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Abstract
Introduction:	Amyloid	plaque	deposition	in	the	brain	is	an	early	pathological	change	
in	Alzheimer’s	disease	(AD),	causing	disrupted	synaptic	connections.	Brain	network	
disruptions	in	AD	have	been	demonstrated	with	eigenvector	centrality	(EC),	a	meas-
ure that identifies central regions within networks. Carrying an apolipoprotein 
(APOE)-	ε4	allele	is	a	genetic	risk	for	AD,	associated	with	increased	amyloid	deposi-
tion.	We	studied	whether	APOE-	ε4 carriership is associated with EC disruptions in 
cognitively normal individuals.
Methods:	A	total	of	261	healthy	middle-	aged	to	older	adults	(mean	age	56.6	years)	
were	divided	into	high-	risk	(APOE-	ε4	carriers)	and	low-	risk	(noncarriers)	groups.	EC	
was	computed	 from	resting-	state	 functional	MRI	data.	Clusters	of	between-	group	
differences were assessed with a permutation- based method. Correlations between 
cluster	mean	EC	with	brain	volume,	CSF	biomarkers,	and	psychological	test	scores	
were assessed.
Results:	Decreased	EC	in	the	visual	cortex	was	associated	with	APOE-	ε4	carriership,	
a	genetic	risk	factor	for	AD.	EC	differences	were	correlated	with	age,	CSF	amyloid	
levels,	and	scores	on	the	trail-	making	and	15-	object	recognition	tests.
Conclusion:	Our	findings	suggest	that	the	APOE-	ε4 genotype affects brain connec-
tivity	in	regions	previously	found	to	be	abnormal	in	AD	as	a	sign	of	very	early	disease-	
related pathology. These differences were too subtle in healthy elderly to use EC for 
single-	subject	prediction	of	APOE	genotype.
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1  | INTRODUC TION

1.1 | The role of amyloid- β in Alzheimer’s disease

The accumulation of amyloid- β	 (Aβ)	 plaques	 in	 the	brain	 is	 one	of	
the	 first	events	 in	 the	pathological	 cascade	 leading	 to	Alzheimer’s	
disease	(AD)	(Bateman	et	al.,	2012;	Hardy	&	Selkoe,	2002;	Sperling	
et	al.,	 2010).	 Aβ	 disrupts	 synaptic	 functioning,	 resulting	 in	 aber-
rant	brain	connectivity	at	 the	synaptic	 level	 (Selkoe,	2002;	Spires-	
Jones	&	Hyman,	2014),	as	well	as	on	the	whole-	brain	connectivity	
level	(Delbeuck,	der	Linden,	&	Collette,	2003;	Hedden	et	al.,	2009).	
Although	 the	precise	 sequence	of	events	caused	by	Aβ	 plaques	 is	
still	 being	 investigated	 (Altmann,	 Ng,	 Landau,	 Jagust,	 &	 Greicius,	
2015)	 and	 interactions	with	 other	 agents	 recognized	 (Jones	 et	al.,	
2017),	 the	 key	 role	 of	 Aβ	 in	 AD	 pathology	 is	 beyond	 doubt	 (Jack	
et	al.,	2016).

1.2 | The APOE- ε4 allele and Aβ pathology

Carrying	 the	APOE-	ε4	allele	 is	 the	main	genetic	 risk	 factor	 for	Aβ 
deposition	(Ba	et	al.,	2016;	Verghese,	Castellano,	&	Holtzman,	2011;	
Yu,	Tan,	&	Hardy,	2014).	Recent	findings	show	that	the	ε4 isoform 
of	the	ApoE	protein	 is	 less	efficient	 in	clearing	Aβ compared to ε2 
and ε3,	 leading	 to	accelerated	aggregation	of	plaques.	Early	 imag-
ing	studies	show	hypometabolism	in	AD-	specific	regions	in	APOE-	ε4 
carriers	(Reiman	et	al.,	1996).	Carriers	have	also	shown	detrimental	
effects	on	cognition	 in	old	age	 (Deary	et	al.,	2002).	Recent	 results	
show	 the	 correlation	 of	 APOE-	ε4	 carriership	 with	 Aβ	 deposition,	
cognition,	 and	 brain	 atrophy	 (Bonham	et	al.,	 2016;	 ten	Kate	 et	al.,	
2016;	Lim	&	Mormino,	2017).	APOE-	ε4	carriers	show	abnormal	Aβ 
plaque	 deposition	 at	 relatively	 younger	 ages	 (Jansen	 et	al.,	 2015;	
Strittmatter,	Weisgraber,	et	al.	1993).

