chapter I will address two main questions: does the reliability of responses vary 

between active behaviour in virtual reality (‘closed-loop’) versus play-back of virtual reality 

sessions (‘open loop’)? And, is the degree of spatial modulation different in open loop 

compared to closed-loop?  

Here I find that responses in open-loop are less reliable, weaker and exhibit a lower 

degree of spatial modulation. These findings suggest that active engagement in virtual 

reality can shape visual responses to the same virtual reality scenes, yielding more reliable 

responses during the more naturalistic, closed-loop condition. Thus, these results are 

reminiscent of studies demonstrating that responses during active engagement are 

qualitatively different compared to passive viewing (Otazu, Tai, Yang, and Zador, 2009; 

Pho et al., 2018).  

One feature of the open-loop condition, is that the animal’s running speed and the 

update speed of the visual scenes (‘virtual speed’) are independent from one another. Thus, 

in the last section of this chapter I will also ask whether the two speeds are weighted 

equally across areas. I will show that different areas weigh the two speeds differently, and 

consequently, I will provide additional evidence supporting the functional segregation of 

higher visual areas. 
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6.1 Results 

6.1.1 Responses in open loop are less reliable than in closed loop 

In section 4.1.2, I demonstrated that the populations of neurons driven reliably by 

drifting gratings and by behaviour are distinct. Nevertheless, the visual scenes in virtual 

reality are marginally similar to the drifting gratings we presented. Even the vertical grating 

landmark can be effectively different from its drifting equivalent, depending on the running 

speed of the animal or the neurons’ preferred position on the visual scene. But how 

different are responses during active behaviour in virtual reality (‘closed-loop’) versus 

passive viewing of the same virtual reality scenes (‘open-loop’)?  

To assess this question, we compared the reliability of responses between closed loop 

and open loop. Specifically, we estimated the quality of predicting each neuron’s activity as 

a function of position in the virtual corridor (Q; see Methods). When we plotted prediction 

quality in closed-loop against prediction quality in open-loop, we found that position in 

closed-loop could explain a larger fraction of the cell’s activity than in open-loop (Figure 

6-1a). Indeed, despite prediction quality being correlated between the two conditions 

(Pearson correlation coefficient r > 0.4 with p<10−50 in all areas), the mean prediction 

quality in closed-loop was significantly higher than the mean prediction quality in open 

loop (EVclosed-loop-EVopen-loop , mean ± s.e.m.: V1: 0.028 ± 0.001; LM: 0.047 ± 0.003; AL: 

0.016 ± 0.001: RL: 0.016 ± 0.001; A:0.018 ± 0.001; AM: 0.024 ± 0.001; PM: 0.026 ± 0.001; 

two-sample t-test: p<10−10 in all areas). We further focused on cells with prediction 

quality higher that 5% and asked how many of these cells responded reliably in one 

condition but not the other. We found that at least 12% of cells responded reliably in 

closed-loop but not in open loop (𝑄𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 ≥ 0.05 & 𝑄𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 < 0.05 ; V1: 23%, 

LM: 31%, AL: 16%, RL: 12%, A: 18%, AM: 19%, PM: 15%). Instead, a smaller fraction of 

cells had reliable responses in open-loop but not in closed loop (𝑄𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 ≥

0.05 & 𝑄𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 < 0.05 ; V1: 3%, LM: 3%, AL: 3%, RL: 3%, A: 4%, AM: 4%, PM: 

2%). These findings suggest that responses in open-loop are less reliable than responses in 

closed-loop. In addition, more cells respond reliably in closed-loop alone than in open-loop 

alone.  

Can the difference in reliability be explained by the fact that cells cease to respond in 

open-loop? This could be particularly likely, because in our experimental protocol open-

loop typically followed closed-loop. To test for this possibility, we investigated the 
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relationship between skewness in closed-loop and skewness in open-loop (Figure 6-1b; 

note that skewness is much higher here compared to Section 4.1.2, because here I compute 

skewness from deconvolved spikes, rather than fluorescence). We found that skewness 

between the two conditions was highly correlated (Pearson correlation coefficient r > 0.55, 

p< 10-10 in all areas). More importantly, skewness in closed-loop was not significantly 

higher than skewness in open-loop (mean(Skewclosed-loop) - mean(Skewopen-loop): V1: -0.36; LM: 

-0.15; AL: -0.14; RL: -0.74; A: -0.24; AM: -0.10; PM: -0.23; two-sample t-test: p>0.95 in all 

areas). Therefore, responses to the visual landmarks during passive viewing are less reliable 

than responses during active behaviour, even though neurons are active during both 

conditions. 

 

 

Figure 6-1: Responses in open loop are less reliable than in closed loop  
a. Prediction quality (variance explained) of single-cell activity across areas during active behaviour 
(closed-loop) against skewness of single-cell activity during play-back of virtual reality sessions 
(open loop). Data are clustered below the diagonal (dotted line), indicating that responses in open 
loop have lower variance explained than in closed-loop.  
b. Same as in a. for skewness.  

 

Another possibility is that the low reliability in open-loop is due to the fact that visual 

and self-motion factors are put into conflict. To assess this question, I estimated the 

reliability of responses (cross-validated variance explained) in open-loop for periods when 

the speed of the animal was similar to closed-loop. Specifically, I selected segments in 

open-loop trials in which the running speed of the animal for a given virtual position fell 

within a 5 cm/s range from the mean closed-loop speed at that virtual position (1 cm bin 

size; Figure). Comparison of the mean variance between all open-loop trials and trials with 

similar speed to closed-loop revealed that the reliability of responses increased for similar  
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speeds in all areas (Figure 6-4a; two-sample t-test: p < 10-4 in all areas). Nevertheless, the 

reliability was still lower than in closed-loop. This could be either because by comparing to 

the mean speed in closed-loop we are not excluding the case that on a trial-by-trial basis 

running speed and virtual speed were not matching. Another possibility would be that 

behavioural engagement is required for driving responses in virtual reality.   

6.1.2 Noisier and weaker responses in open loop 

Previously I showed that responses of neurons in open-loop are less reliable than 

responses in closed-loop. Here we asked whether this lower reliability was also reflected in 

the response profiles as a function of position? For this purpose, we focused on open-loop 

sessions where the animal was running at least half of the time and estimated response 

profiles with variance explained higher than 5%. As expected, we found that the percentage 

of response profiles in open loop with at least 5% variance explained was smaller than in 

closed-loop (V1: 1,237/14,255 (9% in open loop vs 28% in closed-loop); LM: 227/1,503 

(15% vs 42%); AL: 212/1,774 (12% vs 25%); RL: 450/5,087 (9% vs 17%); A: 300/3,105 

(10% vs 24%) ; AM: 459/2,923 (16% vs 31%); PM: 145/2,272  (6% vs 20%)). We cross-

validated the robustness of the response patterns by arranging response profiles estimated 

from even trials according to each cell’s ‘preferred position’ of maximal firing obtained 

from odd trials (Figure 6-2a). When we estimated the mean response across cells as a 

function of distance from the ‘preferred’ position, we found a striking difference between 

areas with receptive fields biased towards the central visual field (LM, AL and RL) and 

areas with receptive fields biased towards the periphery (A, AM and PM). Areas LM, AL 

and RL exhibited noisier mean normalised response than in closed loop: responses to the 

visually matching segments peaked at lower values (mean ± s.e.m.: LM: 0.66 ± 0.02 in open 

loop vs 0.80 ± 0.01 in closed-loop, AL: 0.63 ± 0.03 vs 0.72 ± 0.02, RL: 0.60 ± 0.02 vs 0.72 

± 0.01); the mean response trace typically lacked well defined secondary peaks at 40 cm 

away (Figure 6-2b; compare cyan-open loop with black-closed loop).  

Instead, in areas A, AM and PM the mean response to the visually matching segments 

peaked at approximately similar values as in closed-loop (A: 0.61 ± 0.02 in closed loop vs 

0.57 ± 0.01 in open loop, AM: 0.71 ± 0.02 vs 0.70 ± 0.01, PM: 0.66 ± 0.03 vs 0.67 ± 0.02). 

Especially in areas AM and PM, which in our dataset were exclusively ‘looking’ in the 

periphery, the mean response exhibited pronounced secondary peaks. PM in particular had 

higher secondary peaks in open-loop than in closed-loop, suggesting that the population 

response profile in PM had become more visual than during active behaviour. 



103 
 

Overall, these results confirm that during open-loop there are fewer cells eliciting 

reliable responses. Nevertheless, responses of cells with receptive fields in the periphery 

where the optic flow is higher, are almost as reliable as in closed-loop.   

