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Abstract

Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the
responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-
ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran
species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory
interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the
profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on
plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the
olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of
drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with
well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two
parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the
absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species
developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer
experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work
demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-
ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new
insight into how the structure of terrestrial communities may be affected by drought.
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Introduction

Plants, insect herbivores and the natural enemies (predators and

parasitoids) of insects interact in multitrophic food webs that

influence community dynamics [1–4]. Plants are simultaneously

challenged by above- and below-ground insect herbivores that can

affect one another through plant-mediated interactions [5–8].

Below-ground herbivores can increase water stress in plants [9],

induce changes in plant physiology that are similar to drought [5],

and may strongly affect the quality and quantity of nutrients and

secondary metabolites available to other herbivores [10,11]. Such

physiological and chemical changes produce a variety of responses

within plants that can directly influence foliar insects [11–14] and

their predators and parasitoids [14]. The impact of root herbivores

on the performance of foliar herbivores can be positive

[5,11,13,15,16], negative [17–19] or neutral [20], depending on

the mechanism by which they interact, and the order of arrival on

a host plant [21,22].

Drought stress may affect herbivorous insect performance,

diversity and abundance indirectly via changes in plant physiology

[23–27]. Increases in the frequency, duration, and/or severity of

drought are predicted in several geographic regions under current

climate change models [28] and can alter the structure and

composition of terrestrial ecosystems [29]. Under current climate

change predictions, much of the globe would experience dryness

on a far greater scale and frequency than those that assessed

previously [30]. With a medium increase in CO2 emissions, the

levels of soil moisture are likely to decrease and low soil moisture is

increasingly regarded as a potential contributor to heat waves and

drought [31]. Despite these large changes in rainfall under climate

change, few studies have empirically addressed the effects of

climate change factors on multitrophic interactions [32,33].

It has been suggested that insect herbivore performance and

populations increase on drought stressed plants due to an increase

in the availability of nutrients [24,34] and/or a decrease in the

concentration of defensive compounds [35]. However, more

recent studies have shown that drought stress can have both

positive and negative effect on foliar herbivores depending on

stress intensity [36] and herbivore feeding guild [37]. Research has

highlighted the complexity of aphid plant interactions under

drought stress, where it has been observed that the high drought

stress had negative impact on aphid performance [36–39] even
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though the drought stressed plants had higher concentrations of

nitrogen [27,36] and amino acids [38]. In contrast, under more

moderate levels of drought stress aphid performance and

populations may increase [36]. The effects of drought stress on

herbivores are well documented [23,36,38,40] but the indirect

effects on parasitoids are less well understood [41]. Only a few

studies have demonstrated that drought stress has a negative effect

on aphid parasitism success [39,42].

Root herbivores can affect plant growth [43–45], reproduction

[46,47], density [46,48] and nutrient status [49,50] and thus may

strongly affect the quality and quantity of resources available to

foliar herbivores [36]. This can have differential effects on foliar

insects and their associated natural enemies. Root herbivory had a

negative impact on the performance of aphids and other insects

due to the increased levels of defence compounds in several studies

[6,19,36,51–57] and/or a decrease in nitrogen concentration [19]

and leaf water content [58]. Root herbivores can be responsible for

the change in growth and development of foliar herbivores

through plant mediated changes and thus may have indirect

impact on parasitoid fitness [19,59,60] and the impact can also be

seen on the fourth trophic level [19]. The negative impact of high

drought stress on aphid performance and abundance can be

exacerbated under root herbivory [36,39,61] and thus we predict

that natural enemies may avoid these plants due to the low quality

of their aphid hosts.

Multitrophic interactions frequently involve complex plant

defences [10,14,62] involving the release of volatile organic

compounds (VOCs) following herbivore attack that enhance the

effectiveness of natural enemies [63–67]. In response to insect

herbivory, plants release VOCs which can be used by natural

enemies of the insect herbivores to find their hosts [59]. The plant

VOC emissions induced by foliar herbivores can be influenced by

root herbivores [59] and drought stress [68]. These studies showed

compound specific responses for natural enemies under biotic and

abiotic stresses. Therefore, plant VOC emissions are influenced by

biotic and abiotic stresses [68–73]. These plants may become less

attractive to foraging parasitoids [74,75] and thus may interfere

directly with herbivore-parasitoid interactions [59].

The behaviour and performance of natural enemies can be

influenced by their host, host diet, environmental factors

(including water stress) and the presence of other herbivores such

as root feeders [26,42,59,79–81]. Parasitoid development has been

linked with the quality of internal environment of their hosts [59].

For example, phytotoxin concentration can increase under

drought stress [25] and root herbivory [59] and these toxins are

repeatedly consumed by insect herbivores [59]. These phytotoxins

often accumulate in the fat body and hemolymph of insect

herbivores which may have a negative impact on the fitness of

developing parasitoid larvae [59]. Parasitoids may thus be

particularly sensitive to changes in their prey diet and environ-

mental conditions [82,83].

