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Abstract
Introduction: Amyloid plaque deposition in the brain is an early pathological change 
in Alzheimer’s disease (AD), causing disrupted synaptic connections. Brain network 
disruptions in AD have been demonstrated with eigenvector centrality (EC), a meas-
ure that identifies central regions within networks. Carrying an apolipoprotein 
(APOE)-ε4 allele is a genetic risk for AD, associated with increased amyloid deposi-
tion. We studied whether APOE-ε4 carriership is associated with EC disruptions in 
cognitively normal individuals.
Methods: A total of 261 healthy middle-aged to older adults (mean age 56.6 years) 
were divided into high-risk (APOE-ε4 carriers) and low-risk (noncarriers) groups. EC 
was computed from resting-state functional MRI data. Clusters of between-group 
differences were assessed with a permutation-based method. Correlations between 
cluster mean EC with brain volume, CSF biomarkers, and psychological test scores 
were assessed.
Results: Decreased EC in the visual cortex was associated with APOE-ε4 carriership, 
a genetic risk factor for AD. EC differences were correlated with age, CSF amyloid 
levels, and scores on the trail-making and 15-object recognition tests.
Conclusion: Our findings suggest that the APOE-ε4 genotype affects brain connec-
tivity in regions previously found to be abnormal in AD as a sign of very early disease-
related pathology. These differences were too subtle in healthy elderly to use EC for 
single-subject prediction of APOE genotype.
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1  | INTRODUC TION

1.1 | The role of amyloid-β in Alzheimer’s disease

The accumulation of amyloid-β (Aβ) plaques in the brain is one of 
the first events in the pathological cascade leading to Alzheimer’s 
disease (AD) (Bateman et al., 2012; Hardy & Selkoe, 2002; Sperling 
et al., 2010). Aβ disrupts synaptic functioning, resulting in aber-
rant brain connectivity at the synaptic level (Selkoe, 2002; Spires-
Jones & Hyman, 2014), as well as on the whole-brain connectivity 
level (Delbeuck, der Linden, & Collette, 2003; Hedden et al., 2009). 
Although the precise sequence of events caused by Aβ plaques is 
still being investigated (Altmann, Ng, Landau, Jagust, & Greicius, 
2015) and interactions with other agents recognized (Jones et al., 
2017), the key role of Aβ in AD pathology is beyond doubt (Jack 
et al., 2016).

1.2 | The APOE-ε4 allele and Aβ pathology

Carrying the APOE-ε4 allele is the main genetic risk factor for Aβ 
deposition (Ba et al., 2016; Verghese, Castellano, & Holtzman, 2011; 
Yu, Tan, & Hardy, 2014). Recent findings show that the ε4 isoform 
of the ApoE protein is less efficient in clearing Aβ compared to ε2 
and ε3, leading to accelerated aggregation of plaques. Early imag-
ing studies show hypometabolism in AD-specific regions in APOE-ε4 
carriers (Reiman et al., 1996). Carriers have also shown detrimental 
effects on cognition in old age (Deary et al., 2002). Recent results 
show the correlation of APOE-ε4 carriership with Aβ deposition, 
cognition, and brain atrophy (Bonham et al., 2016; ten Kate et al., 
2016; Lim & Mormino, 2017). APOE-ε4 carriers show abnormal Aβ 
plaque deposition at relatively younger ages (Jansen et al., 2015; 
Strittmatter, Weisgraber, et al. 1993).

1.3 | Brain connectivity and resting-state 
functional MRI

Brain connectivity is disrupted in AD (Binnewijzend et al., 2012; 
Tijms et al., 2013, 2014), indicating that AD is a disconnectivity 
disorder. Resting-state functional MRI (RS-fMRI) detects func-
tional connections in the brain as synchronized activity between 
brain regions in the absence of a task (Binnewijzend et al., 2012). 
Brain regions linked to AD pathology in studies using MEG and 
structural MRI (de Haan, Mott, et al., 2012; de Haan, van der Flier, 
et al., 2012; Tijms et al., 2013) show high connectivity in RS-fMRI; 
they are hub regions. The high vulnerability of hubs for AD is also 
found in RS-fMRI studies (Buckner et al., 2009; Qi et al., 2010). 
The default mode network (DMN) and other resting-state net-
works, that is, regions with synchronized fMRI activity, have been 
studied as markers for AD progression (Binnewijzend et al., 2012; 
Filippini et al., 2009; Sheline et al., 2010). Functional brain con-
nectivity changes in healthy adults are related to amyloid deposi-
tions (Hedden et al., 2009; Sperling et al., 2009), and carriers of 
the APOE-ε4 allele show increased co-activation with the DMN 

in young adults (Bookheimer et al., 2000; Filippini et al., 2009), 
indicating that functional connectivity is sensitive to AD-related 
alterations of the brain. This study extends these previous find-
ings, using a large sample from a population imaging study, com-
bined with comprehensive AD-related cognitive assessment and 
genotyping.