 

Figure 6-2: Noisier responses in open loop in the centre but not in the periphery 
a. Normalised response in open loop as a function of distance in the virtual environment, obtained 
from half of the data (even trials) that were not used to order the responses, for neurons across 
higher visual areas with activity significantly modulated by position in the corridor (variance 
explained > 0.05). Neurons are ordered based on the position of their maximum response. Red and 
blue lines indicate position at +/- 40 cm from maximum response. Responses obtained from areas 
biased towards the central visual field (LM, AL, RL) are noisier compared to areas biased towards 
the periphery (AM, PM).  
b. Population average across responses aligned to maximum peak obtained from even trials, for 
neurons with peak response between 15 and 85 cm along the corridor (cyan). For comparison, the 
population average obtained from closed-loop is superimposed in black (same data as in 5.1.1).  

 

6.1.3 Lower degree of spatial modulation in open loop 

Having shown that responses in V1 and higher visual areas are strongly modulated by 

spatial position during active behaviour (Chapters 3 and 5), we now asked whether 

responses of the same cells were different during open-loop. To this end, we arranged 

response profiles in open-loop (test set) according to the preferred position of cells in 

closed-loop (train set). Some cells exhibited distinct, albeit weaker, responses to the visually 

matching segments (Figure 6-3a), but overall, the response profile pattern across the 

population was typically weaker in open-loop than in closed-loop, indicating that many 

cells ceased to respond to the visually matching segments during open loop (Figure 6-3b). 

How different were the spatial modulation ratios between the two conditions? The median 

modulation ratio in open loop was significantly higher than in closed loop in all areas, 

suggesting that response patterns were more visual in open loop (Figure 6-3c cyan: open  
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Figure 6-3: Lower degree of spatial modulation in open loop  
a. Single-cell normalised response profiles in open loop (cyan) and closed-loop (black) across higher 
visual areas.  
b. Response as a function of distance in the virtual environment obtained from all trials in open 
loop, for neurons that lie within the ‘transparent’ regions of the seed-pixel cross-correlation maps 
(Figure 5-3) and with activity significantly modulated by position in the corridor (variance 
explained >0.05). Responses were normalised by the maximum peak in closed-loop. Neurons are 
ordered based on the position of their maximum response obtained from all trials in closed-loop 
(not shown). Red and blue lines indicate position at +/- 40 cm from maximum response.  
c. Cumulative distribution for the ratio of secondary response divided by peak response across 
areas, derived from response profiles in open loop with peak response between 15 and 85 cm along 
the corridor (cyan trace). Cumulative distribution of the same ratio for response profiles of the same 
cells in closed-loop is superimposed in black.  
d. Distribution of the spatial modulation index, s, across areas (cyan) obtained from cells in c during 
open loop. s = 1 means response profile with a single peak, s = -1 means response profile with two 
equal peaks. The distribution of the spatial modulation index for the V1 cells falling within the 
transparent regions of the seed-pixel correlation maps is superimposed in grey (top). For 
comparison, the corresponding distributions in closed-loop are also shown (bottom, same data as in 
Figure 5-3).  
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loop, black: closed-loop; medianopen-loop – medianclosed-loop : V1: 0.29; LM: 0.24; AL: 0.17; RL: 

0.36; A: 0.23; AM: 0.20; PM: 0.35; two-sample KS test: p < 10-4 in all areas).  

We next used the same approach as in the previous section. Specifically, we obtained 

distributions of the spatial modulation index in open loop for cells ‘looking’ at the same 

portion of the visual field (Figure 6-3d top). From these distributions it became evident 

that responses with spatial modulation index close to 1 (single-peaked responses) were 

markedly reduced, both in higher visual areas (cyan) and in V1 (grey trace) (Figure 6-3 

compare d top to d bottom). In addition, the difference in distributions between V1 and 

higher visual areas was less evident in open loop than in closed-loop, albeit still statistically 

significant for areas A and AM (two-sample K-S test, LM: p = 0.43, AL: p = 0.18, RL: p = 

0.23, A: p = 0.003, AM: p = 0.0004, PM: p = 0.67).  

Overall, spatial modulation is weaker in open-loop regardless of the animal’s running 

behaviour, but how much weaker is it during periods when the animal was stationary. To 

assess this question, I selected periods in open-loop when the animal was stationary 

(running speed lower than 5 cm/s). For each area, I estimated the median spatial 

modulation ratio obtained from stationary periods in open-loop and found that it was 

significantly higher than the median spatial modulation ratio obtained from all data in 

open-loop (Figure; KS-test, p>10-5). In fact, for most areas the median spatial modulation 

was close to unity, suggesting that the overall spatial effect across the population vanished.    

 

Figure 6-4: Contribution of self-motion and visual inputs to the main effects in open-loop 
a. The reliability of responses in open-loop is more similar to the reliability of responses in closed-
loop in all areas when considering similar speeds between the two conditions (filled circles). 
b. Responses in open loop are much more visual (median spatial modulation ratio ~ 1) when the 
animal is stationary (open circles). 
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6.1.4 Relative influence of virtual and running speed 

One feature of the open-loop condition is that the update speed of the visual scenes 

(‘virtual speed’) does not match the running speed of the animal. Thus, open loop gives the 

ability to disentangle the influence of the two speed types, thereby differentiating the 

effects of visual (virtual speed) from non-visual (run speed) factors (see Saleem et al., 2013).  

Similarly here, we sought to evaluate the influence of virtual and run speed, by turning 

to the open-loop condition and asking whether virtual and run speed were able to predict 

the neurons’ activity. For each neuron we obtained cross-validated speed profiles as a 

function of both speeds (Figure 6-5a), and found that many speed profiles could explain 

at least 5% of the neurons’ activity in all areas (V1: 3,432/14,255 (24%); LM: 474/1,503 

(31%); AL: 640/1817 (35%); RL: 1457/4753 (31%); A: 1043/3105 (34%); AM: 1094/2920 

(37%); PM: 797/2002 (40%)). We next asked whether the influence of visual and run speed 

could be captured by a multiplicative model; that is a model where the effects of the two 

speeds are separate from one another (‘separable model’). The separable model performed 

as well as the non-separable model, exhibiting prediction qualities that were very similar to 

the prediction qualities of the non-separable model (Figure 6-5b; Pearson correlation 

coefficient r > 0.8 for most areas except PM, r = 0.74 for PM, p < 10-10). Accordingly, the 

mean prediction quality across the population was very similar for the two models 

(difference in mean prediction quality between separable and joint model: less than 0.002 in 

all areas; two-sample t-test: p > 0.2 in all areas), suggesting that the speed influence was 

well captured by a multiplicative model of virtual and running speed.  

By verifying that the separable model provided accurate predictions, we established that 

the influence of run and virtual speed was independent from one another. Therefore, we 

could now ask whether the contribution of run speed alone and virtual speed alone was the 

same across areas. To assess each speed’s contribution, we estimated how much of the 

prediction quality of the separable model could be attributed to one speed type (Qvirtual or 

run/Qseparable, ‘relative prediction quality’). The relative prediction quality of run speed and 

virtual speed varied across areas (Figure 6-5c). The relative prediction quality of virtual 

speed was higher in V1, LM and RL, but lower in areas A and AM. Similar levels of relative 

prediction quality for the two speeds were found in areas AL and PM.  

To further assess the relative weighing of virtual and running speed in each area, we 

estimated a prediction quality index ((Qvirtual – Qrun )/( Qvirtual + Qrun)). A prediction quality 

index close to zero means equal contribution of virtual and running speed.  
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At the two extremes, an index close to -1 means almost exclusive influence by running 

speed, whereas an index close to 1 means that a cell’s activity is influenced almost 

exclusively by virtual speed. Distributions of the prediction quality index across the 

population revealed a bias towards indices equal to 1 in most areas (Figure 6-5d, V1, LM, 

AL, RL, PM). Only areas A and AM did not exhibit such bias, consistent with the relative 

 

 

Figure 6-5: Relative weighing of virtual and running speed varies across areas  
a. Examples of 2-dimensional response maps as a function of virtual and running speed across 
areas.  
b. Prediction quality (Q) across areas obtained from a joint model of running and virtual speed 
against prediction quality obtained from a separable model of the two speeds. r: Pearson correlation 
coefficient.  
c. Relative prediction quality of virtual speed (Qvirtual/Qseparable) across areas against relative 
prediction quality of running speed (Qrunning/Qseparable). Different areas weigh virtual and running 
speed differently. 

d. Prediction quality index, p, (Qvirtual – Qrun )/( Qvirtual + Qrun) across areas. p = -1 means 
exclusive influence by running speed, p = 1 means exclusive influence by virtual speed. Dotted line 
indicates the mean across the distribution. Only areas A and AM have negative mean prediction 
quality index. 

 



108 
 

prediction quality for running speed being higher in these two areas. The mean prediction 

quality index also varied accordingly. A and AM had mean prediction quality index less 

than zero (mean ± s.e.m.; Wilcoxon signed rank test, A: -0.15 ± 0.02; p < 10-10, AM: -0.08 

± 0.02; p = 0.0082). V1, LM and RL had the highest mean (V1: 0.20 ± 0.01, LM: 0.36 ± 

0.02, RL: 0.24 ± 0.01; p < 10-10 in all three areas). AL and PM had mean prediction quality 

index that was closest to zero (yet, the mean index was statistically higher than zero for 

PM: 0.05 ± 0.02; p = 0.0021, AL: 0.05 ± 0.03, p = 0.016).    