Some studies have examined the effects of above- or below-

ground interactions in multitrophic systems [39,59,74,76,77], but

there have been very few studies on the effects of abiotic factors on

both above- and below-ground interactions [61,78], and none

comparing the response of two parasitoid species to below-ground

herbivory in conjunction with abiotic stress. In the last decade,

studies have linked multitrophic (above-below ground) interactions

with either to observe the impact on parasitoid performance or

changes in plant VOCs, but few addressed both aspects together

[59]. The main objective of the present study was to examine how

a multitrophic system with above- and below-ground components

was influenced by drought stress. The second objective was to

examine how root herbivory and drought stress affects above-

ground host parasitoid interactions, potentially mediated by

changes in plant VOC emissions.

We hypothesised that: (1) high levels of drought stress and

below-ground herbivory interact to reduce the performance of

parasitoids developing in aphids; (2) drought stress and root

herbivory change the profile of volatile organic chemicals (VOCs)

emitted by the host plant; (3) parasitoids avoid aphid hosts feeding

on plants under drought stress and root herbivory. The system

comprised Brassica oleracea as the host plant; the belowground

herbivore was the cabbage root fly Delia radicum; the aboveground

herbivores were the generalist aphid Myzus persicae, and the

specialist aphid Brevicoryne brassicae; and at the third trophic level

the parasitoids Aphidius colemani and Diaeretialla rapae were used.

Results

Parasitism Performance and Percentage Parasitism

a) Percentage parasitism. Percentage parasitism was signif-

icantly affected by the interaction between drought stress, De.

radicum and parasitoid species (F1, 72 = 7.50; P,0.01).

Drought stress (F1, 72 = 121.39; P,0.001) and the presence

of De. radicum (F1, 72 = 10.27; P,0.01) had a negative impact

on percentage parasitism by both parasitoid species com-

pared with well watered plants, but their effects were greater

for the specialist parasitoid species (D. rapae) than for the

generalist parasitoid species (A. colemani, Figure 1a). Drought

stress partially reversed the negative effect of De. radicum on

parasitism by A. colemani (Figure 1a; Tukey’s HSD, P,0.05).

Parasitism by D. rapae followed the same pattern, but the

difference between drought stressed plants with or without

De. radicum was not significant (Figure 1a).

b) Sex ratio. Sex ratio was significantly affected by the

interaction between De. radicum treatment and parasitoid

species (F1, 75 = 7.35; P,0.01). The main effects of drought

stress (F1, 75 = 19.65; P,0.001) and De. radicum (F1,

75 = 215.93; P,0.001) were also significant for the sex ratio

of both parasitoid species. The proportion of males of both

species was significantly greater on drought stressed plants

with De. radicum compared with well watered treatments

(Figure 1b). Delia radicum increased the proportion of male D.

rapae on both drought stressed plants and well watered plants

compared with plants that were not infested with root

herbivore (Tukey’s HSD, P,0.05). Delia radicum feeding did

not affect the sex ratio of A. colemani under either the drought

or well watered treatments (Tukey’s HSD, P,0.05).

c) Percentage emergence. Percentage emergence of adult

parasitoids was significantly affected by the interactions

between drought stress and De. radicum treatments (F1,

74 = 6.81; P,0.05) and parasitoid species and De. radicum

treatments (F1, 74 = 8.11; P,0.01). Emergence was maxi-

mised on well watered plants without De. radicum for both

parasitoid species, and minimised under the combined

drought stress and De. radicum treatments (Tukey’s HSD,

P,0.05; Figure 1c).

d) Female tibia length. Female tibia length was significantly

affected by interactions between drought stress x De. radicum

treatment (F1, 74 = 9.24; P,0.01) and drought stress x

parasitoid species (F1, 74 = 11.58; P,0.01). The tibia length

of both parasitoid species decreased significantly in the De.

radicum treatment under both the drought stress and the well

watered treatment (Tukey’s HSD, P,0.05; Figure 1d). The

mean tibia length of A. colemanii was unaffected by drought

stress, whereas that of D. rapae was slightly reduced under

Drought Alters Parasitoid Responses
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drought stress, but more affected by the De. radicum treatment

(Tukey’s HSD, P,0.05).

e) Adult longevity. The interaction between drought stress,

De. radicum and parasitoid species was significant (F1,

72 = 4.58; P,0.05). Female adult longevity was significantly

affected by drought stress (F1, 72 = 29.77; P,0.001) and De.

radicum (F1, 72 = 29.73; P,0.001), which was maximised for

both parasitoid species on well watered plants without De.

radicum and minimised on plants with both drought stress and

De. radicum treatment (Figure 1e; Tukey’s HSD, P,0.05).

Drought stress (F1, 76 = 18.90; P,0.001) and De. radicum (F1,

76 = 16.88; P,0.001) had a significant effect on adult male

longevity for both parasitoid species (F1, 76 = 122.05;

P,0.001). Males of both parasitoid species had shorter adult

longevity compared with females (Figure 1e).