1.4 | Functional brain network hubs: eigenvector 
centrality and its relevance to AD

In graph theory, the notion of centrality (Bavelas, 1948) expresses 
the amount of network traffic going through a network node. 
Eigenvector centrality (EC) can be efficiently computed from whole-
brain connectivity matrices derived from RS-fMRI or electroenceph-
alographic (EEG) data (Lohmann et al., 2010). Eigenvector centrality 
is sensitive to changes in brain connectivity on different levels of 
the network hierarchy (Binnewijzend et al., 2014). Previous studies 
suggest that EC is used as a proxy marker for mild cognitive impair-
ment (MCI) (Meinzer et al., 2012) and AD (Binnewijzend et al., 2014), 
where patients have decreased EC compared to healthy controls in 
occipital regions. Because of its sensitivity to AD-related changes 
and its low computational cost, EC is a useful measure for generating 
biomarkers for AD pathology from RS-fMRI data.

Although it is not currently known at which point in the develop-
ment of the disease these EC changes occur, it has shown sensitiv-
ity to changes before the stage of cognitive decline and irreversible 
brain atrophy. This stage of milder cognitive problems, accompanied 
by localized changes in brain metabolism and functioning (Jack et al., 
2010, 2013), provides an opportunity for treatment (Cummings & 
Zhong, 2014; Hampel et al., 2010). Biomarkers related to disease 
progression in these early stages are essential for proper quantita-
tive evaluation. If EC detects AD-related network alterations in the 
presymptomatic stage of the disease or in people with a well-defined 
risk for AD, this will further increase opportunities for treatment de-
velopment (Cummings & Zhong, 2014; Jack et al., 2013).

The aim of this study was to determine whether eigenvector 
centrality mapping (ECM) can detect early changes related to ge-
netic risk of AD in cognitively normal adults. In a specific manner, we 
expected that healthy subjects at increased risk for AD due to the 
APOE-ε4 genotype would show locally decreased EC compared to 
noncarriers, and this would correlate with nonimaging markers and 
tests used for AD. At last, we explored the predictive value of ECM 
for AD risk.

2  | METHODS AND MATERIAL S

2.1 | Participants

Participants were recruited via the media between 2011 and 
2013 as part of the networks@risk project at CITA-Alzheimer, San 
Sebastian, Spain, for the Gipuzkoa Alzheimer Project (GAP), a lon-
gitudinal population study of AD risk in the Basque region of Spain 
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(Martinez-Lage et al., 2013), approved by the Gipuzkoa clinical re-
search ethics committee. The sampled population was a group of 
healthy community-dwelling participants aged 39–80 years old. 
Healthy subjects without memory complaints, with a clinical demen-
tia rating (CDR) < 1 and a Mini-Mental State Examination (MMSE) 
test score of at least 28, were included. Exclusion criteria were any 
psychiatric, neurological, or systemic symptoms that could cause 
cognitive deficits, resulting in a representative sample of the healthy 
citizens in this age group.

Subjects gave written informed consent; the study was ap-
proved by the Gipuzkoa medical and research ethical committee. 
Visits included MR scanning, medical tests and interviews, as well as 
extensive neuropsychological testing. The Framingham cardiovas-
cular risk index, which is strongly correlated with the probability of 
dementia and AD (D’Agostino et al., 2008), was computed for each 
participant to be used as a covariate for removing cardiovascular 
risk confounds.

2.2 | APOE genotyping

APOE genotype was obtained using one-stage PCR as previously 
described (Alcolea et al., 2014; Martinez-Lage et al., 2013) and di-
chotomized as no APOE-ε4 allele (APOE4−) or at least one APOE-ε4 
allele (APOE4+). Risk for AD was defined by APOE genotype, with 
APOE4+ being the high-risk group (Strittmatter, Saunders, et al. 
1993) as in previous studies of these data (ten Kate et al., 2016; Tijms 
et al., 2016). Further subdivisions by genotype were not possible be-
cause of the low number of ε2 carriers (N = 19) and ε4 homozygotes 
(N = 5).

