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Abstract 

Given the impact of inhabitants' control actions on indoor environment and the complex nature of such 

interactions, sophisticated models of occupants' presence and behavior are increasingly deployed to 

enhance the reliability of building performance simulations. However, the use of occupant behavior 

models in building simulation efforts and their predictive performance in different contexts involves 

potentially detrimental uncertainties. To address this issue, the present study deploys long-term 

monitored data from an office area and its calibrated simulation model to conduct an external evaluation 

of a number of stochastic and non-stochastic window operation models in view of their a) potential in 

predicting occupants’ operation of windows, and b) effectiveness to enhance the reliability of building 

performance simulation efforts. The results suggest that, while stochastic models can emulate the 

seemingly random character of occupant behaviour and provide probabilistic distributions of 

performance indicators, their use does not guarantee more reliable predictions. Leaving aside the large 

errors resulted from using such models without the necessary adjustments, stochastic window operation 

models overestimated the occupants’ operation of windows in heating season and thus the annual and 

peak heating demands. However, as compared with rule-based models, the stochastic models display a 

better performance in window operation prediction and thermal comfort assessment in the free-running 

season. 

 

Highlights 

 Widely used stochastic and non-stochastic window operation models studied. 

 Long-term monitored data and calibrated building model used for model evaluation. 

 Effectiveness of the models to enhance thermal performance assessments examined. 

 Stochastic models overestimated occupants’ operation of windows in heating season. 

 Stochastic models could enhance performance predictions in free running season. 
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1. Introduction  

Occupants influence buildings' indoor environment due to their presence and operation of 

devices such as windows, shades, and luminaries. This circumstance is particularly relevant for 

the use of building performance simulation tools, which deploy models of occupants' presence 

and behavior to assess, among other things, energy performance, thermal comfort, and indoor 

air quality. However, given the complex nature of occupants’ control-oriented behavior in 

buildings, arguably, the representation of occupants in building performance simulation falls 

short of models of other relevant factors such as building envelope, building systems, and 

climatic context. 

In this context, modeling natural ventilation and the occupants' operation of windows has 

gained relatively high attention from the researchers. Traditionally, two approaches have been 

adopted within building performance simulation zone models to represent natural ventilation. 

These are namely, representation of natural ventilation as an estimated air change rate, and 

introduction of operable windows with the aid of multi-zone airflow models or coupled 

computational fluid dynamics engines. With operable windows in the models, the diversity 

profiles (temporal schedules) and user defined rules (to trigger the state transition based on one 

or a number of environmental parameters) have been conventionally used to govern the 

operation of windows. Of course, the simpler approach of user defined air change rates can also 

be implemented using schedules and/or rule-based controls to replicate the time-varying nature 

of natural ventilation in buildings.  

However, since more than a decade ago, stochastic models of occupants’ presence and behavior 

are increasingly deployed to address the complex nature of occupants’ control actions in 

buildings and to increase the reliability of building performance simulation results. Numerous 

campaigns of occupants’ behaviour monitoring and data mining efforts [1,2], development of 

a variety of occupant behaviour models, and examination of different workflows for integration 

of these models into building simulation tools [3,4] have been collectively contributing to 

enhance the representation of occupants in building performance simulation. Specifically, 

various stochastic models of window operation have been introduced, which consider 

influential occupancy events and the deriving indoor and outdoor environmental factors to 

capture the occupants' interactions with windows [5,6,7,8,9]. In addition, a number of studies 

have suggested that such stochastic models do a better job in predicting occupants’ adaptive 

behavior and providing accurate building performance indicators [10,11,12].  

From our perspective, however, sophistication of the stochastic models, and more specifically, 

the inherent advantage of these models over non-stochastic ones in representing the 



probabilistic nature of occupants’ behavior has led to a misunderstanding that these models - 

as a whole – necessarily provide more “realistic” and “accurate” assessments of buildings’ 

performance compared to the simple non-stochastic methods. In addition, the simple rule-based 

representations of occupants’ control actions are considered to be “dated”, as if they have no 

longer any use in simulation based studies. In this context, however, it should not be forgotten 

that existing stochastic behavioral models are predominantly derived based on rather limited 

sets of observational data and are not subjected to external validation in different settings 

[13,14]. Previous studies in the area have highlighted, on the one side, the lack of inter-

comparison, and the uncertainty in the validity range of the developed models [15], and on the 

other side, the lack of robust algorithms for use of these models in building performance 

simulation [4]. In addition, as highlighted in previous publications [16,17,18], arguably, the 

relationship between the purpose of building performance simulation-based studies and the 

choice of occupancy-related models is yet not sufficiently recognized. Thus, the use of occupant 

behavior models in building performance simulation and their predictive potential in different 

contexts involves potentially detrimental uncertainties.  

Given this background, in the current contribution we conduct an external evaluation of a 

number of stochastic and non-stochastic window operation models in view of their potential in 

predicting occupants’ interactions with windows, and their effectiveness to enhance the 

reliability of thermal comfort and energy performance assessments. Toward this end, we 

selected an office area, for which long-term data on outdoor and indoor environment, 

occupancy, and window operation is available. As deployed in previous studies [19,20], such a 

test bed provides the required environmental and occupancy related input data to run and 

evaluate the window operation models with only one major shortcoming, namely disregard of 

the models’ feedback. That is, while the outcome of window operation models in an interval 

(state of window) changes the inputs for the next interval (for example indoor air temperature 

or CO2 concentration), the measured indoor environmental parameters are resulted from the 

actual control actions of occupants in the monitoring period. Other words, without a “virtual” 

representation of the building performance, one fails to see the impact of model predictions on 

indoor environmental parameters and provide valid inputs for the models. Therefore, to 

evaluate the predictive performance of window operation models in a more convincing manner, 

we take advantage a calibrated simulation model of the office area in addition to the full set of 

required monitored data. Using the building calibrated simulation model, we also study the 

implications of different window operation models for simulation-based assessments of 

building heating energy demand and occupants’ thermal comfort. 



Thus, the study allows us to explore a number of essential questions with regard to the use of 

rule-based and stochastic window operation models: To what degree do these models predict 

the occupant’s interaction with windows in a new setting, with and without calibration to on-

site data? To which extent do the results of simulations that use rule-based window control 

schemes or stochastic models of window operation differ from a reference building model, 

which utilizes actual window operation data? Does the use of existing stochastic window 

operation models enhance the accuracy of simulation results, even without calibration with on-

site window operation data?  

