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Abstract

The delivery of blood-borne therapeutic agents to solid tumours depends on a broad range

of biophysical factors. We present a novel multiscale, multiphysics, in-silico modelling

framework that encompasses dynamic tumour growth, angiogenesis and drug delivery, and

use this model to simulate the intravenous delivery of cytotoxic drugs. The model accounts

for chemo-, hapto- and mechanotactic vessel sprouting, extracellular matrix remodelling,

mechano-sensitive vascular remodelling and collapse, intra- and extravascular drug trans-

port, and tumour regression as an effect of a cytotoxic cancer drug. The modelling frame-

work is flexible, allowing the drug properties to be specified, which provides realistic

predictions of in-vivo vascular development and structure at different tumour stages. The

model also enables the effects of neoadjuvant vascular normalisation to be implicitly tested

by decreasing vessel wall pore size. We use the model to test the interplay between time of

treatment, drug affinity rate and the size of the vessels endothelium pores on the delivery

and subsequent tumour regression and vessel remodelling. Model predictions confirm that

small-molecule drug delivery is dominated by diffusive transport and further predict that the

time of treatment is important for low affinity but not high affinity cytotoxic drugs, the size of

the vessel wall pores plays an important role in the effect of low affinity but not high affinity

drugs, that high affinity cytotoxic drugs remodel the tumour vasculature providing a large

window for the normalisation of the vascular architecture, and that the combination of large

pores and high affinity enhances cytotoxic drug delivery efficiency. These results have impli-

cations for treatment planning and methods to enhance drug delivery, and highlight the

importance of in-silico modelling in investigating the optimisation of cancer therapy on a per-

sonalised setting.

Author summary

One of the main challenges in optimising cancer therapy is understanding the in-vivo can-

cer environment and how it changes over time. The efficacy of chemotherapeutic drugs is

known to be strongly dependent on blood vessel wall properties and the architecture of
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the developing tumour vasculature, which in turn are dependent on biochemical and

mechanical interactions between cancer cells and their microenvironment. Here we pres-

ent a novel in-silico modelling framework of dynamic tumour growth, angiogenesis and

drug delivery, and we use it to explore biophysical factors governing the efficient delivery

of cytotoxic drugs to solid tumours. We find that the time of treatment and vessel perme-

ability are important factors for the efficacy of chemical agents with low binding affinity,

that high affinity drugs can impact the tumour vasculature remodelling and bring vascular

structure back to a more normalised state, and that the combination of large-sized vessel

wall pores and high affinity enhances cytotoxic drug delivery and efficacy. These results

have implications for treatment planning and optimisation, and show how in-silico mod-

els can be used to help understand and optimise cancer therapy.

Introduction

Inefficient delivery of drugs to solid tumours is one of the main reasons for chemotherapy fail-

ure. To reach cancer cells, blood borne therapeutic agents have to travel through the tumour

vasculature to reach the tumour site, subsequently to extravasate into the tumour interstitial

space and finally travel the remaining distance from the blood vessels to cancer cells. Abnor-

malities in the tumour microenvironment pose major physiological barriers to all three trans-

port steps [1]. The tumour vasculature has an abnormal, chaotic structure with blood vessels

being often hyper-permeable, hence, leaving large interendothelial openings, while being tor-

tuous without any particular hierarchy [2]. Furthermore, the structure of the tumour vascular

network continuously changes, new vessels are formed owing to hypoxia-induced angiogene-

sis, while existing vessels might collapse owing to mechanical compression by solid compo-

nents of the tumour (e.g., cancer and stromal cells and extracellular matrix fibres) [3]. The

irregular structure of the tumour vasculature increases geometrical resistance to fluid flow

through the vessels thus leading to sluggish blood flow, whereas vessel hyper-permeability

might result in excessive plasma (as well as nutrients) loss from the vascular to the interstitial

space of the tumour. As a result, these abnormalities can compromise blood perfusion down-

stream in the vascular network, while vessel collapse might exclude large intratumoural

regions from blood supply and, hence, make these regions inaccessible to drugs [2, 4–6].

Therefore, the structure and functionality of the tumour vasculature can determine the

amount of drug delivered to the tumour and the efficacy of the therapy [7, 8]. Apart from het-

erogeneous and low perfusion, other physiological barriers to the delivery of drugs to solid

tumours is the uniform elevation of the interstitial fluid pressure owing to: (i) the hyper-per-

meability of the tumour blood vessels, (ii) the dysfunction of tumour lymphatics and in some

(desmoplastic) tumour types, (iii) the dense interstitial space that resist to interstitial fluid flow

[9, 10]. All these parameters result in the accumulation of fluid in the tumour and interstitial

hypertension, which in term eliminates pressure gradients across the tumour vessel wall and

thus, convective transport of drugs [1]. As far as chemotherapy is concerned, cytotoxic drugs

have a relatively low molecular weight so that they diffuse fast and do not require pressure gra-

dients for their effective transport [11]. However, binding of the drug to cancer cells might

change significantly the penetration and intratumoural distribution of the drug, depending on

the binding affinity [12, 13].

To date, mathematical and computational (in-silico) modelling of the tumour–host bio-

physics and fluid / drug transport phenomena has attracted fair attention in the scientific com-

munity. Amongst the early papers in modelling fluid flow in solid tumours—towards studying
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the interplay between highly permeable walls of neoplastic tumour vessels and interstitial fluid

flow—is that of Netti and his colleagues [14]. Their model was capable of predicting the inter-

stitial fluid pressure and velocity profiles, as well as the biomechanics of the tumour and host

tissue matrix. Their numerical findings provided valuable insight to understanding the bio-

fluid transport in biological tissues, and paved the way for the modelling works that follow.

Along the same lines, Pozrikidis and Farrow [15] simulated bio-fluid flow at the interstitium

(modelled as an isotropic porous medium) which was described using Darcy’s law, while intra-

vascular flow was described by Poiseuille’s law, and the extravasation using Starling’s law.

They investigated fluid flow on an idealised single vessel via a boundary integral formulation

to obtain numerically interstitial fluid pressure. Adopting similar governing equations to [15],

Soltani and Chen [16] proposed an element-based finite volume methodology to simulate

interstitial fluid at the tumour–host tissue. The tumour vascular network was assumed homo-

geneous, however, their results agreed well with corresponding experimental data of interstitial

fluid pressure. Zao et al. [17] developed a computational fluid dynamics animal-specific

computational model, informed using dynamic contrast-enhanced magnetic resonance imag-

ing data. The authors investigated the distribution of the interstitial fluid transport within a

murine sarcoma with regards to spatially varying properties of the vasculature at the tumour

and the host tissue. In 2014, Tang et al. [18] proposed a computational modelling framework

of three-dimensional tumour growth and tumour-induced angiogenesis with the aim to evalu-

ate chemical drugs transport. Despite their model encompassed several bio-physical processes

associated with tumour development, such as cell- and vascular-mediated interstitial pressure,

angiogenesis, cell proliferation, cytotoxic chemotherapy, etc., the model predictions (tissue

growth and vasculogenesis) were not validated against experimental results. Following up [16],

Sefidgar et al. [19] investigated numerically, via a model parameter analysis, the effect of

tumour shape and size on drug delivery to idealised in shape, solid tumours. The authors’ con-

cluded that diffusion of cytotoxic drugs is dominant—for most tumour shapes and sizes—

while when convection was considerable then drug concentration is larger when compared to

similar size tumours. However, their model accounted for several simplifications, such as a

homogeneous vascular network, regular tumour shape, and they did not account for the

mechano-biology of the tumour–host tissue or the transient effects of the tumour vasculature.

More recently, Dey and Sekhar [20] presented a bi-phase mathematical modelling framework

—with the solid phase encompassing cell population, the extracellular matrix and the vascula-

ture, while the fluid phase being the interstitial fluid—of solute (macroscopic) transport in soft

biological tissues and solid tumours. The authors studied numerically, the impact of the inter-

stitial space hydraulic conductivity, the rate of the solute supply or drainage from the vascula-

ture and lymphs respectively, and the Thiele modulus (see definition of term therein) on the

distribution of the interstitial fluid pressure, velocity and concentration in symmetrical

tumours. Also, they investigated the role of the Thiele modulus with respect to the delivery of

solutes—with emphasis in nutrients transport—and their impact in the tumour development

and necrosis formation.

We propose here a novel multiscale, multiphysics in-silico cancer and drug delivery model-

ling framework that circumvents the simplifications involved in previously-published relevant

modelling efforts. We build on our previous in-silico framework that accounts for tumour

growth, angiogenesis and vessel compression, oxygen supply, and solid and fluid stress evolu-

tion [21]. The model is extended to account for the delivery of drugs and study the effects of

the time of chemotherapy administration on intratumoural drug concentration, vessel remod-

elling, tumour vessels’ permeability and perfusivity, and tumour growth. Particularly, to quan-

tify the structure and hierarchy of the vessels, we employed two geometrical measures that we

have previously shown to adequately characterize the tumour vasculature and can be related to

In-silico chemotherapy modelling of solid tumours
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drug delivery: (i) the maximum distance to the nearest vessels, δmax, which is a measure of the

avascular spaces in the tumour, and (ii) a convexity index, λ, which serves as a measure of the

three-dimensional structure of the vascular tree [22]. In principle, the parameter δmax quanti-

fies the distance of adjacent blood vessels of the micro-vascular tree and it has been observed—

by comparing healthy and tumour vascular networks in healthy and cancerous tissue using

imaging—that the maximum distance is significantly increased in some solid tumours (e.g.,

see in-vivo scans in Fig 2 from [23]). However, to simplify the presentation of the in-silico

results, we evaluate here the parameter in dimensionless form, �dmax, i.e. as the fraction of

δmax(t) over δmax(0), with the latter calculated at the initial ‘healthy’ micro-vascular tree.