These results suggest that visual areas weigh the visual and non-visual component of 

speed differently. The highest bias towards virtual speed is found in LM, whereas on the 

other side of the spectrum, the highest bias towards run speed is found in A. The rest of 

the areas lie somewhere in-between, with AL for instance, weighing the two speeds equally, 

and AM being slightly more biased towards running speed.  

Taken together, the results presented in Chapters 3, 5 and 6 indicate that responses in 

V1 and higher visual areas are modulated by spatial position predominantly during active 

behaviour. Instead during play-back of the virtual reality scenes, responses are weaker, less 

reliable and significantly less modulated by spatial context.   

   

6.2 Discussion 

In this chapter I showed that response profiles in open loop differ in various aspects 

from responses in closed-loop.  

First, prediction quality in open loop was lower. This could not be explained by 

different levels of arousal; first because the animals ran most of the time during both 

closed- and open loop, and second because I excluded the few sessions during which 

animals were immobile for at least half of the time. The only occasional difference between 

the two conditions was the absence of reward in open loop. I find it unlikely that the lack 

of reward can explain fully the difference in reliability between closed-loop and open loop, 

especially because some animals were not rewarded in any of the two conditions.  

Second, responses in open loop were weaker than in closed loop. This was particularly 

evident when we scaled response profiles in open loop by the maximum response in 

closed-loop. These results are reminiscent of two previous studies which assessed the 

effects of active engagement in a non-navigational task (Otazu, Tai, Yang, and Zador, 2009; 
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Pho et al., 2018). Unlike passive viewing, engagement in an auditory task suppressed 

responses in the rat auditory cortex (Otazu, Tai, Yang, and Zador, 2009). Another study 

also showed that responses in the PPC were much weaker during passive viewing 

compared to active engagement in a visual discrimination task, whereas responses in V1 

remained the same (Pho et al., 2018). In contrast, I found that responses already in V1 were 

suppressed during replay of the virtual reality. This discrepancy between the current study 

and Pho et al.(2018) could be due to the difference in behavioural context and the fact that 

virtual reality tasks create a more naturalistic visual experience.  

Third, the degree of spatial modulation was substantially reduced in open loop if 

animals were not stationary. Perhaps spatial modulation was still present to some extent in 

open loop because just the replay of the virtual environment is sufficient to create a sense 

of space. In fact, a recent study probed the effect of passive viewing on the hippocampal 

place fields and demonstrated that 25% of identified place cells maintained their firing 

fields (Chen, King, Burgess, and O’Keefe, 2013; see also Terrazas et al., 2005). In addition, 

learning-related enhancement of visual responses, acquired during engagement in a virtual 

reality task, is still present, albeit reduced, during replay of previous sessions to fully 

trained, anaesthetised animals (Poort et al., 2015).  

Taken together, two were the main results in the open-loop condition: 1. spatial 

modulation of visual responses was weaker and 2. visual responses were less reliable. Yet, 

the reasons for these differences compared to closed-loop are not clear. To provide further 

insight into these topics I performed additional analysis that focuses on isolating the effects 

of visual inputs from the physical inputs.  

With respect to result 1. I asked whether influence by spatial context can arise in the 

presence of visual inputs alone, i.e. during periods when the animal is stationary. I found 

that median spatial modulation was close to 1 (where 1 means two equal peaks), suggesting 

that the overall spatial effect across the population vanished. These results indicate that 

visual inputs alone are not sufficient for giving rise to the spatial modulation of visual 

responses observed in closed-loop, suggesting that visual and self-motion factors need to 

be combined to give rise to a single modulatory estimate of position. 

With respect to result 2. I assessed to which extent the low reliability of responses in 

open-loop can be explained by the cue conflict between visual and physical inputs. I 

focused on open-loop trials in which running speed was similar to the mean closed-loop 

speed and found that the reliability of responses increased for similar speeds in all areas. 
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This result indicated that the lower reliability in open-loop can be, at least partly, explained 

by the mismatch between running speed and virtual speed.   

Although reliability in open-loop increased after accounting for similar speeds to closed-

loop, it was still lower than in closed-loop in many areas. This mismatch could be due to 

methodological reasons. For instance, instead of comparing to the mean speed in closed-

loop, speeds between closed- and open-loop should be compared on a trial-by-trial basis. 

Also, because even small differences between virtual and physical distance may affect visual 

responses (see Chapter 7), ideally comparison should be done only for speeds in open-loop 

that exactly match speeds in closed-loop. Unfortunately, such a comparison was not 

possible due to the remaining dataset being too small. 

6.2.1 Effects of retinotopic preference on response profiles 

Similar to the closed-loop condition (section 5.1.2), the effect of retinotopic preference 

was also reflected in the response profiles of cells responding reliably in open loop. The 

response profile pattern and population average of areas biased towards the centre (LM, 

AL, RL) were much noisier compared to areas biased towards the periphery (AM, PM). 

This difference could be due to the differences in optic flow, which is strongest in the 

periphery. Consistent with this hypothesis, PM, the area with the highest bias towards the 

periphery, exhibited the most pronounced responses. The strong influence of these 

responses by optic flow in open loop could also explain why PM’s response profile pattern 

featured higher responses to the non-preferred position in open loop than in closed-loop, 

suggesting a stronger influence by vision in this area during replay of the visual scenes.  

6.2.2 Diverse tuning to virtual or run speed in higher visual areas 

Because in the open loop condition running speed is decoupled from the update speed 

of the visual scenes, I was able to assess the influence of the two types of speed separately. 

To investigate possible differences between areas, I estimated the quality of predicting 

single-cell responses from running speed alone or virtual speed alone. This analysis 

revealed a progressive shift from responses being more influenced by virtual speed in V1 

and LM towards strongest influence by running speed in A and AM.  

These findings are in agreement with several lines of evidence suggesting a distinct 

functional role of higher visual areas. First, we found that AL was more strongly modulated 

by running speed compared to LM. This result is consistent with previous findings 

suggesting that despite the two areas sharing the same border, their anatomical and 
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functional connectivity, and consequently their functional role is distinct (Glickfeld, 

Andermann, Bonin, and Reid, 2013; Wang, Gao, and Burkhalter, 2011). The functional 

difference between LM and AL is also supported by a recent study showing that 

spontaneous running modulates more strongly AL than PM (Huh et al., 2018). Another 

intriguing segregation arising from these results is the stronger modulation by running 

speed found only in A and AM. Given the current view that A and AM comprise part of 

the PPC, the stronger modulation by running speed found in these areas is consistent with 

the strong connectivity of the PPC to the secondary motor cortex (Wilber et al., 2014), and 

also with the proposed role of the PPC as an area encoding movement-related signals 

during navigation (McNaughton et al., 1994; Nitz, 2006).  

The stronger influence by running speed found in A and AM gives rise to an interesting 

question: how does the distance travelled influence responses in these areas? Indeed, given 

that running speed is actually distance travelled per unit time, it is possible that the spatial 

modulation found in these areas (which was particularly stronger in A compared to V1) 

does not reflect encoding of spatial position but encoding of distance travelled instead. In a 

broader sense, perhaps the spatial modulation observed in all areas, including V1, may in 

fact arise from the influence by distance travelled. This question is explored in detail in the 

next chapter.  
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 Chapter 7 

Estimates of distance travelled, through integration of self-motion, are known to 

contribute to the representation of self-location. In hippocampus, movement-related 

signals are combined with visual information about the environment and shape the spatial 

representation (Gothard, Skaggs, and Mcnaughton, 1996). If navigational signals are also 

present in visual cortex (Chapters 3 and 5), we may thus expect that the distance travelled 

in the environment similarly affects the spatial representation in visual cortex.  