2.3 | MR acquisition

Structural imaging included T1-weighted MRI on a 3T scanner (Tim 
Trio, Siemens, Erlangen, Germany) using a magnetization-prepared 
rapid gradient echo (MPRAGE) sequence, 1.25-mm isotropic reso-
lution. Functional imaging included resting-state functional MRI 
(RS-fMRI) while the subjects were lying still with their eyes closed, 
trying to stay awake, and not to focus on anything specific with an 
echo-planar imaging (EPI) sequence, 325 volumes, a repetition time 
(TR) of 1.82 s, an echo time (TE) of 30 ms flip angle of 90°, a 3.3 mm 
slice thickness, and 3.0 × 3.0 mm pixels. To reduce scanning time, 
the EPI slice stack had partial brain coverage and was oriented to 
include the regions of the DMN to be detected in a separate analy-
sis. Normalized gray matter volume (NGMV) as a fraction of total 
brain volume was computed using the segmented MPRAGE scans 
with the IBA-SPM toolbox (http://www.thomaskoenig.ch/Lester/
ibaspm.htm).

2.4 | Image preprocessing

All DICOM images were converted to NIfTI using MRIcron (Rorden, 
Karnath, & Bonilha, 2007). The structural scans were stripped of 
nonbrain tissue using the VBM8 toolbox (see http://dbm.neuro.

uni-jena.de/vbm). The rest of the processing was performed using 
FSL (Smith et al., 2004) as follows. The structural images were 
mapped into the standard MNI space (Mazziotta et al., 2001) using 
a spline-based nonlinear registration algorithm (Rueckert et al., 
1999) implemented in FSL as FNIRT. The volumes in the RS-fMRI 
data were stripped of nonbrain tissue (Smith, 2002) and spatially 
realigned to the middle volume of the time series using FSL MC-
FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002). This program 
measures relative mean voxel displacement, which is very similar 
to mean frame displacement FD (Power, Barnes, Snyder, Schlaggar, 
& Petersen, 2012). The realigned data were spatially smoothed 
with a 3D Gaussian filter (full width at half the maximum 3.3 mm 
isotropic), and an edge-preserving nonlinear filter (Smith & Brady, 
1997). Time series were high-pass filtered at a cutoff frequency 
of 182 s (100 TR). The RS-fMRI data of each subject were mapped 
to the native-space structural MR image using boundary-based 
registration (Greve & Fischl, 2009), after which the standard 
space-mapping parameters of the structural image were used to 
map them to MNI standard space at a sampling resolution of 4 mm 
isotropic. Of the initially selected study of 269 subjects with fMRI 
data, eight had to be discarded due to bad image quality (exces-
sive motion, e.g., too high FD values as evaluated and reported 
by the preprocessing software (mean displacement > 0.5 mm), 
missing data and/or failed registration to the anatomical scans), 
leaving 261 preprocessed fMRI data sets. Two separate versions 
of the preprocessed data were used: one that was preprocessed 
as above, and one where the effects of motion were computed in 
single-subject GLMs with the realignment parameters as covari-
ates, and then subtracted from the data.

2.5 | Eigenvector centrality mapping

Eigenvector centrality mapping (ECM) of the standard-space RS-
fMRI data was performed using fast ECM (Wink, de Munck, van 
der Werf, van den Heuvel, & Barkhof, 2012), a memory- and time-
efficient implementation of ECM using the connectivity matrix 
R + 1, where R is the voxelwise correlation matrix. This measure is 
the relative difference of two normalized time signals on a positive 
scale from 0 to 2. With non-negative connectivities, the Perron–
Frobenius theorem guarantees positive values in the dominant 
eigenvector (Wink et al., 2012). The fastECM algorithm allows 
the computation of this eigenvector without the need to com-
pute or store R explicitly, thus increasing efficiency and enabling 
fast computations at high resolutions (see https://github.com/
amwink/bias/tree/master/matlab/fastECM). Centrality was only 
computed inside the intersection of all single-subject masks based 
on the standard-space fMRI data to ensure the network topology 
under investigation did not differ between subjects, simplifying 
between-group comparisons (van Wijk, Stam, & Daffertshofer, 
2010). Single-subject masks were made by computing the tempo-
ral minimum for each 4D volume. Two separate ECM were com-
puted for each subject: one with, and one without the motion 
parameters regressed out as explained before.