Hence, at time t = 0, the parameter is �dmax ¼ 1 (the overbar is omitted in the remainder of the

text and in the figures). Also, λ can be interpreted as a parameter that describes the three-

dimensional distribution of the vessels and hierarchy. As such, for healthy vasculature it has

been observed that λ takes positive values, while in cancerous tissue λ takes negative values

[22]. Thus, for the adopted micro-vascular tree at time t = 0, the corresponding parameter is

calculated λ(0)� 0.5.

In this contribution, we found that time of drug administration—with respect to the size

(or ‘stage’ in other words) of the tumour is critical for the outcome of chemotherapy and that

the drug can induce changes in the tumour vasculature bringing it to a more normalised state.

Interestingly, in-silico model predictions also revealed a strong relation of intratumoural drug

concentration to the permeability of the tumour vasculature and the binding properties of the

chemotherapeutic agent.

Materials and methods

The proposed cancer modelling framework is founded in our previous in-silico multiscale

model of tumour growth and tumour-induced angiogenesis [21]. Therefore, we have adopted

the same notation convention for the presentation of the mathematical model, which has been

extended to include drug transport.

Biofluid flow

Vascular flow model. Following [15, 21, 24], blood flow in the microvascular network is

assumed axial, steady, laminar and viscous. Thus, the haemodynamics in the individual

capillaries can be mathematically described using Poiseuille’s equation that describes the intra-

vascular flow rate via:

_Qvsc ¼ �
pR4

8 mB

Dpvsc

Lvsc
; ð1Þ

where R is the capillary lumen radius, while Lvsc and Δpvsc is the length of a capillary segment

and the vascular pressure drop (necessitated to drive blood flow) respectively. However, to

simplify the modelling of blood flow in the capillaries, without any detriment to the numerical

results accuracy or fidelity, the dynamic viscosity of blood, μB, is assumed homogeneous and

constant in time.

Interstitial flow model. Modelling the extravascular space (i.e., the extracellular matrix

and the host/tumour cells) as a porous fluid saturated medium, interstitial fluid flow can be

described using Darcy’s law [25, 26]. As such, the volumetric flow rate in the extracellular

space is given by

_Q int ¼ � Kint Aint
Dpint

Lint
; ð2Þ
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where Kint and Lint is the average hydraulic conductivity and the relative distance between two

material points in the interstitium whose (interstitial) fluid pressure difference is denoted by

Δpint. The interstitium cross-sectional area, Aint, can be expressed with respect to the mean

capillary radius and the vascular density, Svsc, as Aint ¼ 2p�R=Svsc where �R the average capillary

radius in the local neighbourhood of the connective tissues under consideration [21].

Transvascular flow model. Fluid transport across the blood vessel endothelial barrier—

occurring as a result of filtration—is mathematically described using Starling’s equation

_Qtrv ¼ KvscAvsc ðpeff � pintÞ : ð3Þ

Here Kvsc is the hydraulic conductivity of the endothelial barrier (having dimensions:

m Pa−1s-1), which can be expressed as a function of the size of the fenestrations on the vessel

(pores’ average radius), rp, the fraction of vessel-wall surface occupied by pores, γp, the thick-

ness of the vascular wall, h, and the plasma dynamic viscosity, μP, via: Kvsc ¼ gp r2p = ð8 mP hÞ
[27]. Finally, Avsc is the surface area of the blood vessel wall and the “effective” pressure is

given by: peff = pvsc − (πvsc − πint)σo, where σo is the average osmotic reflection coefficient of

the plasma proteins, πvsc is the osmotic pressure of the plasma at the permeable vascular wall,

while πint is the corresponding osmotic pressure of the interstitial fluid. However, we account

the contribution of the colloid osmotic pressure of plasma and interstitial fluid for a complete

modelling description of the micro-circulation system.

Lymphatics flow model. Similarly to the Vascular flow model above, we describe the flow

rate in the lymphatic vessels using the Hagen–Poiseuille law

_Q lmp ¼ �
pR4

8 mI

Dplmp

Llmp
; ð4Þ

where R here is the mean lumen radius of a lymphatic segment having length equal to Llmp,

while Δplmp is the pressure difference on that segment. In the present model, the lymphangions

pumping properties and the lymphatic valves resistance to flow features are ignored. Nonethe-

less, a future physiologically realistic model would incorporate these features by following a

similar lumped-parameter modelling approach to Bertram et al. [28]. In addition, to simplify

the modelling of lymph fluid flow, the viscosity of the interstitial fluid entering the lymphatic

vessels, μI, is assumed homogeneous and constant in time.

The flow rate Eqs (1)–(4) are coupled to a one-dimensional finite element model for the

vascular and interstitial pressures, as in [11, 21]. Thus, a linear system of equations is formed

and solved numerically with respect to the unknown nodal (vascular and interstitial) pressures,

subject to pressure/flow boundary conditions on the terminal nodal points of the network.

The value set for the material parameters of the above equations are provided separately in S1

Table, while the vascular network model parameters are provided in S2 Table.

Drug delivery

Intravascular drug delivery model. The concentration of the solute (drug) in the blood-

stream is denoted by cv; therefore, considering that inside the microvascular network diffusion

is negligible then the transport of the drug is dominated by convection [25, 29], and is

expressed via the mass balance equation

dcv
dt
þ vvsc

dcv
dL
¼ 0 ; ð5Þ

where dcv/dL the drug concentration gradient on a vascular segment. The (axial) blood mean

velocity, vvsc, is computed after solving the equations governing the intra-, trans- and extra-

In-silico chemotherapy modelling of solid tumours
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vascular flow at both the vascular network and the interstitial space (as explained in Biofluid

flow): vvsc ¼
_Qvsc =ðpR2Þ.

The above differential Eq (5) is discretised using one-dimensional linear finite elements,

each one representing a blood vessel segment of the vascular network, and to solve the problem

numerically the following boundary conditions (BCs) are utilised. At the outlets, which have

to be located substantially distant to the main site of the tumour, zero-flux outflow BC is

prescribed, i.e.: dcv/dL = 0. At the inlets, Dirichlet BC is imposed to effectively model the

(bolus) injection of the drug, thus, described using an exponential decay function of the form:

cv(t) = cv-max exp[−t/τc], where cv-max is the maximum dose of the cytotoxic drug that has

reached the micro-circulation system at the tumour site, and τc the half-time of the chemical

agent. Both model parameters can be modified before the in-silico analysis to effectively con-

trol the magnitude and time-pattern of the bolus injection.

Extravascular drug delivery model. Following the mechanistic compartmental drug

delivery model of Thurber and Wittrup [12], we identify three states of the drug, namely the

free-drug, cf, the bound-drug, cb, and the internalised drug, ci, concentration respectively. Bal-

ance of all three state variables is described through a set of coupled differential equations—

where the free-drug governing equation incorporates the advection of the drug at the intersti-

tial space—which reads

dcf
dt
þ vint �

@cf
@X
¼

@

@X
� Dc

@cf
@X

� �

� kon cf þ koff cb þ Fvsc þ Flmp ; 8X 2 O; ð6Þ

dcb
dt
¼ kon cf � koff cb � kint cb ; 8X 2 O; ð7Þ

dci
dt
¼ kint cb � di ci � ; 8X 2 O; ð8Þ

where kon, koff and kint are the association (binding), disassociation and internalisation rate

coefficients respectively, while δi is the decay rate of the drug—owing to the depletion of the

cancer cells after the drug has found its target and the drug natural decay. Since we study here

the interaction of the drug with the cancer cells, the above rate parameters take non-zero val-

ues in the tumour region, OT, and zero in the host tissue region, OH (see S3 Table). The free-

drug isotropic diffusion coefficient at the interstitium can be obtained using the Stokes-Ein-

stein relationship—valid for when modelling chemotherapy transport [30]:

Dc ¼
kB T

3 p mI sc
; ð9Þ

where kB the Boltzmann’s constant, T the absolute temperature, and sc the size of the molecule

(or hydrodynamic diameter if assumed spherical) of the cytotoxic drug. Note that in Eq (6)

interstitial flow is assumed incompressible, i.e. (@/@X) � vint = 0, where the interstitial fluid

velocity can be evaluated using Darcy’s law: vint = −Kint @pint/@X.