1.3 | Brain connectivity and resting- state 
functional MRI

Brain	 connectivity	 is	disrupted	 in	AD	 (Binnewijzend	et	al.,	 2012;	
Tijms	 et	al.,	 2013,	 2014),	 indicating	 that	 AD	 is	 a	 disconnectivity	
disorder.	 Resting-	state	 functional	 MRI	 (RS-	fMRI)	 detects	 func-
tional	connections	in	the	brain	as	synchronized	activity	between	
brain	regions	in	the	absence	of	a	task	(Binnewijzend	et	al.,	2012).	
Brain	 regions	 linked	 to	 AD	 pathology	 in	 studies	 using	MEG	 and	
structural	MRI	(de	Haan,	Mott,	et	al.,	2012;	de	Haan,	van	der	Flier,	
et	al.,	2012;	Tijms	et	al.,	2013)	show	high	connectivity	in	RS-	fMRI;	
they are hub regions.	The	high	vulnerability	of	hubs	for	AD	is	also	
found	 in	 RS-	fMRI	 studies	 (Buckner	 et	al.,	 2009;	Qi	 et	al.,	 2010).	
The	 default	 mode	 network	 (DMN)	 and	 other	 resting-	state	 net-
works,	that	is,	regions	with	synchronized	fMRI	activity,	have	been	
studied	as	markers	for	AD	progression	(Binnewijzend	et	al.,	2012;	
Filippini	 et	al.,	 2009;	 Sheline	 et	al.,	 2010).	 Functional	 brain	 con-
nectivity changes in healthy adults are related to amyloid deposi-
tions	 (Hedden	et	al.,	 2009;	 Sperling	 et	al.,	 2009),	 and	 carriers	of	
the	APOE-	ε4	 allele	 show	 increased	 co-	activation	with	 the	DMN	

in	 young	 adults	 (Bookheimer	 et	al.,	 2000;	 Filippini	 et	al.,	 2009),	
indicating	 that	 functional	 connectivity	 is	 sensitive	 to	AD-	related	
alterations	of	 the	brain.	This	 study	extends	 these	previous	 find-
ings,	using	a	large	sample	from	a	population	imaging	study,	com-
bined	with	 comprehensive	AD-	related	 cognitive	 assessment	 and	
genotyping.

1.4 | Functional brain network hubs: eigenvector 
centrality and its relevance to AD

In	graph	theory,	 the	notion	of	centrality	 (Bavelas,	1948)	expresses	
the amount of network traffic going through a network node. 
Eigenvector	centrality	(EC)	can	be	efficiently	computed	from	whole-	
brain	connectivity	matrices	derived	from	RS-	fMRI	or	electroenceph-
alographic	(EEG)	data	(Lohmann	et	al.,	2010).	Eigenvector	centrality	
is sensitive to changes in brain connectivity on different levels of 
the	network	hierarchy	(Binnewijzend	et	al.,	2014).	Previous	studies	
suggest	that	EC	is	used	as	a	proxy	marker	for	mild	cognitive	impair-
ment	(MCI)	(Meinzer	et	al.,	2012)	and	AD	(Binnewijzend	et	al.,	2014),	
where patients have decreased EC compared to healthy controls in 
occipital	 regions.	Because	of	 its	 sensitivity	 to	AD-	related	 changes	
and	its	low	computational	cost,	EC	is	a	useful	measure	for	generating	
biomarkers	for	AD	pathology	from	RS-	fMRI	data.

Although	it	is	not	currently	known	at	which	point	in	the	develop-
ment	of	the	disease	these	EC	changes	occur,	it	has	shown	sensitiv-
ity to changes before the stage of cognitive decline and irreversible 
brain	atrophy.	This	stage	of	milder	cognitive	problems,	accompanied	
by	localized	changes	in	brain	metabolism	and	functioning	(Jack	et	al.,	
2010,	 2013),	 provides	 an	opportunity	 for	 treatment	 (Cummings	&	
Zhong,	 2014;	 Hampel	 et	al.,	 2010).	 Biomarkers	 related	 to	 disease	
progression	in	these	early	stages	are	essential	for	proper	quantita-
tive	evaluation.	If	EC	detects	AD-	related	network	alterations	in	the	
presymptomatic stage of the disease or in people with a well- defined 
risk	for	AD,	this	will	further	increase	opportunities	for	treatment	de-
velopment	(Cummings	&	Zhong,	2014;	Jack	et	al.,	2013).

The aim of this study was to determine whether eigenvector 
centrality	mapping	 (ECM)	 can	 detect	 early	 changes	 related	 to	 ge-
netic	risk	of	AD	in	cognitively	normal	adults.	In	a	specific	manner,	we	
expected	that	healthy	subjects	at	 increased	risk	for	AD	due	to	the	
APOE-	ε4 genotype would show locally decreased EC compared to 
noncarriers,	and	this	would	correlate	with	nonimaging	markers	and	
tests	used	for	AD.	At	last,	we	explored	the	predictive	value	of	ECM	
for	AD	risk.

