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Abstract

Chemometrics has been applied to analyse near-infrared (NIR) spectra for

decades. Linear regression methods such as partial least squares (PLS) regression

and principal component regression (PCR) are simple and widely used solutions

for spectroscopic calibration. My dissertation connects spectroscopic calibration

with nonlinear machine learning techniques. It explores the feasibility of applying

nonlinear methods for NIR calibration.

Investigated nonlinear regression methods include least squares support vec-

tor machine (LS-SVM), Gaussian process regression (GPR), Bayesian hierarchical

mixture of linear regressions (HMLR) and convolutional neural networks (CNN).

Our study focuses on the discussion of various design choices, interpretation of

nonlinear models and providing novel recommendations and insights for the con-

struction nonlinear regression models for NIR data.

Performances of investigated nonlinear methods were benchmarked against

traditional methods on multiple real-world NIR datasets. The datasets have differ-

ent sizes (varying from 400 samples to 7000 samples) and are from various sources.

Hypothesis tests on separate, independent test sets indicated that nonlinear methods

give significant improvements in most practical NIR calibrations.
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Chapter 1

Introduction

In this thesis, we introduce three different nonlinear regression schemes for mul-

tivariate spectroscopic analysis: kernel methods including least squares support

vector machines (LS-SVM) and Gaussian process regression (GPR), hierarchical

mixture of linear regressions (HMLR) and convolutional neural networks (CNN).

These methods are introduced to improve the performances of predictive models

on NIR datasets. In the following content, our main discussions are focused on: 1)

compare the predictive performances of our introduced nonlinear regression meth-

ods with the benchmark method of PLS regression on real-world NIR datasets.

2) provide insights and recommendations on construction of these nonlinear mod-

els. 3) discuss the relationships and differences between three nonlinear regression

methods, explore the feasibility of using our proposed methods in real-world appli-

cations.

In Chapter two we review principles, history and applications of near infrared

(NIR) spectroscopy. Benchmark regression methods of PLSR and PCR are intro-

duced. Relevant statistics and mathematics frequently used in the whole thesis,

including hypothesis test, evaluation of regression coefficients and Fourier trans-

form are also presented in detail.

In Chapter three we describe in detail all of the datasets used in our studies.

We also introduce software and programming environments that are involved in
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developing calibration algorithms.

In Chapter four we present two kernel regression methods — LS-SVM and

GPR. The performance of the two proposed non-linear regression methods is as-

sessed and compared to the benchmark regression method of PLS regression on

a NIR dataset of whole wheat grains. LS-SVM and GPR both show enhanced

generalization performance, especially for maintaining homogeneous predictive

precision over the range. LS-SVM and GPR have very similar regression strategies

and predictive performance on our dataset. We also address the issue of choosing

the loss function and optimization method in kernel methods. Results indicate that

when the training set is small, leave-one-out cross-validation (LOO-CV) combined

with a squared error loss function outperforms gradient based evidence maximiza-

tion (EM) for GPR. In this study, our main contributions to knowledge include 1)

careful comparisons between LS-SVM, GPR and PLSR on a real NIR dataset; 2)

detailed discussion of impacts of various parameter tuning methods (and inference

methods) in kernel regression algorithms.

In Chapter five we investigate the use of the HMLR and variational inference

(VI) for multivariate spectroscopic calibration. The performance of the HMLR

method is compared to the PLS regression, and PLS based locally weighted re-

gression (LWR) on three different NIR datasets. In these comparisons, HMLR

outperforms the other two benchmark methods in predictive performance. Com-

pared to LWR, HMLR is parametric, which makes it interpretable and easy to use.

In addition, we demonstrate that HMLR can automatically split the dataset into

two subsets based on constituent concentration in a probabilistic way and build

independent PLSR models on each of them. This is found especially useful when

the investigated constituent covers a large range. In summary, we propose a novel

structure for linear model ensemble in this study. We introduce how to use VI to

train the model, and how to interpret and make predictions with the model. The

performance of the method is validated on 3 industrial NIR datasets.
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In Chapter six we explore the use of convolutional neural networks (CNN) for

NIR calibration. We propose a unified CNN structure that can be used for general

multivariate regression purpose. The comparison between the CNN method and

the PLS regression method is done on three different NIR datasets. We demon-

strate that the CNN models are more precise and less noisy than the PLS regression

models. The convolutional layer in the CNN model can automatically find the

suitable spectral preprocessing filter on the dataset, which saves a lot of time when

developing new calibrations. The final regression equations and the intermediate

transformations of the CNN models are plotted for a visual comparison with the

PLS regression models. In this study our main contributions to knowledge include:

1) we propose the method of using CNN on NIR regression tasks, which can au-

tomatically generate suitable pretreatment function on investigated dataset; 2) we

introduce a way to visualize the ”black-box” CNN models, for the purpose of inter-

pretation; 3) we carefully discuss the influences of different design choices, model

hyperparameters, and provide recommendations and insights for construction CNN

models on NIR datasets.

In the final chapter we summarize the results obtained and our main contribu-

tion to the knowledge of nonlinear spectroscopic regression methods. We discuss

the strengths and weaknesses of the introduced nonlinear regression methods. Fi-

nally we also provide recommendations for the users to choose a suitable regression

scheme for practical applications.



Chapter 2

Reviews of near-infrared

spectroscopy, multivariate regression

and other relevant statistical methods

2.1 Principles, history and applications of near in-

frared spectroscopy

2.1.1 Spectral interpretation of NIR bands

In general, spectral vibrations in NIR region do not correspond with any known

fundamental vibrations. Overtones, combination bands and Fermi resonances to-

gether contribute to the difficulty on interpretation of NIR bands. In what follows

we will briefly introduce the origins of these bands.

First we should appreciate how the spectral bands are linked to the potential

energy of vibration modes. The easiest way to describe the vibration mode of an

oscillator is to treat it as a harmonic oscillator. Figure 2.1 shows the relationship

between the potential energy of an oscillator and its inter-nuclear separation, and

the red dotted line describes a harmonic oscillator. If we denote ωi as the vibrational

frequency of the ith mode, vi as the vibrational quantum number, we can express the

potential energy for a harmonic oscillator as:
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Ei = ωi(vi +
1
2
). (2.1)

Fundamental vibration occurs when the oscillator transit from v0 to v1. Over-

tones are not allowed under the harmonic assumption.

However, a more realistic assumption is to treat the molecule as an anharmonic

oscillator, refer to the black solid line in Figure 2.1. Potential energy of an anhar-

monic oscillator can be described by:

Ei = ωixi(vi +
1
2
)2, (2.2)

where xi is the anharmonicity constant. As we can see from Figure 2.1, the

correction on the potential energy of an anharmonic oscillator becomes larger for

higher excited states. Under the anharmonic assumption, the fundamental transition

from v0 to v1 is still dominating, but the transition on v0→ v2,v0→ v3, . . ., which are

the overtones in spectral bands, can occur. Overtones have lower frequencies than

multiples of the fundamental band, for example wv0→v2 < 2×wv0→v1 . Overtone

bands have lower intensities than the fundamental band in general.

Figure 2.1: Potential energy (E) vs. inter-nuclear separation (R) for a harmonic oscillator
(red dotted line) and an anharmonic oscillator (black line).

Combination bands are also commonly observed in NIR spectrum. Combi-
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nation bands occur when two fundamental vibrations are excited simultaneously.

Combination bands occur under two strict conditions: the two fundamental vibra-

tions must come from the same functional group; the two fundamental vibrations

must have the same symmetry. A typical example is the combination band on CH2.

Figure 2.2 shows the two fundamental vibrations, i.e. symmetric stretching and

scissoring, that can couple to form a combination band.

Figure 2.2: Combination band of CH2: symmetric stretching and scissoring.

Another factor that makes the NIR spectrum even more difficult to interpret

is Fermi resonance. Fermi resonance occurs when two vibration bands that have

the same symmetry also have similar intensities and frequency. The effect of Fermi

resonance can be illustrated by Figure 2.3. The intensity of the relatively weaker

band becomes higher and that of the stronger band becomes lower. As a result,

Fermi resonance equalizes the intensity of the two bands. In addition, the frequency

gap between the two bands also becomes larger, which means the spectral positions

where the two bands originally occur are shifted. Fermi resonance is frequently

used to explain unknown bands in the NIR spectrum, unfortunately it can be easily

mis-assigned.
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Figure 2.3: Fermi resonance that causes intensity borrowing and frequency shift.

In summary we introduced three factors that can complicate the interpretation

of near infrared bands: overtones, combination bands and Fermi resonance. It is

worth noting as chemometricians we should not over-interpret the spectrum or the

model we get. Understanding the principles of NIR spectrum helps us correlate the

result we get with the physical and chemical theory, however, it should only be used

as a reference instead of a criterion to evaluate our results.

2.1.2 Interaction of NIR radiation with particles in a sample

At the very early stage of NIR applications, the technique was proposed as a rapid

method for prediction of moisture content in wheat flour[1]. We should notice there

are many different types of interaction between NIR radiation and particles in mea-

sured samples, including reflectance, transmittance, refraction and scattering, etc.

See Figure 2.4 for an example. At the very early stage of applications, transmit-

tance was used in NIR calibration, with samples dissolved in carbon tetrachloride.

NIR measurements was collected in the form of log(1/T ) due to Beer’s law, which

relates absorbance to concentration for dilute solutions. Later the researchers real-

ized that the design of experiment was not appropriate, and then they started using

diffuse reflectance for NIR spectrum acquisition. The same group of engineers used

the same design with logarithmic photometers, which led to NIR measurement on

log(1/R). The users found that log(1/R) achieves good predictive accuracy, as a

result it has become the most popular way to record NIR measurement.
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Figure 2.4: Different types of interaction of NIR radiation with particles in a sample

2.1.3 A review of chemometrics methods for NIR calibration

The initial form of chemometrics was dual-wavelength calibration. For example,

Birth (1960)[2] reported the detection of discoloured potato tissue by transmitted

light. They observed that the optical density difference (∆OD) of two selected

wavelengths (800 nm and 710 nm) is an indicator of discoloured potato tissue. The

dual-wavelength calibration technique was further discussed by Cowles (1965)[3].

However, they found that for turbid samples it is easier to interpret the experimental

data by using the ratio instead of the linear difference. In the same paper, they also

mentioned the ratio detection method is also useful for correcting small absorption

changes under large background scattering effects.

At the same time, calibrating spectroscopic data for the chemical composition

in near infrared region was initialised by Karl Norris. The instrument available

at that time, namely Cary 14 (and Cary 14B), was designed for UV and visible

regions, with the NIR measurement as an additional functionality. Such kinds of

spectrophotometers measure an essentially continuous spectrum in the NIR region,

with a relatively low signal to noise ratio (SNR) by present standards. However, the

original form of NIR calibration was still dual-wavelength calibration. Norris and

Hart (1965)[4] published their initial work on determination of moisture content of
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agricultural products. They measured light transmittance of wheat (flour, bran and

whole grain) and soybean, found that ∆OD at 1960 nm and 2080 nm is correlated

to moisture content. However, the optimum wavelengths for prediction of moisture

depend on the measured products. For example, for peanuts, the two wavelengths

that are the best for prediction of moisture content are 970nm and 900nm as re-

ported. Continuing work from Ben-Gera and Norris (1968)[5] extended the field

of research to other food products, with the same calibration method, namely dual-

wavelength calibration. In the paper they interpret data w.r.t absorption from O-H

and C-H stretching vibrations and found that for meat samples, ∆OD of 1725 nm

and 1800 nm can be used to determine moisture, while fat content is correlated with

∆OD of 1650 nm and 1725 nm.

There were very few NIR applications at that time. The main reasons are: 1)

The Cary 14 had a poor scanning speed. It could take up to 30 minutes to acquire

one measurement; 2) searching for useful calibration wavelengths requires lots of

knowledge and manual work; 3) working in the transmittance mode significantly

limited the range of products (it is challenging to acquire the adequate signal for

thick, less transparent products). Some samples need special preparation before

measurement, which is inconvenient. The 1970s saw the rapid growth of NIR

industry. Reflectance spectrophotometer had become popular in a short space of

time. Initial work on construction such kind of systems was from Massie and Nor-

ris (1965)[6]; Besides, manufactures including Dickey-John, Neotec and Technicon

started producing commercial spectrophotometers specially designed for industrial

NIR applications. Industrial instruments at that time mostly used interference filters

instead of a monochromator to generate NIR wavelengths. For example in 1971,

Dickey-John produced the first generation of grain analysis computer (GAC), which

uses six filters ranged from 1680 nm to 2310 nm to generate NIR wavelengths. Fol-

lowing generations of GAC extended the number of filters to 10 (Dickey-John GAC

III, 1977). Technicon produced an extended system in a similar way, namely Infra-

Alyzer 400R, which employed 19 filters. Scanning NIR spectrophotometers were
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gradually developed at the same time. Neotec started with a replica of the Cary 14

in 1971, then continuously improved the design and the performance of the system.

Landa and Norris (1979)[7] published their work on an improved design of NIR

measurement system based on interferometer spectrophotometer. The introduced

system was able to rapidly measure parameters including stray light, resolution,

accuracy, etc., of wavelength readout. Neotec soon commercialized the system as

model 6350. Three years later (1982) Neotec updated the system with the Northstar

computer (model 6250). In the meanwhile, Technicon also produced a scanning

spectrophotometer — InfraAlyzer 500 in 1979. Such kind of scanning spectropho-

tometers (sometimes termed spectrocomputer when equipped with computer), can

obtain readouts on the whole spectrum instead of a few wavelengths generated by

fixed interference filters. Researchers at that time reported benefits of such flexi-

bilities in some applications. For example, Connell and Norris (1980)[8] claimed

that when measuring washed wool, a small improvement was obtained with non-

standard wavelengths.

Chemometrics were improved simultaneously. Stepwise multiple linear re-

gression (MLR) replaced the traditional treatment (optical density difference) in

NIR calibrations. Pioneer work from Norris, Barnes, Moore and Shenk(1976)[9]

established the application of the method on prediction of forage quality. In the

paper they exhibited a way of analysing high dimensional data. In the research

NIR measurement ranged from 1400 nm to 2400 nm with a resolution of 0.5 nm.

They first smoothed the spectra by averaging adjacent points to reduce the number

of explanatory variables to 500, then applied stepwise MLR to choose 9 variables.

In the research they also reported that using the second derivative of log( 1
R) gives

much better prediction results. The idea was also discussed by Osborne, Douglas,

Fearn (1983)[10]. In the paper of Osborne et al, they explained that log values have

low correlation with anything other than the particle size of the sample. As a result,

in a stepwise procedure, selection of the first variable must be almost random. The

method soon spread to other applications. Law and Tkachuk (1977)[11] presented



2.1. Principles, history and applications of near infrared spectroscopy 24

their successful results of using the diffuse reflectance spectrum of wheat grains

to predict their compositions (protein, moisture, etc.). McClure, Norris (1977)[12]

used diffuse reflectance of tobacco samples to predict their sugar content. To im-

prove the method, Osborne, Fearn, Miller and Douglas(1984)[13] presented other

wavelength selection methods, based on picking wavelengths in pairs across the

whole spectrum and backward stepwise wavelength selection from a chosen subset

of variables.

The main limitations of MLR on spectroscopic calibration are multicollinear-

ity and near-multicollinearity. The issue was discussed in detail by Martens and

Næs (1989)[14]. When there are more explanatory variables than samples, which is

the typical case for a scanning spectrophotometer, the matrix XT X in the ordinary

MLR equation is singular. As a result, the least squares solution is not unique

anymore. Even when the number of samples increases, explanatory variables in X

are still mutually dependent. Multicollinearity and near-multicollinearity often lead

to unsatisfactory or incorrect solutions.

One solution to the issue is ridge regression. The method was first proposed

by Hoerl and Kennard (1970)[15]. They addressed the issue that the least squares

treatment could be inappropriate for some regression problems. They claimed that

the estimator could be improved by adding the ridge trace term to XT X. To follow

the discussion, Goldstein and Smith (1974)[16] examined the mean squared errors

(MSE) property of ridge regression. They reported that the ridge estimator, which

is biased, has smaller MSE in comparison with the least squares solution. However,

Fearn (1983)[17] argued that when working on the spectroscopic dataset, ridge

regression does not work in the obvious way. The main spoiler is that the major

variance in log values of reflectance spectrum is highly correlated with the particle

size, which is irrelevant with the main regression target. Hoerl, Kennard and Hoerl

(1985)[18] responded that by removing the artificial correlations in the reflectance

spectrum, the resulting system becomes near-orthogonal. They claimed that when



2.1. Principles, history and applications of near infrared spectroscopy 25

working on transformed data, ridge regression could deliver better prediction re-

sults in randomised tests. Geladi, Macdougall and Martens (1985)[19] discussed

the same issue. In the paper they suggested using another spectrum transformation

approach: multiplicative scatter correction (MSC), which separates chemical light

absorption from physical light scatter in NIR spectrum.

The other treatment for multicollinearity is data compression, where the num-

ber of explanatory variables is reduced before MLR. Wavelength selection is a

typical one-stage data compression method. However, considering the many incon-

veniences and limitations as discussed above, the more popular data compression

methods in literature are two-stage methods, namely principal components regres-

sion (PCR) and partial least squares (PLS) regression. Both of these regression

methods first shrink the number of input variables, and then perform a MLR.

Cowe and McNicol (1985)[20] published their initial work on the use of PCR

for NIR calibration. They demonstrated the regression method on calibrating mois-

ture and protein concentration of wheat flour and water extract values on milled

barley. They addressed the issue of intercorrelation for NIR calibration, and pre-

sented the most appealing point of PCR in the context of spectroscopic analysis:

interpretation of data. They showed that PC1 could be interpreted as the particle

size of measured samples, PC2 of wheat and PC3 of barley spectra have a very

similar shape to the spectrum of water, PC4 has the same peak as that used in filter

instruments for measuring protein in cereal. Næs and Martens (1988)[21] extended

the discussion on PCR from a theoretical viewpoint. They carefully viewed PCR

in comparison with LS regression, pointed out the advantage of PCR on small

datasets. They decomposed prediction error to a bias term and a variance term (see

also Næs, Irgens and Martens (1986)[22]). They explained that LS method can

have no bias, i.e. no underfitting error, which is practically inappropriate. PCR

delivers smaller MSE by allowing for bias in regression. In the same paper, they

also provided insights on why deletion of small eigenvalue components is sensible.
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They interpreted small eigenvalue terms as directions associated with noise from

the instruments and the data acquisition process. In addition, small eigenvalues are

less stable and representative of population variation. They also illustrated how

components could be selected by a novel cross-validation method introduced by

Martens and Næs (1987)[23] and explained how PCA can function as an outlier

detection method.

PLS regression was proposed at the same period. Wold (1975)[24] pioneered

the research on NIPALS algorithm. Wold, Martens and Wold (1983)[25] for the

first time used PLS regression on chemical applications. In the paper, they ex-

plained the PLS algorithm as a similar data compression approach to PCR, with

the ability to detect structures in X with the relevant predictive covariance with y.

They also mentioned an additional feature of PLS: checking new samples accord-

ing to the calibration set, which could be viewed as a solution for outlier detection.

Martens and Jensen (1983)[26] for the first time applied PLS regression on an NIR

dataset. Wold, Ruhe, Wold and Dunn (1984)[27] continued the discussion on the

PLS method. They compared PLS regression with RR and PCR on chemical exam-

ples, highlighting the collinearity issue. They also presented the appropriate way to

select components by cross-validation. Næs, Irgens and Martens (1986)[22] gave

a nice comprehensive comparison of different linear regression methods for NIR

calibration. They addressed the issue when the number of explanatory variables

are more than the number of samples, biased estimators including PCR and RR

down weight information associated with specific eigenvectors, hence improving

robustness and stability of the model. PLS regression, compared to PCR, uses fewer

components and get the same performance. They argued it is essential to use fewer

factors from the standpoint of model interpretation. They encouraged using PLS

for a wider range of practical applications.