By employing Starling’s equation to relate the rate of solute transport per unit volume

through the microvascular endothelial wall into the interstitium [31], one obtains

Fvsc ¼ Pvsc;d Svsc ðcv � cfÞ

þ

( Kvsc Svsc ð1 � sf ;vscÞ ðpeff � pintÞ cv if peff > pint else

Kvsc Svsc ð1 � sf ;vscÞ ðpeff � pintÞ cf
;

ð10Þ
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where Pvsc,d is the diffusive permeability of the blood vessels with respect to the solvent (drug

molecule), and σf,vsc the solvent drag reflection coefficient at the blood vessel wall. Both latter

quantities can be estimated numerically as a function of the drug size to the size of the pores of

the vessel wall [27].

Also, Svsc is the surface area per unit volume of tissue at the interstitium (otherwise referred

as blood vessels’ density).

Similarly, the lymphatic (drainage) contribution in Eq (6) can be expressed as

Flmp ¼ Klmp Slmp ð1 � sf ;lmpÞ ðplmp � pintÞ cf ; ð11Þ

where Klmp the hydraulic permeability of the lymphatic wall, and Slmp the lymphatic vessels’

density. The solvent drag reflection coefficient at the lymphatic vessel wall, σf,lmp, can be also

estimated numerically using Deen’s formulas [27]. For simplicity, in the present work, the

lymphatic pressure is assumed constant and equal to: plmp = 0 in the entire lymphatic network.

The above coupled reaction-diffusion-convection Eqs (6)–(8) can be solved with the

existing 3D finite element framework. The initial condition to this problem is zero drug

concentration everywhere in the domain of analysis (i.e., cf = cb = ci = 0), while zero flux

boundary condition is applied on the external boundaries of the domain of analysis (i.e.

@cfðX; tÞ=@n̂ ¼ @cbðX; tÞ=@n̂ ¼ @ciðX; tÞ=@n̂ ¼ 0, 8X 2 Γ). Also, we denote here the total

drug concentration that has ‘targeted’ the cancer mass with ch, which is equal to the sum of

the bound-drug concentration in the tumour, cb, and the internalised (within the tumour

cells) drug concentration, ci. The drug delivery model parameters of Eqs (6)–(8) are provided

in detail in S3 Table, while the blood and lymphatic vessels’ hydraulic properties are listed in

S1 Table.

Tissue biomechanics

Extracellular matrix structural model. Following Vavourakis et al. [21], structural

changes at the extracellular matrix (ECM) of the host and the solid tumour tissue—symbolised

in both cases with the state variable �—are modelled via a first-order ordinary differential

equation:

d�
dt
¼ M � d� m � � C ; 8X 2 O; ð12Þ

where δ� is the degradation rate of the ECM structural components (given in days-1) owing to

the matrix degrading enzymes (MDEs), secreted by the tumour and the tip-endothelial cells of

the tumour vasculature, and the effect of the cytotoxic drugs in depleting the tumour respec-

tively. Variable μ denotes the concentration of the MDEs in the matrix, where detailed descrip-

tion of the balance PDE for μ can be found in [21] (see Eq (14) therein). The rate-function

(in day-1) describing the remodelling of the ECM, for both the host and tumour region, is

expressed as:Mðx; �Þ ¼ l� x exp½� 2 �=���, where �� is a scaling parameter that modulates the

ECM level at which natural remodelling of the host-tissue matrix occurs, and λ� is an ECM

remodelling rate parameter. The last right-hand-side term in Eq (12) represents the depletion

of the ECM, which is applicable only for the tumour region, OT. This is due to the effect of the

cytotoxic agent that has already found its target (cancer cells) in regressing the tumour. As

such, the matrix reduction-rate function is expressed by the following polynomial expression

Cðci; �Þ ¼

(
dd � ðci � �ciÞ

ad if � > ��d

0 elsewhere
; 8X 2 O

T
; ð13Þ
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where δd is the ECM decay rate (in days-1) and ��d is a threshold value above which the cancer-

ous ECM is depleted—if only a significant population of cancer cells resides inside the region

OT—while �ci and ad are scalar model parameters controlling the reduction-rate function, C.

The parameter values are provided in part in S3 and S4 Tables, including references to the rele-

vant literature.

Tissue solid biomechanics model. Following the continuum mechanics approach of

Fung [32], growth of the tumour/host tissue biomechanics is described by introducing an elas-

tic (reversible) part, Fe, and an inelastic (growth) part, Fg, to the deformation gradient tensor:

F = Fe � Fg. As in [33, 34], tumour growth is assumed isotropic via: Fg = λg I, where I the iden-

tity tensor. The volumetric stretch ratio λg is related to the Green-Lagrange volume strain

through Wg ¼ ðl
2

g � 1Þ=2. However, in the present tumour model, permanent volumetric

deformation is expressed explicitly with respect to the oxygen concentration, ξ, that promotes

cancer cell proliferation, as well as with respect to the tissue structural integrity, �, within the

tumour (i.e. 8X 2 OT). Therefore, for the cancer mass growth, the following modified Gom-

pertz function is proposed

Wg ¼ G exp � bg exp½� gg x�
h i

� G exp½� bg� ; ð14Þ

where Gð�Þ ¼ ag �
dg , and αg, βg, γg, δg are dimensionless parameters of the growth constitutive

function (see S4 Table).

Working in a similar modelling approach to [21], where the MMPs concentration has an

effect on the local degradation of the ECM and its impact on the (macroscopic) tissue biome-

chanics, the modified Neohookean constitutive model has been employed

�W ¼ m
2ð

�I 1 � 3Þ þ k
2ðJ � 1Þ

2
; ð15Þ

��

where the structural integrity of the ECM is directly linked to the state variable � of Eq (12) via:

mð�Þ ¼ m �aw with aw being a constant parameter (aw > 0) that modulates the tissue softening/

stiffening with respect to the ECM density, while model parameters μ and κ are material con-

stants representing the stiffness of the ECM (equivalent to the shear and bulk modulus respec-

tively for small deformations).

Angiogenesis and vascular remodelling model

Detailed description of the dynamic angiogenesis model can be found in the recent paper of

Vavourakis et al. [21]. In brief, the model is decomposed into to two primary components: (a)
the model describing the extension of the tip blood vessels (by following a snail-trail modelling

approach), the sprouting of blood vessels and the formation of vascular anastomoses, and (b) a

model that describes the capillary endothelial-wall remodelling and structural integrity with

respect to tumour growth-induced solid and fluid mechanical forces. Regarding point (a), ves-

sel-tip and sprout elongation is described via a combination of the chemotactic contribution

due to gradients of the angiogenic factors promoting vasculogenesis, the haptotactic contribu-

tion due to insoluble gradients of the ECM, and the mechanotactic contribution due to the

mechanical forces elevation while the tumour develops in the host. Also, regarding point (b),
blood vessel lumen and wall is remodelled with respect to the capillaries haemodynamics. As

such, wall shear stress works as a stimulus for vessel remodelling (see Eqs (18)—(20) from

[21]), while the balance of fluid pressures (blood pressure and interstitial fluid pressure) and

mean solid stresses (tissue hydrostatic pressure) module the state of the vessel (uncompressed,

compressed or collapsed; see Eq (21) from [21]). However, in the present in-silico framework,

the effect of the drug in vascular remodelling is implicitly accounted in. As explained in the
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Extracellular matrix structural model. sub-section, the cytotoxic agent degrades the tumour

following Eq (13), which has a knock-on effect in the volumetric strain, ϑg, owing to the

tumour development, as well as the tissue macroscopic elastic parameters of the stored-energy

function, �W , through the structural integrity / stiffness parameter of the ECM,m in Eq (15).

This in turn, as demonstrated in the Results and discussion section, is expected to dynamically

impact the loading state of the vessels—for example by decompressing due to tumour regres-

sion existing mechanically-loaded capillaries. Evidently, vessel decompression improves blood

perfusion in the vascular network and, thus, inherently promotes the remodelling of the blood

vessel wall and lumen size.

Finally, one modelling aspect the present in-silico framework does not account for is

lymph-angiogenesis or the mechanics of lymphatic vessels in response to external mechanical

stimuli. However, we leave this as a future modelling development to the present in-silico

framework.

Tissue biochemical model

The governing equations describing the biochemical model of the in-silico framework, i.e. the

balance of the oxygen/nutrients, the tumour-angiogenic factors, and the matrix degrading

enzymes are defined in detail in our recent paper (see Eqs (12)—(14) in [21]). The adopted

material parameters are listed in S3 Table therein, while some few parameters have been

updated to reflect the impact of the cytotoxic drug in the extracellular matrix dynamics (see Eq

(12)). The latter are listed in S3 Table.

Solution strategy

The present multiscale, multiphysics, in-silico modelling framework consists of five intercon-

nected core compartments that encompass different aspects of the tumour–host micro-envi-

ronment and mechano-biology. The compartments of the framework—called here modules—

are the Vascular Network Module, the Biochemical Solver Module, the Solid Solver Module, the

Fluid Solver Module and the Drug Delivery Solver Module. The corresponding modules and

building blocks of the proposed in-silico framework are illustrated in Fig 1, which depicts in a

flow diagram the interaction among them.