2  | METHODS AND MATERIAL S

2.1 | Participants

Participants were recruited via the media between 2011 and 
2013	as	part	of	 the	networks@risk	project	at	CITA-	Alzheimer,	San	
Sebastian,	Spain,	 for	 the	Gipuzkoa	Alzheimer	Project	 (GAP),	a	 lon-
gitudinal	population	study	of	AD	risk	in	the	Basque	region	of	Spain	
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(Martinez-	Lage	et	al.,	2013),	 approved	by	 the	Gipuzkoa	clinical	 re-
search ethics committee. The sampled population was a group of 
healthy	 community-	dwelling	 participants	 aged	 39–80	years	 old.	
Healthy	subjects	without	memory	complaints,	with	a	clinical	demen-
tia	 rating	 (CDR)	<	1	 and	 a	Mini-Mental	 State	Examination	 (MMSE)	
test	score	of	at	least	28,	were	included.	Exclusion	criteria	were	any	
psychiatric,	 neurological,	 or	 systemic	 symptoms	 that	 could	 cause	
cognitive	deficits,	resulting	in	a	representative	sample	of	the	healthy	
citizens	in	this	age	group.

Subjects	 gave	 written	 informed	 consent;	 the	 study	 was	 ap-
proved	 by	 the	Gipuzkoa	medical	 and	 research	 ethical	 committee.	
Visits	included	MR	scanning,	medical	tests	and	interviews,	as	well	as	
extensive	 neuropsychological	 testing.	 The	 Framingham	 cardiovas-
cular	risk	index,	which	is	strongly	correlated	with	the	probability	of	
dementia	and	AD	(D’Agostino	et	al.,	2008),	was	computed	for	each	
participant to be used as a covariate for removing cardiovascular 
risk confounds.

2.2 | APOE genotyping

APOE	 genotype	was	 obtained	 using	 one-	stage	 PCR	 as	 previously	
described	 (Alcolea	et	al.,	 2014;	Martinez-	Lage	et	al.,	 2013)	 and	di-
chotomized	as	no	APOE-ε4	allele	(APOE4−)	or	at	least	one	APOE-ε4 
allele	 (APOE4+).	Risk	for	AD	was	defined	by	APOE	genotype,	with	
APOE4+	 being	 the	 high-	risk	 group	 (Strittmatter,	 Saunders,	 et	al.	
1993)	as	in	previous	studies	of	these	data	(ten	Kate	et	al.,	2016;	Tijms	
et	al.,	2016).	Further	subdivisions	by	genotype	were	not	possible	be-
cause of the low number of ε2	carriers	(N	=	19)	and	ε4	homozygotes	
(N =	5).

2.3 | MR acquisition

Structural	imaging	included	T1-	weighted	MRI	on	a	3T	scanner	(Tim	
Trio,	Siemens,	Erlangen,	Germany)	using	a	magnetization-	prepared	
rapid	gradient	echo	 (MPRAGE)	sequence,	1.25-	mm	 isotropic	 reso-
lution.	 Functional	 imaging	 included	 resting-	state	 functional	 MRI	
(RS-	fMRI)	while	the	subjects	were	lying	still	with	their	eyes	closed,	
trying	to	stay	awake,	and	not	to	focus	on	anything	specific	with	an	
echo-	planar	imaging	(EPI)	sequence,	325	volumes,	a	repetition	time	
(TR)	of	1.82	s,	an	echo	time	(TE)	of	30	ms	flip	angle	of	90°,	a	3.3	mm	
slice	 thickness,	 and	 3.0	×	3.0	mm	pixels.	 To	 reduce	 scanning	 time,	
the EPI slice stack had partial brain coverage and was oriented to 
include	the	regions	of	the	DMN	to	be	detected	in	a	separate	analy-
sis.	Normalized	 gray	matter	 volume	 (NGMV)	 as	 a	 fraction	of	 total	
brain	volume	was	 computed	using	 the	 segmented	MPRAGE	scans	
with	 the	 IBA-	SPM	 toolbox	 (http://www.thomaskoenig.ch/Lester/
ibaspm.htm).