To assess the impact of distance travelled on V1 responses, a recent study took 

advantage of a virtual reality environment to perform gain manipulation experiments in 

mice (Fournier*, Saleem*, Diamanti* et al., in preparation). Specifically, by changing the 

relationship between running speed and virtual speed, animals had to run 20% more (gain 

decrease) or 20% less (gain increase) to reach the reward location (Figure 7-1a). While 

mice performed the task, the authors recorded simultaneously from neurons in CA1 of the 

hippocampus and in V1. As expected, CA1 place fields shifted along the track depending 

on the distance travelled (Chen, King, Burgess, and O’Keefe, 2013; Gothard, Skaggs, and 

Mcnaughton, 1996): place cells fired earlier on the track when mice had to cover longer 

distances to the reward zone (low gain; Figure 7-1b; cyan); conversely, they fired later on 

the track when mice had to cover shorter distances to the reward (high gain; Figure 7-1b; 

pink). Surprisingly, V1 cells showed the same behaviour as CA1 place cells; they fired earlier 

or later on the track when the distance was changed, although visual landmarks remained in 

the same position, thus indicating that V1 neurons are sensitive to distance travelled 

(Figure 7-1c). 
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Figure 7-1 Courtesy of Julien Fournier: Influence of distance signals on primary visual 
cortex and hippocampus during navigation  
a. Schematics of the gain manipulation experiments performed in a virtual circular maze. At 
medium gain the running speed of the animal matched the update speed of the visual scenes in 
virtual reality. At low gain, animals had to run 20% more (gain decrease) to cover the same distance 
as in medium gain. At high gain, animals had to run 20% less (gain increase) to cover the same 
distance as in medium gain.  
b. Example place field recorded in hippocampus across gain conditions (left) and distribution of the 
response shift across the CA1 population relative to medium gain (right).  
c. Same as in b for visual responses recorded in V1.  
d. Decoding the animal’s position from CA1 (top) or V1 (bottom) population activity at medium gain. 
The actual position of the animal could be decoded accurately by both populations.  
e. Changing the gain of the VR shifted the position decoded from the CA1 or V1 population in a 
more or less uniform manner. At low gain, CA1 and V1 populations represented a position ahead 
of the animal (left); at high gain, CA1 and V1 populations represented a position behind the animal.   
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To further characterise the influence of the distance run on V1 and CA1 spatial 

representations at the population scale, the authors used a Bayesian decoder ((Zhang, 

Ginzburg, McNaughton, and Sejnowski, 1998)) to predict the animal’s position from either 

CA1 or V1 population activity (Figure 7-1d, e). Interestingly, decoding accuracy was 

similar between CA1 and V1. At medium gain, the actual position of the animal could be 

decoded accurately not only by the CA1 population, but also from the V1 population 

(Figure 7-1d), consistent with the presence of position correlates in V1 activity (Chapter 

3). Changing the gain of the VR shifted the position decoded from the CA1 or V1 

population in a more or less uniform manner. When the distance increased (low-gain 

condition), CA1 and V1 populations represented a position ahead of the animal (Figure 

7-1e; left); conversely, when the distance decreased (high-gain condition), CA1 and V1 

populations represented a position behind the animal (Figure 7-1e; right). Importantly, this 

shift was smaller than what would be expected if distance run was the only influencing 

factor, indicating that positions encoded by V1 and CA1 neurons resulted from the 

integration of both self-motion and visual information.  

Overall, these results are strikingly consistent with the findings described in Chapter 3 

and further indicate that activity in V1, like in CA1, can be used to decode position based 

on information provided by visual cues, but also, to some extent, by distance travelled.  

 Here we asked how the distance travelled affected the spatial representation across 

three different visual areas: V1, AL and PPC. Among higher visual areas, we chose AL 

because it has been classified as an area belonging to the ‘dorsal’ stream (Wang, Gao, and 

Burkhalter, 2011); we also chose PPC because of multiple evidence from experiments in 

rats indicating that PPC processes and integrates movement-related signals (McNaughton 

et al., 1994; Wilber et al., 2014). Our results show that the distance run by the animal 

affects the representation in all three areas, independently of the visual cues. This effect 

was markedly stronger in PPC than in V1 or AL: in the low-gain condition, the average 

position decoded from PPC neurons was further ahead compared to the position decoded 

from V1 or AL neurons; in the high-gain condition position decoded from PPC was 

further behind.  

To the best of our knowledge, this is the first time that gain manipulation experiments 

are performed in PPC. Our results suggest that PPC neurons are more sensitive to distance 

run compared to neurons in V1, consistent with the prominent role of PPC in processing 

self-motion signals.     
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7.1 Results  

7.1.1 Mice successfully perform a spatial task in a virtual corridor            

To assess the influence of distance run on visual responses during virtual navigation, we 

trained mice to run through a 400 cm circular corridor and actively lick for water reward at 

two positions 200 cm apart (Figure 7-2a). The corridor contained three types of 

landmarks, L1, L2 and L3. The doublet L2 and L3 (a plaid and a grating) were placed half way 

through the reward zone and were fixed throughout. Landmark L1 was placed at the reward 

location and alternated between a grating or plaid every half cycle, ensuring that mice were 

not performing a cue detection task. Mice learned to selectively lick at the reward location 

in most trials (Figure 7-2b). The few trials during which they made mistakes were excluded 

from further analysis. 

 

Figure 7-2 Courtesy of Julien Fournier: Mice successfully perform a spatial task in a virtual 
corridor.  
a. Mice are head-fixed in front of 3 LCD screens while free to run on a polystyrene wheel which 
allowed movement along a single dimension (forwards-backwards). The animal’s running speed, 
drun, was captured online by a rotary encoder (left). The virtual reality environment is a circular maze 
containing three types of landmarks, L1, L2 and L3. The doublet L2 and L3 (a plaid and a grating) 
were placed half way through the reward zone and were fixed throughout. Landmark L1 was placed 
at the reward location and alternated between a grating or plaid every half cycle (right).  
b. Mice had to selectively lick at the reward location. They performed the task successfully in most 
trials (green circles: correct licks; red circles: incorrect licks).      

 

7.1.2 Distance run influences response profiles 

To ensure we were able to obtain robust response profile patterns in this task like those 

obtained in the linear corridor, we first focused on the medium gain condition. For each 

area (V1, AL or PPC) we selected cells whose maximum response in the medium gain was 

at least two s.e.m. higher than the mean and sorted their response profiles as a function of 

the position at which each cell fired maximally. Notably, we confirmed the observation by 

Fournier et al. (in preparation) that the response profile pattern was the same between the 

two semi-circles of the maze, even though the visual cues at the reward locations were 
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different (data not shown), presumably because the reward and behavioural modulation of 

responses masked the expected differences due to the difference in visual images. Thus, for 

all subsequent analysis response profiles in the two semi-circles were pulled together, 

yielding responses as a function of position along a 200-cm-long virtual corridor. 

Consistent with previous findings in the linear corridor, neurons responded robustly to the 

visual landmarks, but they also exhibited a preferred position at which they fired maximally, 

thereby tiling the whole virtual maze.  (Figure 7-3). 

 

Figure 7-3: response profiles across the population reveal preference for one position along 
the virtual corridor in V1, AL and PPC.  
Response profile patterns were obtained from cells whose maximum response in the medium gain 
was at least two s.e.m. higher than the mean. Response profiles were sorted based on the position at 
which each cell fired maximally. 

 

We then asked how the response profiles of these cells were influenced by distance run. 

To assess this question, we focused on cells whose response profiles showed a correlation 

> 0.75 between low/high and medium gain conditions. We then used the preferred 

position of maximal firing obtained in the medium gain condition (train set) to arrange 

response profiles during low and high gain trials (test sets). When we expressed these 

patterns as a function of distance from the preferred position, we found that in the low 

gain condition the cells tended to respond before the preferred position at medium gain; in 

the high gain condition they tended to respond after the preferred position at medium gain 

(Figure 7-4a). Therefore, the maximum response shifted slightly but systematically as a 

function of gain change.  
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Figure 7-4: Distance run influences response profiles.  
a. Response profiles as a function of distance from the preferred position in V1 (top), AL (middle) 
and PPC (bottom) at low gain (left) and high gain (right). The preferred position (red dotted line) was 
obtained from the medium condition for cells whose response profiles showed a correlation > 0.75 
between low/high and medium gain conditions.  
b. Distributions of single-cell response shifts at low gain (cyan) and high gain(pink), as a function of 
position (left) and distributions of shifts across all positions (right) in V1, AL and PPC (black circles: 
cells with a significant shift (p-value < 0.025) in their response profiles).  
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To further quantify this shift, for each cell we measured the position of the peak in the 

cross-correlation between the train (medium) and the test (low or high) condition. We next 

obtained distributions of single-cell response shifts, as a function of position (Figure 7-4b 

top). Cells with a significant shift in their response profiles (Figure 7-4b top; black circles) 

were identified using a 20-fold cross-validation procedure (p-value < 0.025). We found that 

for a given condition, at least 14% of cells had significantly shifted response profiles in all 

areas (low gain, high gain: V1: 16%, 14%; AL: 14%, 15%; PPC: 14%, 20%). We also 

estimated distributions of shifts across all positions (Figure 7-4b bottom). These 

distributions confirmed a systematic shift towards the left for the low gain condition, and 

towards the right for the high gain condition in all three areas. The mean shift across the 

whole population was of the order of at least 1 cm in all areas (Mean ± s.e.m.: low gain: V1: 

-1.2 ± 0.01, AL: -1.2 ± 0.01, PPC: -1.3 ± 0.04; high gain: V1: 1.04 ± 0.02, AL: 1.2 ± 0.02, 

PPC: 1.8 ± 0.03; one-sample t-test: p << 10-50 for all gain conditions and in all areas). Thus, 

these results extend previous findings by Julien et al. (in preparation) and show that beyond 

V1, neurons in areas AL and PPC are influenced by self-motion cues, even when visual 

cues remain in the same place. 