Parasitoid Response to Plant Volatiles (Olfactometer
Experiment)

Both parasitoid species preferred the well watered plants

compared to plants either under drought stress, root herbivory

or both (Table 1). Parasitoid preference decreased significantly

Figure 1. Performance of Aphidius colemani and Diaeretiella rapae (mean 6 S.E.M.) of Myzus persicae and Brevicoryne brassicae reared
on Brassica oleracea plants under a well-watered regime (200 ml/pot/week; ‘‘Control’’) and a reduced water regime (100 ml/pot/
week; ‘‘Drought stressed’’) with/without Delia radicum. Within each parasitoid species, means with different letters are significantly different
(P,0.05): (a) Percentage parasitism (b) sex ratio (c) percentage emergence (d) female tibia length (mm) and (e) adult longevity (days). A high sex ratio
indicates a high proportion of male parasitoids.
doi:10.1371/journal.pone.0069013.g001
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with drought stress. Preference of D. rapae was similar on drought

stressed plants with or without De. radicum root herbivory.

However, A. colemani preferred drought stressed plants without

De. radicum to drought stressed plants with De. radicum. Further-

more, when plants were exposed to root herbivory with or without

drought stress, D. rapae could differentiate between plants that were

drought stressed but A. colemani could not. These findings suggest

that root herbivory affected A. colemani more than D. rapae.

Plant Volatile Emissions
Sixteen volatile compounds were identified: a-phellandrene, a-

pinene, b-phellandrene, b-pinene, terpinolene, limonene, a-

terpinene, terpineol, terpinolene, allyl isothiocyanate, nonanal,

dec-2-en-1-ol, 1-terpinen-4-ol, decanal, tetradecane and verticiol

(Figure 2), with significant treatment effects on the composition

and concentration of VOCs (RDA Monte-Carlo permutation test;

F= 5.69; P= 0.023). The first ordination axis (l= 0.289) explains

63.5% of the variance in volatile emissions between the five

treatments and separates uninfested, well-watered and aphid-

infested drought stressed plants from the other treatments. The

former are characterised by limonene, and a-pinene and b-

phellandrene groups, and little or no allyl isothiocyanate. The

second axis (l= 0.101) explains an additional 22.3% of the

variance, separating well-watered, aphid-infested plants from those

with both herbivores, and is largely determined by the concen-

tration of allyl isothiocyanate (Figure 2). Two-way treatment RDA

comparisons showed significant differences between aphid-infested

plants under well-watered vs. drought treatments, and between

well-watered aphid-infested plants vs. drought stressed plants with

both herbivores (Table 1).

The GLM analyses for individual compounds showed signifi-

cant differences in the emission of allyl isothiocyanate (t= 4.24;

P,0.001), a -phellandrene (t= 3.75; P,0.05), b-phellandrene

(t = 3.40; P,0.05), a -pinene (t= 2.45; P,0.05) and limonene

(t = 2.76; P,0.05) under different treatments (Figure 3). The

emission of a -phellandrene, b-phellandrene, a -pinene and

limonene was reduced significantly on drought stressed plants with

root herbivore (Tukey’s HSD, P,0.05). Allyl isothiocyanate was

not detected from uninfested plants but was emitted from plants

infested with B. brassicae (Tukey’s HSD, P,0.05) with the amount

released being reduced when plants were also infested with De.

radicum and further still when plants were drought stressed (Tukey’s

HSD, P,0.05; Figure 3).

Root Herbivore Performance
The number of larvae reaching pupation was not significantly

different on control and drought stressed plants (F1, 18 = 0.7411;

P= 0.4006, Figure 4a). Pupal weight (F1, 58 = 244.23; P,0.001,

Figure 4b), percent adult emergence (F1, 18 = 25.963; P,0.001,

Figure 4c), and adult longevity (F1, 37 = 15.52; P,0.001, Figure 4d)

of De. radicum were significantly reduced by drought stress.

Discussion

Here we found that biotic (De. radicum root herbivory) and

abiotic (drought) stress influenced the preference and performance

of the two aphid parasitoid species. Percentage parasitism and the

proportion of females ovipositing were negatively affected by

drought stress in the whole plant experiment, both of which

indicate that female parasitoids assessed aphids feeding on drought

stressed plants to be poor quality hosts [84,85]. In addition, the

presence of root herbivores reduced percentage parasitism of

aphids on plants that were not drought stressed, and for one

parasitoid species (D. rapae) reduced the proportion of ovipositing

females. These results were similar to those of Soler et al. [74] on

Brassica plants, where parasitoids preferred plants with undam-

aged roots on well watered plants. The effects of abiotic stress were

not tested by Soler et al. [74]. Thus, parasitoids developed

significantly better on foliar herbivores (hosts) that were feeding on

undamaged plants (without root herbivory) [59]. This demon-

stratse that abiotic stress can alter the outcome of interactions

between root herbivores and foliar herbivore parasitoids, as well as

the foliar herbivores themselves [36,61,71]. Our first hypothesis,

that high levels of drought stress and root herbivory combine to

have a negative effect on parasitoid performance, is not completely

supported by our results: drought stress was the dominant factor

that reduced parasitism by A. colemani whereas either factor alone

had the same negative effect as the combination of factors for D.

rapae.