2. Methods 

2.1. Overview 

In a nutshell, the present study deploys long-term monitored data from an office area and the 

calibrated simulation model of this building to conduct an external evaluation of a number of 

stochastic and non-stochastic window operation models with respect to a) their potential in 

predicting occupants’ interaction with windows, and b) their effectiveness to enhance the 

reliability of building performance simulation results. 

2.2. Empirical data for model calibration and evaluation 

An office area at TU Wien (Vienna, Austria) was selected for the study including an open space 

with multiple workstations and a single-occupancy closed office. For the purpose of current 

study, we specifically focused on seven workstations, in which each occupant has access to one 

manually operable casement window. Only the enclosed office entails one workstation and two 

windows, but one of these windows is not operable (see Figure 1 for the arrangement of 

monitored occupants and operable windows assigned in the office area). The occupants’ 

presence, state of windows and a number of indoor environment variables (including air 

temperature, humidity, and CO2 concentration) are monitored on a continuous basis. Outdoor 

environmental parameters (including air temperature and precipitation) are also continuously 

monitored via building's weather station. For the present study, we used 15-minute interval data 

from a calendar year (referred to as calibration period) to calibrate the coefficients of stochastic 

window operation models. A separate set of data obtained from another calendar year (referred 

to as validation period) was used to evaluate the predictive performance of the models. 



 
Figure 1. Schematic illustration of the office area, observed occupants (P1-P7) and operable windows (W1-W7). 

 

2.3. Selected window operation models 

We studied three existing stochastic and three simple non-stochastic window operation models. 

The stochastic models (referred here as A, B, and C) are derived based of occupant behavior at 

office buildings and are widely referenced in the building performance simulation community. 

They are all Markov chain based logistic regression models that estimate the probability of 

window opening and closing actions based on the previous window state and a number of 

occupancy-related and environmental independent variables. Table 1 provides a list of 

independent variables considered in the models. To our knowledge, at least two of these models 

are implemented within well-known building performance simulation tools (model A in ESP-r 

and model C in IDA ICE).  

The non-stochastic models (referred as D, E, and F) are defined based on simple rules according 

to the common practice in use of building performance simulation tools without integration of 

stochastic models (models D and F are, for example, integrated in EnergyPlus). Model D works 

with an indoor temperature threshold and indoor and outdoor temperature inputs, whereas 

model E uses an indoor temperature dead-band together with indoor and outdoor temperature 

inputs to trigger window opening and closing actions. Model F, uses the comfort temperate 

calculated based on EN15251 as the assumed trigger of opening and closing actions. 

In our study, we also included new variations of models A and C (denoted as A* and C*), as 

the original models did not capture a key behavioral feature in the building under study where 

the inhabitants are requested not to leave the windows open when they leave the office due to 

storm damage risk. In addition, we considered two benchmark pseudo-models (denoted as G 

and H), whose purpose is to put the performance of the selected models into perspective. A 

brief description of the aforementioned models is provided below: 

P1

P5P6P7

P2 P3 P4

W2W1 W3 W4

W5W6W7



 Model A, developed by Rijal et al. [6], estimates the probability of opening and closing 

windows based on outdoor and operative temperature, when operative temperature is 

outside a dead-band (Comfort temperature ± 2°C).  

 Model A*, a variation of Model A, always returns a closing action upon each occupant's 

last departure. 

 Model B, developed by Yun and Steemers [7], is derived based on summer data, and is 

specifically fitted to buildings without night time ventilation. It estimates the probability 

of opening windows upon first arrival and the probability of window opening and 

closing actions within intermediate occupancy interval (i.e. after first arrival and before 

last departure) based on indoor temperature. 

 Model C, developed by Haldi and Robinson [8], estimates the probability of opening 

and closing actions at arrival times (first and intermediate ones), intermediate 

occupancy intervals, and the departure times (intermediate and last ones) based on a 

number of occupancy-related and environmental independent variables (see Table 1). 

 Model C*, a variation of Model C, always returns a closing action upon each occupant's 

last departure.  

 Model D, a non-stochastic model, operates as follows: windows are opened if indoor 

temperature is greater than outdoor temperature and indoor temperature is greater than 

26 °C. Otherwise the windows are closed.   

 Model E, a non-stochastic model, is formulated as follows: windows are opened if 

indoor temperature is greater than outdoor temperature and indoor temperature is greater 

than 26°C. Windows are closed if the indoor temperature is less than 22°C. 

 Model F, a non-stochastic model, operates as follows: windows are opened if the 

operative temperature is greater than the comfort temperature calculated from the 

EN15251 adaptive comfort model. Following the definition of comfort temperature for 

free-running period in EN15251, the windows can be opened only if weighted running 

average of the previous 7 daily average outdoor air temperatures is above 10°C and 

below 30°C.  

 Model G, a benchmark pseudo-model that "predicts" windows are always open. 

 Model H, a benchmark pseudo-model that "predicts" windows are always closed.   

It should be noted that we implemented all the models such that the opening and closing actions 

on each window are triggered only if the occupant associated with that window is present (see 

Figure 1, which illustrates the arrangement of monitored occupants and the operable windows 

assigned to them).  



Table 1. Selected stochastic window operation models, their independent variables, and the original and calibrated 
estimates of coefficients  