7.1.3 Gain changes induce shifts in decoding position 

To further characterise the effect of distance run at the population scale, we trained a 

Bayesian decoder on the medium gain condition to estimate the posterior probability of the 

animal being at a specific location, given the firing activity of neurons as a function of time. 

We next averaged the posterior for each position bin, to obtain maps of decoded position 

as a function of the actual position of the mouse (Figure 7-5a; medium gain).  

Using the same decoder trained in the medium gain condition, we then assessed the 

effect of distance run on the position decoded from each area (Figure 7-5a low, high 

gain). We found that at low gain, maps obtained from V1, AL and PPC were all shifted 

upward, reflecting a decoded position that was ahead of the actual position of the animal. 

Conversely, decoding maps obtained at high gain were shifted downward, reflecting a 

position behind the animal. The shift in the decoded position, ahead or behind the animal 

became more evident when we measured the decoding error in each gain condition as a 

function of position (Figure 7-5b); decoding errors for low or high gain were shifted in 

opposite directions relative to medium gain,  thus indicating that the distance run 

influenced the representation of the environment encoded by V1, AL or PPC neurons. 
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Figure 7-5: Gain changes induce shifts in decoding position.  
a. Position decoded from the population activity inV1 (left), AL (middle) or PPC (bottom) at low (left), 
medium (middle) and high (right) gain. The decoder was trained in the medium gain condition (black 
line: diagonal).  
b. Decoding error as a function of position at low (cyan), medium (magenta) and high (pink) gain. 
Decoding errors for low or high gain are shifted in opposite directions relative to medium gain thus 
indicating that the distance run influenced the representation of the environment encoded by V1, 
AL or PPC neurons. Shaded region is s.e.m.  
c. Relative error at high or low gain relative to the medium gain in V1, AL and PPC (same order 
and colour code as in a). PPC showed larger biases in decoded position compared to V1 or AL 
when the distance run was changed.  
d. Distributions of single-session averaged error at high or low gain relative to the medium gain in 
V1, AL and PPC (same order and colour code as in a).  

 

7.1.4  Influence by distance run is stronger in PPC 

Is the influence by distance run more pronounced in some areas compared to others? 

When we estimated the error at high or low gain relative to the medium gain (Figure 7-5c), 

we found that PPC showed larger biases in decoded position compared to V1 or AL when 

the distance run was changed (two-sample t-test: PPC vs V1: p = 10-6 at low gain, p = 10-4 

at high gain; AL vs V1: p = 0.46 at low gain, p = 0.04 at high gain). Similarly, when we 

compared the decoding errors averaged across the entire track, the position decoded from 

PPC was further behind the actual position than V1 at high gain (Figure 7-5d; pink; V1: -

0.73 ± 0.09, AL: -0.91 ± 0.11, PPC: -1.25 ± 0.12; two-sample t-test: AL vs V1: phigh gain = 

0.22; PPC vs V1: phigh gain = 0.001); conversely, at low gain, position decoded from PPC was 



121 
 

further ahead than V1 (Figure 7-5d; cyan; Mean ± s.e.m.: V1: 0.91 ± 0.09, AL: 0.97 ± 0.15, 

PPC: 1.2 ± 0.13 two-sample t-test: AL vs V1: plow gain = 0.68; PPC vs V1: plow gain = 0.06). 

Can the higher decoding error observed in PPC be explained by behavioural factors, 

such as differences in the running speed profile? To answer this question, we compared the 

speed range across sessions between areas and found that these were very similar (two-

sample t-test for speeds: AL vs V1: plow gain = 0.74, phigh gain = 0.76; PPC vs V1: plow gain = 0.63, 

phigh gain = 0.65). We also sought to assess the effect of running speed on the magnitude of 

the decoding error. For each session we expressed the relative decoding error as a function 

of the mean speed (Figure 7-6a).  

 

Figure 7-6: the higher decoding error in PPC cannot be explained by differences in running 
speed or the animal’s licking behaviour.  
a. Relative decoding error as a function of the mean speed in V1 (left), AL (middle) and PPC (right). 
Unlike V1 and AL, the relative decoding error did not correlate with running speed in PPC (rlow gain 
= 0.10, plow gain = 0.77, rhigh gain = -0.36, phigh gain = 0.27).  
b. Distributions of of shifts in the licking t low and high gain in V1, AL and PPC (same order as in 
a). These distributions indicate that the position where the animal took the decision to lick shifted 
according to the gain change (earlier at low gain and later at high gain). The distributions were not 
different between areas (two-sample t-test for shifts in licks: AL vs V1: plow gain = 0.58, phigh gain = 
0.66; PPC vs V1: plow gain = 0.53, phigh gain = 0.76). 

 

Notably, we found that in V1 and AL the relative decoding error was correlated with 

running speed especially in the low gain condition (Pearson correlation coefficient (r), p-

value (p): V1: rlow gain = 0.72, plow gain = 0.001, rhigh gain = -0.60, phigh gain = 0.014; AL: rlow gain = 
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0.82, plow gain = 0.007, rhigh gain = -0.60, phigh gain = 0.09). Instead, we found no correlation 

between the relative decoding error and running speed in the PPC (PPC: rlow gain = 0.10, plow 

gain = 0.77, rhigh gain = -0.36, phigh gain = 0.27).  

Differences in the decoding error between areas may also be due to differences in the 

licking behaviour of the animal. Indeed, consistent with neurons in visual cortex, the 

animal’s decision to lick was also shifted when the distance run was changed; the position 

where the animal took the decision to lick shifted earlier along the track in the low gain 

condition relative to medium gain, and later along the track in the high gain condition 

(Figure 7-6b). However, we found that these distributions were not different between 

areas (two-sample t-test for shifts in licks: AL vs V1: plow gain = 0.58, phigh gain = 0.66; PPC vs 

V1: plow gain = 0.53, phigh gain = 0.76). Thus, the larger effects observed in PPC could not be 

explained by inter-session variability in the animal’s strategy to perform the task. 

Taken together, these results indicate that responses in V1, AL and PPC are influenced 

by distance run and that this influence is stronger in PPC regardless of the animal’s running 

or licking behaviour.   

 

7.2 Discussion 

Throughout this Thesis I have provided several lines of evidence indicating that 

responses in visual cortex are strongly influenced by navigation-related signals. To better 

understand the exact content of these signals though, it would be useful to disentangle the 

effects of actual position from distance run and other covariates of position such as time 

(see 8.2). Although understanding the influence of all these correlates one by one requires a 

wide spectrum of experiments that goes beyond the scope of this study, here we attempted 

to assess the influence of at least one factor: distance run. Indeed, early studies in the 

hippocampus have shown that distance from the origin together with visual cues shape 

place fields in a competitive manner (Gothard, Skaggs, and Mcnaughton, 1996). More 

recently, it was shown that although hippocampal bidirectional cells encoded absolute 

position in real environments, they switched to a distance code in virtual reality (Ravassard 

et al., 2013). Finally, another study explicitly dissociated the effect of visual information 

from self-motion information by reducing the gain of ball-to-virtual movement in half and 

showing that place field locations shifted accordingly (Chen, King, Burgess, and O’Keefe, 

2013). Thus, taken together these studies suggest that coding for distance is a critical factor 
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that acts independently and competitively with external sensory cues to shape firing fields 

in the hippocampus, and as such it should be dissociated from signals coding for absolute 

position.     

By implementing a similar approach as Chen et al (2013), I sought to dissociate the 

influence of distance travelled from visually-guided position signals on responses in V1, AL 

and PPC during virtual navigation. Specifically, I showed that changing the distance run 

was associated with a systematic shift in response profiles and a concomitant displacement 

of the decoded position either ahead of the animal’s actual position for longer distances 

(gain decrease) or behind for shorter distances (gain increase). Therefore, these findings 

suggest that responses in visual cortex are influenced by distance run, consistent with 

previous findings in V1 by Fournier et al. (in preparation).  

The average shift induced by gain changes was smaller than what would be expected 

from an influence by distance run only, suggesting that at least in this specific task, in 

which mice were trained to use visual cues, spatial position based on visual information 

must be combined with movement-related influences. But how do visual and self-motion 

signals combine? Some insight into this question can be provided by inspecting the 

distribution of position decoded by a Bayesian decoder. One possibility is that visual cues 

and distance run contribute independently. In this case the decoded position should ‘jump’ 

between the virtual position determined by the visual landmarks and a shifted position 

determined by distance run, reflecting variability in firing within each trial. Another 

possibility is that visual cues and distance run are being weighted together, giving rise to a 

decoded position that lies between positions determined by visual cues only or distance run 

only. The distribution of decoded position indicated that position estimates were placed 

between estimates defined by virtual position alone or distance run alone. But importantly, 

the combined estimates were not lying along a straight line, but oscillated, suggesting 

variable, albeit small, differences in the weighting of virtual position or distance run 

between trials. 