PCR and PLS regression soon became very popular. At present they are still

the dominating “standard” solution for multivariate calibrations. It is worth not-
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ing that another type of data compression method, Fourier transformation, was

proposed at the same period. McClure and Giesbrecht (1984)[28] proposed using

Fourier transform on NIR calibration. They carried out experiments on tobacco

samples. 11 coefficients in the Fourier domain were fed into a stepwise MLR.

They claimed the method is much faster in selecting variables and more compact

than the ordinary stepwise MLR. By removing the mean of Fourier terms, effect of

particle size can be corrected. They claimed Fourier transform could be used for

data reduction, spectral smoothing, calibration transfer, etc. Davies and McClure

(1985)[29] continued study on the topic with the target of classification of instant

coffee samples. By using Fourier transform they better discriminated normal and

decaffeinated instant coffee samples, without sample preparation. A more interest-

ing feature of Fourier transform was reported by McClure and Davies (1988)[30].

In the paper, they showed an example of using Fourier self-deconvolution for signal

enhancement. However, compared to PCR and PLS regression, Fourier transform

provides no interpretation or visualisation in the wavelength domain, which makes

it less attractive in practical applications.

Nonlinear regression methods on NIR calibration can be traced back to the

1980s. A lot of exciting discussions arose on techniques such as support vector

machines (SVMs), locally weighted regression (LWR), artificial neural networks

(ANNs), etc. We will review previous works on these topics in the following chap-

ters in a greater detail.

2.1.4 Applications of NIR spectroscopy

2.1.4.1 Cereals

In the early stage of NIR development, most of the successful stories came from the

agricultural industry. Norris and Hart (1965)[4] first demonstrated the possibility of

using NIR spectroscopy to predict moisture content of various grain samples. From

the 1970s commercial instruments including Dickey-John GAC, Neotec tilting-filter

spectrometer and Technicon InfraAlyzer had been developed for NIR measurement

in reflectance mode. These instruments were built with either fixed filters or scan-
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ning monochromator. Williams (1975)[31] reported calibrations on moisture, crude

protein (CP) and oil content in cereal grains and oilseeds by using NIR reflectance.

He reported that the range of standard errors on moisture prediction was from

0.12% (barley) to 0.30% (rapeseed); standard error on predicting CP was reduced

from 0.30% to 0.15% when mixing samples 15 times. Stermer (1977)[32] used

NIR reflectance from two tilting filter instruments to predict the moisture content of

maize and sorghum grain. The standard errors were 0.8% and 3.4% for maize and

sorghum respectively. R Tkachuk (1981)[33] introduced a study of the prediction

of oil and protein content in rapeseed, based on the reflectance instrument the Carry

17. In 1980, the first commercial NIR instrument solely designed for whole grain,

Trebor GT-90, was produced. Different from other instruments, Trebor GT-90 was

developed to work in the transmittance mode. It employed 12 filters in a wavelength

range of 850-1050 nm, which is shorter than the common wavelengths selected for

reflectance instruments. Williams, Norris and Sobering (1985)[34] carefully dis-

cussed the performance of Trebor GT-90. Williams and Sobering (1993)[35] per-

formed a comparison on instruments based on reflectance mode and transmittance

mode, with an extended discussion on wavelength optimization when calibrating

on different constituents of whole grain samples. Osborne et al. (1982)[36] carried

out a feasibility study on building universal calibration for protein and moisture

of wheat with different varieties and harvested from different years. Their test,

based on Technicon InfraAlyzer 2.5, showed that it is possible to build a universal

calibration for different types of wheat across 5 years, except for one year (1976)

when abnormal climate prevailed. Manley et al. (2002)[37] presented results on

prediction of hardness, protein and moisture content in whole wheat grains with a

FT-NIR system. PLS regression models were built on MSC and baseline corrected

spectra. They reported the RMSEPs for hardness, protein and moisture predictions

were 2.13, 0.51 and 0.15% respectively. Pettersson et al. (2003)[38] explored the

feasibility to use NIR transmittance for determination of mycotoxins in cereal. By

applying PLS regression and PCR on a spectral range of 670 -1100 nm, they ob-

tained a good correlation coefficient (0.984) and satisfactory standard error (381µg
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DON per Kg). However, relatively large numbers of factors (11-13) in the PLS and

the PCR models were required to build such kind of calibrations. They concluded

it might be possible to identify kernels with DON concentration above European

limits for flour.

There are also many applications of NIR spectroscopy on flour samples. Wat-

son et al. (1976)[39] evaluated the impacts of different NIR instruments (fixed-filter

or scanning monochromator) and different grinders on prediction of protein content

of wheat. They reported that the influence of grinder was more significant than

NIR instruments. Osborne, Douglas and Fearn (1982)[40] reported using NIR re-

flectance to predict protein, moisture, particle size, colour and starch damage of

flour. Hareland (1994)[41] further investigated the application of NIR reflectance

for particle size measurement on different types of wheat, and compared the results

from NIR to laser diffraction and sieve analysis. Osborne and Fearn (1983)[42]

demonstrated for protein and moisture calibration transfer between different instru-

ments of the same model. They circulated the same 20 samples across different

laboratories to adjust the calibration constant, then circulated another 20 samples

to validate the model. They reported on the second set of samples, accuracy on

protein prediction was 0.13-0.33% with a precision of 0.07%; the accuracy for

moisture prediction was 0.20-0.29% with a precision of 0.05%. Diachuk et al.

(1981)[43] and Iwamoto et al. (1984)[44] reported on prediction of ash content

of flour with NIR reflectance analysis. According to Iwamoto’s results, standard

errors of prediction of ash were 0.035% and 0.031% for two different flour samples.

However, it was believed that ash has a secondary correlation with NIR spectrum.

Ash itself does not have any specific NIR characteristic, but is correlated to oil,

protein and particle size. Consequently Ash calibrations share wavelengths with

other properties. Miralbes (2004)[45] demonstrated the potential of NIR reflectance

on determination of a wider range of constituent concentration, including protein,

moisture, dry gluten, wet gluten, starch damage and ash contents.
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In addition to determination of constituent composition and physical charac-

teristics, NIR spectroscopy can be used to detect cereal damage and infection of

cereals. For example, Dowell et al. (1998)[46] developed an automated single grain

analysis system to detect internal insect damage on wheat grains. They claimed

the introduced system was not sensitive to the moisture, protein content or varieties

of wheat. A detection accuracy of 95% could be achieved on rice weevil infec-

tion. Perez-Mendoza et al. (2003)[47] reported on detection of insect fragments

in wheat flour by NIR spectroscopy. They concluded that NIR calibration could

be developed to predict whether the insect fragments in flour samples exceeds 130,

but was unable to predict the insect fragments at the FDA action level. Singh et

al. (2009 and 2010)[48][49] used a hyper-spectral imaging system to detect insect-

damaged whole wheat grains. They reported that by using a quadratic discriminant

analysis (QDA) classifier, discriminate accuracy of 96.4% on healthy grains and

91.0%-100% on insect-damaged grains could be achieved. Singh et al. (2012)

further reported on classification on fungal damaged wheat grains with a linear dis-

criminant analysis (LDA) model on hyper-spectral NIR images. They reported an

accuracy of 97.3-100% on identification of fungal-infected wheat grains.

2.1.4.2 Forage

Forage and feedstuff samples are usually mixtures of multiple components. Each

of the components has its specific NIR absorption characteristic, which makes NIR

spectroscopy useful for forage analysis. Norris and Barnes (1976)[9] first reported

on using NIR reflectance from a scanning NIR instrument (Cary model 14) to ana-

lyze the quality of forage. They measured NIR reflectance from alfalfa, tall fescue

and alfalfa bromegrass mixtures, then used MLR to select 9 wavelengths for the

prediction of CP, neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin

(L),in vitro dry matter disappearance (IVDMD), in vivo digestibility (DMD), dry

matter intake (DMI) and digestible energy intake (DEI). According to their results,

the standard errors of estimate were 0.95% for CP, 3.1% for NDF, 5.1% for DMD

and 7.9 g for DMI. Barton and Burdick (1983)[50] also reported on using scanning

NIR instruments for the prediction of DMI in bermudagrass hays, with a standard
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error on calibration of 1.78% and a standard error of analysis of 2.54%.

There were also many researches on fixed filters NIR reflectance instruments.

Shenk and Barnes (1977)[51] claimed that using the whole spectrum, rather than

a few fixed filtered wavelengths in existing instruments, smaller prediction errors

on CP and IVDMD could be obtained. Counts and Radloff (1979)[52] reported

similar standard errors of analysis on IVDMD from a six-filter NIR instruments,

compared to the laboratory scanning instruments. Winch and Major (1981)[53]

carried out researches on the prediction of Nitrogen (N), IVDMD and DMD for

grasses, legumes and legume grass mixtures with a six-filter instrument (Technicon

InfraAlyzer 2.5). They reported low standard errors of calibration when analyzing

N, but relatively large errors for IVDMD and DMD. Multiple researches indicated

that various considerations must be addressed to obtain satisfactory results. For

example, Barton and Burdick (1979)[54] reported calibration results on CP, NDF,

ADF, L, IVDMD with a tilting-filter NIR reflectance instrument. They addressed

that warm and cool-season grasses should be analyzed separately, with different

regression functions. Fales and Cummins (1982)[55] reported that high humidity

in Sorghum forage samples could introduce extra error on estimating ADF content.

Minson et al. (1983)[56] reported their results based on a 19-filter Technicon NIR

reflectance instrument. They indicated that to remove the biases on prediction of

CP, IVDMD and voluntary intake (VI), grass species, plant part and physical form

of the tested sample must be taken into consideration.

2.1.4.3 Dairy

Dairy products were studied at the very early stage in NIR history. Ben-gera and

Norris (1968)[57] presented their results on calibrating fat content of milk on NIR

reflectance. Casado et al. (1978)[58] extended the study to fat, protein and mois-

ture in dried milk. Vilder and Bossuyt (1983)[59] carried out a similar research

on prediction of protein, fat and moisture content in milk powder, using a Tech-

nicon InfraAlyzer 400, a NIR reflectance instrument with 19 filters. Baer et al.

(1983)[60] also reported their results on Technicon InfraAlyzer 400, where they
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picked 3 wavelengths for the prediction of moisture, 4 wavelengths for fat, 4 wave-

lengths for lactose, 8 wavelengths for micro-Kjedahl protein and 7 wavelengths for

dye binding protein. The standard error of prediction (SEP) values are 0.274%,

0.099%, 0.594%, 0.438% and 0.509% respectively. Frankhuizen and van der Veen

(1985)[61] reported on prediction of ash and lactate contents in milk powder, with

the same type of instrument. NIR reflectance could also be used for classification

of milk powder, according to Downey et al. (1990)[62], where they classified milk

powder by the thermal treatment received. PCA and PLS regression had impacted

NIR analysis on diary products since proposed. Robert et al. (1987)[63] applied

PCA and factorial analysis on NIR reflectance spectrum of milk and found 1724 nm,

1752 nm, 2308 nm and 2344 nm are highly correlated with fat content, 2050 nm

and 2180 nm are indicators of protein, and the large absorption band at 2094 nm

could be used for discrimination of samples by lactose content. Laporte and Paquin

(1999)[64] reported satisfactory results when PLS regression was used on predic-

tion of fat and nitrogenous constituents in milk. SEP values were 0.07%, 0.06%

and 0.05% correspondingly for fat, crude protein and casein, true protein. They

also notified that homogenization had a positive impact on prediction accuracy.

NIR has been reported as a powerful tool when analyzing butter and cheese.

Giangiacomo et al. (1979)[65] reported high correlations between NIR reflectance

and protein, ash, free tyrosine, PH value and fat in blue cheese, based on their

research with a fix-filter NIR instrument. Frank and Birth (1982)[66] investigated

30 different cheese samples, including Parmesan, Gruyere, Romano, Cheddar,

and Colby. They found the spectral range of 1170 nm to 1350 nm and 1640 nm

to 1710 nm are highly relevant for the prediction of fat, protein and moisture.

Pillonel(2003)[67] demonstrated the classification of cheese from six different

origins by applying principal component linear discriminant analysis (PC-LDA).

Sørensen and Jepsen (1998)[68] reported the results of calibrating NIR spectrum

on sensory properties of cheese. They compared reflectance spectroscopy (with a

spectral range of 1100 nm - 2490 nm) with transmittance spectroscopy (850 nm
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- 1050 nm). They found that accuracies for prediction of consistency and flavour

properties with reflectance spectroscopy are generally better than transmittance

spectroscopy. They also indicated that the squared correlation coefficients (R2) on

consistency attributes, obtained by PLS regression on NIR reflectance, are signifi-

cantly higher than that of flavor attributes. González-Martı́n (2007)[69] employed

a remote reflectance fibre-optic probe for NIR acquisition. The introduced sys-

tem was used to predict the percentage of cow’s, ewe’s and goat’s in cheese with

different ripening time. SEC values of 11.6%, 10.6% and 9.8% were obtained

respectively.

NIR calibration can be used on whey products. Baer et al. (1983)[60] ap-

plied NIR reflectance on compositional analysis of different types of whey pow-

ders, and concluded that the samples had similar constituent concentration. Pouliot

et al. (1997)[70] assessed the potential of a remote optic fiber probe integrated

NIR spectrophotometer system on prediction of whey changes during processing.

PLS calibrations were built for evaluation of heat denaturation of proteins, chemical

composition of whey protein concentrate (WPC) during production, and the degree

of hydrolysis (DH) of whey proteins during trypsin hydrolysis. They varied the

production and the processing conditions to ensure the reliability of the calibration

models. Nørgaard et al. (2005)[71] reported satisfactory results on prediction of

crystallinity of lactose in whey permeate powder with NIR calibration. They se-

lected five wavelength intervals in the spectral range of 1100 nm - 2498 nm then

performed PLS regression on the selected wavelengths. RMSECV was 0.27% on

35 tested samples as reported. The accuracy of the NIR calibration was also better

than a Raman calibration obtained from the same sample set.

2.1.4.4 Meat

One of the biggest markets of NIR spectroscopy is on meat and meat products.

Prices of meat/meat products vary significantly according to homogeneity and

quality characteristic. Ben-gera and Norris (1968)[5] investigated fat and moisture

content in 2 mm thick meat samples by NIR transmittance spectrum. The NIR
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absorption were interpreted as O-H and C-H stretching vibrations together with

light scattering losses. Dual-wavelength calibrations were constructed. ∆OD of

1725 nm and 1800 nm were correlated to moisture content, with a standard error

of 2.1%; ∆OD of 1650 nm and 1725 nm were used to predict fat content, with a

standard error of 1.4%. Geladi et al. (1985)[19] introduced the spectroscopic pre-

processing method: multiplicative scatter correction (MSC) based on their research

on NIR reflectance on meat samples. The MSC method was then widely used in

other NIR applications. Berzaghi et al. (2005)[72] investigated NIR reflectance

of breast meat samples of laying hens with different diets. They measured NIR

reflectance in a spectral range of 1100 nm - 2498 nm at every 2 nm, then built PLS

calibration on multiple physicochemical features, partial least squares discriminant

analysis (PLS-DA) classifier on different diet types. Based on the results from 72

investigated meat samples, Berzaghi et al. found that prediction of protein, major

fatty acid, DM and lipids were adequately accurate; predictions of lipid oxidation

parameters, ash, color and pH value were relatively poor. Classification of the

control and the enriched diets was achieved with 100% accuracy. They concluded

that NIR reflectance could be used for quality control, prediction of composition

and dietary treatments on breast meat. Anderson (2007)[73] evaluated the per-

formance of FOSS foodscan NIR spectrometer on prediction of fat, moisture and

protein content in meat products. The artificial neural networks (ANNs) method

was deployed to build calibrations. Anderson assessed the within-lab and between-

lab reproducibility of the method. They also notified that NIR detection of meat

products was proved by AOAC for commercial applications.

There are plenty researches on using NIR spectroscopy for prediction of

sensory parameters of meat and meat products, but results show less reliability.

Rødbotten et al. (2000)[74] reported on NIR prediction of beef quality in the early

post mortem stage. They indicated that correlation coefficiets on intramuscular

fat content were relatively high (0.78 - 0.85), however, correlation coefficients for

Warner-Bratzler (WB) shear press and tenderness were poor (0.47 - 0.68). They
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concluded that NIR might not be a precise tool for the prediction of final tender-

ness. Chan et al. (2002)[75] investigated the possibility of using NIR reflectance

on prediction of different quality parameters of pork meat. They reported that pre-

diction accuracies for major constituents including XYZ tristimulus colour values,

moisture, fat and protein were satisfactory. However, calibrations for sensory and

technological parameters vary from marginally good to very poor. Andrés et al.

(2007)[76] measured NIR reflectance of 232 muscle samples of lamb, with a target

of prediction of flavour, juiciness, texture, and overall liking. Results indicated that

the correlation between NIR reflectance and sensory parameters were only signif-

icant in a low proportion of the variability in the taste panel traits. However, they

also indicated that the discrimination between extreme samples could be done by

NIR spectroscopy. The result suggested that NIR spectroscopy could be used to

classify meat/meat products into high/low quality classes.

2.1.4.5 Non-agricultural products

NIR spectroscopy is widely accepted to various non-agricultural applications, due to

its high speed, low cost, non-destructive and relatively high accuracy. For example,

NIR spectroscopy has been applied on identification and qualification of pharma-

ceutical products, including raw materials[77][78][79][80] and tablets[78][81][82];

analysis of physical and chemical properties of polymers[83][84][85][86][87];

biomedical tests including detection on human blood[88][89][90] and tissue[91][92];

compositional analysis of minerals[93] [94][95]; assessment of soil properties[96][97]

[98][99][100] and many other real-world applications.

2.2 Principal component regression and partial least

squares regression

2.2.1 Principal component regression

The target of PCA is to transform the variables from the original matrix X, with

columns of xi(i = 1, . . . , I) into a lower dimensional matrix T̂, with columns of

t̂a(a = 1, . . . ,A), where A ≤ I. Instances in T̂ are called principal components of
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X. Notice that all variables in X are mean-centered by default. In order to get the

principal components, a set of orthogonal and normalized loading vectors P̂, with

columns of p̂a(a = 1, . . . ,A) are calculated such that:

t̂a = X p̂a. (2.3)

t̂1, . . . , t̂A are in a descending order w.r.t the variance from X. To achieve this,

P̂ can be found by maximizing the corresponding scores. More specifically, for p̂1

we have:

p̂1 = argmax
‖p̂1‖=1

{‖ t̂1 ‖2}. (2.4)

Substitute t̂ with Equation 2.3:

p̂1 =argmax
‖p̂1‖=1

{‖ X p̂1 ‖2}

=argmax
‖p̂1‖=1

{p̂T
1 XT Xp̂1}

=argmax{
p̂T

1 XT Xp̂1

p̂T
1 p̂1

}.

(2.5)

The resulting sum-of-squares of the first principal component score vector,

t̂T
1 t̂1, is the largest eigenvalue τ̂1 of the matrix XT X, and p̂1 is the corresponding

eigenvector.