Model Type 
Occupancy 

phase 
Independent variables 

and constant terms 
Original 

coefficients 
Adjusted 

coefficients 

A 
Opening 

& 
closing 

- 

Intercept -6.430 -13.963 ± 1.733 

Operative temperature 0.171 0.461 ± 0.077 

Outdoor temperature 0.166 0.022 ± 0.020 

B 

Opening 

First arrival 
Intercept -4.849 ± 1.075 -13.797 ± 1.014 

Indoor temperature 0.218 ± 0.045 0.501 ± 0.042 

Intermediate 
Intercept -0.629 ± 0.226 -11.049 ± 0.740 

Indoor temperature 0.030 ± 0.010 0.274 ± 0.031 

Closing Intermediate 
Intercept 0.209 ± 0.049 12.554 ± 1.112 

Indoor temperature -0.007 ± 0.002 -0.651 ± 0.047 

C 

Opening 

Arrival 

Intercept -13.700 ± 0.400 -10.120 ± 1.063 

Indoor temperature 0.308 ± 0.017 0.231 ± 0.050 

Outdoor temperature 0.040 ± 0.004 0.064 ± 0.014 

Preceding absences > 8h 1.826 ± 0.048 1.809 ± 0.130 

Occurrence of rain -0.430 ± 0.120 -0.531 ± 0.464 

Intermediate 

Intercept -11.780 ± 0.300 -7.065 ± 1.252 

Indoor temperature 0.263 ± 0.014 0.070 ± 0.060 

Outdoor temperature 0.039 ± 0.004 0.080 ± 0.016 

Ongoing presence duration -0.001 ± 0.000 -0.372 ± 0.076 

Occurrence of rain -0.336 ± 0.088 0.072 ± 0.418 

Departure 

Intercept -8.720 ± 0.230 -6.101 ± 0.359 

Daily outdoor temperature 0.135 ± 0.008 0.126 ± 0.021 

Following absences > 8h 0.850 ± 0.120 NA1 

Ground floor 0.820 ± 0.140 NA2 

Closing 

Arrival 

Intercept 3.950 ± 0.390 3.963 ± 3.141 

Indoor temperature -0.286 ± 0.018 -0.192 ± 0.152 

Outdoor temperature -0.050 ± 0.005 -0.109 ± 0.040 

Intermediate 

Intercept -4.140 ± 0.240 7.044 ± 1.617 

Indoor temperature 0.026 ± 0.011 -0.323 ± 0.077 

Outdoor temperature -0.063 ± 0.002 -0.142 ± 0.019 

Departure 

Intercept -8.680 ± 0.250 -0.337 ± 1.951 

Indoor temperature 0.222 ± 0.024 -0.049 ± 0.098 

Daily outdoor temperature -0.094 ± 0.007 -0.066 ± 0.036 

Following absences > 8h 1.534 ± 0.077 1.587 ± 0.231 

Ground floor -0.845 ± 0.074 NA2 

1 Not applicable, as in the dataset used for calibration, no window opening was observed when the following 
absence was longer than 8 hours. 

2 Not applicable, as the dataset used for calibration do not include any observation in a ground floor. 

 



2.4. Office area calibrated simulation model 

The office area was modeled in the building energy simulation tool EnergyPlus 8.4.0. It was 

assumed that the floor and ceiling surfaces of the office are adiabatic, as the office is situated 

between two occupied floors. In the zoning scheme, the open-plan south and north-oriented 

spaces were separated from the central corridor. However, using the network-based multi zone 

airflow model of EnergyPlus [21], the airflows across the external windows and the connected 

spaces were simulated. Figure 1 illustrates the building floor plan and the modeled area.  

The constant input parameters governing bulk airflow simulation in the EnergyPlus model 

(namely open windows discharge coefficient and closed windows air mass flow coefficient) 

were set based on a previous model calibration effort [22]. Therein, the building model was 

populated with high-resolution monitored data on occupants’ presence, operation of windows, 

use of lights and equipment as well as heat delivery rate of the building hydronic heating system 

to exclude the time-varying parameters from calibration procedure. Consequently, in such an 

ideal situation for calibration of model’s constant input parameters, the discharge coefficient of 

open windows and the air mass flow coefficient of closed windows were subjected to an 

optimization-based calibration to minimize the root-mean-square deviation of simulated indoor 

air temperatures from measurements. Table 2 summarizes basic information about the office 

area energy model.  

In the present study, we use the building calibrated simulation model as a test bed for evaluation 

of window operation models, which allows us to consider the models feedback, i.e. the impact 

of models’ output (window states) on models’ input (indoor temperature). The calibrated 

building model also enables us to determine the impact of window operation (and use of 

different window operation models) on the simulated building performance indicators. To 

fulfill these purposes, we needed a model that could represent the building performance in 

validation period with high accuracy. Therefore, we incorporated the monitored data pertaining 

to occupancy, plug loads, use of lights, and operation of heating system into the calibrated 

building model as a set of full-year data streams with a resolution of 15-minute intervals. This 

data set was obtained in the validation period. However, to represent the operation of internal 

venetian blinds, due to lack of relevant monitored data, we relied on our observations and the 

information received from the occupants. The resulting model, when fed with actual window 

operation data as the benchmark model, predicts the hourly indoor temperatures in validation 

year with a Normalized Mean Bias Error of 2.8% and a Coefficient of Variation of Root-Mean-

Square Error of 4.8%. The low values of these indicators (which are suggested in [23] to 



evaluate the accuracy of calibrated simulation models) show the relatively high accuracy of 

model with slight overestimation of indoor temperatures.  

The described building simulation model served as a basis, into which the selected window 

operation models were integrated, such that in each variation of the building model, the 

occupants’ interactions with windows are represented using one of the selected window models. 

For each occupant in the building, individual occupancy data and zone-level indoor 

environmental factors are provided for the window operation model. That is, at each simulation 

time-step, the window model is executed separately for each occupant. We also built a 

benchmark model, which contained the actual operation of windows based on the monitored 

data obtained in the validation period.  

The modeled building is not air-conditioned and it only uses a hydronic heating system to 

actively maintain thermal comfort in the cold season. In the model, we set the heating and free-

running periods based on the measurements of the radiators’ surface temperature in the 

validation period, according to which the free-running season starts from April 22 and ends on 

September 25. In this period, the building model simulates the free-floating temperatures, which 

result - among other things - from window opening and closing actions.  

To represent the building performance in heating season, we took two approaches for our 

different model evaluation purposes. In one variation of the building model, which we used to 

evaluate the predictive potential of window operation models, the building hydronic system 

heating rate is incorporated into the model in a simplified manner (for calculation details see 

[22]). Through this basic representation of heating system, the impact of predicted window 

operations on indoor temperature is considered. However, in the model used to obtain building 

performance indicators, we defined an ideal non-limited heating system, which maintains the 

indoor temperature of different zones according to the measured indoor temperatures in the 

validation period. This approach enables us to obtain, as building performance indicator, the 

annual and peak heating demands to maintain the indoor temperatures preferred by occupants, 

and to see the impact of different window operation prediction on these performance indicators. 

The described building model was exposed to the outdoor environmental conditions in the 

validation period, using an EnergyPlus weather data file generated from the on-site weather 

station measurements. The measured dataset included outdoor air temperature, air humidity, 

atmospheric pressure, global horizontal radiation, diffuse radiation, wind speed, and wind 

direction.  