Taken together, these results point towards the relative weighting of visual and self-

motion cues. Nevertheless, it remains an open question what determines their weighting on 

a trial-by-trial basis. Answering this question would require knowledge of the point at 

which the animal starts counting distance run. This knowledge is indispensable for an 

accurate model of distance run which would take into account the influence of previous 

moments in time. Because in our behavioural paradigm self-motion and visual cues are 
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present throughout and the manipulation in gain is small, it has not been possible to 

determine the starting point from which distance run is estimated. I speculate that in our 

behavioural paradigm distance run is estimated from a reference point that moves together 

with the animal. To obtain precise control on that reference point, higher gain 

manipulations may prove useful. Alternatively, one could use a behavioural paradigm in 

which visual and self-motion cues are not put into conflict (Chen, King, Burgess, and 

O’Keefe, 2013). According to this approach, the animal relies on distance run estimated 

from an initial localisation point previously determined by visual cues. 

What is the origin of the observed shift in decoded position during gain changes? 

Specifically, could this shift be the result of a pure feed-forward response delay? Consider 

for instance an animal running at 20 cm/s in the medium gain condition. Given the 20% 

gain change, the animal’s speed in the virtual corridor will change by 4cm/s. This means 

that a 1 cm shift would require a feed-forward delay of 250 ms, way longer than what is 

expected from visual responses in V1 (<100 ms; (Niell and Stryker, 2008)). Thus, although 

an influence by feed-forward delay cannot be excluded, I propose that the observed results 

could only be fully explained by additional delays mediated by feedback signals.  

Besides distance travelled, another potential factor which could contribute to the 

observed shift is running speed. In turn, since running speed is defined as distance travelled 

per unit time, influences by variable running speed (i.e. same distance travelled at variable 

time intervals) would indicate that the factor that actually affects neural activity is time, 

rather than distance. Hence, previous studies have attempted to distinguish distance from 

time by focusing on trials in which the animal ran at different speeds (see for eg Funamizu, 

Kuhn, and Doya, 2016; Ravassard et al., 2013). In our case, it has proven difficult to 

disentangle time from distance mainly due to the stereotyped running speed pattern 

acquired after animals learned the task. In addition, the stereotyped running speed pattern 

depended substantially on gain: when approaching the reward zone, animals tended to 

decelerate earlier in low gain trials and later during high gain trials.  

Although our ability to discriminate between distance travelled and time was limited, we 

sought to control for speed-related effects in two ways: first, decoding was performed 

separately for different speed ranges; second, we compared the degree of decoding error 

between sessions during which animals ran at different speeds on average. Notably, we 

found that the magnitude of the decoding error correlated to some extent with speed in V1 

and AL, but additional experiments and further analysis is required to clarify this 
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dependence. It is possible, for instance, that the observed correlation is not due to effects 

exerted by time, but rather due to behavioural factors; for example, mice may pay more 

attention to the visual landmarks when they run slower. On the other hand, we found no 

dependence between the relative error and running speed in the PPC, implying a potential 

functional difference between PPC and areas V1 and AL. 

      The difference between PPC and V1 was further supported by the finding that 

distance run had a stronger impact on the PPC response profiles compared to V1. 

Importantly, the difference between areas could not be explained by differences in the 

licking behaviour of the animal, because the shifts in the licking behaviour induced by gain 

changes were comparable between V1 and PPC. Therefore, the results presented here 

suggest that PPC is strongly influenced by distance run, consistent with the proposed role 

of the PPC in processing and integrating movement-related signals (Wilber et al., 2014) and 

its stronger connectivity to secondary motor cortex (Oh et al., 2014).  

A previous study on the PPC during an auditory, virtual navigation task also suggested 

that neurons in this area coded for the distance to goal (Funamizu, Kuhn, and Doya, 2016). 

Instead our gain manipulation experiments, demonstrating a shift earlier along the track in 

low gain and later along the track in high gain, suggest a code for distance travelled rather 

than distance to goal. Nevertheless, we did not systematically search for influences by 

distance to goal and it is a possibility that a subpopulation in PPC may also be modulated 

by this type of distance. Distance-to-goal signals relate to anticipatory activity which has 

been previously reported to arise in PPC in the form of the self-motion related signals 

occurring up to 500 ms before execution of movement (Whitlock et al., 2012). Anticipatory 

signals reflecting the upcoming reward or punishment have also been reported previously 

in V1 (Makino and Komiyama, 2015; Shuler and Bear, 2006). It would thus be interesting 

to assess whether such signals are also present in the response patterns presented here. 

Overall, here I demonstrated that distance run, another non-sensory signal known to 

influence the brain’s navigational system, also influences visual responses in V1, AL and 

PPC. Nevertheless, distance run alone could not explain the relatively small shift in the 

response profiles. Consequently, decoded position was intermediate between predictions 

based on visual cues and distance run. Therefore, these findings provide new evidence on 

the presence of self-motion signals related to the distance travelled in visual areas, thereby 

reinforcing the conclusion of previous chapters that in visual cortex, responses to visual 

cues are strongly modulated by navigation-related signals.  
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 General conclusions 

8.1 Main findings and limitations 

A major focus of this thesis has been the influence of navigational signals on responses 

across the visual cortex. To this end, I used two-photon imaging to record responses of 

thousands of cells in V1 and 6 higher visual areas from transgenic mice placed in two 

virtual reality environments, a linear corridor (Chapters 3,5,6) or a circular maze (Chapter 

7). Thorough analysis of the acquired data using several metrics and modelling revealed 

that correlates of space, known to arise in the brain’s navigational system, such as spatial 

position and distance travelled, are also present in visual cortex; and in fact, these signals 

occur as early as in V1 (Chapter 3; Saleem*, Diamanti* et al., 2018). Notably, responses 

recorded in several visual areas during a virtual navigation task encoded the position of the 

mouse in the environment, with little ambiguity between the visually- matching landmarks, 

consistent with Saleem*, Diamanti* et al. (2018) (Chapter 7). Moreover, by combining 

these findings with data acquired under ‘passive viewing’ conditions, I highlighted the 

impact of active behaviour on neural activity based on several lines of evidence: 1. Spatial 

modulation was substantially reduced during play-back of the virtual environment 

compared to active behaviour (6.1.3) 2. during play-back of the virtual environment, 

responses were weaker and less reliable than during active behaviour. This was the case, 

even though the animal was running, but its running was not controlling the virtual reality 

(6.1.1) 3. Reliable responses to the visual landmarks in virtual reality did not correlate with 

reliable responses to drifting gratings, even for cells preferring the vertical drifting gratings, 

a stimulus that was also a landmark in virtual reality (4.2.3). Given these findings I propose 

that the brain’s sensory system is endowed with the ability to enhance or even modulate its 

activity depending on behavioural demands; this ability is unravelled here specifically in the 
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context of navigation through evidence demonstrating that visual responses are explicitly 

influenced by spatial position during active behaviour. 

The main limitation in characterising visual responses in virtual reality has been the 

design of the virtual linear corridor. Specifically, to create a sense of place inside a room, 

the virtual scenes had to be different between the central and the peripheral visual field. 

This was first due to the end grey wall which was expanding as the animal advanced 

forward and second, due to the 3d perspective of the visual environment which imposed 

that visual stimuli presented in the centre had much higher spatial frequencies compared to 

the periphery. Thus, it has proven difficult to discern the visual responses of neurons with 

receptive fields in the central visual field. Correspondingly, the difference in visual scenes 

between the centre and the periphery has posed a challenge in assessing the role of higher 

visual areas biased towards the centre (LM, AL, RL) during behaviour in virtual reality, and 

therefore understanding the underlying reasons for the increased degree of spatial 

modulation in the centre compared to the periphery (5.1.2).        

Despite these limitations, this study has elucidated several differences between some of 

the higher visual areas investigated here, specifically LM, A, AM and PM.  

LM, for instance, is an area thought to be the homologue of primate V2 (Wang, Gao, 

and Burkhalter, 2011) and the only higher visual area receiving inputs from the dLGN, like 

V1 (Oh et al., 2014). Consistent with these reports, in this study LM appears to be the most 

similar to V1; visual responses in LM are almost equally reliable during presentation of 

drifting gratings and in virtual reality, and the corresponding distribution is very similar to 

V1 (4.2.3); the robustness of the response profile pattern in closed-loop, assessed based on 

the height of the main peak in the population average, is highest in LM together with V1 

(5.1.1); finally, LM’s tuning for speeds in virtual reality is biased towards virtual speed, again 

similar to V1 (0). I also found that the degree of spatial modulation in LM was lowest 

compared to V1, the only area possessing this feature (although this difference cannot be 

fully understood for the reasons described in discussion section 5.2). Taken together, these 

findings support the proposed contribution of LM to a putative ventral, rather than a 

dorsal, pathway. In addition, LM’s functional similarities to V1 demonstrated here, point to 

its positioning towards the lower level of a putative hierarchical processing stream, 

consistent with (Wang and Burkhalter, 2007). 