Further principal component scores can be calculated by extracting previous

principal components from X, and maximizing the variance in the residual. More

specifically, residual in X after removing k− 1 components, X̂k, can be expressed

as:

X̂k = X−
k−1

∑
a=1

t̂a p̂a. (2.6)

The kth loading vector p̂k can be calculated by:
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p̂k = argmax{
p̂T

k X̂T
k X̂kp̂k

p̂T
k p̂k

}. (2.7)

Finally the principal component score matrix can be calculated by:

T̂ = XP̂. (2.8)

Remember that both the loading vectors and the principal component scores

are orthogonal, i.e. the following constraints are satisfied:

P̂T P̂ = I, (2.9)

T̂T T̂ = diag(τ̂a). (2.10)

In Equation 2.10 {τ̂a,a = 1, . . . ,A} are eigenvalues of the matrix XT X, and the

covariance between the score for any two different principal component scores is

zero:

Cov(t̂i, t̂ j) = t̂T
i t̂ j = 0, f or i 6= j. (2.11)

The final target of PCR is to find a regression equation that can be directly

applied on X, namely regression coefficients b̂0 and b̂ such that

ŷn = b̂0 +xnb̂, (2.12)

where ŷn is the nth element of y and xn is the corresponding nth row vector in X.

b̂ is a column vector of regression coefficients. In PCR, the regression equation is

found by a direct MLR of y on principal component scores T̂:

ŷn = q̂0 + t̂nq̂, (2.13)

where q̂0, q̂ are the regression coefficients on PCA scores and t̂n is the nth row vector

in T. A standard solution to Equation 2.13 is:
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q̂ = (T̂T T̂)−1T̂T y. (2.14)

The relationship between q̂ and b̂ can be described by:

b̂ = V̂q̂, (2.15)

where V̂ is the weights matrix. In PCR V̂ = P̂. Combine Equation 2.8, Equation

2.10, Equation 2.14 and Equation 2.15 we can get:

b̂ = diag(
1
τ̂a
)P̂P̂T XT y, (2.16)

b̂0 = ȳ− x̄b̂, (2.17)

where x̄ is the mean row vector of X.

2.2.2 Partial least squares regression

The main strategy behind the PLS regression is very similar to the PCR method.

Original inputs in X are first dimensionally reduced to T, and then MLR is applied

to find the regression equation. However, different from PCR, T is calculated to

maximize its covariance with y. If we denote X0 and y0 as mean-centered input and

reference variables:

X0 = X−I x̄, (2.18)

y0 = y−I ȳ, (2.19)

where I is a column vector of ones and x̄ is the mean row vector of X.

The kth(k > 1) PLS component can be found by maximizing covariance be-

tween Xk−1wk and yk−1. Xk−1 and yk−1 are residuals after removing previous k−1

PLS components. W is a normalized loading weight matrix that project residuals

in X onto the space in T sequentially. To achieve this, we can use a standard LS



2.2. Principal component regression and partial least squares regression 39

solution, i.e. minimizing the residual ek−1 in the following system:

yk−1 = Xk−1wk + ek−1. (2.20)

Notice that wk is subject to the constraint wT
k wk = 1.

A standard solution for ŵk is:

ŵk =
(XT

k−1Xk−1)
−1XT

k−1yk−1

‖ (XT
k−1Xk−1)−1XT

k−1yk−1 ‖

=(XT
k−1Xk−1)

−1(yT
k−1Xk−1)

− 1
2 (XT

k−1Xk−1)(XT
k−1yk−1)

− 1
2 XT

k−1yk−1

=(yT
k−1Xk−1XT

k−1yk−1)
− 1

2 XT
k−1yk−1.

(2.21)

The kth PLS score, tk, can be estimated by projection of Xk−1 on ŵk, i.e.:

t̂k = X̂k−1ŵk. (2.22)

The next residual term Xk can be found by subtracting the reconstruction term

from Xk−1:

Xk−1 = t̂kpT
k +Xk, (2.23)

where pk is the kth X-loading. pk can be found by minimizing the residual

term, Xk in Equation 2.23. Again we can use the LS solution to estimate pT
k :

p̂T
k = (t̂T

k tk)
−1t̂T

k Xk−1. (2.24)

By transposing the two sides in Equation 2.24 we can get:

p̂k = XT
k−1t̂k(t̂T

k t̂)−1, (2.25)

We can rewrite Equation 2.23 as:

Xk = Xk−1− t̂kp̂T
k . (2.26)
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If we apply the same rule to y we get:

q̂k = yT
k−1t̂k(t̂T

k t̂k)
−1, (2.27)

yk = yk−1− t̂kq̂k. (2.28)

In the PLS algorithm, the loading weights Ŵ and the scores T̂ are orthogonal.

However, the loadings P̂ are normally non-orthogonal. In order to directly transform

the original X to T, we introduce the weights matrix V. Hence we have:

T = XV. (2.29)

The relationship between weights, loadings and loading weights can be formu-

lated as:

V̂ = Ŵ(P̂T Ŵ)−1. (2.30)

Finally, in order to perform rapid predictions from X, we would like to describe

the model by a linear regression equation:

ŷn = b̂0 +xnb. (2.31)

Recall that the relationship between y, q and T can be expressed as:

ŷ =b0 +
A

∑
k=1

t̂kq̂k

=b0 + T̂q̂.

(2.32)

where A is the maximum number of PLS factors.

Combine Equation 2.15, Equation 2.30 and Equation 2.32 we can express b̂

and b0 as:

b̂ = Ŵ(P̂T Ŵ)−1q̂, (2.33)



2.3. Model evaluation 41

b̂0 = ȳ− x̄b̂. (2.34)

Both PLS and PCA can be used to reduce the number of variables in spectrum.

In general, in order to achieve a similar calibration accuracy, less components are

needed in PLS than PCR. However, it does not always mean that the PLS model

is less noisy than the PCR model, because the noise level in PLS components are

higher than that in the same number of PCR components, due to the supervised

dimension reduction procedure of PLS.

2.2.3 Classification methods

PLS regression and PCR are used to build regression models for NIR datasets.

Remember that NIR can be used on discrimination of samples. Popular multivari-

ate classification methods include linear discriminant analysis (LDA), quadratic

discriminant analysis (QDA), support vector machines (SVM), K-nearest neighbor

(KNN), regularized discriminant analysis (RDA), soft independent modeling of

class analogy (SIMCA) etc. These techniques are widely used in NIR classification

tasks, but are generally built on top of PLS or PCA dimension reduction. A great

deal of research has been conducted on applications with such kind of classification

techniques on NIR datasets[101][102][103][104].

In this thesis, our study only focuses on regression problems. However, it

should be notified that our proposed regression techniques can be easily extended

to a classification framework.

2.3 Model evaluation

2.3.1 Error metrics

For a regression problem, error indicates the performance of a predictive model.

However, there are various definitions of error. Popular error metrics include preci-

sion, accuracy and bias. They are defined as follows:
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Accuracy , is equivalent to the root mean squared error (RMSE). Accuracy takes

into consideration of both random and systematic errors, i.e. it computes the differ-

ence between the predictions and the ground truth. For a statistical interpretation it

can be considered that 2 times the RMSE indicates a 95% confidence intervals for

the ground truth of the unknown observation.

Bias , also known as systematic errors, measures the average difference between

the predicted value and the ground truth. In general, a proper predictor should be

bias free, unless the same prediction model is used across different systems or on

different types of samples.

Precision , which is equivalent to standard error of calibration (SEC) or standard

error of prediction (SEP), only measures random errors.The SEP squared is can be

approximated by the RMSEP squared minus the bias squared. In particular, when

bias is very close to zero (which is true in most practical cases), RMSEP is very

similar to SEP.

Accuracy and precision are frequently used in the assessment of the predictive

model. In general we are trying to make predictions as accurate as possible, so

accuracy (RMSE) is widely used. However, in some cases systematic errors can be

easily corrected, which means precision (SEP) tells the true predictive capability of

the model.

2.3.2 Training, validation and test sets

For the studies presented in this thesis, we have three different types of datasets.

They have different functionality and serve for different purpose. There are various

ways of defining datasets in different literatures, and in our research the definitions

are as follows:
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Training set is purely for training purpose. Notice that the training process does not

include choosing the architecture of the model (number of components in PCR and

PLSR, neural network structure, etc.). The training set is mainly used to optimize

weights, namely parameters in the regression equations. In addition, selection of

pretreatment methods also depends on the training set. The optimal pretreatment

methods are obtained by using both the training set and the validation set.

Validation set (optional) is used for choosing the spectral pretreatment methods,

the architecture of the model and tuning hyperparameters in some methods. For

example, in PLSR and PCR, we can vary the pretreatment methods and the number

of components used on the training set. The models obtained are then compared on

the validation set. The model with the smallest root mean squares error of validation

(RMSEV) is chosen as the final model for practical prediction. In the ideal case, the

validation set should be a separate dataset from the training set. However, this is not

always available. The dataset often comes as a whole one, and we usually manually

split the dataset into training and validation subsets. The procedure is often repeated

for a couple of times, and the samples in the training set and the validation set are

exchanged during the process. The technique is called cross-validation (CV) and

the averaged CV error (RMSECV) is used as an indicator of the performance of

the model. In our study, we frequently use CV for model selection and optimization.

Test set is a completely separate dataset. The test set should be kept away from any

training or model selection process. The final models obtained are compared and

assessed on the test set, to estimate the true prediction performance.

In our study we used five datasets (refer to Chapter 3 for details), four of them

have separate training set and test set. The samples in the training set and the test

set were collected separately, to avoid any accidental relationship between the sam-

ples. One dataset (dataset 1) only has a single group of unsegmented samples. For

that dataset we first manually divide the samples into a training set and a test set,
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then perform our study. We will talk more about the design of experiment in the

corresponding chapter.

2.3.3 Comparing estimates of prediction error

When two different calibration models are given, we need to know how significant

is the difference between the predictive performances of the two models. Suppose

the two methods have been trained to predict y from X on the same training set. The

two models obtained are then evaluated on a common test set. To summarize the

results we generally use the mean of prediction errors (bias), standard deviation of

the errors (SEP) and the root mean square error of prediction (RMSEP) as indicators

of performance. They are defined as:

m =
1
n

n

∑
i=1

ei, (2.35)

SEP =

√
∑

n
i=1(ei−m)2

n−1
, (2.36)

RMSEP =

√
∑

n
i=1 e2

i
n

. (2.37)

Here we denote m as the mean of prediction errors, s as the standard deviation,

n as the number of samples in the test set, and ei, j as the prediction error on the ith

sample in the test set for method j. If we denote d as the difference between the

errors of the two models:

di, j = ei,1− ei,2, (2.38)

and d̄ as the mean of the differences:

d̄ =
1
n

n

∑
i=1

di, (2.39)

then we have the error of d̄:
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sd =

√
∑

n
i=1(di− d̄)2

n(n−1)
. (2.40)

Hence we can calculate the 95% confidence interval on the difference between

the two biases:

CIbias = {(m1−m2)− tn−1,0.025× sd,(m1−m2)+ tn−1,0.025× sd}, (2.41)

where tn−1.0.025 is the upper 2.5% point of a t distribution on n− 1 degrees

of freedom. If such a confidence interval includes zero then there is no significant

difference between the two biases. Normally for a good predictor the bias should

be very small, and the more critical comparison is between the standard deviations,

i.e. the SEPs of the two models. The calculations are described as follows:

First we calculate the correlation coefficient between the two sets of prediction

errors ei,1 and ei,2, denote it as r. Then calculate:

K = 1+
2(1− r2)t2

n−2,0.025

n−2
, (2.42)

and

L =

√
K +

√
(K2−1). (2.43)

Finally we can find a 95% confidence interval for the ratio on the two SEP

values:

CISEP =
SEP1

SEP2
× 1

L
,
SEP1

SEP2
× L

1
. (2.44)

If such a confidence interval includes one, then there is no strong evidence for

a significant difference between the SEP values of the two models. A more detailed

discussion can be found in the book by Næs et al[105].
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2.3.4 Regression coefficients for nonlinear models

Some of the regression methods presented in this thesis are not linear or piecewise

linear. For example, LS-SVM and GPR are nonlinear, nonparametric methods;

when using nonlinear activation functions or nonlinear layers (e.g. convolutional

layer is a nonlinear transformation), neural networks will also be nonlinear. In this

case we cannot use a single regression coefficient curve to describe the model. The

regression formula for a nonlinear method is often not mathematically available or

cannot be obtained. We consider this as one of the major sources of resistance to

popularize black-box regression methods, e.g. neural networks, for NIR calibra-

tion. In this study, we propose a method to visualize the regression coefficients

of nonlinear regression models numerically, for a purpose of understanding and

interpretation.

The visualization method can be used for any predictor, linear or nonlinear.

We treat the predictor as a black box processor that transforms an input spectrum

to a single prediction value. We denote the input spectrum as x of n variables

x1,x2, . . . ,xn, and the predictor as a function f (·). For a linear model the function

can be presented as:

f (x) =
n

∑
i=1

wixi +b. (2.45)

For a complex nonlinear predictor, such as neural networks, such a formula

cannot be obtained. However, for a specific input spectrum, we can use the numer-

ical method to calculate the local regression coefficients:

wi =
f (x1, . . . ,xi + ε, . . . ,xn)− f (x)

ε
, (2.46)

where ε is a very small number such as 10−6. Obviously the regression coefficient

curve for a nonlinear predictor depends on the input x. In this study, when plotting

the regression coefficients of a nonlinear regression model, we randomly draw a few

spectra from the dataset and plot corresponding numerical regression coefficients.
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By observing the profile and the variability of the regression coefficients, we can

examine the robustness and the nonlinearity of the model.

2.3.5 Noise level of a regression model

In general, when evaluating multiple NIR calibration models, we do not always

select the one with the smallest RMSEV or RMSECV, but the most robust model

with an adequate performance. For example, in a PLS regression model, if we find

using more factors does not significantly improve the prediction accuracy, we usu-

ally prefer not to use the extra factors. The same rule applies to other methods. We

can easily find a less regularized, more complex model that has very low validation

error, but this does not mean it works as well on other datasets. The contribution

to the high precision may come from overfitting on the training set. In this case

we should be careful about the performance - noise level trade off of the model.

Normally users just look at the smoothness of the regression coefficient curve,

and judge the noise level of the model subjectively. Here we present a quantitative

method based on Fourier transform to evaluate the noise level of a calibration model.

We first use fast Fourier transform (FFT), which can transform a finite equally

spaced sequence of data in wavelength domain x of N variables x0,x2, . . . ,xN−1

into an equally spaced sequence in frequency domain with the same length

ν(ν0, . . . ,νN−1):

νk =
N−1

∑
n=0

xn · exp(
−i2πkn

N
)

=
N−1

∑
n=0

xn[cos(
2πkn

N
)− i · sin(

2πkn
N

)].

(2.47)

The real and the imaginary parts of the output are the Fourier transforms of the

spectrum’s even and odd parts, respectively. We simply take the absolute value of

the output as the magnitudes of the components.
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We will shift the zero-frequency component in Equation 2.47 to the center, so

the frequency domain has a region of [− 1
2d ,

N−2
2Nd ] if N is even and [− (N−1)

2Nd , (N−1)
2Nd ]

if N is odd. d is the sampling interval in the input sequence, in our case it is the

spectral resolution (5 nm for example). When the number of variables is sufficiently

large (which is true for most of the NIR datasets), the frequency domain has a range

of [−0.5,0.5] per sampling interval. We can denote the ratio on magnitude of high

frequency components (≥ 0.3 for example) in a regression curve as the noise level.

Figure 2.5 shows two examples of FFT on regression curve. We can clearly see that

the noise level increase with the number of factors employed in the model.

Figure 2.5: Fast Fourier transform on two PLSR models. The simpler model (on the top)
has a smooth regression coefficient curve and a lower noise level. The more
complex model has more high frequency components in the curve and hence a
much higher noise level.



Chapter 3

Datasets and software

3.1 Datasets

We use five real-world NIR datasets to evaluate the performances of different cali-

bration methods. The datasets have various sizes and were collected from different

sources. Four of them are original to our research, and have been provided by

Bühler AG. One dataset is publicly accessible from an on-line database.

Dataset 1 consists of NIR spectra and corresponding nitrogen concentration from

1240 wheat grains. Images were recorded using a MCT hyper-spectral camera and

then post processing was used to average the spectral points over the grains to pro-

duce a single spectrum per seed. For each spectrum there are 239 valid wavelength

readings, spanning from 993.0 nm to 2488.4 nm. The nitrogen content was then

measured using combustion-based chemical analysis. 100 random NIR spectra

from dataset 1 are plotted in figure 3.11.

1SNV stands for standard normal variate. Here SNV is used purely for visualization purpose.
Bias and shift are removed to reveal the key profile of the spectra in datasets.
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(a) Raw NIR reflectance spectra. (b) NIR reflectance spectra after SNV.

Figure 3.1: Example NIR spectra from dataset 1

Dataset 2 is on wheat flour. The target constituent is the protein content. Origins

of the samples span the globe. The samples also consist of multiple varieties. The

dataset contains 1000 training samples and 597 test samples. NIR measurement

range is from 850 nm to 1650 nm, with a spectral resolution of 5 nm. 100 random

NIR spectra from dataset 2 are plotted in figure 3.2.

(a) Raw NIR reflectance spectra. (b) NIR reflectance spectra after SNV.

Figure 3.2: Example NIR spectra from dataset 2

Dataset 3 is also on wheat flour. The target constituent is the ash concentration. The

samples have different origins and varieties. There are 6987 training samples and

618 test samples. The spectral range is from 850 nm to 1650 nm, with a resolution

of 5 nm. 100 random NIR spectra from dataset 3 are plotted in figure 3.3.
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(a) Raw NIR reflectance spectra. (b) NIR reflectance spectra after SNV..

Figure 3.3: Example NIR spectra from dataset 3

Dataset 4 contains NIR spectra and corresponding moisture contents of wheat flour.

Samples have different origins and varieties. The spectral range is from 850 nm to

1650 nm. Spectral resolution is 5 nm. The training set contains 700 samples; the

test set has 388 samples. 100 random NIR spectra from dataset 4 are plotted in

figure 4.1.

(a) Raw NIR reflectance spectra. (b) NIR reflectance spectra after SNV..

Figure 3.4: Example NIR spectra from dataset 4

Dataset 5 is a public dataset[106]. The spectra and the corresponding protein con-

tent of single wheat kernels were collected from different locations in Denmark.

The dataset contains 415 training samples and 108 test samples. 100 random NIR

spectra from dataset 5 are plotted in figure 5.1.
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(a) Raw NIR reflectance spectra. (b) NIR reflectance spectra after SNV..

Figure 3.5: Example NIR spectra from dataset 5

Datasets 1 - 4 are original to this paper, and are provided by Bühler AG.

Datasets 2-4 are on wheat flour. The samples was thoroughly homogenized before

being measured. Multiple measurements were repeated on the same sample, under

different conditions. There are no obvious outliers in any of the four datasets. The

training samples and the test samples were collected and measured independently,

under the same spectroscopic and lab systems.

3.2 Software
Here is a list of softwares and development environments used in our studies:

Method Language Environment Main packages
PLSR Matlab 2014b Statistics and Machine

learning toolbox
PLSR Python 3.6.1 scikit-learn
PCA Python 3.6.1 scikit-learn
LS-SVMs Matlab 2014b LS-SVMlab
GPR Matlab 2014b GPML
HMLR Python 3.6.1 /
LWR Python 3.6.1 scikit-learn
CNNs Python 3.6.1 Tensorflow 1.5.0

Table 3.1: List of Languages, development environments and main packages used in each
calibration method.

PLSR in chapter 4 is realized in Matlab in order to compare with LS-SVMs and

GPR. PLSR and PCA in Chapters 5-6 are built in Python 3.6.1. The HMLR method
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is coded from scratch. We find there is no available package for this algorithm.