  



Table 2. Basic office area data and modeling assumptions 

Building data / Modeling assumptions Value 

Net conditioned floor area [m2] 187.6 

Gross wall Area [m2] 120.1 

Average window-wall ratio [%] 26.7 

Exterior walls U-value [W.m-2.K-1] 0.65 

Exterior windows U-value [W.m-2.K-1] 2.79 

Number of occupants [-] 7 

Maximum lighting power density [W.m-2] 4.1 

Maximum equipment power density [W.m-2] 9.9 

Number of operable windows [-] 7 

Windows discharge coefficient when open [-] 0.284 

Windows air mass flow coefficient when closed [kg.s-1.m-1] 4.15×10-4 

 

2.5. Evaluation scenarios for window operation predictions 

We take two approaches to evaluate window operation models in view of their potential in 

predicting the occupants’ interaction with windows:  

1) Use of a set of monitored data pertaining to indoor and outdoor environment as well as 

occupants’ presence and interaction with windows. Here, the impact of window 

operation models’ outputs on indoor environmental inputs is neglected. 

2) Use of a calibrated building performance model populated with the same set of 

monitored data. Here, the calibrated building model simulates the impact of window 

operation models’ outputs on indoor environmental inputs. 

In the first approach, which has been adopted in previous studies [8,19,20], at each time-step 

the environmental input data for the models is provided from the monitored dataset. Hence, 

models' predictions of window states do not have any impact on the indoor environmental 

factors for the next time step. This circumstance represents a simplification in previous 

publications regarding window operation model validation. Therefore, in the second approach, 

we suggest additional use of a calibrated simulation model to examine, to which extent and for 

which kind of window operation models, an evaluation study without considering the models’ 

feedback is reliable. 

In both approaches, we evaluated the performance of window operation models to predict the 

inhabitants' interactions with windows for a one-year-long validation period, whereby the 



models are fed with monitored occupancy-related and outdoor environmental data from the 

same period according to their independent variables. The required indoor environmental 

factors, however, are provided from different sources. That is, in the first approach from the 

measurements in the same period, and in the second approach from the building simulation 

outputs. 

In addition, in case of the stochastic window operation models, to conduct the evaluation in a 

comprehensive manner, we used both original and adjusted coefficients of the logit functions. 

Whereas the original coefficients are published by model developers, the adjusted coefficients 

are obtained from re-fitting the models to a separate set of data obtained from the building under 

study in the calibration period. We specify the models with original coefficients with a subscript 

“O” and the ones with calibrated coefficients with a subscript “C”. Note that the latter option 

(involving the possibility of adjusting model coefficients based on observations in actual 

buildings) has no relevance to model deployment scenarios pertaining to building design 

support, but may be of some interest in operation scenarios of existing buildings. Table 1 lists 

the stochastic models’ independent variables, and the original and adjusted estimates of their 

coefficients.    

2.6. Evaluation statistics for window operation predictions 

For the purpose of the current study, we used the following indicators to evaluate the predictive 

performance of window operation models: 

 Fraction of correct open state predictions [%]: This is the number of correctly predicted 

open state intervals divided by the total number of open state intervals.  

  Fraction of correct closed state predictions [%]: This is the number of correctly 

predicted closed state intervals divided by the total number of closed state intervals.  

 Fraction of correct state predictions [%]: This is the number of correctly predicted 

interval states divided by total number of intervals. 

 Fraction of open state [%]: This is the total window opening time divided by the 

observation time.  

 Mean number of actions per day [d-1] averaged over the observation time. 

 Open state durations' median and interquartile range [hour]. 

 Closed state durations' median and interquartile range [hour]. 

From the above indictors, the fraction of correct open state predictions (as “true positive rate”), 

fraction of open state, mean number of actions per day, median open state duration, and median 

closed state duration have been suggested in previous studies [19,20] to evaluate the predictive 



performance of window operation models. We added three indictors to the previous work, 

namely fraction of correct closed state predictions to express models' state prediction 

performance, and the interquartile range of open state and closed state durations to capture the 

spread of window states' durations. Moreover, in addition to the conventional model evaluation 

based on the whole set of empirical data obtained in the validation period, we studied the 

window operation predictions in heating and free-running seasons separately to better analyse 

the models’ performance. 

2.7. Building performance indicators 

To study the implications of using different window operation models for building performance 

simulation results in a systematic manner, we considered different building performance 

indicators in heating and free-running seasons. For the heating season, two basic building-level 

performance indicators were studied, namely annual and peak heating demand per floor area, 

which address the required heating energy to maintain the occupants’ desired temperature set-

points. These performance indicators are widely used in the simulation community, especially 

in situations where the user wishes to study the thermal performance of a building without 

modelling a full HVAC system. As the use of dynamic building performance simulation for the 

derivation of peak heating demand is not well established, we obtained three variations of peak 

heating demand based on 15-min and hourly integrated results as well as the 99.6th percentile 

of time-step heating demands. These variations allows us to better analyse the performance of 

window operation models in comparison with the benchmark model.  

Concerning the free-running season, we obtained the minimum, average and maximum value 

of the free-floating indoor temperatures. In addition, we assessed the occupant thermal comfort 

based on EN15251 adaptive thermal comfort model. More specifically, as building 

performance indicators, we calculated the fraction of time that the occupants are present, but 

the temperature is below or above the limits defined in EN15251 adaptive comfort model for 

existing buildings (Category III, with an acceptable range of comfort temperature  4K). It 

should be noted that while thermal comfort indicators have been calculated for the occupied 

hours in the free-running season, the minimum, average and maximum free-floating 

temperatures are calculated regardless of occupancy states. 

2.8. Implementation of window operation models  

For the evaluation of window operation models without considering the models’ feedback, we 

implemented the models in Matlab environment, in which the data pre- and post-processing, 

calibration of the logistic regression models and the Monte Carlo-based executions of the 



stochastic models could be smoothly accomplished. We implemented the models with complete 

set of input parameters published by the modellers. Only, given the proximity of measured 

indoor air and indoor surface temperatures in the present study, in implementation of Model A 

outside building simulation model, the operative temperature assumed to be equal to indoor 

temperature. 

In order to evaluate the predictive performance of window operation models with their 

feedbacks on indoor environment, and to explore the effectiveness of these models to enhance 

the reliability of building performance simulation results, we implemented the models within 

the building simulation model using the EnergyPlus runtime language. For the implementation 

of the models in EnergyPlus we benefited from a study by Gunay et al. [4] and their offered 

public models. However, due to the different approaches in representing the occupants’ 

diversity (using the measured occupant data and the estimated single values for models’ 

coefficients in our study versus an artificial sample of occupants and use of randomly selected 

coefficients form the reported estimation errors in the other study), and a number of 

simplifications and modification applied on the models in the public repository, we needed to 

rewrite the codes to a large extent for the purpose of our study.  