2.4 | Image preprocessing

All	DICOM	images	were	converted	to	NIfTI	using	MRIcron	(Rorden,	
Karnath,	&	Bonilha,	2007).	The	structural	scans	were	stripped	of	
nonbrain	 tissue	 using	 the	 VBM8	 toolbox	 (see	 http://dbm.neuro.

uni-jena.de/vbm).	The	rest	of	the	processing	was	performed	using	
FSL	 (Smith	 et	al.,	 2004)	 as	 follows.	 The	 structural	 images	 were	
mapped	into	the	standard	MNI	space	(Mazziotta	et	al.,	2001)	using	
a	 spline-	based	 nonlinear	 registration	 algorithm	 (Rueckert	 et	al.,	
1999)	implemented	in	FSL	as	FNIRT.	The	volumes	in	the	RS-	fMRI	
data	were	stripped	of	nonbrain	tissue	(Smith,	2002)	and	spatially	
realigned	to	the	middle	volume	of	the	time	series	using	FSL	MC-	
FLIRT	(Jenkinson,	Bannister,	Brady,	&	Smith,	2002).	This	program	
measures	relative	mean	voxel	displacement,	which	is	very	similar	
to	mean	frame	displacement	FD	(Power,	Barnes,	Snyder,	Schlaggar,	
&	 Petersen,	 2012).	 The	 realigned	 data	 were	 spatially	 smoothed	
with	a	3D	Gaussian	filter	(full	width	at	half	the	maximum	3.3	mm	
isotropic),	and	an	edge-	preserving	nonlinear	filter	(Smith	&	Brady,	
1997).	Time	 series	were	high-	pass	 filtered	at	 a	 cutoff	 frequency	
of	182	s	(100	TR).	The	RS-	fMRI	data	of	each	subject	were	mapped	
to	 the	 native-	space	 structural	 MR	 image	 using	 boundary-	based	
registration	 (Greve	 &	 Fischl,	 2009),	 after	 which	 the	 standard	
space- mapping parameters of the structural image were used to 
map	them	to	MNI	standard	space	at	a	sampling	resolution	of	4	mm	
isotropic.	Of	the	initially	selected	study	of	269	subjects	with	fMRI	
data,	eight	had	to	be	discarded	due	to	bad	 image	quality	 (exces-
sive	motion,	 e.g.,	 too	 high	 FD	 values	 as	 evaluated	 and	 reported	
by	 the	 preprocessing	 software	 (mean	 displacement	 >	 0.5	mm),	
missing	 data	 and/or	 failed	 registration	 to	 the	 anatomical	 scans),	
leaving	261	preprocessed	fMRI	data	sets.	Two	separate	versions	
of the preprocessed data were used: one that was preprocessed 
as	above,	and	one	where	the	effects	of	motion	were	computed	in	
single-	subject	GLMs	with	 the	 realignment	 parameters	 as	 covari-
ates,	and	then	subtracted	from	the	data.

2.5 | Eigenvector centrality mapping

Eigenvector	centrality	mapping	 (ECM)	of	 the	standard-	space	RS-	
fMRI	data	was	performed	using	 fast	ECM	 (Wink,	de	Munck,	van	
der	Werf,	van	den	Heuvel,	&	Barkhof,	2012),	a	memory-		and	time-	
efficient	 implementation	 of	 ECM	 using	 the	 connectivity	 matrix	
R + 1,	where	R	is	the	voxelwise	correlation	matrix.	This	measure	is	
the	relative	difference	of	two	normalized	time	signals	on	a	positive	
scale	from	0	to	2.	With	non-	negative	connectivities,	the	Perron–
Frobenius	 theorem	 guarantees	 positive	 values	 in	 the	 dominant	
eigenvector	 (Wink	 et	al.,	 2012).	 The	 fastECM algorithm allows 
the computation of this eigenvector without the need to com-
pute or store R	explicitly,	thus	increasing	efficiency	and	enabling	
fast	 computations	 at	 high	 resolutions	 (see	 https://github.com/
amwink/bias/tree/master/matlab/fastECM).	 Centrality	 was	 only	
computed inside the intersection of all single- subject masks based 
on	the	standard-	space	fMRI	data	to	ensure	the	network	topology	
under	 investigation	 did	 not	 differ	 between	 subjects,	 simplifying	
between-	group	 comparisons	 (van	 Wijk,	 Stam,	 &	 Daffertshofer,	
2010).	Single-	subject	masks	were	made	by	computing	the	tempo-
ral	minimum	for	each	4D	volume.	Two	separate	ECM	were	com-
puted	 for	 each	 subject:	 one	 with,	 and	 one	 without	 the	 motion	
parameters	regressed	out	as	explained	before.

http://www.thomaskoenig.ch/Lester/ibaspm.htm
http://www.thomaskoenig.ch/Lester/ibaspm.htm
http://dbm.neuro.uni-jena.de/vbm
http://dbm.neuro.uni-jena.de/vbm
https://github.com/amwink/bias/tree/master/matlab/fastECM
https://github.com/amwink/bias/tree/master/matlab/fastECM
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2.6 | Statistical analysis