The numerical procedure of the coupled in-silico tumour-growth, hypoxia-induced angio-

genesis and drug delivery solvers, in Fig 1, employs four different time discretisation scales,

with separate time-step for each of the four solver modules:

1. the time (integration) step of the reaction-diffusion equations of the Biochemical Solver
Module (see Eq (12) above and Eqs (12)—(14) from [21]), which is of the order of seconds;

2. the time increment between successive solutions of the linear momentum equation for the

(tissue mechanics) Solid Solver Module (see Eq (2) from [21]), which is of the order of

hours;

3. the time increment used to update the tree of the Vascular Network Module, which is of the

order of hours;

4. the time interval between successive simulations of the Fluid Solver Module, which is also of

the order of hours (see Eqs (1)–(4)), and

5. the time (integration) step used to solve the drug transport equations of the Drug Delivery
Solver Module (see Eqs (6)–(8)), which is of the order of a fraction of seconds.

In-silico chemotherapy modelling of solid tumours
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It is important to highlight here that spatial discretisation of the weak-form of the governing

equations has been carried out using the Finite Element (FE) method, while time-stepping for

the five modules has been implemented in a staggered manner. As illustrated in S1 Fig, the

equations involved in the Biochemical and Solid Solver Module and the extravascular model of

the Drug Delivery Solver Module were discretised using three-dimensional FEs, while for the

intravascular model of the Drug Delivery Solver Module and the Fluid Solver and the Vascular
Network Module a one-dimensional FE discretisation has been adopted (for further modelling

details read [21]).

Numerical solution of the balance equations has been accomplished sequentially and

according to the following order: First, the Biochemical Solver Module PDEs are solved

together, the solution of which is projected into the Solid Solver Module and equilibrium of

solid forces is sought numerically (owing to the tumour development). Subsequently, the solu-

tion of both above-mentioned modules is transferred into the Vascular Network Module and

the tree gets updated (i.e., sprouting, branching, vessel compression, etc.). Then, the Fluid
Solver Module is invoked to compute the interstitial and intra-/trans-vascular flow. The Fluid
Solver Module operates at the end of every successful Solid Solver and Vascular Network

Fig 1. Flow diagram of the coupled in-silico cancer modelling solver. Diagram depicting all major compartments of the multiscale, multiphysics, in-

silico cancer, angiogenesis and drug modelling framework, where the interaction between the biochemical and drug delivery module, the vascular

network module and the solid and fluid mechanics solver modules is illustrated using arrows. Dotted arrows denote an implicit interplay between the

corresponding compartments of the multiphysics in-silico framework.

https://doi.org/10.1371/journal.pcbi.1006460.g001
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Module, and before the Drug Delivery Solver Module, due to both blood/plasma and interstitial

fluid flow being assumed viscous-dominated (at extremely low Reynolds numbers) and quasi-

steady. This is necessary to account: (a) for the localised effects of solid stresses elevation or

reduction, which is owed respectively to the natural tumour growth or the regression of the

tumour in response to the cytotoxic drug, and (b) the dynamic changes of the vascular network

growth (sprouting, anastomosis) which may directly affect blood flow and, thus, implicitly

interstitial fluid flow. With regard to (a), as elaborated in [21], during the course of a simula-

tion solid stresses may increase or decrease which in turn are expected to compress or decom-

press the capillaries adjacent to the tumour, respectively. This effect, in principle, is expected

to modulate directly blood perfusion in the vascular tree and, thus, vascular remodelling in the

Vascular Network Module. The solution of the Fluid Solver Module together with the solution

of the Biochemical Solver Module is transferred to the Drug Delivery Solver Module to compute

numerically the drug distribution in the vascular and extravascular spaces. Finally, the state of

the vascular segments inside or proximal to the tumour region is re-assessed, and the list of

collapsed blood vessels is revised while the microvascular pressure and interstitial fluid pres-

sure distribution is updated by re-invoking the Fluid Solver Module. In summary, the coupled

solver (that encapsulates all five modules) iterates until the simulation reaches the desired time

point (e.g. here is set to 40 days), where the frequency with which each module is invoked

depending on the time-step/increment chosen.

The above coupled multiscale numerical procedure is repeated until the termination of

tumour growth/angiogenesis/drug transport simulations. Details about the FE implementation

of the proposed tumour-induced angiogenesis and growth model are provided in S1 File. The

C++ code of the in-silico cancer modelling platform can be accessed online via Bitbucket

from: Finite Element Bioengineering in 3D (FEB3).

Results and discussion

The in-silico model was specified to simulate solid tumour growth, vasculogenesis and subse-

quent cytotoxic drug delivery in immunodeficient mouse models. We focus on neoplasia in

dense fibrous tissue (i.e. high collagen content), and thus mimic desmoplastic tumours (e.g.

breast and colorectal cancer). All model/material parameters are presented in the supplemen-

tary tables: S1 and S4 Tables. The majority of the parameters were taken from relevant litera-

ture, and where possible from published experimental data for MCaIV murine mammary

adenocarcinomas.

Simulations were performed for a spherical cancer mass with 1 mm initial diameter inside

a� 1.7 cm3 cubic domain of the tumour–host tissue. The domain is represented by a three-

dimensional finite element mesh, constructed using Gmsh (http://gmsh.info/) and consists of

3,320 hexahedra and 3,963 nodes. Embedded to the three-dimensional (tissue) mesh is a one-

dimensional, non-conforming mesh to represent the vascular network, consisting of 2,880 lin-

ear line elements (baseline mesh at day 0). S1 Fig depicts the initial three-dimensional mesh of

discretised tissue domain and the initial discrete network of the capillaries. The network used

here is randomly generated from a uniform distribution, but can be tailored to any physiology.

As explained in the Introduction, we use the variables δmax and λ to describe the three-

dimensional architecture of the vascular network [22]; that is to say, the collective distribution

and arrangement of blood vessels outside the tumour. Specifically, for the δmax variable we

consider its dimensionless form, i.e. the ratio of the variable at a specific time point with

respect to the baseline value (control) at day 0, which designates the transition from avascular

to vascularised tumour growth. We will also use henceforth the term ‘vascular architecture

normalisation’ to refer to the process of remodelling δmax and λ to their normal physiological
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values [22], while the term ‘vascular normalisation’ is used here to describe the normalisation

of vessel wall structure [23]. Hence, we assume here normal physiological values for δmax in

the value range between 1.0 and 1.4, while for the second parameter when λ> 0.

To test the effect of neoadjuvant vascular normalisation by a vascular normalising agent, we

conducted simulations with three different initial values of the size of the vascular wall pores,

rp (referred hereafter as ‘poresize’ for brevity), ranging from 10 nm to rp = 150 nm (see S2

Table). However, the present in-silico framework does not explicitly model for anti-angiogene-

nic treatment, or the effect of specific vascular remodelling growth factors (e.g., VEGF, PDGF)

[35, 36]. As such, and in contrast to for example [37], this model does not account for the

effects of VEGF on the permeability of the tumour blood vessels; hence, the values set for the

size of the pores were selected to model either no vascular wall maturation / hyperpermeable

vessels (rp = 150 nm) versus mature / less permeable vessels (rp = 10 nm). Also, to simplify the

presentation of the in-silico results and aid the discussion, we choose henceforth the two

extreme values of rp, which were termed low and high poresize, respectively. As such, low por-

esize reflects the case where vascular normalisation has been performed in accordance to pre-

vious studies [38].

To test the effect of cytotoxic drug binding properties we also conducted simulations with

different rates of affinity, kon, spanning from 0.005 s-1 to 5 s-1 (see S3 Table), with the two

extremes termed henceforth low and high affinity, respectively. The drug affinity and vessel

poresize are kept constant throughout each simulation. Here we focus on cytotoxic drugs,

such as paclitaxel, and hence choose a small particle diameter, sc, which is kept constant for all

simulations: 1 nm. The study of larger drug sizes (e.g., liposomes, micella or drug-borne nano-

particles) is reserved for future work.

Finally, we define three tumour stages: early- (10 days from baseline), mid- (20 days from

baseline) and late-stage (30 days from baseline). This allows us to test the effect of initial vascu-

lar architecture and tumour size on drug efficacy.

Diffusion transport is the dominant mode for cytotoxic drugs

For our drug of choice, the relative roles of diffusive and convective transport can be deter-

mined by estimating the Péclet number, defined as the ratio between the diffusive and convec-

tive flux (see for example [39]). For a molecule of diameter sc = 1 nm approximately and the

specific interstitium properties (see material parameters in S1 Table), the diffusion coefficient

of the drug, Dc, (see Eq (9)) is of the order of 10−4 mm2s−1 approximately. Fig 2 illustrates the

averaged interstitial fluid velocity (IFV) magnitude—computed over the tumour and the sur-

rounding host tissue 3D domain of analysis—with respect to time for four cases: low poresize

and low affinity (A), low poresize and high affinity (B), high poresize and low affinity (C), as

well as high poresize and high affinity (D). The largest IFV is predicted for high poresizes,

which is expected—higher poresize means a larger transmural flux of biofluids—with a maxi-

mal value ranging between 0.9—1.2 μm s−1 approximately. The corresponding Péclet number

we evaluate is less than 0.1, which places the mode of transport firmly within the diffusion

domain (see also Box 1 in [39]). Therefore, supported by relevant experimental and theoretical

observations [25, 26, 40, 41], we confirm that convection has a negligible role in the transport

of cytotoxic drugs to the tumour and, hence, the main effect of increasing the poresize is that it

also enhances transvascular solute transport (i.e. Fvsc in Eq (6)) and thus the total volume of

free drug. This prediction is important when appraising the following results, particularly the

effect of poresize and its dependency on drug affinity.