Tensorflow implemented in chapter 6 was the CPU only version.



Chapter 4

Kernel methods: least squares

support vector machines and

Gaussian process regression

4.1 Background

The problem of interest is the prediction of target constituent concentration in a

sample from its near infrared (NIR) spectrum. Some training samples are used to

learn the quantitative relationship between the target constituent and reflectance

NIR spectrum. In general, spectral data are highly multivariate and require di-

mensional reduction. PCR and PLS regression first transform raw data to latent

variables, on which MLR is directly applied. Linear methods such as these perform

reasonably well in most practical applications. However, in some cases, e.g. when

samples are not homogeneous or predictions are required over a large range so that

nonlinearity occurs, linear models fail to maintain high accuracy across the range.

More specifically, when samples are not homogeneous, the fundamental function

that correlates NIR spectrum with the target constituent can vary significantly,

which makes it difficult to capture such kind of relationship with a single linear

function; Even for homogeneous samples, if the constituent covers a large range,

i.e. extreme samples exist, linear regression methods fail to model both extreme

samples and normal samples. Nonlinear regression methods are then relevant. In
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this chapter we introduce two kernel methods to tackle nonlinearity in NIR cali-

bration: least squares support vector machines (LS-SVM) and Gaussian process

regression (GPR).

Support vector machines (SVM) can be used for both classification and func-

tion estimation[107]. The method has been used in spectroscopic analysis for

over a decade. Demiriz et al. (2001) proposed using SVM as a technique for the

prediction of the biological activity of a compound from its chemical structure.

They addressed the overfitting issue that arises when there are very many variables

and very few training samples. Model selection and bagging strategies were pro-

posed to improve the performance of the model. Xu et al. (2006)[108] introduced

SVM as a calibration method in chemometrics for solving classification problems.

Devos et al. (2009) further discussed on using SVM in chemometrics, with a

focus on cross-validation for parameter optimization. They visualized the SVM

models for interpretation purposes. LS-SVM has been introduced as a regression

technique[109]. Cogdill and Dardenne (2004)[110] further discussed the LS-SVM

regression method in the context of chemometrics and NIR spectroscopy.

Gaussian processes (GP) were introduced for solving regression problems,

and are often considered as the state-of-the-art nonparametric Bayesian regression

method[111][112]. However, there are very few researches on applying GPR for

spectroscopic analysis. Chen et al. (2007)[113] introduced GPR as a regression

method for NIR applications, from a perspective of Bayesian modelling. Chen

and Wang (2010)[114] continued exploring Bayesian variable selection for GPR,

which was reported to improve the predictive capability of the models on NIR ap-

plications. However, we find the lack of research into how inference methods can

impact GPR on spectroscopic data; Existed studies were carried on relatively small

datasets. In this research we are trying to contribute to the knowledge by looking

into details on various inference methods in GPR, and extend the study to a large

dataset to understand how training set size can be important for PLSR, LS-SVM
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and GPR methods.

In this chapter our main focuses are on the following topics:

1) Reintroduce LS-SVM and GPR as regression methods in the context of NIR

spectroscopy.

2) Compare the performances of LS-SVM and GPR and the classical regres-

sion method of PLSR on our NIR dataset 1 (refer to chapter 3 for detailed dataset

description).

3) Address the differences between LS-SVM and GPR from theoretical per-

spective and on their prediction performances; provide insights on choosing the

optimization method and the loss function on practical NIR applications.

The material in this chapter has been published in the Journal of Near Infrared

Spectroscopy (2017)[115]

4.2 Methods

4.2.1 Least squares support vector machines

PLSR is normally considered as one of the most powerful high-dimensional linear

regression methods. However, the predictive capability of PLSR is sometimes lim-

ited due to a non-linear relationship between the NIR spectrum and the chemical

constituent of interest. In order to extend the regression method to a non-linear

framework, new variables carrying nonlinear information need to be introduced.

This can be achieved by mapping the input data into a higher dimensional feature

space through a transformation φ(.) : Rk→ R
kh . The mapping process can be done

by a linear combination of the newly introduced variables, which includes non-

linear transformations and expansion of the original variables. The introduced non-

linear feature space potentially has infinite dimensions. Prediction ŷ on an observed

sample x is then calculated as follows:

ŷ(x) = wT
φ(x)+b, (4.1)
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where b is the offset term, φ(x) are the nonlinear features and w is a vector of

regression coefficients. Such a coefficient vector also has potentially infinite di-

mensions. Given a training set with N measured reference values y of yi, i =

1,2, . . . ,N and their NIR spectra with K wavelength readings X with entries of

xi j, i = 1,2, . . . ,N; j = 1,2, . . . ,K, we can construct a ridge regression on the nonlin-

ear feature space with a loss function defined as:

J =
1
2

wT w+ γ
1
2

N

∑
i=1

e2
i , (4.2)

under the constraint:

yi = wT
φ(xi)+b+ ei, i = 1, . . . ,N. (4.3)

In Equation (4.2) γ determines the regularization strength, which is related to

the signal amplitude in the measurements. When the signal is strong we can use

large γ , otherwise we should use a relatively smaller γ to prevent overfitting.

To minimize the loss function defined in Equation (4.2), we can construct the

Lagrangian with equality constraint[109]:

L(w,b,e;ααα) = J −
N

∑
i=1

αi(wT
φ(xi)+b+ ei− yi), (4.4)

where ααα are Lagrangian multipliers. The optimal solution can be found by mini-

mizing the Lagrangian function w.r.t. its parameters (w,b,e;ααα):

∂L
∂w

= 0→ w =
I

∑
i=1

αiφ(xk),

∂L
∂b

= 0→
I

∑
i=1

αi = 0,

∂L
∂e

= 0→ αi = γei,

∂L
∂αi

= 0→ wT
φ(xi)+b+ ei− yi = 0.

(4.5)

By substituting w and ei, the solution for ααα and b can be expressed as:
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0 1T

1 ΩΩΩ+ I/γ

b

ααα

=

0

y

 , (4.6)

where Ω is the kernel function:

Ωnm = φ(xn)
T

φ(xm) =K(xn,xm), n,m = 1,2, . . . , I.

ΩΩΩ =K(X,X).
(4.7)

In the following study we only consider using the radial basis function (RBF)

kernel, formulated as:

K(xn,xm) = exp
(
−‖ xn−xm ‖2

l2

)
. (4.8)

The prediction formula for a new observation xN+1 can be expressed as:

ŷ(xN+1) =
N

∑
i=1

αiφ(xN+1)
T

φ(xi)+b

=
N

∑
i=1

αiK(xN+1,xi)+b.

(4.9)

By substituting ααα by the solution of Equation (4.6), we can obtain the follow-

ing equation:

ŷ(xN+1) =K(xN+1,X)

[
K(X,X)+

N
γ

]−1

[y−b ·1]+b. (4.10)

Notice that only two free hyperparameters (γ, l) need to be tuned in the final

target formulation. γ is influenced by the signal strength, and l, which is sometimes

called length-scale in the input space, determines how sensitive y is to variances in

X. When l is small, y is very sensitive to small variances in the input space and

thus the obtained model can give precise predictions, but with a huge risk of over-

fitting; when l is large, y changes slowly, so the predictions are less precise but more

robust against random noise in X. These two free parameters can be tuned through

cross-validation on the training set to minimize some predefined loss functions, for

example, squared error loss as utilized in our research.
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4.2.2 Gaussian process regression

A GP is a collection of random variables such that any finite subset exhibits a joint

Gaussian distribution[116]. First consider that the measured responses in the train-

ing set y of yi, i = 1,2, . . . ,N has a ground truth of f of fi, i = 1,2, . . . ,N, which is

also called the latent function. In our case the real constituent concentration in the

sample is f, and we can only estimate it through chemical measurement, the result

of which is y. In the ideal case the difference between the two terms is a Gaussian

white noise ε:

yi = fi + εi. (4.11)

Assume this Gaussian white noise term has a mean of zero and a precision of

γ , the conditional probability distribution of the measured responses given the latent

function can be described by a Gaussian likelihood function:

P(y|f) =N (f,
1
γ

I). (4.12)

There are many other possible likelihood functions to describe different types

of noise. For simplicity in our study only Gaussian likelihood was considered. The

latent function described above is the target GP. A GP is fully defined by its mean

functionM and covariance functionKGP. Given a set of input spectra X, with rows

of x1,x2, ......,xN , the latent function f has a joint Gaussian prior:

P(f|X) =N (M,KGP (X,X)), (4.13)

where M is the mean vector with the size of N and KGP is an N×N covariance

matrix. In this research we used the RBF kernel as the covariance matrix. The

(n,m)th entry of KGP(X,X) is formulated as:

KGP(xn,xm) = σ
2
s K(xn,xm) = σ

2
s exp

(
−‖ xn−xm ‖2

l2

)
, (4.14)

where σ2
s tells the signal strength in the dataset and (xn,xm) are the (n,m)th samples
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in the training set. Normally, for notational and computational convenience, the

mean function M is set to 0, and this is appropriate if the responses are mean-

centered. So the prior described in Equation (4.13) can be modified as:

P(f|X) =N (0,KGP(X,X)). (4.15)

We can multiply the new prior term described by Equation (4.15) with the

likelihood function in Equation (4.12), and integrate out f. As a result we get:

P(y|X) =N (0,KGP(X,X)+
1
γ

I). (4.16)

We call the probability distribution P(y|X) the marginal likelihood (also

termed evidence). Marginal likelihood is often used as the loss function to tune

the three hyperparameters in GP: γ , σ2
s and l. Marginal likelihood can be expressed

as the integral of the likelihood and the prior over the underlying function f:

P(y|X) =
∫

f
P(y|f)P(f|X), (4.17)

which can be further expanded as:

P(y|X) =(2π)−I/2|KGP(X,X)+ I/γ|−1/2

× exp(−1
2

yT (KGP(X,X)+ I/γ)−1y).
(4.18)

The first term on the right hand side of Equation (4.18): |KGP(X,X)+I/γ|−1/2

can be interpreted as the regularization term. It penalizes on the complexity of the

kernel function. The second term: exp(−1
2yT (KGP(X,X) + I/γ)−1y) is the data

fitting term. So the marginal likelihood as a loss function for training purpose is

a regularized fitting error loss, just like L2 regularization in LS-SVM. The three

free hyperparameters γ , σ2
s and l in Equation (4.18) can be tuned to maximize

this marginal likelihood on the training set. This technique is sometimes called

evidence maximization. Unlike cross-validation in PLSR and LS-SVM, evidence

maximization evaluates the gradient of the marginal likelihood over hyperparam-

eters, and uses the whole training set at one time, without dividing it into training
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and validation subsets. More importantly, the optimization target is not to min-

imize the squared error loss, which only depends on the point predictions. The

likelihood is determined by both the mean and the variance of the predictive distri-

bution.Conceptually, the final target is to obtain a precise and confident predictive

model.

It is worth noting that we can also use cross-validation to optimize the hy-

perparameters in GPR. In addition, we can also set RMSE as the loss function.

However, in that case we would lose the information on predictive variance, and the

GPR model obtained is then equivalent to a LS-SVM model.

In the context of NIR calibration, the main interest is making predictions on

new observations based on the training set X = (xi, i = 1,2, . . . ,N) and y = (yi, i =

1,2, . . . ,N). In GPR, to predict on a new NIR spectrum xN+1, we construct a set of

N + 1 latent variables f1, . . . , fI, fN+1 with a joint zero mean Gaussian distribution

and a predefined covariance function:

P( f1, f2, . . . , fN , fN+1) =N

0,
KGP(X,X) KGP(X,xN+1)

KGP(xN+1,X) σ2
s

 . (4.19)

Taking into account the Gaussian noise ε in y, the joint Gaussian distribution

of y and fN+1 can be expressed as:

P(y, fN+1) =N

0,
KGP(X,X)+ III/γ KGP(X,xN+1)

KGP(xN+1,X) σ2
s

 . (4.20)

Conditional on (X,y,xN+1) the variable fN+1 has the mean and variance of :

E( f̂N+1|X,y,xN+1) =KGP(xN+1,X)[KGP(X,X)+ III/γ]−1y,

var( f̂N+1|X,y,xN+1) = σ
2
s −KGP(xN+1,X)[KGP(X,X)+ III/γ]−1KGP(X,xN+1)

(4.21)
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GPR gives full probabilistic predictive distribution for the new observations.

The predictive variance is sometimes very useful, for example, for outlier detec-

tion: we can simply reject predictions with high predictive variance. However,

since interpreting variance on predictions requires one more degree of freedom

(GPR has one more hyper-parameter), it also increases the difficulty of tuning the

hyper-parameters, especially when the training set is a small one.

4.3 Experiments
Three high-dimensional regression methods (PLSR, LS-SVM and GPR) were ap-

plied to the same NIR dataset: dataset 1 as described in chapter 3. Their perfor-

mances on the test set were compared. All of the calculations were performed in

Matlab R2014b (The MathWorks Inc, MA, USA). PLSR was achieved with the

Statistics and Machine Learning Toolbox; LS-SVM was realized with LS-SVMlab

package[117] and GPR was done with GPML package[118].

4.3.1 Preprocessing

Several preprocessing methods were evaluated through leave one out cross vali-

dation (LOO-CV) on the PLSR method. In this study, we are trying to show the

superiority of LS-SVM/GPR , hence the preprocessing methods were selected by

optimizing the performance of PLSR. As a result, we can conclude that the im-

provements from nonlinear regression methods are not due to the specific choice of

the preprocessing methods. The combination of standard normal variate (SNV) +

Savitzky-Golay derivative exhibited the smallest cross-validation error. Hence for

all the regression methods, raw spectra were first preprocessed by SNV, to remove

constant offset and scatter effect by centering and rescaling individual spectrum.

Standard normalized spectra were then transformed by Savitzky-Golay 2 side points

(i.e. a window length of 5), 2nd polynomial order fitting first derivative. The same

preprocessing treatment was applied for PLSR, LS-SVM and GPR.
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4.3.2 Randomization

Since we only have a single dataset, the 1240 samples were first randomly divided

into two groups: group A (with 360 samples) as the training set and group B (with

880 samples) as the test set. All of the three regression methods were trained on the

same training set. Obtained models were then applied to predict nitrogen concen-

tration in the same test set. A hypothesis test was then applied to tell whether the

differences are significant (refer to 2.3.2 for details). The splitting-training-testing

process was repeated 5 times in total.

4.4 Result

4.4.1 Comparing global SEP

Comparisons on biases and SEP between the 3 models (refer to section 2.3.2 for

details) were performed on 5 separate randomized tests. Results presented in Table

(4.1) show SEP and biases for the three methods on each randomized test. Table

(4.2) shows the 95% confidence intervals for the true differences in biases. Table

(4.3) gives the 95% confidence intervals on the ratios of SEP.

Random split PLS LS-SVM GPR
SEP Bias SEP Bias SEP Bias

1 0.165 0.013 0.134 0.004 0.131 0.004
2 0.166 0.005 0.133 0.002 0.131 0.004
3 0.162 0.01 0.131 0.016 0.123 0.007
4 0.164 0.006 0.127 0.001 0.125 0.006
5 0.168 -0.01 0.126 -0.004 0.125 -0.002

Average 0.165 0.005 0.130 0.004 0.127 0.004

Table 4.1: SEP and Biases (%) for PLSR, LS-SVM and GPR on each randomized test set

Random split PLS - LS-SVM PLS - GPR LS-SVM - GPR
1 (0.002,0.017) (-0.002,0.036) (-0.011,0.025)
2 (-0.003,0.024) (-0.007,0.04) (-0.013,0.024)
3 (-0.014,0.002) (-0.014,0.036) (0.006,0.040)
4 (-0.003,0.012) (-0.007,0.03) (-0.01,0.025)
5 (-0.013,0.002) (-0.031,0.008) (-0.023,0.011)

Average (-0.006,0.011) (-0.012,0.030) (-0.010,0.025)

Table 4.2: 95% confidence interval for the true difference in biases (% nitrogen)
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Random split PLS / LS-SVM PLS / GPR LS-SVM / GPR
1 (1.171,1.283) (1.198,1.313) (0.991,1.045)
2 (1.176,1.302) (1.201,1.327) (0.992,1.045)
3 (1.190,1.308) (1.256,1.370) (1.021,1.069)
4 (1.236,1.352) (1.243,1.384) (0.991,1.029)
5 (1.274,1.392) (1.294,1.404) (0.993,1.031)

Average (1.209,1.327) (1.243,1.359) (0.998,1.050)

Table 4.3: 95% confidence interval for the ratio of true SEP (% nitrogen)

From above tables we can obtained the following results and conclusions:

1. For all of the 5 repeated tests, there were consistent and significant differ-

ences on the SEP between PLS/LS-SVM and PLS/GPR. The LS-SVM and GPR

always out-perform PLSR on predictive precision on our dataset. Averaged ratios

of SEP were: PLSR/LS-SVM = 1.270 and PLSR/GPR=1.300.

2. Result from test 3 showed that the SEP and the bias of LS-SVM were

statistically larger than GPR, but the differences were both very small. Other tests

showed no significant differences on SEP and bias between LS-SVM and GPR.

These results indicate that the two non-linear methods were essentially equivalent

on predictive capability on this NIR dataset.

3. Most of the test results showed no significant difference in biases between

PLS, LS-SVM and GPR; this is expected since all of the models should be globally

unbiased. As a result, significant difference on SEP, which can be interpreted as

predictive precision, also indicates significant difference on RMSEP (predictive

accuracy).

4.4.2 Local error behavior

Above results indicate that the two non-linear methods globally perform better than

the linear method. In this section, we will explore whether the improvements are

consistent over the whole range. One good way to visualize local behavior is to plot

predictions against their reference values on the test set, as shown in Figure (4.1).



4.4. Result 65

(a) Predicted vs. Observed for PLSR

(b) Predicted vs. Observed for LS-SVM

(c) Predicted vs. Observed for GPR

Figure 4.1: Predictions for each individual sample in the validation set are plotted against
their true observations for PLSR(a) , LS-SVM(b) and GPR(c), with a linear and
a quadratic fit to each of them.

Results showed that for PLSR, even through the performance was acceptable

in the middle part of range (roughly 1.5%—2.5%), predictions were heavily biased
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in the two tails from the regression line, due to two possible reasons:

1) The investigated constituent (nitrogen) concentration has an approximately

linear relationship with NIR reflectance within a small range near the population

mean, but nonlinear effects become non-ignorable outside this linear range.

2) Predictive capability of PLSR is limited. In order to minimize the global

loss, PLSR optimizes the predictions for the samples in the middle part, which

accounts for the majority of the population. As a result, within this range, good

correlation between predictions and the ground truth can be well maintained. The

extreme samples are predicted less well, though this has a limited impact on the

overall squared error loss because there are far fewer of them (see Figure 4.1).

In contrast, the non-linear models exhibited fairly consistent standard deviation

across the range. Non-linear biases at two tails were removed and predictions were

then almost linearly related to the observations for all the samples in the test set.

The slope of the regression line was also improved from 0.84 to 0.93 by using GPR.

Considering any inverse calibration method implicitly uses population distribution

in the training set as a prior, all the predictions are naturally shifted to the sample

mean[119], in order to minimize global error. For non-linear models, since the fit

was much better, such kind of shrinkage to the mean was much less pronounced.