Parasitoid preference in olfactometer treatment comparisons

was broadly similar to the percentage parasitism response found in

the whole pot experiment; parasitoids preferred VOCs from well

watered plants and percentage parasitism was higher on these too.

Plant volatiles may therefore have played a role in parasitoid

avoidance of drought-stressed plants as these are the only cues

available to parasitoids in an olfactometer ([86]; see below for

further discussion of volatiles). In contrast, the parasitoids’ choice

in the olfactometer experiment between drought stressed plants

with and without root herbivores, and plants with root herbivores

that were either well watered (control) or under drought, did not

correspond to the proportions of parasitised aphids in the whole

pot experiment. When female parasitoids forage for hosts, it has

been suggested that their behaviour can be categorized into five

steps: habitat location, host location, host recognition, host

Table 1. Percentage time (mean minutes 6 S.E.M.) spent by parasitoids in different treatment arms of an olfactometer compared
with control arms.

Treatments Parasitoid species (olfactometer) Volatile emissions (RDA)

Aphidius colemani Diaeretiella rapae

% variability
explained by 1st

axis r 1st axisF ratio

Control (2Rh) vs Drought stress (2Rh) 64.5561.53 vs 21.9261.01*** 60.7161.44 vs 23.4660.88*** 65.1 0.97 9.33 *

Control (2Rh) vs Drought stress (+Rh) 62.8961.31 vs 22.7061.07*** 63.1161.32 vs 22.0761.29*** 41.5 0.93 3.55 *

Drought stress (2Rh) vs Drought stress (+Rh) 47.7361.44 vs 40.6761.5** 42.4661.47 vs 44.1461.06 76.1 0.97 12.7

Control (+Rh) vs Drought stress (+Rh) 43.4561.30 vs 40.1261.38 55.7862.49 vs 29.7562.18*** 19.8 0.77 1.48

Rh= root herbivore. Student t-Test was performed at 95% CI for comparison of means.
doi:10.1371/journal.pone.0069013.t001
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Figure 2. Constrained ordination diagram (redundancy analysis), showing effects of drought and well-watered treatments on VOC
emissions from Brassica oleracea infested with Brevicoryne brassicae or root herbivore (Rh), both herbivores or neither.
doi:10.1371/journal.pone.0069013.g002

Figure 3. Individual VOC emissions (mean6S.E.M.) for 1) uninfested well-watered plants, 2) Brevicoryne brassicae-infested well-
watered plants, 3) aphid infested drought stressed plants, 4) aphid and root herbivore infested well-watered plants, and 5) aphid
and root herbivore infested drought stressed plants.
doi:10.1371/journal.pone.0069013.g003

Drought Alters Parasitoid Responses

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69013



acceptance and host suitability [87–89]. Olfactometer experiments

only assess the first two stages of host location by parasitoids, and

other cues such as non-volatile chemistry may become more

important in the later stages. This demonstrates the importance of

using a combination of approaches to assess host preference by

parasitoids and rates of parasitism.

Parasitoid performance and preference depend on the ecology

and physiology of both insect host and host plant. The plant

mediated effects of root herbivores on aphid performance and

abundance can have negative effects on aphid natural enemies

[39,60,90]. Root herbivory-induced responses can influence the

effectiveness of shoot-induced defence responses and can alter

above-ground trophic interactions [14,19]. In the present study,

root herbivory influenced the parasitoid development as evidenced

by reduced tibia length. Drought also reduced the emergence of

adult parasitoids, though it had less of an effect on sex ratio or

female tibia length than root herbivory. We have previously shown

that both feeding by De. radicum and drought can increase

concentrations of some foliar glucosinolate compounds, decrease

foliar nitrogen concentration, and decrease leaf water content in

this host plant [36], which may have reduced the quality of aphids

as hosts for the developing parasitoids.

Plants often optimize their defensive investments according to

abiotic growing conditions and herbivore pressure [91]. Drought

stress in plants shifts the primary metabolism into the biosynthesis

of the secondary metabolites [92,93], thus water availability

appears to be a regulatory factor for glucosinolate accumulation in

Brassica plants [27,36]. Similarly, the root herbivore (De. radicum)

increases the glucosinolate concentration in Brassica plants [19].

This increase in glucosinolate concentration due to either drought

or root herbivory can have a negative impact on the performance

of foliar herbivores including aphids [36,51,55–58]. Studies have

shown that glucosinolates have physicochemical properties that

allow these endogenous compounds to be loaded and transported

through phloem [94,95] and have a negative impact on aphid

performance [36]. This negative impact of root herbivory on foliar

herbivore performance has been explained by the defence

induction hypothesis, where foliar and root herbivores influence

each other via induced changes in plant secondary compounds

[6,59]. Aphid fitness was also reduced due to the low amino acid

concentration in the phloem and low leaf water contents of plants

with root herbivory [59].