Fig 2 shows that the temporal dynamics of the IFV magnitude (averaged over the tumour

and the peri-tumoural tissue area) are also dependent on the injection time and drug affinity.
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Broadly speaking, this is due to the relationship between tumour volume and IFV. In agree-

ment with [34], as the tumour grows it deforms the surrounding tissue, which elevates the

hydraulic conductivity of the tissue at the peri-tumoural stroma and, thus, resulting the IFV to

increase (see the control lines in each plot). Conversely, as the tumour is regressed by the drug,

the surrounding tissue becomes less deformed and, hence, the IFV decreases. At high affinity

(second column in Fig 2), this effect is consistent across all injection times. At low affinity,

however, the relationship is more complex: later injections (day 20, day 30) are dependent on

both poresize and affinity, with low poresizes causing the IFV to continue to increase or

remain constant after injection, respectively.

Comparing quantitatively the results between Fig 2B and 2D, IFV is scaled up by a factor of

2 whereas the hydraulic conductivity of the tumour vessels scales up by a factor of 200 approxi-

mately (see Kvsc definition in Transvascular flow model). Also, in view of Fig 2C and 2D, we

can project the efficacy of less diffusive drugs (e.g. nanoparticles), post to administering a cyto-

toxic agent, be improved for hyperpermeable tumour vessels at early- to mid-stages of the

tumour development if only the binding rate of the agent is very low. If the opposite occurs,

then follow-up administration of drug-borne vesicles can potentially benefit from the

enhanced convection transport for late-stages of the growing tumour and its increased vascu-

lar density.

In summary, these predictions reflect the complex relationship between tumour growth

and vessel poresize at low affinity, shown in Fig 3, and discussed in detail in the following

subsection.

Fig 2. IFV depends on both vessel poresize and drug affinity. Line plots of the averaged interstitial fluid velocity

(IFV) magnitude as a function of time. The 2×2 matrix of plots shows the results for two poresizes (A,B: rp = 10 nm; C,

D: rp = 150 nm) and two affinities (A,C: kon = 0.005 s-1; B,D: kon = 5 s-1). Each line plot depicts the control (no drug

injected), and the in-silico predictions with drug injected at day 10 (D10), day 20 (D20) or day 30 (D30). See also S2

Fig. for simulation results involving intermediate values of poresize and affinity.

https://doi.org/10.1371/journal.pcbi.1006460.g002
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Vessel poresize affects tumour regression for low affinity but not high

affinity cytotoxic drugs: Implications for staged delivery

To investigate the relative effects of drug affinity (binding rate), kon, and vessel poresize, rp, on

tumour regression, Fig 3 shows the tumour volume over time for four cases: low poresize and

low affinity (A), low poresize and high affinity (B), high poresize and low affinity (C), and high

poresize and high affinity (D). Each plot shows the control (i.e. no drug injected) and the

treated in-silico predictions with injections occurring at three different ‘stages’ with respect to

the tumour growth baseline simulations, specifically at day 10, day 20 or day 30 respectively.

The control case shows that after 10 days the tumour grows approximately with constant

rate (see also document results of the tumour volume rate in S5 Table), as expected from the

Gompertz growth function prescribing the growth. As seen in all plates of Fig 3, the tumour

size in the control simulations does not exceed 10 millimetres in diameter, which agrees with

the experimentally measured tumour size in the murine models used for this study (e.g., see

reported data in [42]). However, the present model can readily be used to simulate large

tumour development (e.g. by allowing the simulation to run over longer time periods), as well

as other types of solid tumours (e.g. brain gliomas, pancreative tumours, etc.). This could be

achieved by adjusting the corresponding in-silico model parameters, as summarised in S1–S4

Tables.

At high affinity (Fig 3B and 3D) the response of the tumour to the drug is consistent across

all injection times: the tumour regresses to a minimal value, with volumes from all three injec-

tion times converging to approximately the same result by the end of the experiment. Almost

Fig 3. Tumour regression depends on vessel poresize for low affinity but not high affinity drugs. Line plots of the

relative tumour volume (V = Vol.(t)/Vol.(t = 0)−1) versus time. The 2×2 matrix of plots shows the results for two

poresizes (A,B: rp = 10 nm; C,D: rp = 150 nm) and two affinities (A,C: kon = 0.005 s-1; B,D: kon = 5 s-1). Each line plot

depicts the control (no drug injected), and the in-silico predictions with drug injected at day 10 (D10), day 20 (D20) or

day 30 (D30). See also S4 Fig for simulation results involving intermediate values of poresize and affinity.

https://doi.org/10.1371/journal.pcbi.1006460.g003
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no dependency on poresize is observed from the simulation results, which supports the argu-

ment about the competition between drug diffusion and its binding rate (see for example Eq

(1) in [13]. The above can result from the combination of two factors:(i) that diffusion is the

dominant mode of transport for chemotherapeutic agents, and (ii) that for high-binding drugs

the penetration length is small; while for high-binding drugs pertaining very fast diffusion

rates, the drug clears out of the tumour quickly. Therefore, the limiting factor can be implicitly

regarded as the size of the tumour, since it defines the limit on the mass of internalised drug.

Interestingly, at low affinity a dependency on poresize is predicted: in Fig 3A at day 20, the

tumour is regressed slightly before relapsing shortly after injection, while in Fig 3C at day 20

the tumour is regressed more before relapsing near the end of the simulation. Similarly, differ-

ent final values are predicted between low and high poresizes for injections at day 10 and day

30. This suggests that at low affinity a higher volume of drug is necessary to overcome the addi-

tional limiting factor of the drug’s slow binding rate, i.e. to increase cb such that the tumour

size—and hence the mass of drug that can be internalised—becomes the limiting factor. This

effect can be predicted in the concentrations of bound/associated and internalised drug, cb and

ci respectively, over time (see S3 Fig): there is a limit beyond which increasing cb has little effect

on ci level.

Time of drug administration affects tumour regression for low affinity but

not high affinity cytotoxic drugs

Another interesting prediction from Fig 3 is that the final tumour volume is independent of

the time of injection for high affinity but not low affinity drugs. This suggests that the time of

drug administration might be of less importance for high affinity drugs; the tumour is

regressed to the same final volume irrespective of its size when the drug is administered. Con-

versely, the time of injection is crucial for low affinity drugs, with early-stage (day 10) injec-

tions only reducing the tumour’s growth rate as opposed to regressing it. Furthermore, we

observe for the same drug properties that mid-stage injection are very likely to permit the

tumour to relapse (high probability for poorly permeable tumour vessels). On the contrary,

late-stage injections (day 30) lead to significant cancer volume reduction, with the rate varying

depending proportionally on the permeability of the nascent vessels. S5 Table presents in tabu-

lar form the tumour volume rates (in mm3 day-1) for the control versus the treated simulations

(injection times: D10, D20, D30) and for the four combinations of poresize and drug affinity

values. In accordance with the results shown in Fig 3, we note that tumour can be regressed

significantly up to a� 16 mm3 day-1 rate for late-stage injections of a high affinity drug;

whereas for early-stage injections of the same drug can fairly regress a “premature” tumour at

a rate 0.2—0.7 mm3 day-1 initially, but as depicted in Fig 3B and 3D, the tumour shows a trend

towards gradual relapse (after day 30). Contrary to the latter case, early-stage injections of a

low affinity drug has negligible impact to the tumour regression. In fact for both low and high

poresize (note that the drug size, sc, is comparably smaller to the poresize, rp, in both cases) the

average tumour development rate—within a 5-day time frame post injection at day 10—is 3.6

and 2.8 mm3 day-1 respectively, while the corresponding tumour growth rates of the control—

at the same time frame—are 5.3 and 5.1 mm3 day-1 respectively. In summary, the above find-

ings elucidate the implications for the outcome of low/high affinity cytotoxic drugs and the

importance of the time of injection with respect to the tumour stage.

In support to the above observations, Fig 4 illustrates the in-silico predictions of the pro-

posed framework, where the control is compared against the treated (for low poresize only)

with respect to the two extreme values of the drug affinity ratio. It is striking to note in this fig-

ure that (a) the concentration of the drug that has “hit” the cancer mass is approximately
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Fig 4. Snapshots of tumour growth and angiogenesis over time. Simulation results visualisation comparison of the control (centre row) versus the

treated case for low poresize, rp, and two extreme affinity ratio, kon, values (0.005 s-1 and 5 s-1). From left to right, the snapshots at the second column

correspond to day 11, the third column to day 21, the fourth column to day 31, and the last column to day 40. Note for low affinity (bottom three rows)

the low drug concentration in the tumour, while for high affinity (top three rows), as expected, the significant concentration of the cytotoxic drug.