It is worthwhile to mention that, as far as we understood, the authors in [4] have tried to resolve 

some of the shortcomings in the models, whereas we tried to implement the models as exact as 

possible based on original publications, and to document the required modifications. An 

example of the model modifications applied for the study conducted in [4] is the addition of a 

condition to window models A and C (in case of model C only for opening actions upon arrival) 

that limits the applicability of the derived opening probabilities to situations that the outdoor 

temperature is above 15 °C. While this addition seems to improve the performance of models 

in winter, it does not disclose the potential large errors that could result from the deployment 

of the models in their original form. 

As a technical issue associated with integration of window models into building simulation, it 

should be also noted that, to our knowledge, using EnergyPlus runtime language (or any other 

simulation runtime environment), input information such as last departure time and the 

duration of following absence could be provided for the models, only if the occupancy patterns 

are known before the simulation. If the occupants’ presence is also predicted runtime (using 

another integrated stochastic model), it is not possible to detect occupancy events that depend 

on the later executions of the presence model. In such a case, one needs to execute the presence 

model before the simulation and populate the building model with new sets of required 

occupancy information for each Monte-Carlo run, which cannot be seen as a very smooth 



workflow. In our case, the monitored presence data was pre-processed using our Matlab codes 

and the resulting occupancy-relevant information such as last departure time and the duration 

of following absences were fed into the model as schedules based on external CSV files. 

3. Results 

3.1. Window operation predictions 

The obtained values of evaluation indicators for different window operation models are given 

in Table 3 (without considering the models’ feedback) and Table 4 (by considering the models’ 

feedback via calibrated building performance model). These values are obtained from model 

executions in the whole validation period (a full calendar year). Table 5 provides the window 

operation indicators separately for heating and free-running seasons, obtained from the model 

executions within the calibrated building model. To better illustrate the performance of models 

in terms of different evaluation indicators, Figure 2, Figure 3, and Figure 4 show the models' 

prediction errors under consideration of their feedback. Note that in these Figures, models' 

relative error percentages are displayed in a logarithmic scale: For instance, a value of 1 read 

from the y-axis denotes a relative error of 10% in the evaluation indicator with reference to the 

benchmark. This mode of representation facilitates a better visibility of the differences in 

models' behavior. 

3.2. Building performance indicators 

Table 6 gives the obtained values for building annual and peak heating demand and Table 7 

provides the indicators addressing building performance during free-running season. Figure 5 

and Figure 6 compare the predicated free-floating temperatures of two set of models with those 

of the benchmark: Original stochastic models (Ao, Bo, and Co) and two non-stochastic model 

(D and F) in Figure 5; modified stochastic models with original coefficients (Ao*, and Co*) 

together with model Bo and non-stochastic models D and F in Figure 6. In addition, to provide 

a better understanding of peak heating demand predictions, Table 8 includes the number of 

open windows, office area air change rate and outdoor temperature for the interval, in which 

peak heating demand is predicted.  

3.3. Remarks 

In the aforementioned tables, the first row of values belongs to the monitored operation of 

windows (or the building simulation model populated with monitored window operation data). 

The second set of rows presents the stochastic models with original coefficients and the third 

set of rows includes the stochastic models with calibrated coefficients. The 4th set of rows 



provides the indicators for non-stochastic window operation models. The last two rows include 

the results of the aforementioned pseudo-models, which "predict" that the windows are always 

open (G) or always closed (H). 

In case of stochastic models, the results are obtained via a 50-run Monte-Carlo simulation of 

window operation models. When a single value is given, it represents the mean value of these 

multiple model executions. When a range of values is provided, it denotes the mean and 

standard deviation of the outcomes. 

 

 

 

 

 

 

  



Table 3.  The values of evaluation statistics obtained from model executions without feedback 

Models 

Fraction 
of correct 
open state 

[%] 

Fraction 
of correct 

closed 
state [%] 

Fraction 
of correct 

states 
[%] 

Fraction 
of open 

state 
[%] 

 Actions 
per day 

[d-1] 

Opening duration 
[hour] 

Closing Duration 
[hour] 

Median IQR Median IQR 

Observed 100.0 100.0 100.0 4.1 0.28 1.8 5.3 23.5 55.3 

Ao 71.8 39.2 40.5 61.3 0.01 1180.0 2803.2 452.8 1442.3 

Ao* 26.0 98.7 95.7 2.3 0.10 4.9 4.1 23.9 96.6 

Bo 47.5 84.4 82.9 16.9 5.37 0.5 0.5 0.5 0.8 

Co 61.3 70.1 69.7 31.2 0.09 44.3 102.6 97.3 212.5 

Co* 22.2 97.9 94.8 2.9 0.15 4.2 4.7 76.3 157.5 

Ac 80.9 46.4 47.8 54.7 0.01 1380.1 1318.2 635.0 974.1 

Ac* 30.8 98.8 95.9 2.4 0.10 4.8 5.5 22.0 106.5 

Bc 42.0 95.1 92.9 6.4 0.29 3.7 5.8 42.4 81.1 

Cc 55.0 80.6 79.6 20.9 0.17 5.2 26.1 56.7 118.7 

Cc* 33.7 97.5 94.9 3.8 0.22 3.2 5.6 54.2 110.1 

D 32.0 98.7 96.0 2.6 0.35 0.8 2.3 1.8 18.0 

E 51.5 97.8 95.9 4.2 0.14 7.8 5.0 17.8 48.1 

F 45.3 93.7 91.7 7.9 0.95 0.8 2.8 1.0 15.0 

G 100.0 0.0 4.1 100.0 0.0 8760.0 0.0 - - 

H 0.0 100.0 95.9 0.0 0.0 - - 8760.0 0.0 

 

Table 4.  The values of evaluation statistics obtained from model executions with feedback 

Models 

Fraction 
of correct 
open state 

[%] 

Fraction 
of correct 

closed 
state [%] 

Fraction 
of correct 

states 
[%] 

Fraction 
of open 

state 
[%] 

 Actions 
per day 

[d-1] 

Opening duration 
[hour] 

Closing Duration 
[hour] 