A few studies have demonstrated that the effects of root

herbivores can be stronger for higher trophic levels than for the

foliar herbivore itself [19,60] and the effects can also influence

hyperparasitism [19]. The developing larvae of parasitoids are

highly vulnerable to the quality of their hosts. In the present study,

the parasitoids avoided poor quality hosts (aphids), which

developed under root herbivore attack. These parasitoids are

under strong selection pressure to optimise their limited resources,

as they develop in a single host. These results are in line with the

optimal foraging theory, where carnivores select the most suitable

host for maximum reward for them in term of their fitness [96].

The preference–performance hypothesis includes the prediction

that selection pressure will favour phytophagous female inverte-

brates that oviposit on plants with high nutritional value, on which

their offspring’s fitness is enhanced [97–99]. More recently this

hypothesis has been extended to parasitoids, as increasing

evidence shows that female parasitoids prefer to oviposit on hosts

on which their offspring’s survival or fitness is increased [91,100].

Since below-ground herbivory and drought stress directly affect

plant quality, parasitoid success can be influenced by both factors

[19,41]. In the present study, there were some links between

preference and performance, as both were maximised on well-

watered control plants with no root herbivory. However, drought

had a stronger effect on ‘preference’ in terms of decisions made on

percentage parasitism and sex ratio by female parasitoids than root

herbivory did. In contrast, performance in terms of female tibia

length was reduced by root herbivory, but unaffected by drought

stress for A. colemani and only slightly reduced for D. rapae. This

suggests a mismatch between parasitoid preference (oviposition

decisions) and performance under drought, and may relate to the

strong effect of drought on the concentration of allyl isothiocya-

nate (discussed below). Under a future climate, drought may result

in female parasitoids making oviposition decisions that are

suboptimal for offspring.

Figure 4. Delia radicum performance on well-watered (200 ml/pot/week; ‘‘Control’’) and drought stressed plants (100 ml/pot/week;
‘‘Drought stress’’). Means with different letters are significantly different (P,0.05): (a) pupae/treatment (b) percent emergence (c) pupal weight (d)
adult longevity.
doi:10.1371/journal.pone.0069013.g004

Drought Alters Parasitoid Responses
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Sequence of insect herbivore arrival is an important factor that

may determine the outcome of plant mediated interactions

between insect herbivores. In a recent meta analysis of above

and below ground herbivore interactions, root herbivores impact-

ed above ground herbivore only when both groups were

introduced simultaneously, whereas above ground herbivores only

affected root herbivore when arriving first [22]. Only a few studies

have tested the outcome of an insect herbivore arriving before or

after a second feeder on the performance of the latter. For

example, the above ground herbivore (Spodoptera frugiperda) had a

negative impact on the performance of a below ground herbivore

(Diabrotica virgifera) when S. frugiperda arrived before D. virgifera [21].

However, interguild interactions between species pairs (i.e.,

chewer/sap-feeder) usually facilitate each other within and across

domains [3]. Therefore, in the present study, aphids were

introduced before the root herbivore and if aphids supressed

plant defences this may have facilitated attack by the root

herbivore. The potential mechanism behind this facilitation may

be the eliciting of phytohormones that interfere with one another,

thereby attenuating defences for the subsequent feeder [101].

Further studies should explore the mechanisms for interguild

facilitation and also focus on the impact of sequence of insect

herbivore arrival in multitrophic interactions.

Plants with root herbivores are often characterized as subop-

timal food for foliar herbivores [59] but the foraging ability of an

above-ground parasitoid can depend on root herbivore stage [74].

Parasitoids preferred hosts feeding on plants with final instars

larvae of root herbivores (De. radicum) [74]. Parasitoids can also

distinguish between infested and uninfested plants, and also

discriminate between plants infested by different herbivore species

[91]. This may be due to the modification of glucosinolate

composition in root herbivore infested plants, which are precursors

of volatile thiocyanates and isothiocyanates [102]. Further studies

have shown that the plant VOC emissions can be determined by

plant species as much as root glucosinolate profile and damage

type [103,104].

Plant VOCs emissions can vary both in quality and in quantity,

depending on biotic and abiotic stress, and these changes can

impact the attractiveness of the plants to natural enemies of the

insect herbivores [68,74,105,106]. Thus the quality and quantity

of plant volatiles can change dramatically when plants are stressed

[63,74,91], and the interactions between biotic and abiotic stress

factors can have additive or opposing effects on plant volatile

emissions [68]. Soler et al. [74] have demonstrated that the plant

VOC emissions differed between undamaged plants and plants

under attack by foliar or/and root herbivore. Plants with both

foliar and root herbivores had volatile blends with lower

concentration of attractants and higher concentration of sulfides

compared with plants exposed to only foliar herbivore. This might

be one of the main reasons that parasitoids in the present study

avoided root damaged plants, as these plants had higher

concentrations of toxic volatiles and lower levels of attractants

(allyl isothiocyanate). Similarly, parasitoids avoided the drought

stressed plants as they had low levels of attractants (see below).