In order to quantitatively compare predictive performances of PLS, LS-SVM

and GPR on the low and high constituent regions, predictions on the first 5% and

the last 5% in nitrogen concentration of the samples in the test set were evaluated

separately. Again, since all the comparisons were carried on the common subsets,

the same hypothesis test method was used to see whether the differences on SEP

and bias are significant. Detailed results on comparison between PLSR and GPR

are shown in Table 4.4.
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Model LOW(first 5%) High(last 5%)
SEP Bias SEP Bias

PLSR 0.151 0.009 0.213 -0.156
GPR 0.108 0.020 0.160 -0.091
CI (1.251,1.562) (-0.035,-0.011) (1.154,1.521) (-0.091,-0.024)

Table 4.4: Comparison between PLSR and GPR on different nitrogen ranges. Last row
presents 95% confidence interval for the true difference of biases and true ratio
of SEP

Some interpretations of these results:

1) It can be seen, unsurprisingly, that GPR is significantly better than PLS over

the range. Especially, the improvement is greatest in the two tails.

2) From Table 4.2 we see that there was no significant difference on global

biases between PLSR and GPR, and both of them were very close to 0. However,

Table 4.4 indicates the significant differences on biases at the two tails, and PLSR

was, surprisingly, less biased on the first 5% of the samples. This can be explained

by Figure (4.2).

Figure 4.2: PLSR predictions VS. observations on low constituent range. Red:linear fitting;
Green: quadratic fitting; Black: target (y=x).

The red line is a linear fit of prediction on observed. The y= x black line shows

the shrinkage to the mean that occurs with PLSR. Because this shrinkage is in the

same direction on the curvature of this end of the range, it actually reduces the bias
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of PLSR. In contrast, at the high end of the range, the shrinkage and curvature are

in opposite directions, and PLSR has a very high bias compared to GPR.

4.4.3 Learning efficiency

All of the above conclusions are obtained on a fixed-size training set. A very im-

portant question is how efficiently each method learns with a growing training set.

In practice, the reference measurement can be very expensive and time consuming.

Sometimes there are no sufficient training samples. Then it becomes desirable to

understand how these different methods perform with a varying training set size.

In Figure (4.3), predictive accuracy on the test set (RMSEP) is plotted against the

number of samples in the training set. For each fixed size of training set, RMSEP is

averaged over 5 randomized splitting of training and test sets.

Figure 4.3: RMSEP for 3 models with varying training set size. PLSR: Cross-validations
was performed to choose the number of factors for each test ; GPR and LS-
SVM: RBF kernel.

It can be observed that errors for all the 3 models decrease when the training

set size increases, and then gradually converge to their limits. However, they have

different learning speeds. LS-SVM and PLSR have similar trends, except for a

roughly constant offset on the RMSEP between the two models. For GPR, when

the training set size is small, the predictive capability is extremely poor (a RMSEP

of 0.38% is close to the standard deviation of the population distribution in the test

set so the GPR model has almost 0 predictive capability), but the accuracy improves
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quickly with an increasing training set size, and soon becomes non-distinguishable

from LS-SVM.

This is the first time in this study when GPR and LS-SVM exhibit significant

difference in their predictive performance. It is important that we understand what

makes the difference. By comparing Equation (4.10) and Equation (4.21), it can

be seen that the calculations for making point predictions in the two methods are

very similar. The covariance function used in GPR is KGP = σ2
s K, where K is the

same kernel function used in LS-SVM. If we scale 1
γ

with the same multiplier σ2
s

then this multiplier actually does not affect E( fN+1). By further setting the offset

term b in LS-SVM to 0, the two prediction formula are mathematically equivalent.

This means, with an appropriate choice of hyper-parameters, the two methods can

produce identical predictions. However, they have different strategies for hyper-

parameter optimization.

1) In LS-SVM, the goal is to minimize the squared error loss by cross-

validation, whereas GPR tries to maximize marginal likelihood on the training

set. They are very different optimization targets. Imagine that one model gives

correct predictions everywhere in the test set, but with quite large variances. Un-

der the criteria of LS-SVM it is a perfect model because it has 0 squared error

loss. However, it is a bad predictor for GPR because the predictive variance is too

high. The loss function in GPR — marginal likelihood is not strictly equivalent to

the predicative capability when we only care about predictive mean. In this sense

marginal likelihood might not be suitable to indicate the quality of the model, espe-

cially when the training set is a small one, because in that case there is not enough

information to estimate the full probability distribution. The squared error loss

depends only on the predictive mean, so it concentrates more on giving accurate

predictions, which helps to generalize better when the available evidence is weak.

However, if the probabilistic information is needed, then we need the predictive

variance on new observations. This is also the advantage of GPR. However we
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inevitably need more training samples in that case.

2) In our study, LS-SVM used LOO-CV to tune the hyperparameters, but GPR

implemented here used evidence maximization (EM). Notice that we can also easily

set LOO-CV as the inference method in GPR.Tests showed that different inference

methods led to different results. We believe that marginal likelihood involves es-

timating the probability of the observations given the assumptions of the model,

whereas LOO-CV has no prior assumption of the model. As a result, LOO-CV is

more robust against model mis-specification[120]. Results also indicate that when

using LOO-CV for maximizing marginal likelihood, GPR generalizes better when

the training set is a small one, refer to Table (4.5) for a comparison on inference

methods.

Index LOO-CV Evidence Maximization
1 0.287 0.356
2 0.246 0.337
3 0.241 0.304
4 0.248 0.269
5 0.264 0.311

Table 4.5: RMSEP of GPR with LOO-CV and gradient based evidence maximization for
5 different randomized tests. Training set size= 60. Loss function = marginal
likelihood.

It seems that LOO-CV is strongly preferable when the training set is small.

When data provided is insufficient, LOO-CV conditions more on the observation

and hence uses less knowledge from the prior, which can be mis-specified. How-

ever, LOO-CV is not always better than EM in tuning the hyperparameters: be-

cause cross-validation conditions too much on observations, there is a higher risk

of over-fitting. Since GPR implemented in our study used gradient based evi-

dence maximization, unsurprisingly it had relatively worse performance compared

to LS-SVM when the training set is a small one. On the other hand, there was

no hyper-parameter initialization in our GPR configuration (where in the LS-SVM,

coupled simulated annealing was employed to find suitable start values for hyper-

parameters), which makes it more vulnerable to bad local minima for small training
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sets. Notice this could be a small advantage when training set size is large so local

minima are not an issue, because it is more computationally efficient.

4.5 Conclusions

Three models, partial least squares regression, least squares support vector ma-

chines and Gaussian process regression were introduced and studied on our dataset

1. Here is a summary of key results and conclusions:

1. Nonlinear methods showed an enhanced prediction performance: the av-

eraged ratio on SEP of PLS/LS-SVM and PLS/GPR were 1.270 and 1.300 cor-

respondingly. The two non-linear models had similar performances and both im-

proved significantly compared to PLSR. There was no strong evidence to indicate

any significant difference in biases between the three methods. In PLSR, nonlinear

effects led to a large bias and error on prediction of extreme samples. Our study

proved that the relatively large error occurring with extreme samples can be cor-

rected by the introduced nonlinear methods.

2. We found that predictive accuracy for all of the three methods grew with the

training set size. LS-SVM was strictly better than PLSR, independent of the size of

calibration set. GPR had poor prediction performance when the training set is small,

due to the characteristic of loss function and optimization algorithm. However, the

performance of GPR improved quickly with the training set size, and soon became

non-distinguishable from LS-SVM. To fix the issue, we can set the sum of squared

errors as the loss function in and use cross-validation to tune the hyperparameters in

GPR. By doing so the GPR method exhibited an improved predictive performance

on small training sets, which was very similar to the LS-SVM method.

It is worth noting that kernel methods may not be the best option for very large

dataset. They are computationally expensive both on training and on prediction.

For example, in GPR, evaluation of marginal likelihood involves inversion of the
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covariance matrix on the whole training set, which has a computational complexity

of O(N3), where N is the number of samples in the training set; when tuning the

hyperparameters, computation of the derivatives requires additional time ofO(N2).

LOO-CV is even more computationally expensive than the EM + gradient optimiza-

tion algorithm. More importantly, kernel methods are all non-parametric (i.e., they

are not formulated by a set of regression coefficients), which means when making a

prediction, we need to evaluate the covariance (e.g., exponential of squared distance

for RBF kernel) of the new observation with the whole training set. In our case the

training set can easily scale to more than 5000 samples. We found size of a kernel

model and computational burden on prediction are not trivial. These limitations are

problematic in real world applications, especially for a fast speed on-line system.



Chapter 5

Bayesian graphical model:

hierarchical mixture of linear

regressions

5.1 Background

Hierarchical mixture of models is a tree-structured scheme for regression and clas-

sification. The method was first presented by Jorden and Jacobs(1994)[121]. The

architecture is similar to some other well-known algorithms including classifica-

tion and regression trees (CART)[122] and multivariate adaptive regression splines

(MARS)[123]. The input space is segmented into a sequence of regions, with a

simple function (sometimes termed an expert) fitted in each of them. A set of

gating functions are trained to determine which region the input instances belong

to. The regression and the gating coefficients are optimized through maximum

likelihood. There are several limitations to the method: it is prone to overfitting

due to a large number of free parameters; and singularity may arise when any of

the regions contains only a small number of training samples. A further improved

tree method is random forest[124]. In a random forest model, there are many weak

decision/regression trees. Each tree is trained on different samples and different

features. It is proved that random forest can improve prediction precision and is

more robust against over-fitting and missing values[124]. However, neither classical
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decision/regression tree (CART, MARS) or random forest is our desired solution

in spectroscopic calibration, due to the following reasons: 1) decision/regression

tree and random forest usually consist of many end models, to make it an overall

fairly strong predictor. However, we are looking for a solution to do linear model

ensemble where we have strict constraint on model complexity. 2) Model inter-

pretation and visualization are very important for industrial applications, especially

when lacking of training/test data. Decision/regression tree and random forest are

poor in interpretability. In practical applications, these limitations make them less

popular on spectroscopic calibration. Hence in the following research, we do not

use CART, MARS or random forest as a benchmark on predictive capability.

Waterhouse, Mackay and Robinson(1996)[125] overcame such limitations by

adopting a Bayesian treatment for the mixture of experts. They employed Gaussian

distributions over regression and gating parameters to keep the model tractable.

Similarly, Ueda and Ghahramani(2002)[126] used the joint distribution over all in-

put and output variables, for tractability. These architectures are either not flexible,

or redundant for making predictions.

Bishop and Svensen(2002) [127] offered a full Bayesian treatment for the

mixture of experts. The gating functions were in sigmoid-like form, which spoils

the tractability of the whole distribution. To handle this, optimization was based on

a well-defined lower bound on log marginal likelihood. We find the proposed ar-

chitecture flexible and it can be easily adopted for NIR applications through minor

alterations.

A similar calibration method to the mixture of models in the chemomet-

rics context is locally weighted regression (LWR). The method was presented by

Clevenland and Devlin (1988)[128], then introduced to NIR calibration by Næs et

al.(1990)[129]. In LWR, when making predictions for unknown observations, we

first search for a neighbourhood subspace of the unknown observation in the input
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, i.e. spectral, space, where a linear regression is built locally. The inputs to the

method are usually compressed features, e.g. principal components or PLS factors.

However, the method is non-parametric. It is demanding on the size of the training

set, especially when predicting extreme samples. Prediction speed is also relatively

slow, since predictions are based on a neighbourhood seeking and recalibration

procedure (it can be problematic for high speed on-line systems, just like LS-SVM

and GPR introduced in chapter 4). In addition, training a LWR model requires prior

knowledge on the number of neighbors, choice of weight function and distance

measurement. Such kind of hyperparameters can be sensitive to the characteristics

of the available training sets and the target constituents.

In our chapter, we explored the use of Bayesian hierarchical mixture of linear

regressions (HMLR) for multivariate spectroscopic analysis. The method is fully

parametric. The input space was segmented into subsequence regions by a set of

probabilistic gating functions. Considering collinearity in spectral data, we used

PLS compression prior to the regression method. As a result, a PLS model was

trained on each local region. Finally, the PLS factors in each sub model were

unfolded back to the original space (raw spectral data), for the purpose of interpre-

tation and visualization.

In this research, our main contribution to knowledge includes:

1. We propose a novel structure of linear regression ensemble for spectro-

scopic calibration. We explain in detail how to train the model by using Bayesian

DAG and variational inference.

2. We derive equations for parameter update from scratch and show how to

optimize the model step by step.

3. We visualize the obtained HMLR models and compare them with the PLS
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regression models. We show the improvements of the HMLR method in many

aspects. We discuss the gating scheme in the HMLR method and provide insights

for model interpretation.

The material in this chapter has been published in Chemometrics and Intelli-

gent Laboratory Systems (2018)[130]

5.2 Methods

5.2.1 Dimension reduction and preprocessing

The task is to train a regression model from a set of N training instances {xxxn,yn},

where xxxn is the original NIR spectrum and yn is the lab measurement of the target

constituent. Preprocessing treatments were applied to the raw spectra before cali-

bration. Preprocessing methods were chosen by CV on the PLS regression method

in each dataset. Since NIR spectra are high dimensional and mutually dependent,

dimension reduction was applied to the preprocessed spectra to reduce the num-

ber of variables. PLS with NIPALS decomposition was used to transform original

space xxxn into a selection of latent variables φφφ n. The number of PLS factors to be

used were chosen by CV on a classical PLS regression model.

5.2.2 Overview of the graphical model

The structure of HMLR can be illustrated by figure (5.1). Red nodes in the graph

represent a sequence of gating functions, black nodes are the component linear

regression models. When a new observation xxxn+1 is given, it flows through the

decision tree, each gating node vvvi decides whether the current component model

Mi should be used to predict the observation. In our case the gating nodes are

probabilistic. Outputs of the gating nodes are not binary decisions, but a set of

probabilistic weights of the corresponding component models. In the end, predic-

tions from all component models are weighted averaged out by those weights.
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xxxn+1

vvv111

vvv222

...

vvvkkk

MK+1 Mk

...

M2

M1

Figure 5.1: Nested structure for integrating linear regression models. Red nodes: gating
nodes, determine weights of component linear models; Black nodes: compo-
nent models, each end model is an independent linear expert

The critical step is to learn the gating functions VVV and component linear mod-

els MMM from a given training set. For a total number of N training instances {φφφ n,yn},

assume there are K+1 underlying linear regression functions wwwi, i = 1,2, . . . ,K+1.

Gating functions VVV determine the weight of each component model for the input

φφφ n. A label zzzn is assigned to each of the training samples. In this study, zzzn is a

vector of K+1 binary variables in training (i.e., either 0 or 1 depending on whether

the corresponding end model is assigned). Appropriate regularization was added

on these parameters to avoid over-fitting. This is achieved by defining prior distri-

butions on the parameters.

A Bayesian directed acyclic graph (DAG)[131] can be used to describe the

dependency of the parameters and the observed data in the model. The DAG is

shown in figure (5.2). The rectangular box represents N training samples. The con-

nection from the black dot xxxn to φφφ n is a deterministic transformation, which is PLS

data shrinkage in this study. {ααα,βββ} are hyperparameters for prior distributions on

{WWW ,VVV}. τττ is a vector of length of K +1, indicates the precision of each component
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model.

βββ VVV

zzznnn

φφφ nnn
xxxnnn

τττ yn

ααα

WWWN

Figure 5.2: Directed graphical model for mixture of linear experts.

5.2.3 Loss function: complete data log-likelihood

As introduced, the target is to find a set of parameters that fits the training set. The

complete data log-likelihood (CDLL) is introduced as the loss function. According

to the graphical model in figure (5.2), CDLL can be expressed as:

p({φφφ nnn,zzznnn,yn}n=1,...,N ,WWW ,VVV ,ααα,βββ ,τττ) =
N

∏
n
{p(yn|WWW ,zzzn,φφφ n,τττ)p(zzzn|VVV ,φφφ n)}

× p(VVV |βββ )p(WWW |ααα)p(ααα)p(βββ )p(τττ),
(5.1)

where p(yn|zzzn,φφφ n,τττ,WWW ) is a Gaussian distribution centered at the predictive mean

with a precision vector of τττ . The gating function p(zzznnn|VVV ,φφφ nnn) is a sigmoid distribu-

tion, which realizes the soft probabilistic splits. The following equations formulate

the conditional probabilities:

p(yn|zzzn,φφφ n,τττ,WWW ) =
K+1

∏
i=1
N (yn|wwwT

i φφφ n,τ
−1
i III)zni , (5.2)
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p(zzzn|VVV ,φφφ n) =
K

∏
i=1
{σ(vvvT

i φφφ n)
zni [1−σ(vvvT

i φφφ n)]
1−zni}t(i,zzzn)

=
K

∏
i=1
{exp(znivvvT

i φφφ n)σ(−vvvT
i φφφ n)}t(i,z

zzn).

(5.3)

The logistic function σ(x) is defined by:

σ(x) =
1

1+ exp(−x)
. (5.4)

Here a binary gating indicator t(i,zn) is introduced for the training purpose.

Notice that in the training procedure, we believe one and only one underlying model

is the ground truth for each training sample, and we are trying to maximize the

weight on that model. t(i,zn) indicates whether the ith node is active. For example,

if gating node 1 (refer to figure 5.1, the gating node on the top) tells us that the first

model is the ground truth, then the rest of the regression tree will not be activated

(because there is only one ground truth per sample in the training procedure). t(i,zzzn)

is formulated as:

t(i,zzzn) =

1 i = 1,

1−∑
j<i
j=1 zn j i≥ 2.

(5.5)

Notice that Equation (5.3) gives the distribution of zn1 to znK , not including

zn(K+1). Since one and only one digit of zzzn is 1 (again, because during training we

assume there is only one ground truth model), the following condition needs to be

satisfied:

p(zn(K+1) = 1) =
K

∏
i=1

p(zni = 0). (5.6)

The distributions of the regression coefficients and the gating coefficients are

all Gaussian, with precisions from Gamma distributions:

p(VVV |βββ ) =
K

∏
i=1
N (vvvi|0,β−1

i III), (5.7)



5.2. Methods 80

p(WWW |ααα) =
K+1

∏
i=1
N (wwwi|000,α−1

i III), (5.8)

p(ααα) =
K+1

∏
i=1

Gam(αi|aα ,bα), (5.9)

p(βββ ) =
K

∏
i=1

Gam(βi|aβ ,bβ ), (5.10)

p(τττ) =
K

∏
i=1

Gam(τi|aτ ,bτ). (5.11)

Now the target is to find a set of ZZZ,VVV ,WWW ,ααα,βββ ,τττ that maximizes CDLL de-

fined by Equation (5.1) given a fixed training set {φφφ n,yn}. The optimization can

be achieved by using the expectation maximization (EM) algorithm and variational

inference.

5.2.4 Expectation maximization and variational inference

The EM algorithm[132] is often used to find maximum likelihood estimates of the

parameters in a statistical model. It runs iteratively to optimize the parameters and

the latent variables in the model, where the latent variables are often unobserved.

As a result, in EM algorithm the model is segmented into three different parts:

observed data set (X ), latent variables (Y) and parameters (θ ) to make inference

on. The EM algorithm has two steps: E-step and M-step. In E-step, latent variables

(Y) are estimated according to the observed data (X ) and a fixed parameter set (θ ),

i.e. maximizing the free energy term[133] w.r.t the latent variables F(q,θ):

F(q,θ) =
∫

q(Y) log
p(Y,X|θ)

q(Y)
dY, (5.12)

where q(Y) represents any possible distribution of the latent variables. This is

proven to be equivalent to minimizing the Kullback-Leibler divergence term[133]

KL[q(Y)||p(Y|X ,θ)]. In M-step, the latent variables are fixed at the results from

the E-step as if they are not hidden, and then the likelihood is maximized w.r.t the
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parameters. E-step and M-step are iterated until a self-consistent result is obtained.