2.6.1 | Eigenvector centrality differences between 
risk groups

Maps	 of	 voxelwise	 group	 mean	 EC	 values	 were	 computed	 for	
APOE4+	 and	 4−	 groups	 separately.	 Significant	 differences	 be-
tween	 the	 APOE4+	 and	 APOE4−	 groups	 were	 computed	 in	
a	 group-	level	 general	 linear	 model	 (GLM)	 whose	 design	 in-
cluded	 gender,	 age,	 NGMV,	 and	 Framingham	 index	 as	 covari-
ates.	 Significance	 was	 computed	 based	 on	 permutation	 testing	
of	 group	 labels,	 using	 cluster	mass	 as	 a	 test	 statistic	 (Bullmore	
et	al.,	 1999).	 A	 cluster-	forming	 threshold	was	 automatically	 de-
termined	 to	maximize	 the	number	 of	 suprathreshold	 clusters	 in	
the null distribution. Cluster mass statistics were computed in 
the observed and null data; the cluster mass threshold for signifi-
cance	was	set	to	yield	at	most	one	expected	false-	positive	cluster	
per image. The group analysis was performed twice: once for the 
original	ECM,	and	once	for	the	ECM	with	the	motion	parameters	
regressed	 out.	 To	 exclude	 effects	 from	 correlations	 introduced	
by	motion	or	conversely,	by	the	regression	of	motion	parameters,	
the	cluster	for	subsequent	testing	was	computed	as	the	intersec-
tion	of	the	results	of	these	two	analyses,	that	is,	voxels	that	were	
found	in	both	tests,	and	the	values	of	the	ECM	after	motion	re-
gression were used.

2.6.2 | Relation of eigenvector centrality and 
markers of AD risk

Mean	 centralities	 were	 computed	 for	 every	 subject	 inside	 the	
cluster mask. Correlations of EC values with biological and 
neuropsychological	 markers	 of	 AD	 risk	 were	 computed	 with	 R	
(www.r-project.org,	 version	 3.3.3).	 Linear	 fits	 were	 plotted	 of	
cluster	mean	 ECM	 against	 age	 and	 scores	 on	 the	 psychological	
tests	and	CSF	biomarker	levels,	grouped	by	genetic	risk	(APOE4−	
vs.	 APOE4+).	 Separate	 one-	way	 analyses	 of	 variance	 (ANOVA)	

with group as the factor determined the effect of the markers 
and group on the mean EC. Differences in mean EC were assessed 
by	ANOVA	of	group	mean	+individual	means,	for	both	groupings	
separately.

2.6.3 | Use of cluster mean ECM as a predictor for 
AD risk

To test the usability of single- subject cluster mean EC as a predic-
tor	 of	 genetic	 AD	 risk,	 a	 logistic	 regression	 was	 used	 to	 predict	
the	APOE	 risk	of	 each	 subject,	 using	 cluster	mean	EC	as	 the	pre-
dictor and age as a covariate. The regression was computed in the 
GLMnet	package	for	R	 (Friedman,	Hastie,	&	Tibshirani,	2010)	with	
the	model	without	elastic	net	penalization,	that	is,	using	the	ordinary	
least	squares	solution.	The	model	was	evaluated	with	leave-	one-	out	
cross-	validation.	A	receiver	operating	curve	(ROC)	of	the	model	was	
constructed	using	the	pROC	package	for	R	(Robin	et	al.,	2011);	95%	
confidence intervals were computed using bootstrap resampling. 
This procedure was repeated for a second model with age as a sec-
ond regressor.

3  | RESULTS

3.1 | Study characteristics

Of	 the	 total	 sample,	 76	 (29%)	 individuals	 were	 APOE-	ε4 carrier 
subjects	 (Table	1).	 MMSE	 scores	 were	 not	 statistically	 different	
between	 APOE4+	 risk	 groups	 (Kruskal–Wallis	 χ2	=	1.51,	 p	=	0.22).	
Scores	on	the	15-	object	test	(15OT)	were	higher	for	the	APOE4+	risk	
group	(median	APOE4−	13;	median	APOE4	+	14;	Kruskal–Wallis	test	
p	=	0.025).	No	significant	risk	group-	related	differences	were	found	
for	 gender	 (Kruskal–Wallis	 χ2	=	7.1	×	10−5,	 p	=	0.99),	 age	 (Kruskal–
Wallis χ2	=	3.41,	p	=	0.065),	normalized	gray	matter	volume	(NGMV,	
Kruskal–Wallis	χ2	=	0.92,	p	=	0.761),	or	cardiovascular	risk	(Kruskal–
Wallis χ2	=	0.194,	p	=	0.660)	between	the	high	and	low	genetic	risk	
groups	(see	Table	1).