These results support our third hypothesis, that parasitoids will

avoid aphid hosts feeding on plants under drought stress and root

herbivory.

In the present study, no general pattern was observed for plant

volatile emissions under different stresses as concentrations of some

volatile compounds increased under drought and root herbivory,

while others decreased. This may be due to the specific role of

individual volatile compounds under single or multiple stresses

[68]. The emission of general plant volatiles such as ß-

phellandrene and limonene was greatest from uninfested plants

compared with aphid infested plants. Emission of allyl isothiocy-

anate, a compound characteristic of brassicas which is known to be

used as a host location cue by D. rapae [107], was highest in

unstressed aphid infested plants. Drought stress caused a large

reduction in the emission of allyl isothiocyanate almost to the level

of plants with no aphid infestation in the current study, which may

explain why such plants were less attractive to parasitoids. Root

herbivory also reduced allyl isothiocyanate, but to a much lesser

degree than drought. Epicuticular wax layers on leaves are known

to increase on stressed plants, and this can reduce or inhibit

volatile emission and may affect the foraging efficiency of A.

colemani and D. rapae [70,108–110]. Drought stress has been shown

to reduce the rate of photosynthesis and increase stomatal closure,

reducing the production of volatile compounds and their emission

respectively [72]. Other studies [74,75] have shown that parasitoid

attraction can be significantly reduced under root herbivore

attack. This suggests that both species used the same or similar

infochemicals during foraging, as described by Steidle & Van

Loon [111]. Our second hypothesis, that the VOC profile emitted

by plants will be altered under drought stress and root herbivory

treatments, is also supported by our results.

Studies have shown that sulphur containing compounds were

emitted systemically by Brassica plants with roots infested by De.

radicum [102,104]. In the present study, we did not find any

sulphur containing compound under root herbivore damage,

which could be due to various reasons. These previous studies

collected VOCs from roots of plants, while our focus was VOCs

emitted from the above-ground parts of the plant, as this was the

part the aphid parasitoids responded to. The quantity and quality

of sulphur containing compounds differ among Brassica species and

with the methods used to analyse plant VOCs from root herbivore

infested plants [104]. One of these methods is the use of proton

transfer reaction mass spectrometry (PTRMS) to analyse plant

VOCs, which has high sensitivity as compared with traditional

methods [103]. More sulphur containing compounds were

detected using PTRMS as compared with standard electron

impact GC-MS method that we used [102]. This may explain why

we did not find any sulphur containing compounds in our

analyses. It was also observed that the emission of sulphur

containing compounds from plant roots may depend on De.

radicum larvae themselves, bacteria and/or the plant material that

can be present in their gut [102,112]. The importance of

transcription of genes and/or activation of enzymes has been

reported for the production of sulfides in plants [113]. In addition

to plant roots, soil microorganisms and plant pathogen may also

contribute in the production of sulfide emissions, which are may

be missing in our experiments [114,115].

In the present study, drought stress had a negative impact on

root herbivore performance, though it did not affect the

proportion of larvae that survived to pupation, and so is unlikely

to have changed the efficacy of the root herbivore treatment. The

reduction in root herbivore performance is in agreement with

previous studies [116–120], where drought stress influenced the

performance and abundance of several root herbivores. We found

drought stress had a negative impact on pupal weight, percent

emergence and adult longevity of De. radicum, and may be linked

with poor food quality and/or limited food availability. The pupal

weight of root herbivores on Brassica plants has been shown to

have a positive correlation with root biomass [36,121].

Our study shows for the first time that under drought stress, the

strength of the interaction between root herbivory and parasitoids

developing in above-ground herbivores insects can be changed.

Despite a recognition of the need to include trophic interaction in

climate change models [33], empirical evidence for the effects of
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climate change on such interactions is rare [32]. In our study, the

response of our two parasitoid species to drought and root

herbivory were broadly similar. This may make prediction of the

effects of abiotic factors on interactions easier, though further

studies are needed to confirm this. In addition, oviposition

behaviour of female parasitoids under drought may not maximise

performance of their offspring, leading to a potential reduction in

parasitoid efficacy under drought. The influence of abiotic factors

on indirect interactions between soil and above-ground food

chains may play an important role in the structure and function of

future terrestrial communities. Future studies should therefore

focus on simultaneously testing the effects of multiple environ-

mental factors, including drought, to determine how global

climatic changes may impact the third and fourth trophic levels.

Materials and Methods

Ethics Statement
All work with insects was carried out according to the

regulations of the Department of Environment, Food and Rural

Affair, UK. This research work was also carried out according to

the Policy on the Use of Animals in Research, and the Guidelines

for Proper Scientific Conduct in Research, Central Secretariat,

Imperial College London, UK. No protected species were used in

this study.