Notably, drug distribution is very heterogeneous for early-stage injections due to the non-hierarchical structure of the immature tumour vessels, thus,

supporting the argument of the the spatio-temporal variability of the vascular tree in mammary tumours. Also, comparing the top right snapshot with

the bottom counterpart, the tumour is fairly more regressed for high drug affinity—see also Fig 3C and 3A respectively.

https://doi.org/10.1371/journal.pcbi.1006460.g004
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fifteen times higher for when the affinity is increased by four orders of magnitude (see also S3

Fig). (b)Also, it is interesting to observe the direct effect of the tumour vascular tree non-hier-

archical structure and pattern to the distribution of the drug in the cancer mass. For high affin-

ity drug and early-stage drug administration, the concentration of the cytotoxic is enhanced at

sparse locations of tumours—especially those where perfused newly-formed vessels are located

adjacent to the tumour. On the contrary, for late-stage injection (e.g., day 30), the concentra-

tion of the cytotoxic is rather evenly distributed at the tumour periphery.

Vessel poresize affects solid stress and IFP normalisation for low affinity

but not high affinity cytotoxic drugs: Implications for staged delivery

The effects of binding affinity and vessel poresize on the tumour’s physical environment were

investigated by plotting the tissue hydrostatic pressure (THP) of the solid stresses and the

interstitial fluid pressure (IFP)—both evaluated at the tumour and the peri-tumoural host tis-

sue—as a function of time for the four combinations of low and high affinity and poresize (Fig

5). As before, each plot depicts the control case and the treated with injections at day 10, day

20 or day 30 from baseline.

Both THP and IFP show similar trends as the tumour volume (Fig 5), reflecting their inter-

dependency. The THP increases approximately linearly in the control case, reflecting the

increase in solid stress due to tumour growth (Fig 5A). After injection, THP decreases with

increasing affinity and poresize, with high affinity causing an almost complete alleviation of

solid stress (i.e. THP = 0) independently of poresize or injection time (Fig 5B and 5D). Low

affinity produces a more complex picture, which again mirrors the tumour volume: only late

injection (day 30) can reduce the THP monotonically, with the earlier injections showing

either monotonically increasing THP (day 10), or decreasing THP followed by relapse (Fig 5A

and 5C).

In the control case, the IFP increases logarithmically for high poresize, which produces a

sharper initial gradient and maximum value than for low poresize due to the increased extrav-

asation flux. After injection, the maximum value of the IFP decreases with increasing affinity,

and at high affinity converges to approximately the same value, independently of poresize or

injection time (Fig 5F and 5H). At low affinity a similar trend to THP is predicted: only late

injection (day 30) can reduce the IFP monotonically, with the earlier injections showing either

monotonically increasing IFP (day 10), or decreasing IFP followed by relapse (Fig 5E and 5G).

Taken together, these results propose two main points:(a) THP and IFP are implicitly

reduced by cytotoxic drug delivery, and (b) as a result of the reduced IFP, drugs that are depen-

dent on convective transport—such as liposomes or nanoparticles—should not be adminis-

tered after treatment by cytotoxic drugs. This has implications for therapies that aim to

alleviate solid stresses in order to decompress collapsed vasculature and, hence, enhance drug

delivery and for staged treatments that aim to maximise delivery of nanoparticles [13, 43].

Vessel poresize affects vascular architecture normalisation for low affinity

but not high affinity cytotoxic drugs

To investigate the effect of cytotoxic drug delivery on tumour vessel architecture, Fig 6A–6D

shows δmax while Fig 6E–6H λ as a function of time for the four combinations of low and high

affinity and poresize. As before, each plot shows the control case and injections at day 10, day

20 or day 30 from baseline.

In the control case, δmax increases approximately linearly and in phase with the relative

tumour volume increase, as can be seen by comparison of Figs 3A–3D and 6A–6D, respec-

tively. This relationship with the tumour volume is also predicted after injection in all cases:
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Fig 5. THP and IFP normalisation depends on vessel poresize for low affinity but not high affinity drugs. Line

plots of (A—D) tissue hydrostatic pressure (THP), and (E—H) interstitial fluid pressure (IFP), as a function of time.

Each 2×2 matrix of plots shows the results two poresizes and two affinities: rp = 10 nm or 150 nm, and kon = 0.005 s-1

or 5 s-1 respectively. Each line plot shows the in-silico predictions for the control and the treated, with drug injected at

day 10 (D10), day 20 (D20) or day 30 (D30). See also S5 and S6 Figs for simulation results involving intermediate

values of poresize and affinity. Negative THP in (A—D) denotes compressive stress.

https://doi.org/10.1371/journal.pcbi.1006460.g005
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Fig 6. Vascular architecture normalisation depends on vessel poresize for low affinity but not high affinity drugs.

Line plots of (A—D) maximum distance between adjacent vessels (δmax; normalised), and (E—H) vessel distribution

convexity (λ), as a function of time. Each 2×2 matrix of plots shows the in-silico predictions for two poresizes and two

affinities: rp = 10 nm or 150 nm, and kon = 0.005 s-1 or 5 s-1 respectively, while each plot depicts the results for the

control and the treated, with drug injected at day 10 (D10), day 20 (D20) or day 30 (D30). See also S7 and S8 Figs for

simulation results involving intermediate values of poresize and affinity.

https://doi.org/10.1371/journal.pcbi.1006460.g006
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δmax increases with tumour volume until treatment, when it either continues to increase but to

a smaller maximum (injection at day 10), or decreases after treatment (injections at day 20 or

day 30). This is due to the development of compressive solid stress that results in larger avascu-

lar regions within the tumour. As a result, δmax has a similar dependency on affinity and pore-

size: high affinity produces a more normalised vascular structure than low affinity, for all

injection times (comparing columns in Fig 6A), and poresize only influences earlier injections

(day 10 and day 20) at low affinity (comparing rows in Fig 6A).

The value of λ decreases smoothly from a positive to a negative value in the control case,

which reflects the pathological change in distribution of the vasculature from a regular/uni-

form to an irregular/non-uniform pattern (e.g. Fig 6B). After injection λ becomes less negative

(i.e. more physiological), with high affinity producing a more normal vasculature than low

affinity (comparing columns in Fig 6B) and poresize only influencing the result at low affinity

for an intermediate injection time at day 20 (comparing rows in Fig 6B). Considered together,

the results for δmax and λ indicate that (a) cytotoxic drugs can implicitly normalise the

tumour-associated vasculature, and (b) this normalisation is only dependent on the size of the

pores of the tumour vessels for low affinity drugs.

Increasing cytotoxic drug affinity widens the window for vascular

architecture normalisation: Methods to enhance delivery

The optimal time period (‘window’) for vascular architecture normalisation is explored in Fig

7, which shows contour plots of (plates A—D) δmax, and (plates E—H) λ as a function of injec-

tion time and time from baseline for the four combinations of low and high affinity and pore-

size. The contours were calculated by cubic interpolation of the injection data (D10, D20, D30)

presented in Fig 6 using SciPy’s interpolation module (scipy.interpolate).
As in the previous section, Fig 7A, 7C, 7E and 7G indicate that at low affinity, hyperperme-

able tumour vessels have a potential normalising the vascular network structure (i.e. reduce

δmax to 1 and increase λ to positive values). This is evident in Fig 7C with the formation of the

blue-coloured valley (bounded by the dashed white line) which designates that for high pore-

size and low drug affinity extravascular space becomes more organised, δmax! 1; whereas in

the corresponding Fig 7G for λ, the in-silico results do not suggest an improved vascular hier-

archy—the parameter colour map is relatively insensitive to the time of injection.

On the contrary, by comparison of columns 1 and 2 in Fig 7, increasing the affinity of the

chemotherapeutic agent both the extend of the vascular structure normalisation and the ‘win-

dow’ is significantly improved. The contours illustrate this effect graphically, i.e. cytotoxic

drugs can normalise δmax across time post the time of injection, while λ can be normalised

only at a broad range of injection—especially in early and intermediate times (with respect to

the tumour volume) of injection. Interestingly, as indicated by the regions bounded by the

dashed lines, in Fig 7D a breadth of a dark blue region—which indicates δmax approaching the

physiological range, 1—1.4—orients the optimal window where the tumour vessels become

relatively even spaced; while in Fig 7H the light green band—with λ converging towards physi-

ological values,� 0—indicates a strong tendency for the vascular re-organisation. This sug-

gests that cytotoxic drugs can be used to implicitly normalise tumour-associated vasculature

and are largely independent of the tumour’s stage.

Combined high affinity drug and large vascular permeability can enhance

cytotoxic drug delivery

To explicitly link vascular architecture with cytotoxic delivery efficiency and follow-up drug

treatment potential, contour plots of δmax versus λ with respect to the variable ch, which
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Fig 7. Increasing drug affinity widens the window for vascular normalisation. Contour plots of (A—D) maximum

distance between adjacent vessels, δmax, and (E—H) vessel distribution convexity, λ, with respect to tumour

development time and injection time. Each 2×2 matrix of contours depicts the results for two poresizes and two

affinities: rp = 10 nm or 150 nm, and kon = 0.005 s-1 or 5 s-1 respectively. See also corresponding S9 and S10 Figs for

simulation results involving intermediate values of poresize and affinity.

https://doi.org/10.1371/journal.pcbi.1006460.g007
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denotes the total (bound and internalised) cancer drug concentration, for the four combina-

tions of low and high affinity and poresize are illustrated in Fig 8. The contours were calculated

via cubic interpolation of the three variables using the above-mentioned interpolation tools of

the SciPy library.