http://www.thomaskoenig.ch/Lester/ibaspm.htm
http://www.thomaskoenig.ch/Lester/ibaspm.htm
http://dbm.neuro.uni-jena.de/vbm
http://dbm.neuro.uni-jena.de/vbm
https://github.com/amwink/bias/tree/master/matlab/fastECM
https://github.com/amwink/bias/tree/master/matlab/fastECM
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2.6 | Statistical analysis

2.6.1 | Eigenvector centrality differences between 
risk groups

Maps of voxelwise group mean EC values were computed for 
APOE4+ and 4− groups separately. Significant differences be-
tween the APOE4+ and APOE4− groups were computed in 
a group-level general linear model (GLM) whose design in-
cluded gender, age, NGMV, and Framingham index as covari-
ates. Significance was computed based on permutation testing 
of group labels, using cluster mass as a test statistic (Bullmore 
et al., 1999). A cluster-forming threshold was automatically de-
termined to maximize the number of suprathreshold clusters in 
the null distribution. Cluster mass statistics were computed in 
the observed and null data; the cluster mass threshold for signifi-
cance was set to yield at most one expected false-positive cluster 
per image. The group analysis was performed twice: once for the 
original ECM, and once for the ECM with the motion parameters 
regressed out. To exclude effects from correlations introduced 
by motion or conversely, by the regression of motion parameters, 
the cluster for subsequent testing was computed as the intersec-
tion of the results of these two analyses, that is, voxels that were 
found in both tests, and the values of the ECM after motion re-
gression were used.

2.6.2 | Relation of eigenvector centrality and 
markers of AD risk

Mean centralities were computed for every subject inside the 
cluster mask. Correlations of EC values with biological and 
neuropsychological markers of AD risk were computed with R 
(www.r-project.org, version 3.3.3). Linear fits were plotted of 
cluster mean ECM against age and scores on the psychological 
tests and CSF biomarker levels, grouped by genetic risk (APOE4− 
vs. APOE4+). Separate one-way analyses of variance (ANOVA) 

with group as the factor determined the effect of the markers 
and group on the mean EC. Differences in mean EC were assessed 
by ANOVA of group mean +individual means, for both groupings 
separately.

2.6.3 | Use of cluster mean ECM as a predictor for 
AD risk

To test the usability of single-subject cluster mean EC as a predic-
tor of genetic AD risk, a logistic regression was used to predict 
the APOE risk of each subject, using cluster mean EC as the pre-
dictor and age as a covariate. The regression was computed in the 
GLMnet package for R (Friedman, Hastie, & Tibshirani, 2010) with 
the model without elastic net penalization, that is, using the ordinary 
least squares solution. The model was evaluated with leave-one-out 
cross-validation. A receiver operating curve (ROC) of the model was 
constructed using the pROC package for R (Robin et al., 2011); 95% 
confidence intervals were computed using bootstrap resampling. 
This procedure was repeated for a second model with age as a sec-
ond regressor.

3  | RESULTS

3.1 | Study characteristics

Of the total sample, 76 (29%) individuals were APOE-ε4 carrier 
subjects (Table 1). MMSE scores were not statistically different 
between APOE4+ risk groups (Kruskal–Wallis χ2 = 1.51, p = 0.22). 
Scores on the 15-object test (15OT) were higher for the APOE4+ risk 
group (median APOE4− 13; median APOE4 + 14; Kruskal–Wallis test 
p = 0.025). No significant risk group-related differences were found 
for gender (Kruskal–Wallis χ2 = 7.1 × 10−5, p = 0.99), age (Kruskal–
Wallis χ2 = 3.41, p = 0.065), normalized gray matter volume (NGMV, 
Kruskal–Wallis χ2 = 0.92, p = 0.761), or cardiovascular risk (Kruskal–
Wallis χ2 = 0.194, p = 0.660) between the high and low genetic risk 
groups (see Table 1).