Median IQR Median IQR 

Observed 100.0 100.0 100.0 4.1 0.28 1.8 5.3 23.5 55.3 

Ao 44.0 85.2 83.5 16.0 0.05 18.6 59.0 152.2 308.8 

Ao* 47.2 96.9 94.9 4.9 0.21 5.7 5.3 22.4 66.0 

Bo 41.8 88.4 86.5 12.9 5.2 0.5 0.5 0.5 0.8 

Co 54.2 78.2 77.2 23.1 0.07 37.1 91.2 133.7 313.2 

Co* 30.9 97.5 94.7 3.7 0.18 4.5 4.9 56.4 120.9 

Ac 41.3 86.0 84.2 15.1 0.04 19.8 93.1 172.5 408.2 

Ac* 44.4 97.5 95.3 4.2 0.18 5.4 5.4 23.6 76.2 

Bc 44.6 96.4 94.3 5.3 0.31 2.8 5.9 38.3 76.3 

Cc 47.9 83.9 82.5 17.4 0.16 3.7 22.8 63.0 128.5 

Cc* 35.4 97.2 94.7 4.1 0.24 3.2 5.8 45.8 97.6 

D 36.0 97.6 95.1 3.8 1.25 0.3 0.3 0.5 2.5 

E 54.3 95.8 94.1 6.3 0.23 6.8 6.0 18.8 47.9 

F 44.1 94.8 92.8 6.8 1.78 0.3 0.5 0.5 1.3 

G 100.0 0.0 4.1 100.0 0.0 8760.0 0.0 - - 

H 0.0 100.0 95.9 0.0 0.0 - - 8760.0 0.0 

 



Table 5. Window operation indicators at heating and free-running periods from model executions with feedback 

 Heating period Free-running period 

 
Models 

Fraction of 
open state 

[%] 

Number 
of actions [-] 

Opening 
duration 

median [h] 

Fraction of 
open state 

[%] 

Number 
of actions [-] 

Opening 
duration 

median [h] 

Benchmark 0.7 238.0 0.3 8.7 470.0 3.8 

Ao 2.5 ± 0.2 61.6 ± 4.3 16.8 ± 0.4 33.8 ± 0.7 67.1 ± 5.7 62.2 ± 20.4 

Ao* 1.2 ± 0.0 107.2 ± 5.8 3.9 ± 0.3 9.8 ± 0.1 417.6 ± 5.6 6.5 ± 0.2 

Bo 11.6 ± 0.1 7459.1 ± 37.1 0.3 ± 0.0 12.9 ± 0.1 6563.3 ± 41.3 0.3 ± 0.0 

Co 6.8 ± 0.7 69.2 ± 5.5 20.4 ± 1.6 44.8 ± 2.2 112.0 ± 7.2 64.3 ± 10.7 

Co* 1.3 ± 0.1 111.9 ± 8.4 3.6 ± 0.4 6.8 ± 0.2 352.2 ± 9.2 4.8 ± 0.3 

Ac 2.0 ± 0.1 47.3 ± 4.1 16.4 ± 0.5 32.5 ± 0.6 63.5 ± 3.7 80.9 ± 17.5 

Ac* 0.9 ± 0.0 81.0 ± 4.8 3.6 ± 0.4 8.7 ± 0.1 378.1 ± 6.9 6.1 ± 0.2 

Bc 1.3 ± 0.1 289.5 ± 12.8 1.0 ± 0.1 10.5 ± 0.2 510.6 ± 11.8 5.1 ± 0.3 

Cc 3.3 ± 0.6 170.4 ± 10.1 1.2 ± 0.2 36.0 ± 1.6 250.1 ± 12.9 16.5 ± 2.7 

Cc* 0.9 ± 0.1 181.5 ± 12.9 1.1 ± 0.1 8.3 ± 0.2 419.1 ± 12.6 4.9 ± 0.3 

D 0.0 28.0 0.3 8.6 2997.0 0.3 

E 0.1 13.0 1.0 13.9 489.0 7.5 

F 1.4 937.0 0.3 13.9 3608.0 0.3 

G 100.0 0.0 4992.0 100.0 0.0 3768.0 

H 0 0 0 0 0 0 

 

 

Figure 2. Errors of stochastic window operation models with original coefficients and no adjustment (Ao, Bo, and 
Co) as well as non-stochastic models D, E, and F in terms of 5 evaluation statistics 
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Figure 3. Errors of stochastic window operation models with original coefficients and adjusted to buildings without 
night time ventilation (Ao*, Bo, and Co*) as well as non-stochastic models D, E, and F in terms of 5 evaluation 
statistics 

 

 

Figure 4. Errors of stochastic window operation models with calibrated coefficients and adjusted to buildings 
without night time ventilation (Ac*, Bc, and Cc*) as well as non-stochastic models D, E, and F in terms of 5 
evaluation statistics 
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Table 6.  Obtained values for indicators addressing building heating demand 

 
Models 

Annual 
[kWh.m-2] 

Hourly aggregated 
peak [W.m-2] 

15-min aggregated 
peak [W.m-2] 

99.6 Percentile 
[W.m-2] 

Benchmark 64.7 47.9 89.3 38.5 

Ao 468.3 ± 6.2 250.5 ± 4.0 258.2 ± 3.7 222.4 ± 9.7 

Ao* 68.0 ± 0.2 137.1 ± 12.7 143.1 ± 10.9 85.9 ± 4.2 

Bo 142.5 ± 0.9 224.2 ± 20.8 320.7 ± 29.7 180.5 ± 3.0 

Co 135.9 ± 9.5 134.1 ± 28.1 144.1 ± 29.6 102.5 ± 20.1 

Co* 69.7 ± 1.0 92.6 ± 17.7 100.5 ± 18.6 59.3 ± 5.8 

Ac 451.3 ± 13.7 245.3 ± 6.9 253.1 ± 7.5 207.1 ± 16.6 

Ac* 66.1 ± 0.3 114.8 ± 17.4 120.5 ± 17.2 64.3 ± 8.2 

Bc 77.8 ± 1.4 132.7 ± 23.5 148.1 ± 27.1 84.7 ± 6.0 

Cc 82.0 ± 3.6 84.7 ± 15.3 96.7 ± 15.5 59.2 ± 7.8 

Cc* 66.6 ± 0.5 73.2 ± 12.5 86.0 ± 14.6 48.8 ± 2.9 

D 62.8 60.4 82.3 29.8 

E 63.3 75.9 80.7 30.0 

F 73.7 132.8 146.4 77.4 

G 684.6 380.3 392.9 310.4 

H 62.4 37.4 45.5 29.5 

 

Table 7. Obtained values for indicators addressing building performance at free-running period 

 
 

Models 

Minimum 
temperature 

[°C] 

Average 
temperature 

[°C] 

Maximum 
temperature 

[°C] 

Fraction below 
EN15251 
limit [%] 