Study Species
Brassica oleracea L. var. gemmifera seeds were sown individually in

pots (10 cm diameter) with John Innes No. 2 (Fargro Ltd, West

Sussex, UK) compost and placed in a glasshouse with a minimum

temperature of 2062uC during the light period (16 h) and

1462uC at dark (8 h). Overhead lighting (mercury halide and

sodium) was supplied to ensure a minimum light intensity of

300 W/m2 during the light period. Delia radicum L. (Diptera:

Anthomyiidae) pupae were obtained from the insect cultures

maintained at HRI, University of Warwick, UK, and reared using

the method described by Finch and Coaker [122]. Aphidius colemani

Viereck (Hymenoptera: Aphidiidae) originating from commercial

stocks of Just Green (Burnham-on-Crouch Essex, UK) and

Diaeretiella rapae (McIntosh) (Hymenoptera: Aphidiidae) from

Rothamsted Research (Harpenden, UK) were reared on separate

cultures of Myzus persicae Sulzer (Sternorrhyncha: Aphididae) and

Brevicoryne brassicae L. (Sternorrhyncha: Aphididae) respectively.

Myzus persicae and B. brassicae were available from long-term culture

established on 6-week-old B. oleracea plants. Both aphid species

were sub-cultured fortnightly and transferred to fresh plants. The

parasitoids were established on aphid species for at least two

generations before use in the experiments [123] to minimize

maternal host plant effects. Insect cultures were maintained at

2062uC at 75% relative humidity under an LD 16:8 h.

Experimental Treatments
To assess the influence of drought stress on parasitoid

performance and olfactory responses, De. radicum performance,

and VOC emissions, six parallel series of plants (five replicates per

treatments with two blocks) were grown in a greenhouse. Four

weeks (after germination) old B. oleracea plants were moved to a

control environment facility (2062uC; 75% RH; LD 16:8 h)

where two water treatments were established. The quantity of

water added per pot per week was 200 ml for the standard

(control) water regime (well watered) and 100 ml for high drought

stress as described previously. In a previous study [36], we had

selected these quantities of water on the basis of a pilot experiment,

where relative leaf water content of 11-week-old plants was used to

quantify drought stress under root herbivore attack. The results of

this study (data not shown) were used to select drought stress

treatments for the main experiment. All the plants with a high

density (5 larvae/plant) of De. radicum died at 50 ml water/plant/

week and this treatment was discarded for the main experiment.

The quantity of water added per pot per week for the main

experiment was 200 ml for unstressed plants and 100 ml for high

drought stress. These mentioned amounts of water were added

once a week for each treatment [36]. After four weeks of drought

stress treatments, three clip cages were fitted to the underside of

1st, 2nd and 3rd fully-developed leaves on each plant. Two separate

batches of plants with five replicates per treatment were used for

each aphid species. Since the performance of G2 of alate and

apterae can differ [124,125], the same form of aphid (apterae) was

used. Clip cages and adult aphids were removed leaving one

nymph per leaf on each treatment for four weeks. The sequence of

arrival of herbivores on a host plant can affect the outcome of the

interaction [21,22] but the foraging ability of a parasitoid depends

on the stage of the root herbivore (De. radicum) [74]. The

parasitoids experiments required both aphids in large enough

numbers and final instars larvae of De. radicum on each plant,

therefore, aphids were introduced before the onset of root

herbivory.

Two weeks after aphid treatments commenced, root herbivore

treatments (five first instar root herbivore larvae vs a control

without larvae) were introduced to the plants, carefully placing

them with a camel hair brush onto the soil surface adjacent to the

stem. Each plant was monitored for 30 min with a magnifying

glass to ensure that all root herbivore larvae had entered into soil.

Delia radicum were introduced to the plants after the aphids, as

aphid performance was not assessed in the current study (but has

been addressed previously; [36]). After four weeks (12-week-old

plants) of aphid treatments, 300 aphids of each species were used

to measure parasitoid performance, preference or plant volatile

production. Extra aphids were removed from each plant. Plants

infested with B. brassicae were used to assess the response of D.

rapae; those infested with M. persicae were used with A. colemani.

Plants infested with B. brassicae were used for the volatile

entrainment work.

Parasitoid Performance and Percentage Parasitism
Newly emerged females of each parasitoid species had been

paired into a 2.568 cm glass tube and fed a single droplet of honey

and a droplet of water daily [126]. As the percent parasitism is

similar between aphid instars [127], the present studies were

conducted on mixed instars, which were exposed to parasitoids

(five replicates per treatment in two blocks). Five paired parasitoids

(one pair per 60 aphids [128]) were released per replicate under

ventilated bell cloches. Parasitoids were removed 24 h after release

and remaining aphids were allowed to develop for 10–14 days for

mummy formation [127]. Mummies were collected in individual

gelatine capsules and percent parasitism, sex ratio (proportion of

males), percent emergence, adult longevity, female hind tibiae

length [89] and adult longevity recorded.