However, in this study, EM algorithm cannot be directly applied to optimize

the model. The main spoiler is the fact that due to the logistic function defined by

Equation (5.4), the final CDLL does not belong to the exponential family, which

means in E-step, the integral of marginal likelihood is not analytically tractable. At

this point, variational inference is introduced to find an approximate solution[134].

The logistic sigmoid function has a lower bound:

σ(x)≥ σ(ε)exp{(x− ε)/2−λ (ε)(x2− ε
2)}, (5.13)

where

λ (ε) =
1

2ε

[
σ(ε)− 1

2

]
. (5.14)

ε is a new parameter (also termed the variational parameter) introduced by the

variational inference, which also needs to be optimized in the training process.

In the variation E-step, the logistic function is substituted by its lower bound,

which satisfies the exponential structure. M-step is unchanged. Theoretically, vari-

ational inference is not guaranteed to improve the likelihood in every iteration,

especially when the approximate lower bound is not very tight. In this study, this is

not a severe problem. This will be shown later in the this chapter.

In this study, variational inference was configured as follows: the model was

first segmented into three parts: observed data set: X = {φφφ nnn,yn}; latent variables:

Y = {ααα,βββ ,τττ,WWW ,VVV ,ZZZ}; variational parameter: θ = {εεε}. All the variables as shown

in the graphical model were taken as the latent variables and the additional param-

eter εεε was referred as the parameter to make inference on. The EM algorithm was

then employed:

Factored variational E-step: the six latent variables were partitioned into disjoint

sets Ys as follows:
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q(Y) =
6

∏
s=1

qs(Ys). (5.15)

Correspondingly, the E-step was also partitioned into iterations: maximize free

energy F(q,θ) w.r.t qs(Ys) with the other latent variable q j 6=s(Y j 6=s) and the param-

eter θ fixed, which can be described as:

qnew
s (Ys) := argmax

qs(Ys)
F(qs(Ys)∏

j 6=s
q j(Y j),θ

old). (5.16)

The solution to Equation (5.16) is:

qs(Ys) ∝ exp〈log p(X ,Y|θ old)〉∏ j 6=s q j(Y j), (5.17)

where notation <> represents the expectation. Notice here it might be a bit diffi-

cult to explicitly show the distribution of qs(Ys), but it is not necessary. The only

required result is its expectation. Besides, the above formulation only depends on

the sufficient statistics of qs(Ys), which significantly facilitates the computational

process.

M-Step was unchanged. Free energy F(q,θ) was optimized w.r.t the parameter set

θ = {εεε}, with fixed latent variable distributions (results from Equation 5.17). This

can be described by:

θ
new = argmax

θ

F(qnew(Y),θ), (5.18)

which is equivalent[133] to

θ
new = argmax

θ

〈log p(X ,Y|θ)〉qnew(Y). (5.19)

Similarly, it only depends on the sufficient statistics of θ .

All variables in the graphical model were optimized iteratively until a self-

consistent result was obtained, i.e. either the CDLL or the parameters themselves

converged. Due to the limitation of space, derivations of all the formulations are
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attached in Appendix A.

5.2.5 Making the prediction

In this study, a soft mixture of the component models was used to make predictions.

For an unknown observation, each component model produced a prediction, and the

outputs of the gating functions indicated the weights for each model. Predictions

from K +1 component models were then weighted to give a single prediction. For

all the datasets tested in this study, it was observed that when 2 component models

were used the best prediction accuracy was achieved. As a result, K was set to 1 for

all the HMLR calibrations.

5.3 Experiments and results
Datasets 3, 4, 5 were used to examine the performance of the algorithm. For all

datasets, the raw NIR spectra were preprocessed and then dimensionally reduced

by PLS as described above. PLS scores were then passed to MLR, HMLR, and

LWR for comparison.

When training the HMLR model, the two component models and the gating

function were trained simultaneously. The initial values of {ZZZ,ααα,βββ ,τττ,εεε} were

randomly assigned, then the parameters were updated in the order VVV → WWW →

{ααα,βββ ,τττ} → ZZZ → εεε . The last step (update on εεε) corresponds to the M-step, and

the others are the factorized variational E-step. Notice that ααα,βββ should take small

initial values (0.1 for example) and a,b in Equation (5.9), Equation (5.10) and

Equation (5.11) should also be very small numbers (10−4 for example) to make

regularization on the regression coefficients weak. In the HMLR model, the raw

data are already regularized by the PLS shrinkage. It is not necessary to penalize too

much on the coefficients (In fact, there is no penalty on the regression coefficients

in PLSR, but they are still robust).

In HMLR, the parameter update process was iterated a maximum of 100 times

for each calibration. We recommend checking whether some of the optimization in-
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dicators (i.e., CDLL, RMSEC, etc.) are consistent after the whole training process.

Since the optimization started at some random values, it is possible the final result is

just a local optimum, so the whole optimization process was repeated using several

random start values (in this study 80 random initializations were used) to ensure a

global optimum for each calibration.

5.3.1 Ash calibration

In this section dataset 3 is studied, refer to chapter 3 for detailed description. CV

on PLSR was used to choose the spectral pretreatment and number of PLS factors.

We found that the combination of second-order detrend + SNV and 7 PLS factors

produced the best PLSR model. We used the same spectral pretreatment and number

of PLS factors to train the PLSR, HMLR and LWR models. In what follows we

present the detailed training process and some of the key results for this test.

5.3.1.1 Monitoring the training process

The main uncertainty of the HMLR method is that variational inference only uses

an approximation to the log-likelihood. In theory, after a whole EM update, the log-

likelihood may not increase. We recommend monitoring the optimization process,

especially the changes in the CDLL after each update, to make sure the optimization

is going in the correct direction. In addition to the CDLL, fitting ability of the

model is also relevant. It is essential that after each update the fitting power of

the model is also increased (otherwise the improvement on CDLL only comes from

regularization), to reject some over-regularized models. Referring to Equation (5.1),

only p(yn|WWW ,zzzn,φφφ n,τττ) and p(zzzn|VVV ,φφφ n) are relevant to the data fitting, the logarithm

of the sums of products of the two terms can be taken as the ”fitting score” of the

model. Figure (5.3) shows a typical case of the changes in the CDLL and the fitting

scores during training.
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Figure 5.3: Trends in CDLL and fitting scores after each whole EM update. Blue solid line:
fitting scores. Red dotted line: CDLL

Figure (5.3) shows that the overall trends in both the fitting score and the CDLL

are increasing during optimization. The Fitting score converges after around 20

iterations, while CDLL takes more than 80 iterations to reach self-consistency.

5.3.1.2 Interpretation of the model

As explained, every single sample in the training set was assigned a label zzzn, which

indicated the cluster of the training sample. This labelling variable was also opti-

mized automatically by the variation inference algorithm. It is useful to show the

result on the automatic segmentation found by the algorithm. Figure (5.4) shows

the distribution of ash content in the two component models after optimization.

It can be observed that class 1 (blue face colour) comprises the training sam-

ples low in ash content, whereas class 2 (orange face color) consists of the samples

high in ash content. There is a small overlap, but the two clusters of the samples

mainly depends on high and low concentration of ash content.

In the end, the HMLR model is similar to a two-tier PLSR model on ash con-

tent. However, the advantage of our proposed approach is the segmentation process

is done automatically by the EM and variational inference algorithm, which means

it optimizes the data likelihood. Besides, a gating function is obtained simultane-

ously, which optimizes the segmentation alongside with the component regressions.
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Figure 5.4: Composition of the training samples for the two component models.

Referring to Equation (5.3), the outputs of the logistic gating function represent the

probabilities of using the component models, which makes it clear how to combine

the component models on prediction.

It is also useful to plot the regression coefficients. Figure (5.5) shows the re-

gression coefficient curves from the PLSR (red dash-dot line) and the two compo-

nent PLSR models of HMLR (green line and the blue dashed line). The trends of

the three coefficient curves are very similar. The signal strengths at some peaks vary

slightly. The coefficients from PLSR are closer to that of the component model 1

in HMLR. The phenomenon is expected because most of the training samples were

assigned to the component model 1.
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Figure 5.5: Regression coefficients for PLSR and the two component models of HMLR.

Figure (5.6) shows the coefficient curve for the gating function. The trend is

very similar to the regression coefficient curve in Figure (5.5). In fact, the segmen-

tation was based on the ash contents so the regression and the gating function have

very similar profiles.

Figure 5.6: Coefficient curve for the gating function

Here is a brief explanation on why the segmentation is based on ash concentra-

tion for this dataset. First of all, from a mathematical standpoint, the initial values of

the free parameters in the model were randomly assigned. The target of variational

inference is to maximise data log-likelihood. So there is no prior preference applied
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to the training process on how the segmentation should be done. Considering that

the samples used for this study, wheat flour, were thoroughly homogenised before

measured, the signal from the same sample is strong and highly reproducible. As

a result, the segmentation is based on different types of the intrinsic correlation

between the input spectrum XXX and the target property yyy. Such kind of correlation is

slightly different when yyy varies. The effect was found, by the EM and variational

inference, to be the most influential criteria for segmentation on this dataset. Later

in another dataset, we will show how the segmentation strategy is different for

whole grain samples.

5.3.1.3 Interpretation of τ

Referring to the graphical model described in Figure (5.2), τττ represents the preci-

sion of yyy, namely the precision of reference measurement. This value has a physical

interpretation behind it, since it is determined by the precision of lab measurement.

When training the model, τττ was first assigned randomly, then automatically opti-

mized until self-consistent. It is essential to check whether the final value of τττ is

close to the actual precision of the lab measurement. If τττ is too high, then the model

is very likely over-fitted; if it is too small, then the model is under-fitted.

Since there are two component models, different τ values were assigned for

each of them. Results showed that τ1 = 313, τ2 = 172. The equivalent variances on

reference measurement of yyy are 0.003 and 0.006. These values coincide with the

known error in the lab measurement. In addition, τ2 is smaller than τ1, which is also

sensible because the error of lab measurement increases with the ash concentration.

5.3.1.4 Comparison with PLSR and LWR

In this test, the root-mean-square errors of prediction (RMSEP) on the test set

for the three models were: PLSR-0.083%; LWR-0.084%; HMLR-0.070%. LWR

was based on 13 neighbours (chosen by cross-validation on the training set). The

performance of LWR and PLSR are very close. The error obtained by HMLR
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was 16% smaller than PLSR. To prove whether the difference is significant, a

test for paired predictions was utilized to calculate the true ratio on SEP for the

two models. Detailed calculation was introduced in section 2.3.2. The test indi-

cated that the 95% confidence intervals for the true ratio of RMSEP on ash was
PLSR

HMLR
∈ (1.164,1.271). Since this interval does not include 1, there is a strong

evidence that the error of PLSR is significantly larger than the error of HMLR.

Figure (5.7) shows the prediction results from the PLSR model and the HMLR

model on the test set. It is messy on the left side, however, for the samples with an

ash content above 1%, is is quite apparent that the predictions of HMLR are closer

to the reference value.

Figure 5.7: Prediction vs. reference on dataset3. Results are from the PLSR model (red
circle points) and the HMLR model (blue triangle points).

Some results from the scatter plots in Figure (5.7) are summarized in Figure

(5.8). Figure (5.8a) is a boxplot of the prediction errors from the PLSR model and

the HMLR model. Median, the first and the third quantile and the inner fences

are indicated. It is clear the HMLR model outperforms the PLSR model on global

accuracy. Figure (5.8b) illustrates the performances of the two models on different

regions. The test set was split into nine local regions with a bin width of 0.2%. The

blue dashed line is the accuracy curve of the HMLR model, and the red solid line

is for the PLSR model. In most parts of the population, RMSEP from the HMLR
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model is smaller than that of the PLSR model, except for the range 0.8% ∼ 1.2%,

where the two methods have very similar performances. The field is also where

the training set is segmented in the HMLR algorithm. So for the samples with

ambiguous labels (i.e., the output of the gating function is close to 0.5 for both of

the component models), there is no improvement using the HMLR methods. When

there is a dominating component model for the prediction, using HMLR can bring

significant improvement.

(a) Boxplot of the global errors. (b) Local RMSEP for the two models.

Figure 5.8: Comparison of the prediction accuracies of the two ash prediction models

5.3.2 Moisture and protein calibrations

Results on dataset 4 are plotted in Figure (5.9). Dataset 4 is on moisture of wheat

flour. From the results it can be observed, similar to the ash calibration, the data is

automatically segmented into two subsets according to the moisture content. The

boundary of the two classes is at around 12%. Figure (5.9b) shows the predictions

on the test set from the two models. Unfortunately, the test samples below 12% are

not numerous enough to show the difference between the two models in this region.

The RMSEP of the three models on the test set were PLSR:0.228%; LWR:0.222%

(8 neighbours); HMLR: 0.212%. There is an improvement in the prediction accu-

racy by using HMLR, but it is not significant. Practically, calibration on moisture is

not challenging. PLSR can produce a satisfactory result (refer to Figure 5.9, predic-
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tions from PLSR on extreme samples are not heavily biased or distorted). Moisture

has a strong correlation with NIR spectrum, especially for powder samples where

signal is robust and reproducible. However the result of the test indicates that even

for simple datasets like moisture in flour, the HMLR method does not overfit on the

training set. The combination of PLS shrinkage and variational inference is proven

to be an appropriate, well-regularised training process. Hence the HMLR method

can be used as a routine calibration strategy, even on simple dataset like moisture in

flour.

(a) Dataset segmentation on the training set (b) Predictions vs. reference from the two mod-
els.

Figure 5.9: Segmentation and predictions on dataset 4

Dataset 5 is on protein calibration of whole wheat grains. Data segmentation

and prediction results are plotted in Figure (5.10). It can be seen there is more

overlap on protein content in the two subsets. The consequence is partly because

the distribution of the protein in whole wheat grains is more symmetric than ash

and moisture, i.e., the distribution profile has no outstanding asymmetric tails. The

other reason is that the gating strategy in this calibration is not entirely based on the

protein concentration. Figure (5.11) shows the regression coefficient curve from the

PLSR model and the gating function of the HMLR model. It can be seen the two

curves partially overlap, mainly on the right-hand side of the spectrum. On the left-
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hand side, the gating and the regression functions show different trends. In general,

whole grain samples have more complex NIR reflectance spectra than powdered

products, and there are other possible segmentation criteria on the training samples.

For example, the presentation of the grain (crease side or the opposite side), color,

shape and surface conditions.

(a) Dataset segmentation on the training set (b) Predictions vs. reference from the two
models.

Figure 5.10: Segmentation and predictions on dataset 5

Figure 5.11: PLSR coefficients (6 factors) and gating function coefficients for the protein
calibration on dataset 5.

The RMSEP of the three models on the test sets were PLSR:0.425%;
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LWR:0.753% (4 neighbors); HMLR:0.386%. The hypothesis test showed that

the ratio of SEPs is
PLSR

HMLR
∈ (1.115,1.241). From Figure (5.10b) it can be seen

that the improvement is across the range.

Figure (5.12) shows prediction residual vs. reference of PLSR and HMLR. It

can be observed that the bias of the HMLR model is smaller than the PLSR model.

The PLSR model had a global bias of -0.210, and that of the HMLR model is 0.008.

The method of section 2.3.2 were used to find out the confidence interval for the

difference on the biases of the two models. Result indicated 95% confidence interval

for the actual difference in bias was (−0.0267,−0.0229). Since this interval does

not include 0, there is a strong evidence that the PLSR model has a significantly

larger negative bias than the HMLR model.

Figure 5.12: Residual vs. reference on dataset 5.

5.4 Conclusion
In this chapter, a new calibration method for NIR spectroscopy, hierarchical mixture

of linear regressions, was introduced. The technique automatically searches for a

few compositional PLSR models on the training set, along with a set of gating func-

tions to determine the weights of the component models on prediction. Compared

to the traditional scheme of ensemble modelling, the HMLR method uses the EM

algorithm with variational inference, which makes it entirely automated. No man-
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ual data segmentation is needed for training. In addition, the final model obtained

is parametric. Similar to the PLSR method, it is interpretable and very compact.

In practice, it is possible to understand the model, and monitor the optimization

process. It can be implemented efficiently in on-line measurement systems.

The introduced method was tested on three different datasets — ash, moisture

and protein content. Investigated samples include wheat flour and whole wheat

grains. The HMLR method showed superiority over PLSR and LWR on predictive

capability. Based on our experiments, the HMLR method outperforms the PLSR

on dataset 3 (ash on wheat flour) and 5 (protein on whole wheat grains); on dataset

4 (moisture content on wheat flour) the two methods have similar performances.

As explained, the introduced model can handle challenging datasets, while not

over-fitting on easy ones. We recommend using this calibration scheme as a routine

method, especially when an interpretable, compact, unbiased and accurate model is

desired.

The biggest issue on implementing this method is lack of available soft-

ware/packages. We built the whole training algorithm from scratch in python. In

practical applications, it might be a bit time consuming to develop a software for

HMLR calibration.



Chapter 6

Convolutional neural networks for

multiple regression

6.1 Backgrounds

Convolutional neural networks (CNN) have recently become one of the most

popular solutions for a variety of machine learning tasks, including object

detection[135], image classification[136], natural language processing[137], time

series classification[138] and many other applications.

Implementation of neural networks (NN) as a chemometrics technique is rel-

atively recent. Long, Gregriou and Gemperline (1990)[139] demonstrated the ap-

plication of artificial neural networks (ANN) for nonlinear multivariate calibration,

based on results on spectroscopic datasets. They reported that the ANN method

can tackle nonlinearities and instrument drifts. However, back in the 1990s due to

the limitation on computational capability, training a ANN model was tedious and

extremely time consuming (typically 5 - 6 hours for 40,000 learning iterations, as

reported by Long et al.).

Zupan and Gasteiger(1991)[140] discussed more on the learning procedure of

ANN. They recognized ANN approach has too many degrees of freedom, making

it impossible to make inference on every parameter in the model. ”Indirect” influ-
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ences should be considered as the major tuning procedure in the ANN approach.

Such kind of influences include choice of network, architecture, hyperparameters

like learning rate and momentum term, selection of training samples and variables.

Wu et al. (1996)[141] discussed on selection of the training set for ANN cali-

bration. Presented results demonstrated that the best training set selection methods

are Kennard-Stone and D-optimal, both of them showed greater predictive accuracy

than Kohonen self-organized mapping and random selection on NIR datasets.

Boger (2003)[142] presented the method to select wavelengths for spectro-

scopic calibration based on the analysis of the connection weights of an ANN

model. Based on the results presented on a real and an artificial datasets, the

method could identify a quasi-optimal small set of input attributes, which gave

substantial improvements in prediction accuracy.

There are several nice reviews of applications of ANN on spectroscopic

analysis, which comprehensively introduced the mathematics and examples of

applications[143][144][145][146].

Two very recent works reported using CNN for spectroscopic analysis. Malek,

Melgani and Bazi (2017)[147] explored 1D-CNN for spectroscopic regressions,

with integration of particle swarm optimization for the training purpose. Bjerrum,

Glahder and Skov (2017)[148] introduced an architecture of CNN + GP for regres-

sion tasks, with Bayesian optimization for hyperparameter tuning. However, we

found that these works lack interpretation of the CNN models, and the experiments

were based on relatively small datasets (up to a few hundred samples). In our

research we use a slightly modified 1D-CNN framework, which is proven to be

the most efficient structure on our tested datasets; On the other hand, considering

computational latency, CNN+GP method is not suitable for our applications. We

have discussed the issue in Chapter 4, so the CNN+GP method is not going to be
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compared in our research.

In this research, our main contributions to knowledge is:

1. A Feasibility study of using CNN for NIR calibration are carefully done on

3 real-world datasets, with different sizes (varying from 400 to 7000 samples).