A and AM, on the other hand, appear to be positioned on the other side of the 

spectrum, as the areas the most different to V1. A and AM are thought to overlap, at least 
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in part, with PPC (Glickfeld and Olsen, 2017; Wang, Gao, and Burkhalter, 2011), an area 

associated with higher-order functions particularly during navigation, such as the encoding 

of spatial signals in the abstract space defined by routes (Nitz, 2009, 2006), the multiplexing 

of allocentric and egocentric signals (Wilber et al., 2014) decision making (Harvey, Coen, 

and Tank, 2012). In this study multiple lines of evidence have highlighted the functional 

differences of A, and sometimes AM, from the other visual areas: the reliability of visual 

responses in A and AM is strongly biased towards responses in virtual reality, with the 

reliability of responses to drifting gratings being lowest in A (4.2.3); when comparing 

between cells that ‘look’ in the same part of the visual field, it appears that A is more 

strongly modulated by spatial position compared to V1(5.1.2); A an AM are the only areas 

in open-loop with higher degree of spatial modulation than V1; these are also the only 

areas tuned to running speed, rather than virtual speed, with A exhibiting the strongest bias 

(0); finally, these areas are more strongly influenced by distance travelled (7.1.4). Overall 

these findings provide additional evidence supporting a prominent role of A and AM 

during navigation and thus, their contribution to a putative dorsal pathway. It is important 

to note though, that any conclusions regarding spatial representations in PPC, should also 

take into account the multifaceted and complex nature of the modulatory signals present in 

this area. To explain the complexity of these signals, work by Andersen and colleagues 

postulated that in PPC different frames of reference coexist and that the interactions 

between these frames can be well described by ‘gain fields’ (see relevant literature in 

General Introduction). Such frames of reference can be egocentric, or allocentric (Snyder, 

Grieve, Brotchie, and Andersen, 1998), or even more abstract. For instance, a reference 

frame can be ‘centred’ to the route taken (Nitz, 2006): indeed, if the starting and end point 

of a complex route within the same environment is modified, the spatial firing patterns in 

the rat PPC shift accordingly, so that they remain invariant with respect to the space 

defined by the route. Another example of abstract reference frames are the object-centred 

frames found in the monkey PPC area 7a (Chafee, Averbeck, and Crowe, 2007). Such 

frames are similar to the route-centred frames found in rats in the sense that they are not 

defined in the physical space of body or world (Nitz, 2009). Thus, one should be cautious 

when drawing conclusions on the type of modulation and the reliability of responses 

particularly in the PPC. The reason being that any unreliability observed in PPC responses 

may indicate that a different, more abstract frame of reference is more relevant to a specific 

behaviour.        
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PM, finally, appears to be positioned in the middle of a putative hierarchical spectrum. 

In addition, given several anatomical ((Wang, Sporns, and Burkhalter, 2012)) and functional 

(Funamizu, Kuhn, and Doya, 2016; Roth, Helmchen, and Kampa, 2012) evidence as well 

as PM’s strategic positioning next to retrosplenial cortex (Wang, Sporns, and Burkhalter, 

2012), it has been proposed that PM plays an important role during navigation. Here we 

find several pieces of evidence supporting these views: PM’s degree of spatial modulation is 

slightly but significantly more pronounced than V1, when comparing between cells with 

receptive fields in the periphery (5.1.2); on the other hand, PM has the most robust, purely 

visual responses during open-loop (0); finally, although a subpopulation of cells in PM are 

tuned for running speed only, on average, PM seems to be influenced by both virtual and 

running speed equally. Overall, these results support the contribution of PM to a putative 

dorsal stream, in a manner though different than PPC. Unlike A and AM which seem to 

vigorously encode self-motion signals, PM seems to be instead also influenced by optic 

flow. This difference between A/AM and PM is also consistent with the speculation that 

the putative dorsal stream is split into multiple substreams, with PM belonging to a 

different substream than A and AM (Murakami, Matsui, and Ohki, 2017). 

Overall, here I have highlighted the several differences between higher visual areas 

which arose during a variety of behavioural conditions. Hopefully these results provide a 

stepping stone towards the long-sought aim of characterising the role of the mouse higher 

visual areas during behaviour.  

8.2 Is modulation of visual responses truly spatial? 

To establish that responses in visual cortex were influenced by spatial context, we 

performed several controls related to either visual, behavioural or task-related factors (see 

Chapter 3). These involved either the exclusion of each factor individually (see 3.1.2) or the 

assessment of all these factors simultaneously (see 3.1.3). Such controls were crucial in 

pointing towards the modulation of visual responses by navigation-related signals. 

Nevertheless, it may also be argued that the nature of this modulation is not spatial per se. 

For instance, responses to visual stimuli may well be influenced by the familiarity or 

recency of the stimulus presentation (for a review see Brown and Banks, 2015). Another 

possibility is that neurons in visual cortex may be modulated by the temporal order of 

events, or more broadly by time rather than space (for a review see Eichenbaum, 2017). 

Finally, the observed modulation may originate from more-abstract spatial signals defined 

by the route taken (Nitz, 2009, 2006; as discussed above).  
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Here I discuss the potential influence of familiarity or time by referring to the relevant 

literature. I argue that factors such as familiarity or recency, are not sufficient to explain the 

observed modulation. Instead the influence by other variables, such as time, cannot be 

excluded based on the experiments presented here. Future directions in distinguishing 

potential effects by time are also discussed below. 

8.2.1 Familiarity, recency and novelty  

   Familiarity with a stimulus, together with recollection of that stimulus within a 

previously-experienced context, are the two key processes underlying recognition memory 

(Eichenbaum, Yonelinas, and Ranganath, 2007). According to the ‘dual-process’ theories of 

recognition memory, familiarity and recollection are two distinct processes represented in 

different subregions of the medial temporal lobes (Eichenbaum, Otto, and Cohen, 1994): 

hippocampus and the parahippocampal cortex are specifically involved in recollection of 

spatial, and more generally contextual, information associated to a stimulus; on the other 

hand, perirhinal cortex, but not hippocampus, encodes familiarity for individual stimuli 

(Brown and Aggleton, 2001). Therefore, unlike recollection, which involves associations 

between stimuli and a specific context, familiarity is stimulus-specific, manifested as a 

reduction in responsiveness to that stimulus (Brown and Banks, 2015). 

Reduced responsiveness to a familiar visual stimulus has been previously reported in 

both rats (Wan, Aggleton, and Brown, 1999) and monkeys (Fahy, Riches, and Brown, 1993; 

Xiang and Brown, 1998). During a paired viewing procedure, rats were presented with a 

novel and a familiar stimulus, with each stimulus being visible by one eye only (Wan, 

Aggleton, and Brown, 1999). Using activation of the immediate early gene c-fos as a marker 

of neuronal activity, it was shown that activity in perirhinal cortex and area TE of the 

temporal lobe was significantly higher during presentation of novel compared to familiar 

stimuli. Instead no similar differences were observed in hippocampus. These results were 

consistent with previous findings in monkeys during a visual recognition task (Xiang and 

Brown, 1998). In addition, the same study in monkeys dissociated familiarity from recency 

and novelty: some cells exhibited decreased responses to familiar stimuli, whereas others 

had decreased responses to any, familiar or novel, stimulus if it had been presented 

recently. Finally, some cells signalled novelty, by responding more strongly to the first 

presentation of a novel stimulus compared to the second presentation of both familiar and 

novel stimuli. Notably, visual responses influenced by familiarity, recency or novelty were 

found in area TE, perirhinal and entorhinal cortex, but not in hippocampus.  
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It is important to note that all ‘familiarity, recency and novelty’ neurons reported by 

Xiang & Brown (1998) were in fact visually responsive neurons. Similarly, it is conceivable 

that the visually responsive neurons recorded here may be influenced by familiarity rather 

than spatial context. Nevertheless, a key feature of familiarity effects is the reduced 

response to the second presentation relative to the first. Indeed, Xiang and Brown (1998) 

reported that 98% of neurons responding differently to familiar or recent stimuli, exhibited 

weaker responses. Reduced responsiveness has also been confirmed by all studies with 

similar focus (Brown and Banks, 2015). In this study instead, we found that the percentage 

of cells preferring to fire in the first half of the corridor was almost equal to the percentage 

of cells preferring to fire in the second half (49% in first half vs 51% in second half). This 

means that almost half of the cells exhibited stronger responses to the second presentation 

of the same stimulus, which is the opposite of what is expected from effects of familiarity 

or recency. Therefore, although an effect of familiarity or recency cannot be excluded, it 

can only partially explain the influence observed here.  