Whole sample APOE4− group APOE4+ group p

Number of subjects 261 185 (71%) 76 (29%)

Male/female 110/151 78/107 32/44 0.993

Age mean/SD 56.6/6.7 57.0/6.8 55.6/6.6 0.065

MMSE mean/SD 29.1/0.8 29.0/0.7 29.1/0.8 0.219

15OT score 
mean/SD

13.1/1.78 13.0/1.86 13.5/1.51 0.025*

Framingham CV 
risk

6.46/6.17 6.41/6.16 6.61/6.27 0.660

NGMV mean/SD 0.452/0.019 0.452/0.019 0.453/0.020 0.761

Note. The groups did not differ significantly for gender and age distributions (p = 0.993 and p = 0.065, 
respectively). The APOE4+ groups did not differ in mean MMSE scores (p = 0.219). The APOE4+ risk 
group scored higher on the 15-object test (15OT, p = 0.025). The groups did not differ significantly 
in cardiovascular risk scores and NGMV (p = 0.660 and p = 0.761, respectively). Significant differ-
ences are marked with *.

TABLE  1 Group characteristics of the 
high-risk (APOE-ε4 carriers) and low-risk 
groups in the sample

http://www.r-project.org
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3.2 | Eigenvector centrality differences between 
risk groups

Figure 1a shows the average EC for the APOE4− and APOE4+ groups, 
respectively. The APOE+ group average showed areas of decreased 
EC compared to APOE−, mostly in the occipital areas. Figure 1b shows 
the cluster of significantly decreased EC in the APOE4+ group: bilat-
erally in the occipital pole (V1 and V2, Brodmann areas 17 and 18), 
extending into the left and right superior lateral occipital lobes, dorsal 
posterior cingulate cortex (PCC, Brodmann area 31), and the precu-
neus, with a total size of 387 voxels (24,768 mm³). The areas in green 
and red shades show (a) the mask in which the EC was computed 
(green + red) and (b) the regions with higher EC in the APOE4+ risk 
group (red) and lower (in green). Most of the cortical regions show a 
lower mean centrality for the APOE4+ group. (Xia, Wang, & He, 2013).

3.3 | Correlations of EC with nonimaging markers

For each subject, we extracted the mean EC inside the occipital clus-
ter (Figure 1b) to explore associations with the other risk factors. 
Regression of these means against age, the main risk factor for AD, 
showed a significant negative effect of age (p ≤ 0.007, see Table 2). 
Separate fits of the APOE subgroups independently showed that this 
effect (Figure 2a) was statistically significant in the low-risk APOE4− 
subgroup, but not in the APOE4+ subgroup (p = 0.012 vs. p = 0.058) 
and there were no significant interactions. Cluster mean EC was sig-
nificantly negatively correlated with CSF amyloid levels (p = 0.018, 
see Figure 2b). p-Values for the APOE4− and APOE4+ subgroups 
were 0.085 and 0.159, respectively. There was a significantly nega-
tive correlation with NGMV (p = 0.008) with p-values in the APOE4− 
and APOE4+ subgroups of 0.022 and 0.113, respectively (Figure 2c).

There were three statistically significant correlations of cluster 
mean EC with cognitive markers. First, the 15OT (p = 0.001 for the 
whole group; p < 0.001 and p = 0.481 for the APOE4− and APOE4+ 
subgroups, respectively; see Figure 2d) and also the time required 
for the trail-making test, parts A (p = 0.030) and B (p = 0.006). For 
both parts of the test, the correlations are stronger in the APOE4− 
subgroup than APOE4+ (part A: p = 0.032 vs. p = 0.665, part B: 
p = 0.035 vs. p = 0.102; see Figure 2e,f).

3.4 | Use of cluster mean ECM as a predictor for AD risk

The cross-validation of the logistic regression produced an accuracy 
of 68.9%, and the ROC corresponding to the parameter λ with the 
lowest validation error showed an area under the curve (AUC) of 
64.4% (see Figure 3). Adding age to the model did not improve the 
results (accuracy was 68.6%; AUC was 64.5%).

4  | DISCUSSION

The main result of this study is that APOE-ε4 carriers show de-
creased EC in comparison with noncarriers in visual cortical regions; 
which have previously been demonstrated to be affected in MCI and 

AD (Rombouts et al., 2009; Sanz-Arigita et al., 2010). Furthermore, 
lower EC values were associated with older age and worse visual 
task performance in noncarriers.

4.1 | APOE-ε4-related differences in functional 
brain eigenvector centrality

Our findings show that functional whole-brain network centrality 
changes may already be present in cognitively normal older adults 
who have an increased risk of developing AD. Previous studies that 
have measured functional brain changes with fMRI between AD 
patients, MCI patients and healthy controls (Binnewijzend et al., 
2012; Drzezga et al., 2011; Ossenkoppele et al., 2013), have dem-
onstrated functional changes in early stages of AD. Our findings 
are in line with these previous observations, showing that these 
functional changes are also present in carriers of the APOE-ε4 al-
lele, a risk factor for AD.