2.The predictive capabilities of the CNN models are benchmarked against the

classical treatment (PLS regression) with significance tests of difference in perfor-

mance.

3. Visualization and interpretation of the CNN models are presented, for better

understanding and comparison with the classical method of PLSR.

4. We discuss influences of different design choices, model hyperparameters,

and provide recommendations and insights for construction CNN models on NIR

datasets.

The material of this chapter has been published in Chemometrics and Intelli-

gent Laboratory Systems (2018)[149]

6.2 Methods

6.2.1 Preprocessing and initialization

6.2.1.1 Preprocessing

There are many commonly used preprocessing methods for spectroscopic

calibration[105], such as standard normal variate (SNV), detrending, derivative

. . .. In the classical treatment, raw spectra (output of the instruments) are prepro-

cessed by these methods before feeding into a calibration framework. The purpose

of spectral preprocessing is to remove instrumental noise, and reduce variance of

the spectra from sources such as scatter effect to improve robustness of the calibra-

tion model. However, there is no standard rule on choosing preprocessing methods.

The common practice is trial-and-error experimentation.

Later in this paper, we will describe how to use the convolutional layer to



6.2. Methods 98

automate spectroscopic preprocessing. The only required preprocessing is normal-

ization ( i.e. each variable should have a mean of zero and standard deviation of

1 along the column axis). Non-zero-centered data significantly limits the allowed

gradient update directions during the optimization process. For example, the worst

case is that all inputs into a fully connected layer are positive (or negative). The

output of a neuron in such kind of layer will be f (∑i wixi + b), where f (·) is the

activation function and wi are the weights. Gradient updates on all weights of such

layer can only be either all positive or all negative, which is obviously inefficient.

6.2.1.2 Initialization

Proper initialization of weights in NN ensures fast convergence. If the initial

weights are too small, then the signal flowing through the network gradually dimin-

ishes and eventually becomes meaningless; if the weights are initialized with too

large values, the variance of input data into each layer increases rapidly and soon

overflows. We hope that the signal variance does not change significantly when

passing through the network. One good idea is to initialize the weights according to

the layers’ sizes[150]. The weights are initialized by a zero-mean Gaussian distri-

bution whose standard deviation is
√

2
nl

, where nl is the number of input neurons of

the layer. This initialization method helps to keep the variance of all the variables

in NN roughly at the same scale.

6.2.2 Layers

A densely connected layer also termed fully connected layer (FC layer), linearly

maps input vector into another one. Neurons between two adjacent layers are pair-

wise connected, refer to Figure 6.1.
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Figure 6.1: A neural network with two hidden layers of 3 neurons each

In our case, the initial inputs are the spectral variables, and the final outputs are

the predictions of the target constituent.

Convolutional layer convolves a specific filter applied to the inputs. The filter is

slid over the spectra spatially. We compute the stepwise dot product of the filter with

a local window of the spectra, with a stride of 1. We also pad the input spectra to

keep the inputs and the outputs at the same size. The convolutional layer is usually

followed by fully connected layers, see Figure 6.2 for an example.

Figure 6.2: Architecture of a convolutional neural network

Considering that most of the preprocessing methods (e.g., detrend, Savitzky-

Golay derivatives) in spectroscopic calibration are equivalent to moving weighted

average of the input spectra, we believe that a properly trained convolutional layer

can replace a huge range of the classical preprocessing treatments. Since the con-

volutional layer can be tuned by back-propagation, we do not need to manually

choose any specific preprocessing method, but just let the optimization algorithm
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find the most efficient filter.

Since the input vectors are one dimensional spectra, so the filter is also a one

dimensional vector. The bandwidth of the filter is related to the resolution of the

input spectra. It is possible to implement multiple paralleled convolutional channels

to increase the flexibility of the model, but accordingly we would need an adequate

number of training samples to tune multiple convolutional filters. Here we only

consider a single channel (i.e., there is only one convolutional layer) for simplicity.

6.2.3 Activation functions

Outputs of each hidden layer, including the convolutional layer and the fully con-

nected layer, are transformed by the activation function to allow for nonlinearity. In

the following discussion, we denote the input to the activation functions as x and

the output as y.

Sigmoid function computes the sigmoid of x element-wise. Specifically:

y =
1

1+ exp(−x)
. (6.1)

The sigmoid function has been historically popular, due to nice biological in-

terpretations. However, saturated neurons can cause gradient vanishing: gradient

flow during back propagation is almost 0 when x is not near 0. In addition, the

sigmoid function is not zero-centered, which means updates on the parameters can

be very inefficient.

Tanh function computes hyperbolic tangent of x element-wise. Specifically:

y = tanh(x). (6.2)

It achieves zero-centering by squashing the output into [−1,1]. However, the

gradient vanishing issue remains[151].

Rectified linear units(ReLU) takes element-wise rectified linear of the input,

where all negative values of the input are set to zero. More specifically:



6.2. Methods 101

y =

x, x≥ 0

0, otherwise
. (6.3)

ReLU does not saturate. In addition, it converges faster than sigmoid and

tanh[152]. However, it is still non zero-centered. The main deficiency is that the

outputs of negative inputs are always 0, which may cause a specific issue called

”dead ReLU”. When inputs into some of the ReLU neurons are always negative,

such kind of ReLU neurons will never contribute to the weight updates. This hap-

pens when a bad initialization or learning rate is assigned to the model.

Exponential linear units(ELU) is very similar to ReLU, while the negative part is

exponential instead of zero. More specifically:

y =

x, x≥ 0

exp(x)−1, otherwise
. (6.4)

It has most of the benefits of ReLU, but the neurons cannot become ”dead”.

It is also closer to zero-centered, which makes weight updates more efficient. In

addition, there is a negative saturation regime which makes it robust against some

noises[153]. One minor weak point is that calculating exp(x) is slow, especially

when the network is relatively large.

6.2.4 Regularization

L2 regularization is probably the most common form of regularization. It has

been applied to many different machine learning schemes. By penalizing the sum

of squared amplitude of the weights in the model via
1
2

λw2 (where λ is the regu-

larization parameter, and w is the weight), L2 regularization encourages the model

to use all the neurons, rather than a few principal neurons. The gradient of the L2

regularization term is λw, which means every weight is steadily shrunk towards

zero whatever its current sign.
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Dropout is a simple way to prevent neural networks from overfitting[154]. The

idea can be illustrated by Figure 6.3. During the training process, we randomly

activate a proportion of neurons in FC layers, and only update the parameters of

the selected neurons. During testing no dropout is applied. Dropout is simple but

efficient. It is widely used in modern practical neural networks, especially in large

ones. Some recent studies[154][155] also illustrate its principles and relations with

other regularization techniques.

Figure 6.3: Illustration of dropout: two random neurons in the fully connected layers are
dropped out during training

6.2.5 Loss functions

The loss function adopted in this research is the mean squared errors (MSE) of

predictions plus L2 penalty on all weights, including weights in the convolutional

layer and the fully connected layers:

Loss = MSE +
1
2

λ ∑w2
i . (6.5)

6.2.6 Optimization

Back-propagation is the basic optimization method used in training neural

networks[156]. It calculates the error contribution of each neuron by evaluating

some training samples (normally a batch of data drawn from the whole training

set). It is normally used by the gradient descent optimization algorithms (including

the Adam optimizer[157], which is used in this study) to tune the parameters in the

model. The gradient of the loss function is calculated and then distributed back-
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wards through the whole network.

Batch optimization is a necessary tool to speed up the optimization process for

large datasets. When the training set is relatively small, we can simply use all

the samples to tune the model simultaneously. However, when the training set is

too large, it is very slow to evaluate the contribution from all the samples in each

update. This is critical for neural networks because the parameters are updated

during repeated forward/backward passes. Normally we only evaluate a small

proportion of the training samples, which is called a mini-batch, for each update.

The term ‘epoch ’, instead of iteration (or loops), is used to indicate the training

process. One epoch means one forward/backward pass of all the training samples

(i.e. 1 epoch =
train set size

batch size
iterations).

Adam optimization is a recently proposed optimizer for neural networks[157], and

is widely considered the best optimizer currently available. It has many beautiful

features, such as rescaling invariance, suitability for non-stationary loss function,

and automatic learning rate annealing. When using the Adam optimizer, we need

to predetermine 4 hyperparameters: β1 (decay parameter for the gradient, normally

set to 0.9); β2 (decay parameter for the squared gradient, normally set to 0.999);

α (learning rate) and ε (a very small number to prevent division by 0, for exam-

ple 10−6). Adam is often recommended as the default optimizer. There is also a

nice research benchmarking other popular stochastic optimizers[158] as optional

choices.

6.3 Results and discussions

6.3.1 Experiment 1: Self-preprocessing, learning rate, regular-

ization and dropout

This part of study is based on dataset 2, protein calibration on wheat flour. The

CNN model is constructed as shown in Table 6.1:
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CNN structure for dataset 2
Layer name Input dimension No. of parame-

ters
Output dimen-
sion

Input 161 161
Conv layer 161 5×1×1 161
FC 1 161 161×36+36 36
FC 2 36 36×18+18 18
FC 3 18 18×12+12 12
Output 12 12×1+1 1

Table 6.1: CNN structure for dataset 2

Initial inputs to the CNN model are the normalized (in column axis) spectra.

Notice here we do not use any other preprocessing methods, while in PLS regression

spectra were preprocessed by the first derivative followed by SNV. The preprocess-

ing methods for the PLS regression model were selected by cross-validation. There

are some predetermined hyperparameters in the CNN model: learning rate = 0.01,

L2 regularization parameter λ = 0.005, batch size =256, no dropout. Later we will

discuss the impact of these hyper-parameters in a greater detail.

The CNN model is compared to the PLSR model (PLS factors: 8, preprocess-

ing: 2 side points, 2nd order polynomial fitted 1st derivative followed by SNV). The

PLSR was tuned by cross-validation. The results are showed in Table 6.2. Since the

95% confidence interval on the ratio of SEP does not include 1, we can conclude

that the prediction precision of the CNN model is significantly better then the PLSR

model on the investigated test set.

Model RMSEC RMSEP SEP
PLSR 0.329 0.291 0.290
CNN 0.254 0.230 0.229
CI (1.229,1.310)

Table 6.2: Comparison of the results of the two models on dataset 1, CI stands for 95%
confidence interval of the ratio on SEP (PLSR/CNN). Since the interval does
not include 1, the CNN model is significantly better than the PLSR model on the
test set.
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6.3.1.1 Automatic preprocessing

As introduced in section 6.2.2, the convolutional layer can transform the spectra to

optimize performance of the subsequent regression scheme. Since the convolutional

layer was trained automatically by the optimizer, we visualize the output of the

convolutional layer to study the actual transformation. The result is shown in Figure

6.4.

(a) Spectroscopic transformation by the convolutional layer

(b) SavitzkyGolay first derivative filter:bandwidth=5, polynomial fitting order=2

Figure 6.4: (a) 20 random spectra in dataset 2 and the corresponding outputs of the convo-
lutional layer. (b) 2 side points, second polynomial fitting Savitzky-Golay first
derivative on the same 20 spectra.

Based on the plots, we can see that the transformation of the convolutional

layer is similar to a Savitzky-Golay first derivative filter. However, they are not

exactly the same. Outputs of the convolutional layer correspond to a skewed and
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rescaled standard first derivative filter. The convolutional layer continually tunes

the parameters in the filter, until it finds the best form of preprocessing. This means

the spectroscopic preprocessing done by the convolutional layer is more flexible.

More importantly, the traditional way of choosing the preprocessing methods is

via trial-and-error experiment, which is quite labour and time consuming. The

proposed CNN method saves a lot of effort when building new calibrations.

6.3.1.2 Regression coefficients

We used the method introduced in section 2.3.3 to plot the regression coefficients

of the CNN model. The results are shown in Figure 6.5. We randomly drew 100

spectra from the training set, and calculated the corresponding regression coeffi-

cient curves. As we can see in Figure 6.5, the two models have similar profiles. The

CNN model recognizes a few different signals in the spectra, but overall it is very

smooth and robust.

Figure 6.5: Comparison of regression coefficients trained by PLSR and CNN

When training a CNN model, we need to determine a few hyperparameters:

λ (regularization parameter), learning rate, activation function and dropout ratio.

In what follows, we explore the impacts of these hyperparameters on the CNN
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model, and hence provide insights how to determine them. It is worth noting the

best practice to tune the hyperparameters is by coarse-fine grid searching on a sep-

arate validation set. However for NIR calibration, a separate validation set is not

always available, so cross-validation can be used instead. We propose some com-

mon choices for these hyperparameters. They can be used as the default values

when lacking resources to tune, or as indication of where to perform a grid search.

6.3.1.3 Learning rate

During the training process, we randomly drew a batch of samples from the training

set, and then updated all the parameters based on the gradients. Learning rate deter-

mines the step of each update. If the learning rate is too large, the update becomes

too aggressive, which may lead to a bad local optimum. If the learning rate is too

small, the loss function converges very slowly.

Krizhevsky proposed a way to determine the learning rate[159]:

learning rate = 0.01×batch size/256 (6.6)

For example, if we fix the batch size at 256, then the learning rate should

be 0.01. We found the heuristic proposed is valid on our tested datasets. Refer to

Figure 6.6 for the results. We plot three training loss curves through the optimization

process, with different learning rates. When we set the learning rate to 0.01 (red

line), the loss decays consistently and efficiently. We think it is a good learning

rate. When we set the learning rate as 0.05 (blue line), which is too high, the

objective function finally converges to a bad local optimum. When learning rate is

too small (green line, learning rate =0.005), we found it slow to converge (but will

eventually converge to a good local optimum). In summary we recommend using

0.01 as default learning rate when the batch size is 256.
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Figure 6.6: Optimization process with different learning rate

6.3.1.4 Activation function

Referring to Table 6.1, we inserted an activation function after each hidden layer.

The full structure is: Input - Conv layer - activation - FC1 - activation - FC2 - activa-

tion - FC3 - activation - output. We tested 4 different activation functions: Sigmoid,

ReLU, ELU, ELU + ReLU. In ELU+ReLU we used ELU after the convolutional

layer but ReLU after the FC layers. The final RMSEP on the test set are showed in

Figure 6.7. We show PLSR as the benchmark method as well.

Figure 6.7: Performance of different activation functions

1. We found that the sigmoid function is not suitable in our CNN model. This

is due to the fundamental limitations of the sigmoid function (gradient vanishing,

non-zero-centered). The result is worse than the PLSR method.
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2. ELU is slightly better than ReLU. The ELU+ReLU configuration is very

close to using ELU solely, we consider they have equivalent performance.

3. The biggest advantage of ReLU over ELU is low in computational cost and

fast convergence. In ReLU all the negative outputs are set to zeros while positive

outputs are unchanged. In contrast ELU involves calculating exponentials, which

is one of the most expensive operations. Refer to Figure 6.8, the ReLU CNN

converges in around 600 epochs while ELU takes roughly 1000. A good trade-off

is using ELU after the convolutional layer, to keep the desired nonlinearity, then

ReLU after the FC layers to improve efficiency in training. This configuration

benefits from both of training speed and flexibility. It is worth noting that we found

the training times with different activation functions vary from 70 seconds to 130

seconds (on our computational system, a 2.50GHz quad core CPU), which might

be trivial in many practical cases.

Figure 6.8: Convergence speed of 3 different activation functions

6.3.1.5 Regularization parameter

L2 regularization is the most efficient way to prevent CNN models from overfitting.

We performed an experiment to learn the impact of the regularization parameter (λ )

on the final CNN model. We trained the CNN models with different amounts of L2

regularization. Here we also plot the corresponding regression coefficients, refer to
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Figure 6.9.

Figure 6.9: Regression coefficients trained by different regularization parameter. Plot on
the top left (blue curve) is a 8-factor PLS regression model.

We found that λ controls the noise level of the regression coefficients. In

PLSR, we use the number of factors to tune the complexity (hence the noise level)

of a prediction model. λ has a similar effect but does not change the overall profile

of the regression coefficients. When we apply L2 regularization to a CNN model,

we always use the same principal signal and change tolerance on presence of small

signals, which can be noise.

When choosing λ , we should refer to the cross-validation accuracy, i.e. the

root mean squared error of cross-validation (RMSECV). However, for NIR calibra-

tion, we do not always choose the model with smallest RMSECV, which can be

overfitting. Instead we often prefer the most robust model with an acceptable per-

formance. In Figure 6.10 we plot the Fourier transform on regression coefficients

of different models. For the CNN models, magnitudes were averaged out over 100

coefficient curves on the training set. We can clearly see how the noise level grows

when the PLSR and the CNN models become more complex. In Table 6.3 we show

the RMSECV, RMSEP, SEP and noise level when changing number of PLS factors

and λ .
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Figure 6.10: Fourier transform on regression coefficients of different PLSR (blue) and
CNN models(red). Noise level was calculated by the ratio of magnitude of
high frequency (≥ 0.3) components.

λ /PLS factors RMSECV RMSEP SEP Noise level
7-factor PLSR 0.354 0.321 0.320 0.131
8-factor PLSR 0.329 0.291 0.290 0.136
9-factor PLSR 0.310 0.286 0.286 0.177
0.05 0.419 0.365 0.364 0.045
0.02 0.371 0.325 0.325 0.068
0.01 0.315 0.285 0.284 0.056
0.005 0.254 0.230 0.229 0.100
0.002 0.233 0.223 0.222 0.214
0.001 0.214 0.222 0.222 0.231
0.0005 0.205 0.215 0.215 0.270

Table 6.3: λ selection in cross validation. Two candidate CNN models are shaded with
blue and yellow color

Some discussions on the results:

1. We choose the model with λ = 0.005. Further decreasing regularization

on the CNN model does not significantly improve RMSECV, but doubles the noise

level.

2. Compared to a 8-factor PLSR model, we can see that the λ = 0.005 CNN
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model has a slightly lower noise level, but a significantly better performance. It is

also worth noting the λ = 0.01 CNN model has similar RMSEP and SEP with the

8-factor PLSR model, but a much smaller noise level on the regression coefficients.

The same conclusion is obtained from Figure 6.9, the CNN model with λ = 0.01 is

very smooth and clean.

3. The amount of regularization that should be added to a CNN model is

dependent on the spectral quality, the target property and the structure of the neural

network. When we use the same spectroscopic system and CNN architecture, the

regularization parameter should roughly scale with the square of the target property

concentration. Refer to appendix B for some examples of our experiments. This

can help us assign initial search range for λ .

6.3.1.6 Dropout ratio

Dropout is another way to add regularization to a CNN model. Normally dropout

is only employed after FC layers. In this test we added one additional dropout layer

after FC1, FC2 and FC3. By tuning the dropout rate we found that the regression

coefficients become less noisy, at the price of losing fitting capability. Refer to

Figure 6.11 and Table 6.4.

Figure 6.11: Regression coefficients trained with different dropout rate
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Dropout rate RMSECV RMSEP
0 0.254 0.230
0.1 0.277 0.231
0.2 0.291 0.248
0.3 0.336 0.315
0.4 0.359 0.289
0.5 0.383 0.349

Table 6.4: Effect of dropout in a CNN calibration

From figure 6.11 we can observe:

1. When no dropout applied, there is more random noise in the regression

coefficients. Especially on the right hand side of the spectrum, there is only random

noise near zero.

2. the higher dropout rate, the less noise in the model. Particularly, when

dropout rate = 0.5, there is no apparent Gaussian noise in the regression coefficients.