Parasitoid Response to Plant Volatiles
The behavioural responses of A. colemani and D. rapae under each

treatment were determined using a four-arm olfactometer [129–

131] with a star-shaped arena with four regions (each 4 cm2)

around a central orifice (2 cm2). Parasitoids could move freely

within each region. Air was drawn in through the four orifices, the

airflow for each quadrant being maintained at 100 ml/min using a

vacuum pump (Capex 8C, Charles Austin Pumps Ltd, Byfleet,
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UK). Prior to the experiment a smoke test was used to confirm an

equal airflow distribution.

Mummified aphids of A. colemani and D. rape were removed from

their respective treatments and kept individually in vials (2 cm

diameter66 cm). On emergence females were mated within 24 h

and fed on 50% aqueous solution of honey for 2 days. Naı̈ve

females (no previous oviposition experience) were used in all

olfactometer tests [130]. Tests consisted of 12-week-old plants

infested with 300 aphids under one of four treatments: well

watered, drought, well watered with root herbivores; drought with

root herbivores. Each choice bioassay (Table 1) consisted of a

pairwise treatment comparisons (two plants per treatment),

repeated five times with five female parasitoids in each repetition.

All bioassays were conducted at 2062uC with 0.04 W/m2

(420–680 nm) light intensity [132]. A parasitoid was introduced

into the central olfactometer chamber and left for 8 min. To

control for directional bias in the chamber, the olfactometer was

rotated 90u every 2 min [131]. The olfactometer was divided into

five regions (four arms and centre) and the time spent in each

region was recorded using Olfa software (F. Nazzi, Udine, Italy)

[131] and converted to percent of total time. After every 10

parasitoids, the olfactometer was washed with Lipsol detergent

(5% v/v; Bibby Sterilin Ltd., Staffordshire, UK), rinsed with 80%

ethanol and air dried.

Plant Volatiles
Air entrainment was used to trap VOCs from 12 week-old

plants and GC-MS used to identify compounds [133]. The foliar

part of each plant was enclosed in a 1906100 mm glass vessel.

Two semicircular aluminium plates with a central hole to

accommodate the stem were used to seal the bottom to exclude

volatiles emitted from the soil and roots as much as possible. This

glass vessel was closed at the top except for two ports (an inlet and

an outlet). Air was pumped in through a charcoal filter with an

airflow of 400 ml min21. A Porapak Q (Alltech Associates Inc.,

Carnforth, UK) adsorbent glass tube (5 mm) with 50 mg Porapak

Q was inserted into the outlet port and air was drawn through this

tube at airflow rate of 300 ml min21. This difference in airflow

rate was used to create positive pressure to ensure that unfiltered

air was not drawn into the vessel from outside. Twelve week-old

plants were used for the collection of plant volatile compounds.

GC-MS (HP5890) was equipped with a cold on-column injector, a

flame ionization detector (FID), a non-polar HP-1 bonded-phase

fused silica capillary column (50 m60.32 mm i.d., film thickness

0.52 m) and a polar DB-WAX column (30 m60.32 mm i.d., film

thickness 0.82 m). The carrier gas was hydrogen. The oven

temperature was kept at 30uC for two minutes and then

programmed at 5uC per minute to 100uC and then temperature

was maintained at 10uC per minute to 250uC. One ml of the

concentrated air entrainment sample was used to inject inside the

non-polar column.

The VOCs were collected from 1) uninfested well watered

plants, 2) aphid (B. brassicae) infested well watered plants, 3) aphid

infested drought stressed plants, 4) aphid and root herbivore

infested well watered plants, and 5) aphid and root herbivore

infested drought stressed plants.

Root Herbivore Performance
Root herbivore performance (percent pupation and pupal dry

weight [121]) was measured using the above treatments on

separate batches of plants to assess the efficacy of the root

herbivore treatment on drought and well-watered plants. Percent

adult emergence and adult longevity were also assessed.

Statistical Analysis
The effects of drought stress, root herbivory, parasitoid species

and interactions between them on parasitoid performance were

subjected to ANOVA. Data for parasitoid performance (percent

parasitism, female tibia length, female adult longevity) and root

herbivore performance (number of pupae, pupal weight, percent

emergence, adult longevity) were log root transformed before

analyses. Models were simplified by removing the blocks and any

interactions that did not improve the statistical power [134,135].

Within each parasitoid species, Posthoc Tukey HSD tests

compared mean parasitoid performance. For olfactory responses,

time spent in the treated region was converted to percent total

time. Data was pooled between replicates and student’s t test was

used to compare the mean after log or square root transformation

if necessary. Plant VOCs were analysed using a constrained

ordination method, redundancy analysis (RDA) in CANOCO

version 4.5 for Windows [136]. RDA includes the option to test

whether experimental treatments affect volatile composition

through the use of Monte Carlo permutation tests [137]. RDA

was conducted on all treatments and then repeated to compare the

effects of the pairwise treatment combinations used in olfactometer

experiments (section 2c) on plant volatile emissions. Treatment

effects on the concentration of each VOC were also tested using

GLM. With the exception of RDA, all statistical analyses were

performed with R 2.14.1 [138].
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