The regions of changed centrality partially coincide with previ-
ous work that reported brain regions with default mode network 
(DMN)-related changes in APOE-ε4 carriers (Filippini et al., 2009), 
most markedly the precuneus. Those did not include the visual cor-
tex as the statistical analyses were limited to changes inside the 
DMN. Analyses of connectivity with the rest of the brain (Agosta 
et al., 2012) show differential connectivity with the DMN with the 
same visual regions we report, between AD and controls as well as 
MCI vs. controls, especially on the boundary between precuneus 
and visual cortex.

Findings of connectivity changes inside and to the DMN in rela-
tion to APOE-ε4 carriership have not been consistent, mostly due to 
the different age groups being studied (Filippini et al., 2011; Heise, 
Filippini, Ebmeier, & Mackay, 2011; Mevel, Chételat, Eustache, & 
Desgranges, 2011). Overall, the most frequently reported changes 
are weakened DMN connectivity in middle-aged and older sub-
jects (Goveas et al., 2013; Machulda et al., 2011; Reiman et al., 
1996; Sheline et al., 2010; Wang et al., 2012) and, less frequently, 
increased DMN connectivity in young adults (Filippini et al., 2009; 
Fleisher et al., 2009). Our results demonstrate early visual effects 
in a population study with realistic proportions of carriers and non-
carriers, which shows the applicability of functional measures in a 
community setting.

Recent studies that focus less on the DMN alone report a 
shift of functionally central and highly connected regions from 
posterior to frontal regions in AD patients (Agosta et al., 2012; 
Binnewijzend et al., 2014; Sanz-Arigita et al., 2010; Sheline et al., 
2010). The decreased centralities of posterior regions in the 
APOE4+ risk group found in this study are in line with this shift, 
although we did not find locally increased centralities in frontal 
areas in healthy subjects.

Functional brain network changes related to (risk of) AD have 
mainly been studied using techniques that detect the DMN. 
Tested as a whole, patients exhibit lower DMN connectivity than 
controls, see (Wang et al., 2015; Lee et al., 2016) and their ref-
erences. The “canonical” pattern of the DMN is the precuneus, 
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F IGURE  1  (a) Group mean ECM for 
the APOE4− group (top) and the APOE4+ 
group (bottom). Centralities could only 
be computed in brain regions that were 
scanned in every subject (colored part). 
Blue indicates relatively low centralities, 
and yellow indicates high centralities. 
The occipital region indicated by the 
green arrow has visibly higher voxelwise 
centralities in the low-risk group than 
in the high-risk group. (b) Cluster of 
significant ECM differences between the 
APOE4− and APOE4+ groups (blue). The 
anatomical background is shown in gray 
scales. Areas where the mean centrality 
is highest in the APOE4+ group are in red, 
and areas where the mean centrality was 
highest in the APOE4− group are in green

(a)

(b)
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superior lateral parietal lobes, and the ACC. When analyses are 
limited to the DMN regions, this is where the changes are found 
(Binnewijzend et al., 2012; Filippini et al., 2009). Analyses of AD-
related functional brain network differences associated with the 
DMN but not part of the DMN report changes in superior pari-
etal and occipital regions (Agosta et al., 2012; Lee et al., 2016). 
These findings are consistent with those in resting and visual fMRI 
studies that report affected visual functioning accompanied by 
differences in the visual cortices (Alegret et al., 2010; Lehmann 
et al., 2013; Wang et al., 2015; Zhang et al., 2010) and the idea 
that deviations from the typical pathology, such as the involve-
ment of functionally specific brain regions, drive the variation in 
neurodegenerative variation in AD.

The decreased EC values, we have found in the visual cortex in the 
APOE risk group, show strong similarities to the posterior regions of 
decreased centralities in advanced AD patients (Binnewijzend et al., 
2014), indicating that the onset of centrality changes measured in 
advanced AD are detectable in healthy patients with an elevated risk 
for AD. If both sets of regions disclose the same process, a possible 
explanation is that the aberrant functional connectivity in the brain 
associated with the APOE-ε4 allele makes it more vulnerable to AD-
related pathology.