Whole sample APOE4− group APOE4+ group p

Number	of	subjects 261 185	(71%) 76	(29%)

Male/female 110/151 78/107 32/44 0.993

Age	mean/SD 56.6/6.7 57.0/6.8 55.6/6.6 0.065

MMSE	mean/SD 29.1/0.8 29.0/0.7 29.1/0.8 0.219

15OT	score	
mean/SD

13.1/1.78 13.0/1.86 13.5/1.51 0.025*

Framingham	CV	
risk

6.46/6.17 6.41/6.16 6.61/6.27 0.660

NGMV	mean/SD 0.452/0.019 0.452/0.019 0.453/0.020 0.761

Note.	The	groups	did	not	differ	significantly	for	gender	and	age	distributions	(p	=	0.993	and	p	=	0.065,	
respectively).	The	APOE4+	groups	did	not	differ	in	mean	MMSE	scores	(p	=	0.219).	The	APOE4+	risk	
group	scored	higher	on	the	15-	object	test	(15OT,	p	=	0.025).	The	groups	did	not	differ	significantly	
in	cardiovascular	risk	scores	and	NGMV	(p = 0.660 and p	=	0.761,	respectively).	Significant	differ-
ences	are	marked	with	*.

TABLE  1 Group	characteristics	of	the	
high-	risk	(APOE-	ε4	carriers)	and	low-	risk	
groups in the sample

http://www.r-project.org
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3.2 | Eigenvector centrality differences between 
risk groups

Figure	1a	shows	the	average	EC	for	the	APOE4−	and	APOE4+	groups,	
respectively.	The	APOE+	group	average	 showed	areas	of	decreased	
EC	compared	to	APOE−,	mostly	in	the	occipital	areas.	Figure	1b	shows	
the	cluster	of	significantly	decreased	EC	in	the	APOE4+	group:	bilat-
erally	 in	 the	occipital	pole	 (V1	and	V2,	Brodmann	areas	17	and	18),	
extending	into	the	left	and	right	superior	lateral	occipital	lobes,	dorsal	
posterior	cingulate	cortex	 (PCC,	Brodmann	area	31),	and	the	precu-
neus,	with	a	total	size	of	387	voxels	(24,768	mm³).	The	areas	in	green	
and	 red	 shades	 show	 (a)	 the	mask	 in	which	 the	 EC	was	 computed	
(green	+	red)	and	 (b)	 the	 regions	with	higher	EC	 in	 the	APOE4+	risk	
group	(red)	and	lower	(in	green).	Most	of	the	cortical	regions	show	a	
lower	mean	centrality	for	the	APOE4+	group.	(Xia,	Wang,	&	He,	2013).

3.3 | Correlations of EC with nonimaging markers

For	each	subject,	we	extracted	the	mean	EC	inside	the	occipital	clus-
ter	 (Figure	1b)	 to	 explore	 associations	 with	 the	 other	 risk	 factors.	
Regression	of	these	means	against	age,	the	main	risk	factor	for	AD,	
showed	a	significant	negative	effect	of	age	(p	≤	0.007,	see	Table	2).	
Separate	fits	of	the	APOE	subgroups	independently	showed	that	this	
effect	(Figure	2a)	was	statistically	significant	in	the	low-	risk	APOE4−	
subgroup,	but	not	in	the	APOE4+	subgroup	(p = 0.012 vs. p	=	0.058)	
and there were no significant interactions. Cluster mean EC was sig-
nificantly	 negatively	 correlated	with	CSF	 amyloid	 levels	 (p	=	0.018,	
see	 Figure	2b).	 p-	Values	 for	 the	 APOE4−	 and	 APOE4+	 subgroups	
were	0.085	and	0.159,	respectively.	There	was	a	significantly	nega-
tive	correlation	with	NGMV	(p	=	0.008)	with	p-	values	in	the	APOE4−	
and	APOE4+	subgroups	of	0.022	and	0.113,	respectively	(Figure	2c).

There were three statistically significant correlations of cluster 
mean	EC	with	cognitive	markers.	First,	the	15OT	(p = 0.001 for the 
whole group; p	<	0.001	and	p	=	0.481	for	the	APOE4−	and	APOE4+	
subgroups,	 respectively;	 see	Figure	2d)	and	also	 the	 time	 required	
for	the	trail-	making	test,	parts	A	(p	=	0.030)	and	B	(p	=	0.006).	For	
both	parts	of	the	test,	the	correlations	are	stronger	in	the	APOE4−	
subgroup	 than	 APOE4+	 (part	 A:	 p = 0.032 vs. p	=	0.665,	 part	 B:	
p	=	0.035	vs.	p	=	0.102;	see	Figure	2e,f).