Fraction above 
EN15251 
limit [%] 

Benchmark 20.4 26.8 35.9 0.0 5.5 

Ao 17.6 ± 0.4 25.0 ± 0.0 35.2 ± 0.0 0.0 ± 0.0 0.6 ± 0.0 

Ao* 21.5 ± 0.0 26.6 ± 0.0 35.6 ± 0.0 0.0 ± 0.0 2.7 ± 0.0 

Bo 14.8 ± 0.6 25.8 ± 0.0 35.0 ± 0.2 0.2 ± 0.1 4.5 ± 0.2 

Co 15.6 ± 1.1 23.7 ± 0.2 35.2 ± 0.2 1.3 ± 0.8 0.6 ± 0.0 

Co* 19.9 ± 0.9 26.9 ± 0.0 35.9 ± 0.2 0.0 ± 0.0 7.8 ± 0.7 

Ac 18.0 ± 0.5 25.1 ± 0.0 35.3 ± 0.0 0.0 ± 0.0 0.6 ± 0.0 

Ac* 21.6 ± 0.0 26.7 ± 0.0 35.7 ± 0.0 0.0 ± 0.0 2.9 ± 0.1 

Bc 19.4 ± 0.8 26.4 ± 0.0 35.6 ± 0.1 0.0 ± 0.0 2.9 ± 0.2 

Cc 17.1 ± 1.0 24.5 ± 0.1 35.2 ± 0.2 0.1 ± 0.1 0.6 ± 0.0 

Cc* 19.9 ± 1.0 26.7 ± 0.0 35.7 ± 0.2 0.0 ± 0.0 5.0 ± 0.6 

D 21.7 26.6 33.4 0.0 2.8 

E 20.6 26.3 35.5 0.0 2.5 

F 15.8 26.1 35.3 0.0 3.5 

G 10.2 21.6 35.1 26.3 0.4 

H 21.6 27.8 34.9 0.0 25.0 

 

  



Table 8.  Number of open windows, air change rate and outdoor temperature at peak heating demand 

 
 

Models 

15-min aggregated 
Peak heating 

demand [W.m-2] 

Number of open 
windows at peak 

load [-] 

Office area air 
change rate at peak 

load [h-1] 

Outdoor 
temperature at peak 

load [°C] 

Benchmark 89.3 2 2.0 -3.4 

Ao 258.2 ± 3.7 4.4 ± 1.2 8.2 ± 1.0 -2.9 ± 2.1 

Ao* 143.1 ± 10.9 4.3 ± 0.8 6.3 ± 0.8 5.6 ± 2.0 

Bo 320.7 ± 29.7 5.8 ± 0.6 11.2 ± 1.7 -2.0 ± 1.9 

Co 144.1 ± 29.6 4.1 ± 1.8 5.0 ± 1.4 -0.2 ± 3.4 

Co* 100.5 ± 18.6 4.7 ± 1.1 3.4 ± 1.1 1.3 ± 2.5 

Ac 253.1 ± 7.5 3.0 ± 1.5 9.2 ± 1.3 -0.7 ± 2.5 

Ac* 120.5 ± 17.2 3.9 ± 0.7 4.7 ± 0.9 4.2 ± 3.2 

Bc 148.1 ± 27.1 3.0 ± 0.7 4.8 ± 1.1 -1.3 ± 2.6 

Cc 96.7 ± 15.5 3.3 ± 1.8 3.4 ± 1.1 0.9 ± 3.9 

Cc* 86.0 ± 14.6 3.7 ± 1.6 2.8 ± 0.9 0.5 ± 3.4 

D 82.3 4.0 4.4 9.9 

E 80.7 4.0 4.3 10.2 

F 146.4 7.0 11.1 11.1 

G 392.9 7.0 13.7 -2.2 

H 45.5 0 0.1 7.4 

 

 

 

Figure 5. Cumulative distribution of free-floating temperatures obtained from stochastic models Ao, Bo, and Co, 
non-stochastic models D and F, as well as benchmark and pseudo-models G and H.  
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Figure 6. Cumulative distribution of free-floating temperatures obtained from stochastic models Ao*, Bo, and 
Co*, non-stochastic models D and F, as well as benchmark and pseudo-models G and H.  
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Given the respective results shown in Table 3 and Table 4, the models appear to perform 
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above a certain threshold, which, in the realistic scenario (including feedback) would result in 

a large number of opening and closing actions. However, without considering the models’ 

feedback, opening of the window does not reduce the indoor air temperature and is therefore 

not followed by a prompt closing action.   

Given these circumstances, it can be inferred that validation efforts pertaining to window 

operation models (or any behavioral model with indoor environmental input), which neglect 

the models’ feedback would be inconclusive. Therefore, the use of calibrated simulation models 

is more likely to provide a dependable analysis of the window operation models’ performance. 

4.2. Window operation predictions 

A fundamental question with regard to the application of behavioral models concerns their 

capability in reproducing empirical observations. We may thus first ask if the models could, in 

the present case, provide acceptable approximations of the observations. Assuming a threshold 

of ±20% for the relative error of model predictions as a reasonable benchmark, we must 

conclude that without adjustments (night-time ventilation, calibrated coefficients), none of the 

studied models performs satisfactorily (see Tables 3 and 4 as well as Figure 2). Only regarding 

the indicator "fraction of correct state predictions" do the non-stochastic models meet this 

criterion. Note that the models do not appear to perform better, when we – instead of the 

conventional no feedback assumption (see Table 3), conduct a more realistic simulation-based 

test with feedback inclusion (see Tables 4). However, the nighttime ventilation adjustment 

markedly improves the performance of the stochastic models Ao* and Co* (see Figure 3). 

Furthermore, calibrating the coefficients of stochastic models via observational data results in 

a significant improvement of their predictive performance. Specifically, for indicators "fraction 

of correct state predictions", "predicted fraction of open state", and "the number of daily 

actions", these models' relative errors remains roughly under 30% (see Figure 4). 

More specifically, concerning the models’ performance in heating and free-running seasons, 

the results provided in Table 5 facilitate a number of observations: 

 In heating season, the stochastic models – especially with original coefficients – 

overestimate the fraction of open state and the duration of window openings.  

 Based on the monitored data, the occupants have opened the windows more than 200 

times in the heating season, but they have kept windows open for short durations (with 

a median opening duration of 0.25 h versus that of 3.75 h in free-running season), such 

that the overall fraction of open state in this period is only 0.7%. However, the studied 



stochastic models, which do not distinguish between the heating and free-running 

seasons, could not capture this occupants' behavioural tendency in the heating season.  