This is in line with earlier findings of a change in “hub” status of 
these brain regions in AD patients (Buckner et al., 2009; de Haan, 
Mott, et al., 2012; de Haan, van der Flier, et al., 2012), and AD-
related changes in glucose metabolism (Ossenkoppele et al., 2013) 
and neuronal activity (Damoiseaux et al., 2012; Navas et al., 2013).

The GAP cohort of healthy elderly with documented AD risk 
fills the gap of the less frequently studied group of elderly, healthy 
adults with known APOE-ε4 genotype, and our study confirms the 
persistence of these genotype-driven changes from young adults 
and elderly healthy stages to early and advanced stages of AD. 
The efficiency of fast ECM (Wink et al., 2012) and its sensitivity to 
disease conditions (Binnewijzend et al., 2014), and the fact that it 
produces single-subject, whole-brain patterns, make it an attractive 
alternative to current RS-fMRI analyses of AD-related brain network 

differences, for example, independent component analyses. As such, 
whole-brain network analyses are an interesting and novel approach 
to multiple-network decompositions for neurological disorders 
that perturb the global brain network functionally and structurally 
(Agosta et al., 2012; Seeley, Crawford, Zhou, Miller, & Greicius, 
2009; Tijms et al., 2014).

4.2 | Relation between occipital 
EC and nonimaging biomarkers

Older subjects showed lower eigenvector centrality values and 
a significant negative correlation with age across groups. (Tijms 
et al., 2014; van der Flier, Pijnenburg, Fox, & Scheltens, 2011) This 
decrease is in line with recent results from fMRI studies in healthy 
middle-aged controls, where different levels of activity in V1 dis-
criminate between controls with risk of AD who carry the APOE-ε4 
allele from those who do not (Rajah et al., 2017).

We found a positive correlation with CSF amyloid levels, which 
corresponds to a negative correlation with amyloid load in the brain. 
This is consistent with the finding that ECM correlates negatively 
with age, because brain amyloid load correlates positively with age 
(Oh, Madison, Baker, Rabinovici, & Jagust, 2016).

Cluster mean EC was also related to a decrease in normalized 
gray matter volume (NGMV). Atrophy differences in this cohort re-
lated to APOE genotype have been reported previously but were 
limited to the striatum and insula (ten Kate et al., 2016).

Correlations between EC and scores on the 15-object test (15OT) 
and trail-making test (TMT) were all positive. For the TMT, times to 
finish did not differ significantly between the groups. For the 15OT, 
there was also a difference in scores between the groups: The 
APOE4+ group had higher scores. This finding is somewhat counter-
intuitive, as the APOE4+ group scored higher on the 15OT. The plots 
per subgroup show that EC variability against test score is lower in 
e4 carriers. This indicates differences in brain network organization 
between carriers and noncarriers that make the brain more vulner-
able to AD-related pathology (De Meyer et al., 2010; Evans et al., 

Effect of interest p value APOE 4−/4+

Linear fits in subgroups

APOE4− APOE4+

Age p = 0.007* p = 5.0 × 10−5* p = 0.012* 
R2 = 0.034

p = 0.058 
R2 = 0.048

CSF-amyloid p = 0.017* p = 0.037* p = 0.085 
R2 = 0.030

p = 0.159 
R2 = 0.056

NGMV p = 0.008* p = 1.4 × 10−4* p = 0.022* 
R2 = 0.028

p = 0.113 
R2 = 0.034

15OT test score p = 0.001* p = 1.6 × 10−5* p = 0.000* 
R2 = 0.071

p = 0.481 
R2 = 0.007

Time for TMT pt. 
A

p = 0.030* p = 1.4 × 10−4* p = 0.032* 
R2 = 0.025

p = 0.665 
R2 = 0.003

Time for TMT pt. 
B

p = 0.005* p = 3.1 × 10−4* p = 0.035* 
R2 = 0.024

p = 0.102 
R2 = 0.036

Note. The * indicates p <0.05

TABLE  2 Correlations of biological 
markers of AD risk with EC means 
measured inside the cluster of significant 
between-group differences (see Figure 1b)
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F IGURE  2 Cluster mean EC of all subjects plotted against subject age (a), CSF amyloid levels (b), NGMV (c), 15-object test score (15OT) 
(d), and time to complete the trail-making test (TMT) part A (e) and part B (f)
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2014; Mintun et al., 2006; Sperling et al., 2011). In an important way, 
this does not lead to decreased cognitive decline or visuoperceptual 
performance. Indeed, previous studies have reported a positive ef-
fect of APOE-ε4 on cognition in young and middle-aged adults, sug-
gesting that APOE-ε4-related changes are beneficial in early life but 
detrimental in old age (Bunce, Anstey, Burns, Christensen, & Easteal, 
2011; Rusted et al., 2013). Improved attention in young APOE-ε4 
carriers is one of the fundamental cognitive differences recently re-
ported (Rusted et al., 2013).