The range of δmax and λ, i.e. the area of the contour, depends on poresize only at low affinity

(compare rows in Fig 8). Also, comparing the columns in Fig 8, increased affinity expands the

area of the contours irrespective of poresize. This supports the argument that a high-affinity

drug has more potential normalising the architecture of the tumour vascular tree, which is

reflected by the previous findings. Interestingly, the largest values of ch are obtained for the

most pathological vascular structures, i.e. large δmax and negative λ as shown with dark red pri-

marily in Fig 8D. Furthermore, the ‘window’ of treatment—referred here as the ‘hotspot’

region in the contours—can be increased substantially by increasing both affinity and poresize

(see Fig 8A and 8D). However, by comparison of Fig 8B and 8D, we note that less permeable

tumour vessels decrease the potential of the cytotoxic drugs to target the tumour—especially

for when the vascular tree is less hierarchical (i.e. for negative convexity parameters) and less

structured (i.e. increased vascular space; δmax > 1.4). In summary, these results, and in con-

junction with the extensive series of simulation results shown in S11 Fig, suggest that the com-

bination of high poresize and high affinity allows the drug to target the tumour across a wide

range of vessel architectures. Hence, we propose that blood vessel normalisation using

Fig 8. High drug affinity ratio and large vessel poresize increases delivery efficacy potential. Contour plots of the

percentage of drug concentrated in the tumour, ch, as a function of vascular network structural parameters λ and δmax.

Note that the common logarithm of ch is taken, as ch can vary by over a factor of 10 between the lowest and highest

affinity ratios and poresize. The contours contained in the 2×2 matrix illustrates the in-silico results for two poresizes

(A,B: rp = 10 nm; C,D: rp = 150 nm) and two affinities (A,C: kon = 0.005 s-1; B,D: kon = 5 s-1). See also S11 Fig for

simulation results involving intermediate values of poresize and affinity.

https://doi.org/10.1371/journal.pcbi.1006460.g008
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chemical agents that could reinforce the endothelial wall barrier and reduce the size of intracel-

lular fenestrations should be avoided prior to injecting cytotoxic drugs, as demonstrated in

Fig 8A.

Conclusion

We have presented a novel in-silico multiscale modelling framework of coupled tumour

growth, angiogenesis and drug delivery. The model builds on our previous work [21], allowing

for realistic simulations of in-vivo conditions that include: (i) dynamic remodelling of the

tumour-associated vascular network as a result of growth-induced solid stresses, (ii) biophysi-

cal vessel sprouting that explicitly accounts for chemo-, hapto- and mechanotaxis, and (iii)
solid stress-dependent vascular remodelling and compression/collapse. Here we extended the

model to include extra- and intravascular drug delivery, and specified the model to simulate

the transport of cytotoxic drugs to murine mammary carcinomas. The complete model has

been implemented in our in-house, open-source numerical platform FEB3 (https://bitbucket.

org/vasvav/feb3-finite-element-bioengineering-in-3d/wiki/Home). The proposed in-silico

framework allowed us to study the dynamics of tumour growth and cytotoxic drug delivery,

and hence comment on the following key topics identified by [39]: (a) the relative roles of con-

vective and diffusive transport for cytotoxic drugs, (b) the effects of tumour microvascular

structure and function, and (c)methods to enhance delivery by modification of IFP and reduc-

tion of tissue stress by induction of tumour cell apoptosis.

Furthermore, our model is flexible: drugs of varying size and affinity can be simulated,

while the poresize of the tumour vessels can be specified. We can thus implicitly simulate the

effect of neoadjuvant blood vessel normalisation by setting a small initial vessel wall poresize.

This allowed us to also comment on, firstly, the relative importance of affinity and poresize in

targeting tumours, and subsequent normalisation of vasculature structure. Secondly, the in-sil-

ico model permitted us to investigate the potential implications for staged delivery (viz. nor-

malisation of THP and IFP).

The main hypotheses proposed by our model are: (i) confirm that chemotherapeutic agents’

delivery is dominated by diffusive transport; (ii) the time of treatment is important for low

affinity but not high affinity drugs; (iii) vessel poresize plays an important role in the effect of

low affinity but not high affinity cytotoxic drugs; (iv) high affinity cytotoxic drugs provide a

large window for vascular architecture normalisation; and (v) the combination of large pore-

size and high affinity enhances cytotoxic drug delivery efficiency. The model provides valuable

insight into the complex system of biophysical factors that generate these hypotheses. In

particular, it suggests that the combination of diffusive transport and pathological tumour-

associated angiogenesis allows cytotoxic drugs to target the tumour across a broad range of

vasculature architectures. Furthermore, our modelling framework allows for these hypotheses

to be tested by comparing directly to experimental data from mouse models treated with vas-

cular normalisation agents and drugs of varying affinity, when it becomes available.

We note that it is difficult to directly validate our drug delivery model predictions, given the

sparsity of literature available that is both suitable in terms of the application and that can

completely specify the model. Here we have made every effort to specify the model where the

data were available; this is evidenced in our previous work [21], where we tested every compo-

nent of the model, except the drug delivery module, against in vivo experimental data of

murine tumours. We can, however, qualitatively compare our predictions to similar experi-

mental work, such as [38, 44], who observed that structural vascular normalisation lowered

interstitial fluid pressure in murine models and, hence, subsequent nanoparticle penetration

from the vessels into the tumour tissue has been improved. This is in agreement with our
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prediction of smaller vascular pore sizes producing lower interstitial fluid pressure. Further-

more, it was found in Chauhan et al. [38] that chemotherapy delivery is optimised at pore sizes

in the order of 150 nm and drops for smaller pore sizes, which also agrees with our model pre-

dictions that recommend that 150 nm, not smaller, pore sizes are more suitable for effective

chemotherapeutic drug delivery.

While we have strived to make the model representative of in-vivo conditions, it has limita-

tions. The high complexity of the model requires a large number of model parameters to be

specified and, hence, the results are dependent upon the choice of these parameters. Where

possible we chose experimental data from the literature to best represent the growth of murine

mammary carcinomas, detailed in S4 Table. Furthermore, as previously mentioned, we have

already validated the coupled tumour angiogenesis and growth model against experimental

data in previous work [21]. As such, while the choice of the drug delivery model parameters

affect the result quantitatively, we expect the qualitative in-silico predictions to remain the

same.

In order to reduce the dependency of the model on material parameters, and in particular

those where the literature is sparse, some simplifications were made. The tissue hydraulic con-

ductivity was assumed isotropic and independent of solid deformations, which would affect

fluid flow as the tumour grows [34, 45]. Here however we have simulated a spherical tumour

into a homogeneous matrix and, thus, can reasonably expect that this assumption would only

change primarily the magnitude and not the direction of IFV. We did not model the deposi-

tion of new collagen by tumour cells, which in turn would affect the matrix composition and

interstitial hydraulic conductivity. Again, due to the symmetric nature of the problem, we

expect this to only affect the magnitude of the results. The dynamic viscosity of blood and

interstitial fluid is assumed constant and rate-independent, which, given the heterogeneous

nature of the developing vascular network, could be expected to affect both the magnitude and

direction of the fluid flow. However, as we have focused on cytotoxic drugs—which are more

dependent on diffusive than convective transport—it is reasonable to ignore this effect. Finally,

the model does not account for lymph-angiogenesis and the lymphatic vessels are not mod-

elled explicitly, i.e. no description of lymphatic biomechanics, such as compression and col-

lapse. This would be more important for larger drugs than those studied here, where the

convective component needs to be modelled realistically to account for drainage and retention

effects [46]. The study of larger drugs, such as liposomes, micella or drug-borne nanoparticles,

is the subject of future work.

Supporting information

S1 File. In-silico cancer modelling framework implementation.

(PDF)

S2 File. Cytotoxic drug and cancer regression model sensitivity analysis.

(PDF)

S1 Fig. Three-dimensional finite element mesh of the tumour–host tissue domain and the

one-dimensional finite element mesh of the vascular network. (A) Clipped mesh, showing

the internal structure of the grid. (B) The extracted tumour region, shown here as a spheroid,

with the complete vascular tree rendered as red segments and the black points denoting the

vascular nodes.

(TIF)

S2 Fig. Time plots of the interstitial fluid velocity (IFV) magnitude. Line plots of the aver-

aged IFV magnitude as a function of time. The 3×4 matrix of plots depicts the in-silico results
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(both the control and the treated cases) for three poresizes and four affinities: rp = 10 nm, 50

nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respectively. All sub-figures illustrate

the predictions for the control and the treated case (drug injected at day 10 (D10), day 20

(D20) or day 30 (D30)).

(TIF)

S3 Fig. Time plots of the bound/associated drug and the internalised drug concentration.