3.4 | Use of cluster mean ECM as a predictor for AD risk

The cross- validation of the logistic regression produced an accuracy 
of	68.9%,	and	the	ROC	corresponding	to	the	parameter	λ with the 
lowest	 validation	 error	 showed	 an	 area	 under	 the	 curve	 (AUC)	 of	
64.4%	(see	Figure	3).	Adding	age	to	the	model	did	not	improve	the	
results	(accuracy	was	68.6%;	AUC	was	64.5%).

4  | DISCUSSION

The	 main	 result	 of	 this	 study	 is	 that	 APOE-	ε4 carriers show de-
creased EC in comparison with noncarriers in visual cortical regions; 
which	have	previously	been	demonstrated	to	be	affected	in	MCI	and	

AD	(Rombouts	et	al.,	2009;	Sanz-	Arigita	et	al.,	2010).	Furthermore,	
lower EC values were associated with older age and worse visual 
task performance in noncarriers.

4.1 | APOE- ε4- related differences in functional 
brain eigenvector centrality

Our findings show that functional whole- brain network centrality 
changes may already be present in cognitively normal older adults 
who	have	an	increased	risk	of	developing	AD.	Previous	studies	that	
have	measured	 functional	brain	changes	with	 fMRI	between	AD	
patients,	MCI	 patients	 and	 healthy	 controls	 (Binnewijzend	 et	al.,	
2012;	Drzezga	et	al.,	2011;	Ossenkoppele	et	al.,	2013),	have	dem-
onstrated	functional	changes	 in	early	stages	of	AD.	Our	findings	
are	 in	 line	with	 these	previous	observations,	 showing	 that	 these	
functional	changes	are	also	present	in	carriers	of	the	APOE-	ε4 al-
lele,	a	risk	factor	for	AD.

The regions of changed centrality partially coincide with previ-
ous work that reported brain regions with default mode network 
(DMN)-	related	 changes	 in	APOE-	ε4	 carriers	 (Filippini	 et	al.,	 2009),	
most markedly the precuneus. Those did not include the visual cor-
tex	 as	 the	 statistical	 analyses	 were	 limited	 to	 changes	 inside	 the	
DMN.	Analyses	of	 connectivity	with	 the	 rest	of	 the	brain	 (Agosta	
et	al.,	2012)	show	differential	connectivity	with	the	DMN	with	the	
same	visual	regions	we	report,	between	AD	and	controls	as	well	as	
MCI	 vs.	 controls,	 especially	 on	 the	 boundary	 between	 precuneus	
and	visual	cortex.

Findings	of	connectivity	changes	inside	and	to	the	DMN	in	rela-
tion	to	APOE-	ε4	carriership	have	not	been	consistent,	mostly	due	to	
the	different	age	groups	being	studied	(Filippini	et	al.,	2011;	Heise,	
Filippini,	 Ebmeier,	 &	 Mackay,	 2011;	 Mevel,	 Chételat,	 Eustache,	 &	
Desgranges,	2011).	Overall,	 the	most	 frequently	reported	changes	
are	 weakened	 DMN	 connectivity	 in	 middle-	aged	 and	 older	 sub-
jects	 (Goveas	 et	al.,	 2013;	 Machulda	 et	al.,	 2011;	 Reiman	 et	al.,	
1996;	 Sheline	et	al.,	 2010;	Wang	et	al.,	 2012)	 and,	 less	 frequently,	
increased	DMN	connectivity	 in	young	adults	 (Filippini	et	al.,	2009;	
Fleisher	 et	al.,	 2009).	Our	 results	 demonstrate	 early	 visual	 effects	
in a population study with realistic proportions of carriers and non-
carriers,	which	shows	the	applicability	of	 functional	measures	 in	a	
community setting.

Recent	 studies	 that	 focus	 less	 on	 the	 DMN	 alone	 report	 a	
shift of functionally central and highly connected regions from 
posterior	 to	 frontal	 regions	 in	 AD	 patients	 (Agosta	 et	al.,	 2012;	
Binnewijzend	et	al.,	2014;	Sanz-	Arigita	et	al.,	2010;	Sheline	et	al.,	
2010).	 The	 decreased	 centralities	 of	 posterior	 regions	 in	 the	
APOE4+	risk	group	found	in	this	study	are	 in	 line	with	this	shift,	
although we did not find locally increased centralities in frontal 
areas in healthy subjects.