3. Another key impact of dropout rate is nonlinearity of the model, which

can be interpreted by the difference of the curves in the same model. For example,

when no dropout applied, there is no obvious difference between curves, which

means the whole model is very close to a linear model; When dropout rate = 0.5,

difference between the curves is more visible, which means the nonlinearity of the

model is higher.

From the results we can conclude that the impact of dropout is very gen-

tle, especially when dropout rate is small. By increasing the dropout rate the

cross-validation error continuously goes up, due to reduced usable features in the

network, but the out-of-sample prediction accuracy is rather consistent.

Based on this dataset and our proposed CNN structure we find that the benefit

of dropout is not very obvious. In general we can just set the dropout rate to 0. When
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a robust and smooth calibration model is desired, we recommend using dropout as

an additional regularization tool, in addition to L2 regularization.

6.3.2 Experiment 2: Application to large datasets and scalabil-

ity

Here we show another example of using the CNN method for NIR calibration.

The experiment was done on dataset 3, which is ash on wheat flour. The CNN

model was trained on a very large training set (6987 samples), then evaluated on a

separate test set. The samples in the test set were measured under the same spectro-

scopic system. However, training samples and test samples have different varieties,

origins, physical conditions, etc.From Table (6.5), we see for both the PLSR and

the CNN calibration models, the training and the cross-validation errors are much

smaller than the test error, which indicates the structures of the two datasets are

different. However, we observe that a properly regularized CNN model is more

robust and more accurate on the test set.

For the PLSR calibration, we applied the second order polynomial detrend

+ SNV to the raw spectra. Cross validation on the training set suggests using 10

PLS factors. RMSEP and SEP on the separate test set are 0.094% and 0.088%

correspondingly.

We used the same CNN structure as introduced in experiment 1, refer to Table

6.1 for detailed description. Raw spectra were normalized in column axis before

feeding to the CNN model. ELU activation function was employed. During the

training process, we fixed the batch size at 256, and learning rate at 0.01 (corre-

sponding to Equation 6.8). Similar to model selection in PLSR, we used cross-

validation to choose regularization parameter. No dropout was applied. A summary

of the cross validation is shown in Table (6.5).
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λ RMSECV RMSEP SEP Noise level
... ...

6×10−4 0.056 0.093 0.081 0.028
4×10−4 0.053 0.089 0.077 0.040
2×10−4 0.051 0.086 0.076 0.015
1×10−4 0.048 0.085 0.075 0.036
8×10−5 0.045 0.091 0.077 0.081
6×10−5 0.058 0.083 0.074 0.122

... ...

Table 6.5: CNN model selection on dataset 3: fine tuning on λ .

In the following discussion, we set the regularization parameter at 1× 10−4,

since it has the best RMSECV/noise level trade-off. First we carried out a hypoth-

esis test to compare the prediction accuracy between the PLSR model ( with 10

factors ) and the CNN model. Results showed that 95% confidence interval of the

true ratio of the SEP is: PLSR/CNN = (1.198,1.325). Since this interval does not

include 1, we can conclude that the prediction error of the CNN model is signifi-

cantly smaller than the PLSR model. Refer to Table 6.6 for a brief summary:

Model RMSECV RMSEP SEP Noise level
PLSR 0.052 0.094 0.088 0.165
CNN 0.048 0.085 0.075 0.036
CI (1.178, 1.314)

Table 6.6: Comparison of the two calibration methods on dataset 3. PLSR: 10 factors,
2nd order polynomial detrend +SNV; CNN: λ = 10−4, learning rate=0.01, no
dropout. CI stands for the 95% confidence interval for the ratio of SEP.

In Figure 6.12, we compare the prediction - reference plots and the regression

coefficients of the two models. We can clearly observe that while the CNN model

is more precise than the PLSR model, the regression coefficients of the CNN is also

smoother than that of the PLSR model. Specifically, the noise level of the CNN

model (0.036) is much smaller than that of the PLSR model (0.165). This indicates

that the enhanced performance does not come from overfitting on the dataset we

used.
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Figure 6.12: Comparison of the regression coefficients between the PLSR model and the
CNN model. PLSR : 10 factors, detrend2 + SNV applied to the raw spectra.
CNN model: λ = 0.0001, configuration refer to Table 1

We also investigated the automatic preprocessing done by the CNN model,

refer to Figure 6.131. Different from experiment 1, the automatic preprocessing

on dataset 3 is not based on the first derivative. It appears that the outputs of the

convolutional layer2 are skewed and rescaled raw spectra.

Figure 6.13: Automatic preprocessing by the convolutional layer. We randomly draw 10
spectra from the training set (on the left) and plot the outputs of the convolu-
tional layer (on the right)

.

1Raw spectra were processed by SNV purely for visualization purpose.
2when we say ”the outputs of the convolutional layer”, we mean the outputs of the activation

function attached to the convolutional layer.
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6.3.3 Experiment 3: Application to small datasets

Our proposed method can be applied to small datasets. However, the risk is that

when the number of training samples is not adequate, it is very likely we are not

able to get the best model. Here we present an example on dataset 5.

Dataset 5 is on protein content in whole wheat grain. There are 415 samples in

the training set and 108 samples in the test set. We used the same CNN architecture

as introduced in experiment 1 and 2. For dataset 5, we have no information about

the instrument and the commodity features. In practice, some neural network struc-

tures should be adjusted accordingly (for example, filter width in the convolutional

layer). For simplicity, here we just use the same CNN structure as before.

In the PLSR model, we use the second order polynomial detrend + SNV as

the preprocessing methods, according to the CV result. CV also suggests using 8

PLS factors. The final prediction accuracy on the test set is: RMSEP= 0.425%;

SEP=0.411%.

In the CNN model, we recommend that users adopt the second-order optimiz-

ers for small datasets. For example, in this experiment we used the Limited-memory

BFGS optimizer, which works very well in full batch, deterministic mode (i.e., we

do not draw a batch of samples from the training set in each update, but use the

whole dataset every time). The benefit of such kind of optimizers is a much faster

convergence. We set the regularization at 0.003 as suggested by the CV. The final

prediction accuracy on the test set is: RMSEP=0.420; SEP=0.414. A summary of

the results is shown in Table 6.7.

Model RMSECV RMSEP SEP Noise level
PLSR 0.439 0.425 0.411 0.278
CNN 0.425 0.420 0.414 0.080
CI (0.981,1.103)

Table 6.7: Comparison of the two calibration methods on dataset 5. CI stands for the 95%
confidence interval for the ratio of SEP.
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The regression coefficients are shown in Figure 6.14. It is obvious that while

the prediction performance of the CNN model and the PLSR model are quite close,

the noise level in the CNN model is much smaller than that of the PLSR model. In

addition, from Figure 6.14 we can observe that the nonlinearity is more apparent

than in dataset 1 or dataset 3, namely the variance of the regression coefficient

curves from the CNN model is bigger. This is due to the diversity of the whole

grains (surface condition, hardness, color, etc.). For flour, the samples were thor-

oughly homogenized before being measured, so the nonlinearity only comes from

the NIR - target constituent correlation. Obviously for whole grains physical con-

ditions of the grains also contribute to a huge part of nonlinearity in the calibration

model.

Figure 6.14: Comparison of the regression coefficients of the two calibration methods on
dataset 5

Another issue we found is that ReLU is not suitable for the small dataset.

When using RelU as the activation function, we can easily get a bad local optimum

solution. Refer to Figure 6.15 for an example. The calibration model is truncated

for part of the samples in the test set. We think it is related to the sparsity of the

ReLU function. When the inputs to the ReLU function are negative, the outputs

are always zero, which means such neurons are ”dead”. If all the neurons in any of
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the layers are all ”dead” then the whole network is not active anymore. For small

dataset there is a certain risk that the weights are not properly tuned, especially for

some extreme inputs.

As discussed in the previous section, the major advantage of ReLU over ELU

is low computational cost. For a small dataset, when we use the second order full

batch optimizer, convergence speed is not a issue anymore so we can always use

ELU to avoid such bad local optima.

Figure 6.15: When using ReLU as the activation function, there is a ”dead” region for
samples low in constituent concentration. Prediction values are truncated.

6.4 Conclusions
We have discussed how to use CNN for NIR calibration. We have done systematic

tests on three different NIR datasets, to show the advantages of the CNN method

over the PLSR method. A summary of our key results:

1. The convolutional layer can play a role of spectral preprocessor. This kind

of layer can be automatically trained, which saves effort in selecting preprocessing

methods.

2. By visualizing the regression coefficients and calculating the high frequency

components in the Fourier domain, we compared the introduced CNN method with
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the PLSR method. We have shown that the CNN models are not only more accurate

than the PLSR models (smaller RMSEP and SEP), but also less noisy and more

robust

3. We have systematically compared different choices of hyperparameters in

the CNN models, including activation function, learning rate, regularization pa-

rameter, and dropout rate. All the hyperparameters in the model can be selected

by cross validation. We also recommended some default initial configurations for

common applications.

4. We have tested the proposed method on 3 different NIR datasets of different

sizes. We have illustrated the CNN method can be used for general NIR calibrations,

even when the dataset size is not that large.



Chapter 7

General Conclusions

In this thesis, we have introduced three different nonlinear multivariate regression

schemes for NIR calibration: kernel methods, hierarchical mixture of linear regres-

sions and convolutional neural networks. We have compared our nonlinear methods

with the benchmark regression method of PLSR on 5 real world NIR datasets. The

investigated nonlinear methods all have appropriate regularization treatments: ker-

nel methods use the length scales to avoid overfitting; HMLR as introduced in our

study uses PLS dimension reduction and a prior distribution on weights for regular-

ization; in CNN we use L2 regularization to penalize parameters. Results showed

our proposed nonlinear regression methods had improved predictive capability and

many other benefits.

The investigated kernel methods including LS-SVM and GPR are non-

parametric. The two methods have very similar formulations and predictive ca-

pability. Both of them use the whole training set as the calibration library, and

predictions on new observations are based on their spectral covariance with the

training samples. Kernel methods are parameter free. Hyperparameters including

signal level, noise level and length scale are used to balance the fitting capabil-

ity and generalization performance of the model. In LS-SVM we used LOO-CV

to tune the hyperparameters while in GPR gradient-based evidence maximization

were applied. Both of them exhibited improved predictive performance on our NIR

dataset when compared to the PLSR method. We noticed the biggest issue is that
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for non-parametric methods, the computational cost of prediction scales with the

size of the training set. For example, if we are only interested in point prediction,

then we need to evaluate E( f̂I+1|X,y,xI+1) =KGP(xI+1,X)[KGP(X,X)+ III/γ]−1y.

The last two terms [KGP(X,X)+ III/γ]−1y can be pre-calculated and stored in mem-

ory (if storage of a huge model is not a problem). Making a prediction on the new

observation involves N computations of exponential squared distance. This can be

non-trivial, for example on our dataset 3, which has a training set size of 6987.

In Chapter 4, we used RBF kernel in both LS-SVM and GPR, which means the

distance matrix vary isotropically along all directions of the input spectrum. RBF

kernel has been selected arbitrarily to help us quickly understand some fundamental

characteristics of the kernel methods. In practical, RBF is very unlikely the most

suitable distance measurement for all the spectroscopic calibrations. One interesting

future work here is implementing metric learning in our calibration process. Metric

learning was originally proposed for image clustering, with the target of maximizing

the inter-class variatoins and minimizing the intra-class variations[160]. This can

be done by optimizing the similarity, i.e. the distance between two input vectors (in

our case, spectra) defined by:

dM(xi,x j) =
√
(xi−x j)T M(xi−x j), (7.1)

where M is a semi-definite matrix, which can be decomposed as:

M = WT W. (7.2)

Suppose that vector x has the length of d, then in Chapter 4, where we used

the RBF kernel, W = 1
d×d . In another extreme case, where M is a diagonal matrix

(W ∈ Rd×d), the length scale on any direction of x can be different. This is called

automatic relevance determination (ARD) in Gaussian process. Length scales on x

can be tuned by the importance, and hence can determine their impact when making

the prediction.
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In a more general case, W ∈ Rp×d , where p ≤ d. As a result, equation (7.1)

can be modified as:

dM(xi,x j) =
√
(xi−x j)T WT W(xi−x j) =‖Wxi−Wx j ‖2, (7.3)

which is also called Mahalanobis metric learning, is equivalent to finding a linear

mapping that transforms every single sample xi into a lower dimensional space

(Rp×1), where Euclidean distance is calculated. The mapping function W can

be learning by optimizing some loss functions, for example squared errors or log

marginal likelihood.

The second nonlinear regression method, HMLR is as simple as PLSR. It im-

proves the flexibility of the model simply by mixing multiple PLSR models. In this

research we proved that by using just 2 PLSR component models the consistency

and performance of prediction could be improved. The whole training process

including data segmentation is fully automated by using the EM and variational in-

ference algorithm. Extra computational cost introduced by the gating function and

additional linear regressions is ignorable compared to the kernel methods. Since

the model is built on top of PLSR, we believe it is as robust as the PLSR method. In

addition we can still use the leverage and spectral residual as indicators for outliers,

just like PLSR. The only issue is that there is no mature package for such kinds

of algorithms. Users who are interested in the method need to develop the whole

calibration framework from scratch, which requires a lot of knowledge of graphical

models and can be quite time-consuming. In addition, it is not very clear how to

build proper deep nested hierarchical models. Immature optimization of the codes

may also lead to a reduced performance.

One biggest limitation in our proposed structure is that the original spectrum

were first processed by PLS or PCA for dimension reduction, and then sent to the

hierarchical linear modelling. As a result, dimension reduction is separate from our
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learning process. In addition, all the component models have the same number of

PCs, which is not necessarily the most suitable solution. One promising future work

is to make the dimension reduction a probabilistic process, and separate for each

component model. The probabilistic dimension reduction function can be trained

together with other parameters in the hierarchical linear modelling, by optimizing

the overall likelihood. This increase flexibility of the model, and some component

model will use less components, which means more robust when making predic-

tions.

CNN has become very popular in many machine learning applications. We

have proved that the CNN method can be a one of the best nonlinear calibration

methods on NIR applications. Compared to the other two proposed methods, CNN

has lots of advantages. It is parametric, the size of the model is fixed. For a ”shal-

low” CNN model we do not need to worry about the computational cost. There are

plenty available packages such as tensorflow, caffe, torch and theano which help

the users to build complex CNN models. In addition, with the convolutional layer

we do not need to manually select spectral preprocessing methods, which can be

advantageous in some cases. However, the users need to explore the best structure

of the CNN model for use with the dataset of interest. Some parameters, e.g. the

filter width of the convolutional layer, are related to the physical characteristics of

the system. We need to pay special attention on the choices of these parameters in

practical applications.

In Chapter 6 we have seen how L2 regularization and dropout can be used

to regularize the CNN model. In particular we see that dropout adds turbulence

to the features that are used in prediction, which can improve robustness of the

model. Another similar approach in spectroscopic analysis is to add turbulence to

the raw spectra, then new spectra with noises (for example, Gaussian white noise)

can be created. In such way a lot of artificial data points can be generated to ex-

pand the training set. The concept is very similar to ”data augmentation” in deep
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learning, which helps to increase the size of the dataset. However, one noticeable

issue is that noise added to raw the spectra should be realistic in the practical sys-

tem. If added noise is less likely to be observed in the spectroscopic system, then

such kind of data augmentation will lead the training process to the wrong direction.

In Chapter 6 we have demonstrated how CNN method can generate new pre-

treatment methods, and how CNN models outperform PLSR models. However, we

have not validated which part has bigger contribution to the predictive capability,

i.e. whether the new pretreatment methods have bigger impact on the final pre-

diction accuracy, or the nonlinearity introduced by the FC layers are more critical.

One interesting future work will be experiment on the decomposition of the CNN

model. Comparison of a convolutional layer + PLS regression and the original

CNN structure can help us with understanding whether we can further simplify the

CNN structure by using PLS regression instead of stacked FC layers.

We have proved how the CNN method can be used in spectroscopic analysis,

inspired by a wide range of researches in computer vision discipline. Another

popular research area in deep learning is on nature language processing (NLP) and

time series analysis, where recurrent neural network (RNN) plays a big role. RNN

can deal with dependence of the input sequence, for example a sentence or a time

series sequence. Recent works including long short-term memory (LSTM)[161]

and gated recurrent network (GRU)[162] solves training issues with the original

RNN methods (gradient vanishing and gradient exploding) and improve the per-

formance of the method. Recent researches try to combine CNN with RNN for

image processing[163], scene labelling[164] and music classification[165]. One

meaningful future work for us is to explore whether we can use the same idea

for spectroscopic calibration. We can use the convolutional layer as the feature

extractor and automated preprocessor, and the following recurrent units are used

to learn contextual dependencies. Since the inner dependency of spectrum can be

handled by the recurrent units (GRU for example), we believe it has the potential
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to further improve predicative capability. Such kind of hybrid model can be trained

by back-propagation as well.

In summary, for those who are more used to the PLSR method, we recommend

using HMLR as a conservative improvement over PLSR. In HMLR we can still

interpret the model obtained in the traditional way; when the training set has a

medium size, for example from 500 to 5000 samples, we suggest considering kernel

methods as an option; we always encourage exploring suitable CNN structures for

any types of dataset, and it is a good practice to visualize the CNN models obtained

to avoid over-fitted ”black-box” models.



Appendix A

Variational distributions for

hierarchical mixture of linear

regressions

Using Equation (5.17) and Equation (5.19), we can put down the expectation of all

latent variables and parameter after each update.
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(A.1)

Where t(i,zzzn) is defined by Equation (5.5), and the following relationship is

satisfied:
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t(i,zzzn) =
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. (A.2)

As a result we can replace t(i,zzzn) with zni and eliminate t(i,zzzn). Equation (A.1)

can be rewritten as:
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(A.3)

where we have:

zn(K+1) = 1−
K

∑
i=1

zni. (A.4)

Eliminate all terms irrelevant with zni, further we have:
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(A.5)

It is quite difficult to write out the distribution of zzzn, but it is relatively easier

to find out a set of binary varaibles zzzn which can maximize logqZ(Z). Set zni = 1 if

and only if i maximize the target function:
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(A.6)

If this maximum value is negative, then set zn(K+1) = 1 and all other terms to
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zeros.
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logistic sigmoid function has a lower bound:
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Substitute σ(−vvvT
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and then we can write down the lower bound of distribution for each qvvvi(vvvi) as

follows:
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By completing the square, we can write down the lower bound of the posterior

distribution of each qvvvi(vvvi), which is a Gaussian distribution:

qvvvi(vvvi)∼N (vvvi|mmmvvvi,SSSvvvi), (A.12)

where mmmvvvi,SSSvvvi are given by:
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Similarly, wwwi follows a normal distribution:
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i wwwi〉 can be further presented by:
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βββ :
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Distribution and the expectation of βi can be presented by:
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εεε:

εεε is optimized by M-Step in the variational framework. Refer to conclusion in

Equation (5.19), it requires the expectation of posterior distribution p(X ,Y|θ) with

all latent variable fixed. It only depends on the sufficient statistics of θ = {εεε}, εεε

after the update can be presented by:
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set the derivative of above equation w.r.t εεε to 0, we have:
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Finally we can get:

ε
2
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T
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T
vvvi
)φφφ n.

(A.31)



Appendix B

Examples of optimum regularization

parameters (λ ) in the CNN models

for different constituents

Dataset name Constituent Concentration range% Optimum λ

a Moisture 6 - 16 0.002
b protein 10 - 60 0.02
c Ash 0.3 - 1.1 0.0001
d Water absorption 50 - 70 0.03
e Protein 7 - 18 0.003
f Ash 0.3 - 2.0 0.0001

Table B.1: CNN regularization parameters for different datasets. The values of λ were
found by grid search.
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