8.2.2 Time 

Navigation and episodic memory are similar experiences in the sense that they involve 

the sequential organisation of events, places or memories respectively (Buzsáki and Llinás, 

2017). Accordingly, areas in the brain’s navigational system, such as the hippocampus, are 

thought to code not only for the spatial but also for the temporal order of sequential events 

(Eichenbaum, 2017). Initial evidence on the existence of a temporal code in hippocampus 

came from studies that controlled location and movement precisely, during either a 

memory (Manns, Howard, and Eichenbaum, 2007) or a spatial (Pastalkova, Itskov, 

Amarasingham, and Buzsáki, 2008) task. In correct trials during an odour sequence task, 

the neural representations of odours presented closer in time were more similar than the 

representations of odours further apart and importantly this difference was present 

irrespective of location. Thus, this early study suggested that together with spatial context, 

hippocampus also represents the temporal order of events (Manns, Howard, and 

Eichenbaum, 2007). The existence of temporal representations in hippocampus was 

established shortly after with the discovery of ‘time cells’ (Pastalkova, Itskov, 

Amarasingham, and Buzsáki, 2008). In this study rats alternated between the left and right 

arm of a figure-eight shaped maze. Critically, individual runs were separated by a delay 

period, during which rats had to ran on a wheel at a constant speed, and thus 

environmental and movement-related inputs were kept constant. The main finding was that 

during the delay period, hippocampal neurons were sequentially active at different time 
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points, such that the population activity covered the whole period during wheel running. 

Since then, various studies have observed temporal sequences of activity in different 

behavioural contexts, such as non-spatial tasks (MacDonald, Lepage, Eden, and 

Eichenbaum, 2011), matching-to-sample tasks paired with head-fixation (MacDonald, 

Carrow, Place, and Eichenbaum, 2013); wheel running at various speeds (Kraus et al., 

2013), classical conditioning (Modi, Dhawale, and Bhalla, 2014); or comparison between 

tasks with or without working memory demands (Salz et al., 2016). 

Given the considerable body evidence that the brain’s navigational system codes not 

only for space but also for elapsed time, how likely is it that in the current study the signals 

influencing visual responses are temporal rather than navigational? This is a possibility 

particularly because when running through a linear maze subsequent points in space 

correspond to subsequent points in time. In addition, given the repetition of visual cues, 

any modulatory signals may reflect the temporal order of the presented stimuli rather than 

spatial location per se. Nevertheless, drawing firm conclusions on the contribution of time 

in the modulation of visual responses observed in this study would require a delay period 

while keeping environmental cues (visual cues in our case) and self-motion cues (running 

speed) constant. The grey screen inter-trial intervals could potentially serve as delay 

periods, but the running speed was found to be highly variable within these periods, thus 

posing a major limitation towards investigating the potential influence of time. Future work 

addressing this issue should aim for precise isolation of spatial and movement-related 

variables. 

Even if time is found to play a crucial role in our behavioural paradigm, I speculate that 

most neurons would still be strongly influenced by spatial context (spatial location or 

distance run).  This speculation is based on studies in hippocampus which aimed at 

distinguishing the influence of time from spatial location or distance travelled. Of particular 

interest in this context is the study by Kraus et al. (2013): during the delay period between 

runs in an eight-figure shaped maze, rats ran on a treadmill while the speed of the treadmill 

was varied. Thus, manipulation of the treadmill speed allowed discrimination between time 

and distance. In addition, implementation of generalised linear models enabled 

quantification of the influence by distance, time but also spatial location. The main finding 

was that during the delay period most neurons were influenced by both time and distance, 

with some neurons being tuned to distance only or time only. Importantly, most of these 

neurons, as well as others, exhibited place fields in the maze, indicating that coding for time 

does not rule out coding for spatial context. Consistent with these results were the findings 
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by Salz et al (2016), showing that cells coding for time would sometimes also code for 

space during a working memory task. Finally, also the earlier study by Pastalkova et al. 

(2008) reported that, although the sequential patterns of activity when running on a 

treadmill or through the maze were not related, many hippocampal cells were active during 

both periods. Based on these studies and others, it has been proposed that populations in 

hippocampus can code for space along with time and other contextual variables, as long as 

these are relevant to the task at hand (Eichenbaum, 2014). In fact, in cases where a 

temporal or spatial code are equally relevant, populations of the same hippocampal neurons 

can switch between codes depending on behavioural strategy (Cabral et al., 2013). Instead, 

if locations on the maze are crucial for task performance, spatial context will have a strong 

influence on the hippocampal populations activity (Kraus et al., 2013). Similarly, in the task 

presented in Chapter 7, spatial context (reward location and distance run) are very relevant, 

and therefore are expected to exert a strong influence on the modulation of visual 

responses. 

Overall, given that the brain’s navigational system can be considered as a ‘general 

purpose sequence generator’ (Buzsáki and Llinás, 2017), with the ability to represent any 

context relevant to an ongoing experience, one hypothesis is particularly intriguing: if the 

modulation of visual responses does reflect the interaction between the navigational and 

visual systems, then the nature of this modulation should be relative, depending on the 

context represented by the brain’s memory systems. Further insight into this hypothesis 

can be provided by introducing tasks requiring estimates based on place or the memory of 

ordered events, in parallel or separately.     

8.3 Future directions 

Visual and navigational information are centred in different reference frames, the eye 

and the world respectively, and therefore our initial hypothesis was that during visually-

guided navigation visual information has to be at some point transformed into spatial 

information (see 1.5). An attractive theoretical framework supporting this hypothesis was 

the concept of ‘gain fields’ and a prominent candidate for participating in transformations 

across reference frames the PPC (Xing and Andersen, 2000). Nevertheless, here we found 

that visual responses as early as in V1 are modulated by spatial position, indicating that, at 

least in the mouse, transformations across reference frames can arise in early sensory 

cortex. ‘Gain fields’ still remain an attractive potential mechanism underlying our findings, 

yet it remains an open question whether vision and spatial signals actually interact in a 
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multiplicative manner. One way to test if this interaction is multiplicative is by varying the 

contrast of the visual landmarks. Then a testable prediction is that at 0% contrast any 

influence by position should disappear. In addition, varying the contrast should have no 

effect on the ratio of responses, as these should scale with contrast by the same amount.          

Another question being raised by our findings is how spatial modulation arises in 

sensory cortex? Preliminary results indicate that V1 responses on the first day of exposure 

to virtual reality are more visual compared to subsequent days (3.1.5). It would be 

interesting to assess whether the distribution of ratios acquired on day 1 could be fully 

explained by influences from behavioural factors using the models described in Section 

3.1.3. Conversely, if spatial modulation is already present on day 1, it is conceivable that 

this influence has developed within shorter timescales than what we are able to analyse 

(indeed, to obtain response profiles as a function of position we need to consider at least 

20 trials). The possibility that spatial modulation is present already on day 1 is also likely 

based on findings in hippocampus showing that spatially localised firing fields appear 

already on the first day of training in virtual reality (Chen, King, Burgess, and O’Keefe, 

2013). Therefore, perhaps the best way to go about assessing the emergence of spatial 

signals in sensory cortex is by lesioning the brain’s navigational system prior to exposure to 

a new environment.  

Another question concerns the existence of anticipatory signals. Are these signals more 

prominent in some areas than others? For instance, it has been shown that PPC contains 

signals predicting movement up to ~1 sec prior to movement execution (Whitlock et al., 

2012). But also, V1 contains anticipatory signals of the upcoming reward (Poort et al., 

2015) or aversive event (Makino and Komiyama, 2015). Testing for the existence of 

anticipatory in our dataset is possible with the model I used to assess the influence of 

various task-related and behavioural factors (3.1.3). These tests will require closer 

inspection of the weights assigned to the different predictors, particularly for those shifted 

backward in time. This analysis will provide a better idea on how spatial signals about the 

actual position intermingle with anticipatory signals of movement or reward.  

Finally, having shown that spatial signals are already present in V1, then the next logical 

step is to assess whether these signals are already present earlier along the visual pathway, 

such as in the dLGN. Ideally, I would like to be able to measure responses in dLGN 

simultaneously with V1 and possibly hippocampus. Such large-scale recordings are now 

made possible with the use of Neuropixel probes (Jun et al., 2017). My next aim is to use 



136 
 

these probes in order to record neural activity across multiple cortical and subcortical areas 

during virtual navigation.    

Clearly more work is needed to understand how these spatial signals are being acquired 

in visual cortex. To this end, experimental studies targeting the functional connectivity 

between areas from visual cortex all the way to the hippocampus during navigation would 

be particularly useful; these studies should go hand-by-hand with computational studies 

assessing the exact nature of transformations that information undergoes along these 

pathways. In this Thesis, I presented several lines of evidence on the functional differences 

between visual areas in the mouse. In parallel, I demonstrated that the mouse cortex does 

not keep a firm distinction between navigational and sensory systems: rather spatial signals 

permeate cortical processing. Ideally, these results will pave the way towards a better 

understanding of the fundamental principles underlying sensory processing during 

navigation.   
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