When stratified for APOE4 genotype, we found that correlations 
of EC with other markers were significant only for the APOE4− group. 
Cluster mean EC variability is lower within the APOE4+ high-risk 
group. The mean EC is significantly higher in the low-risk group than 
in the high-  risk group, so the absence of the age effect in the lat-
ter could point to a localized decrease in centrality earlier in life for 
the high-risk subjects (Tijms et al., 2014; van der Flier et al., 2011). 
Another possible explanation is selection bias by removing subjects 
with low MMSE. If only subjects with APOE and/or amyloid are in-
cluded, they may have a higher “cognitive reserve”: They may be able 
to perform better with (more) brain pathology (van Loenhoud et al., 
2017).

4.3 | APOE-ε4-related centrality changes in the 
visual cortex

The regions where decreased centrality was detected in this study 
are in the visual cortex. The visual cortex and regions of the ventral 

visual processing stream involved in object recognition have been 
recognized as areas affected by AD in studies of cortical atrophy 
and using object recognition fMRI tasks (Jacobs et al., 2015). Given 
the decrease in EC in the primary visual cortex is correlated with 
lower performance on the 15-object task, visual perception deficits 
may be explained by APOE-related changes, such as posterior atro-
phy that is specific to the carrier group (Adaszewski, Dukart, Kherif, 
Frackowiak, & Draganski, 2013; Yao, Hu, Liang, Zhao, & Jackson, 
2012).

Our results are partly concordant with recent findings that 
APOE-ε4 carriers show different brain activity during scene per-
ception (Shine, Hodgetts, Postans, Lawrence, & Graham, 2015), 
and anatomically match previously reported cases of AD-related 
visuoperceptual deficits (Chan et al., 2015) and studies of posterior 
cortical atrophy (Crutch et al., 2012; Migliaccio et al., 2012).

4.4 | Functional brain network centrality as a 
predictor of APOE genotype

The results for predicting the genetic risk group using the cluster 
mean EC yielded AUC and accuracy higher than chance, but below 
75% (1 in every 4 misclassified). In our sample of healthy elderly, the 
changes in EC that can be measured between groups are too subtle 
for single-subject classification. With a stronger contrast between 
patients and controls, the discriminating power of regional EC dif-
ferences may be useful for diagnostic purposes. Although APOE sta-
tus is a risk factor for AD (Caselli et al., 2009; Ossenkoppele et al., 
2013; Strittmatter, Saunders, et al., 1993), many other processes are 
involved in causing dementia, so the difference between APOE-ε4 
carriers and noncarriers may be a relatively small AD-related effect 
on the brain network.

5  | LIMITATIONS AND FUTURE 
DIREC TIONS

The limited brain coverage of the slice stack used for the fMRI acqui-
sition does not fully employ the benefits of a whole-brain network 
analysis like ECM. The acquisition parameters were chosen to limit 
scanning time while still capturing the regions of the default mode 
network (Raichle & Snyder, 2007), a group of regions whose activity 
and connectivity measures change significantly in patients with AD. 
Future fMRI studies of brain network changes in AD should provide 
whole-brain coverage to make optimal use of modern analysis meth-
ods. Another limitation is that it is unknown who will develop AD 
pathology; this will be clearer in follow-up studies of this sample that 
are ongoing.

6  | CONCLUSION

Using ECM of resting-state fMRI data in healthy controls, we 
have identified functional brain network changes in carriers of the 

F IGURE  3 Receiver operating curve (ROC) for predicting the 
APOE risk group with a logistic regression, using the mean ECM 
in the cluster of between-group differences (see Figure 2b) as the 
main predictor and age and 15-object test scores as covariates. The 
shaded areas are the 95% confidence intervals. The area under the 
curve (AUC) measured with this model was 64.4%
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APOE-ε4 allele, a genetic risk factor for AD, which are directly linked 
to age and cognitive performance in healthy aging.
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