 In contrast, the non-stochastic models, with the exception of model F (whose assumed 

heating season based on EN15251 does not fully match that of the studied building) 

tend to disregard window operation in heating season.  

 In the free-running season, leaving aside the required night-time ventilation adjustment, 

the stochastic models provide better predictions of occupants’ interactions with 

windows compared to non-stochastic ones. However, the stochastic model Bo is an 

exception, which largely overestimates the fraction of open state and number of actions.  

 The non-stochastic models fail to correctly predict the number of actions and duration 

of opening state in free-running season. Model E, as a non-stochastic model with dead-

band, performs better than models D and F in terms of the number of actions, but 

overestimates the state durations.  

4.3. Annual heating demand predictions 

As mentioned previously, we conducted a benchmark simulation run whereby actual monitored 

information constituted the sole input information with regard to operation of windows in the 

simulation model. In the following discussion, we treat the results of this simulation model as 

the ground truth. As shown in Table 6, non-stochastic window operation models, with the 

exception of model F (which suffers from disagreement between the assumed and actual heating 

season), provide closer estimations of annual heating demand compared to the stochastic 

models with original coefficients. Among the stochastic ones, models Ao, Bo, and Co show very 

large errors in annual heating demand assessment. In case of models Ao and Co windows stay 

open after occupants’ last departure, which contradicts the occupants’ behaviour at the 

modelled building. With a modification of these models to force a closing action before last 

departure, predictions of models A* and C* get much closer to the benchmark. However, even 

these two models tend to somewhat overestimate annual heating demand, which is more 

obvious in case of original coefficients. This can be explained by larger fraction of window 

open state in heating season compared to actual operation of windows by occupants (Table 5). 

Model B, however, is originally derived based on summer data, and the obtained results show 

that using such a model for an annual simulation can yield very large errors in estimation of 

building performance indicators addressing the heating season. 

4.4. Peak heating demand predictions 

The peak heating demand in one year may not be the most appropriate benchmark to analyse 



the predictive performance of stochastic window operation models, because it only represents 

a single instance of possibilities in reality as opposed to probabilistic distributions of 

performance indicator values. Nonetheless, the corresponding results could be fairly 

informative for model comparison purposes. We have also provided the 99.6th percentile of 

heating demands to make the benchmark less affected by single events. 

Considering the 15-min and hourly-integrated peak heating demand values provided in Table 

6, the non-stochastic models (with the exception of model F) have provided closer values to the 

benchmark compared to the stochastic models with original coefficients. The 99.6th percentile 

of peak heating demand was underestimated by the non-stochastic models. The stochastic 

models, however, overestimated the 99.6th percentile of heating demand to the extent that the 

benchmark single value does not fall within the standard deviation of the predictions. 

The overestimation of hourly aggregated peak heating demand by stochastic models can be 

explained by large number and long periods of coincident window openings in one-hour 

intervals. Whereas in the benchmark mode peak heating demand occurs at a winter early 

morning with 2 windows open for only one 15-min interval, the predictions show concurrent 

hour-long openings of 2 to 6 windows. This observation applies also to 15-min interval 

analyses, albeit in a less dramatic manner. To further clarify this issue, Table 8 shows the 

number of open windows, the office area air change rate, and the outdoor temperature at the 

time of peak. As can be seen from the results provided in Table 8, the stochastic models 

overestimate the number of coincident open windows in cold conditions. Concurrent opening 

of 4 out of 7 windows in on office when the outdoor temperature is around zero is rather 

unrealistic. This highlights the necessity for a better representation of occupants’ diversity and 

the interrelations between occupant’s control oriented actions. Obviously, the non-stochastic 

models perform worse in terms of the number of coincident window opening. However, as they 

limit window operation under cold conditions, very large errors in estimation of peak heating 

demand are not resulted.  

4.5. Free-floating temperatures and thermal comfort assessments 

According to Table 7, except for models Co* and Cc*, the studied window operation models 

underestimate the occupants’ discomfort in the free-running season. A number of stochastic 

models (Bo, Co, and Cc) predict that the occupants operate the windows such that the zone 

operative temperature falls below the lower limit of EN15251 Category III, which is not the 

case in reality. However, the stochastic models Bo, Co* and Cc* do a better job than the non-

stochastic ones in providing realistic thermal comfort assessments in the free running season. 



Non-stochastic models imply de facto an automated window operation mode. The resulting 

discomfort minimization is thus beyond what is realistically achievable via adaptive actions.  

Concerning the predicted free-floating temperatures, the stochastic models that disregard the 

specific operational circumstances in the building (such as models Ao and Co without any 

adjustment with regard to night-time ventilation) can yield larger errors compared to simple 

non-stochastic models (Figure 5). However, as shown in Figure 6, stochastic models A* and 

C*, which consider the unavailability of nigh-time ventilation in the studied building, provide 

more accurate assessments of free-floating temperatures in non-heating season, even without 

calibration to on-site data. 

5. Conclusions 

We studied a number of stochastic and non-stochastic window operation models to evaluate 

their predictive performance and their effectiveness to enhance the reliability of common 

building performance simulation results. The results suggest that the stochastic window 

operation models, if deployed in accordance to the operational circumstances in the buildings 

under study, could provide more realistic predictions of occupants’ interactions with windows 

and thermal comfort assessments in free-running season. However, we could not infer superior 

performance of these models for heating demand assessments, as they could not capture the 

occupants’ behaviour in the studied building during wintertime, which might have been 

motivated by energy conservation considerations. On the other hand, the non-stochastic models 

- despite simplifications such as neglecting the possible window openings in heating season - 

proved to be reliable for specific simulation queries, assessing annual heating demand being a 

case in point. However, predicting large number of window opening and closing actions and 

the inherent tendency to trigger concurrent actions hinder the non-stochastic window operation 

models from contributing to simulation studies in which the occupants’ control over natural 

ventilation plays an important role. 

In our view the study results have implications beyond the performance comparison of the 

models considered. The observed possible large deviations from reality underlines the need for 

clear documentation of associated uncertainties with existing window operation models in 

different deployment scenarios as well as development of more generally applicable 

occupancy-related models. Moreover, both model developers and potential users need to be 

careful with regard to introduction and characterization of behavioral models pertaining to 

inhabitants' actions in buildings. Specifically, statements concerning models' validity and 

overall applicability in the building delivery process require comprehensive empirical backing 

and careful model testing procedures. 
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