Line plots of the (A—D) bound/associated drug concentration, cb, and (E—H) internalised

drug concentration, ci, expressed in dimensionless form (with respect to the injected drug con-

centration, cv-max) as a function of time. Each 2×2 matrix of plots depicts the in-silico results

(treated case) for two poresizes: rp = 10 nm or 150 nm, and two affinities: kon = 0.005 s-1 or 5 s-1.

(TIF)

S4 Fig. Time plots of the relative tumour volume development. Line plots of the relative

tumour volume (V = Vol.(t)/Vol.(t = 0)−1) as a function of time. The 3×4 matrix of plots

depicts the in-silico results (both the control and the treated cases) for three poresizes and four

affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respectively.

All sub-figures illustrate the predictions for the control and the treated case (drug injected at

day 10 (D10), day 20 (D20) or day 30 (D30)).

(TIF)

S5 Fig. Time plots of the tissue hydrostatic pressure (THP). Line plots of THP as a function

of time. The 3×4 matrix of plots depicts the in-silico results (both the control and the treated

cases) for three poresizes and four affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1,

0.05 s-1, 0.5 s-1 or 5 s-1, respectively. All sub-figures illustrate the predictions for the control

and the treated case (drug injected at day 10 (D10), day 20 (D20) or day 30 (D30)).

(TIF)

S6 Fig. Time plots of the interstitial fluid pressure (IFP). Line plots of IFP as a function of

time. The 3×4 matrix of plots depicts the in-silico results (both the control and the treated

cases) for three poresizes and four affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1,

0.05 s-1, 0.5 s-1 or 5 s-1, respectively. All sub-figures illustrate the predictions for the control

and the treated case (drug injected at day 10 (D10), day 20 (D20) or day 30 (D30)).

(TIF)

S7 Fig. Time plots of the maximum distance between adjacent vessels. Line plots of normal-

ised δmax as a function of time. The 3×4 matrix of plots depicts the in-silico results (both the

control and the treated cases) for three poresizes and four affinities: rp = 10 nm, 50 nm or 150

nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respectively. All sub-figures illustrate the pre-

dictions for the control and the treated case (drug injected at day 10 (D10), day 20 (D20) or

day 30 (D30)).

(TIF)

S8 Fig. Time plots of the vascular network convexity. Line plots of λ as a function of time.

The 3×4 matrix of plots depicts the in-silico results (both the control and the treated cases) for

three poresizes and four affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1,

0.5 s-1 or 5 s-1, respectively. All sub-figures illustrate the predictions for the control and the

treated case (drug injected at day 10 (D10), day 20 (D20) or day 30 (D30)).

(TIF)

S9 Fig. Heat maps of the vascular network maximum distance parameter with respect to

tumour development time versus injection time. Contour plots of δmax as a function of time

In-silico chemotherapy modelling of solid tumours

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006460 October 8, 2018 25 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006460.s011
https://doi.org/10.1371/journal.pcbi.1006460


and injection time. The 3×4 matrix of plots depicts the in-silico results for three poresizes and

four affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respec-

tively.

(TIF)

S10 Fig. Heat maps of the vascular network convexity parameter with respect to tumour

development time versus injection time. Contour plots of λ as a function of time and injec-

tion time. The 3×4 matrix of plots depicts the in-silico results for three poresizes and four

affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respec-

tively.

(TIF)

S11 Fig. Heat maps of the cancer drug concentration with respect to tumour development

time versus injection time. Contour plots of ch as a function of tumour development time and

injection time. The 3×4 matrix of plots depicts the in-silico results for three poresizes and four

affinities: rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respec-

tively.

(TIF)

S12 Fig. Time plots of the fraction of perfused (tumour) vessels. Line plots of the fraction of

perfused vessels (FPV) as a function of time. FPV is described as the ratio of the length of all

functional vessels that are sufficiently perfused (blood flow velocity is >0.1 mm s-1) to the

length of all functional vessels (i.e. that have not collapsed). The 3×4 matrix of plots depicts the

in-silico results (both the control and the treated cases) for three poresizes and four affinities:

rp = 10 nm, 50 nm or 150 nm, and kon = 0.005 s-1, 0.05 s-1, 0.5 s-1 or 5 s-1, respectively. All sub-

figures illustrate the predictions for the control and the treated case (drug injected at day 10

(D10), day 20 (D20) or day 30 (D30)).

(TIF)

S1 Video. In-silico tumour development simulation of the control and treated case for

low-affinity drug injection at day 10. Side-by-side comparison of a control and a treated

murine mammary carcinoma after a bolus injection (at day 10) of a cancer cytotoxic agent.

The simulation features a tumour vasculature of rp = 10 nm poresize, molecule (drug) size

about sc = 0.5 nm, and drug affinity rate kon = 0.005 s-1. The wireframe on the left-hand-side

depicts the tumour boundary and the coloured cloud on the right-hand-side corresponds to

the distribution of the (dimensionless) drug concentration inside the tumour. The vascular

network is shown as grey tubes on both sides of the animation, while the 3D tissue domain is

made transparent for illustration purposes.

(MP4)

S2 Video. In-silico tumour development simulation of the control and treated case for

low-affinity drug injection at day 20. Side-by-side comparison of a control and a treated

murine mammary carcinoma after a bolus injection (at day 20) of a cancer cytotoxic agent.

The simulation features a tumour vasculature of rp = 10 nm poresize, molecule (drug) size

about sc = 0.5 nm, and drug affinity rate kon = 0.005 s-1. Refer to the description of S1 Video.

for interpretation of the animation features.

(MP4)

S3 Video. In-silico tumour development simulation of the control and treated case for

low-affinity drug injection at day 30. Side-by-side comparison of a control and a treated

murine mammary carcinoma after a bolus injection (at day 30) of a cancer cytotoxic agent.

The simulation features a tumour vasculature of rp = 10 nm poresize, molecule (drug) size
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about sc = 0.5 nm, and drug affinity rate kon = 0.005 s-1. Refer to the description of S1 Video.

for interpretation of the animation features.

(MP4)

S4 Video. In-silico tumour development simulation of the control and treated case for

high-affinity drug injection at day 10. Side-by-side comparison of a control and a treated

murine mammary carcinoma after a bolus injection (at day 10) of a cancer cytotoxic agent.

The simulation features a tumour vasculature of rp = 10 nm poresize, molecule (drug) size

about sc = 0.5 nm, and drug affinity rate kon = 5 s-1. Refer to the description of S1 Video. for

interpretation of the animation features.

(MP4)

S5 Video. In-silico tumour development simulation of the control and treated case for

high-affinity drug injection at day 20. Side-by-side comparison of a control and a treated

murine mammary carcinoma after a bolus injection (at day 20) of a cancer cytotoxic agent.

The simulation features a tumour vasculature of rp = 10 nm poresize, molecule (drug) size

about sc = 0.5 nm, and drug affinity rate kon = 5 s-1. Refer to the description of S1 Video. for

interpretation of the animation features.

(MP4)

S6 Video. In-silico tumour development simulation of the control and treated case for

high-affinity drug injection at day 30. Side-by-side comparison of a control and a treated

murine mammary carcinoma after a bolus injection (at day 30) of a cancer cytotoxic agent.

The simulation features a tumour vasculature of rp = 10 nm poresize, molecule (drug) size

about sc = 0.5 nm, and drug affinity rate kon = 5 s-1. Refer to the description of S1 Video. for

interpretation of the animation features.

(MP4)

S1 Table. Fluid mechanics model parameters. List of model parameters associated with the

Fluid Solver Module (see Fig 1). Cells marked with an asterisk denote shared values for both tis-

sue types, while “VSC” denotes blood vessel and “LMP” denotes the lymphatic vessel.

(PDF)

S2 Table. Vascular network model parameters. List of model parameters associated with the

Vascular Network Module (see Fig 1). Parameters with a star (?) correspond to non-perfused or

hypo-perfused vessels, while those with a dagger (†) correspond to well-perfused vessels. The

parameters with a double dagger (‡) denote the pre-set parameter values of the original vascular

network, while the cell marked with an asterisk denotes shared value for both tissue types.

(PDF)

S3 Table. Biochemical and drug delivery model parameters. List of model parameters asso-

ciated with the Biochemical Solver Module and the Drug Delivery Solver Module (see Fig 1).

Cells marked with an asterisk denote shared values for both tissue types, while “NA” denotes

non-applicable.

(PDF)

S4 Table. Solid mechanics model parameters. List of model parameters associated with the

Solid Solver Module (see Fig 1). Cells marked with an asterisk denote shared values for both tis-

sue types, while “NA” denotes non-applicable.

(PDF)

S5 Table. Tumour volume development time rates. The tabulated data compare the tumour

volume rates (in mm3 day-1) of the control versus the treated cases (for the three injection
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instants). Each sheet lists the results for a different pair of poresize and affinity values (A:

rp = 10 nm, kon = 0.005 s-1; B: rp = 10 nm, kon = 5 s-1; C: rp = 150 nm, kon = 0.005 s-1; D: rp = 150

nm, kon = 5 s-1).

(XLSX)
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