Functional	brain	network	changes	related	to	(risk	of)	AD	have	
mainly	 been	 studied	 using	 techniques	 that	 detect	 the	 DMN.	
Tested	as	a	whole,	patients	exhibit	lower	DMN	connectivity	than	
controls,	 see	 (Wang	 et	al.,	 2015;	 Lee	 et	al.,	 2016)	 and	 their	 ref-
erences.	 The	 “canonical”	 pattern	 of	 the	 DMN	 is	 the	 precuneus,	
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F IGURE  1  (a)	Group	mean	ECM	for	
the	APOE4−	group	(top)	and	the	APOE4+	
group	(bottom).	Centralities	could	only	
be computed in brain regions that were 
scanned	in	every	subject	(colored	part).	
Blue	indicates	relatively	low	centralities,	
and yellow indicates high centralities. 
The occipital region indicated by the 
green	arrow	has	visibly	higher	voxelwise	
centralities in the low- risk group than 
in	the	high-	risk	group.	(b)	Cluster	of	
significant	ECM	differences	between	the	
APOE4−	and	APOE4+	groups	(blue).	The	
anatomical background is shown in gray 
scales.	Areas	where	the	mean	centrality	
is	highest	in	the	APOE4+	group	are	in	red,	
and areas where the mean centrality was 
highest	in	the	APOE4−	group	are	in	green

(a)

(b)
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superior	 lateral	 parietal	 lobes,	 and	 the	ACC.	When	 analyses	 are	
limited	to	the	DMN	regions,	this	 is	where	the	changes	are	found	
(Binnewijzend	et	al.,	2012;	Filippini	et	al.,	2009).	Analyses	of	AD-	
related functional brain network differences associated with the 
DMN	but	 not	 part	 of	 the	DMN	 report	 changes	 in	 superior	 pari-
etal	 and	 occipital	 regions	 (Agosta	 et	al.,	 2012;	 Lee	 et	al.,	 2016).	
These	findings	are	consistent	with	those	in	resting	and	visual	fMRI	
studies that report affected visual functioning accompanied by 
differences	 in	 the	 visual	 cortices	 (Alegret	 et	al.,	 2010;	 Lehmann	
et	al.,	 2013;	Wang	 et	al.,	 2015;	 Zhang	 et	al.,	 2010)	 and	 the	 idea	
that	 deviations	 from	 the	 typical	 pathology,	 such	 as	 the	 involve-
ment	of	 functionally	specific	brain	regions,	drive	the	variation	 in	
neurodegenerative	variation	in	AD.

The	decreased	EC	values,	we	have	found	in	the	visual	cortex	in	the	
APOE	risk	group,	show	strong	similarities	to	the	posterior	regions	of	
decreased	centralities	in	advanced	AD	patients	(Binnewijzend	et	al.,	
2014),	 indicating	 that	 the	onset	of	centrality	changes	measured	 in	
advanced	AD	are	detectable	in	healthy	patients	with	an	elevated	risk	
for	AD.	If	both	sets	of	regions	disclose	the	same	process,	a	possible	
explanation	is	that	the	aberrant	functional	connectivity	in	the	brain	
associated	with	the	APOE-	ε4	allele	makes	it	more	vulnerable	to	AD-	
related pathology.

This is in line with earlier findings of a change in “hub” status of 
these	brain	regions	in	AD	patients	(Buckner	et	al.,	2009;	de	Haan,	
Mott,	 et	al.,	 2012;	 de	Haan,	 van	 der	 Flier,	 et	al.,	 2012),	 and	 AD-	
related	changes	in	glucose	metabolism	(Ossenkoppele	et	al.,	2013)	
and	neuronal	activity	(Damoiseaux	et	al.,	2012;	Navas	et	al.,	2013).

The	 GAP	 cohort	 of	 healthy	 elderly	 with	 documented	 AD	 risk	
fills	the	gap	of	the	less	frequently	studied	group	of	elderly,	healthy	
adults	with	known	APOE-	ε4	genotype,	and	our	study	confirms	the	
persistence of these genotype- driven changes from young adults 
and	 elderly	 healthy	 stages	 to	 early	 and	 advanced	 stages	 of	 AD.	
The	efficiency	of	fast	ECM	(Wink	et	al.,	2012)	and	its	sensitivity	to	
disease	 conditions	 (Binnewijzend	 et	al.,	 2014),	 and	 the	 fact	 that	 it	
produces	single-	subject,	whole-	brain	patterns,	make	it	an	attractive	
alternative	to	current	RS-	fMRI	analyses	of	AD-	related	brain	network	

differences,	for	example,	independent	component	analyses.	As	such,	
whole- brain network analyses are an interesting and novel approach 
to multiple- network decompositions for neurological disorders 
that perturb the global brain network functionally and structurally 
(Agosta	 et	al.,	 2012;	 Seeley,	 Crawford,	 Zhou,	 Miller,	 &	 Greicius,	
2009;	Tijms	et	al.,	2014).

4.2 | Relation between occipital 
EC and nonimaging biomarkers

Older subjects showed lower eigenvector centrality values and 
a	 significant	 negative	 correlation	 with	 age	 across	 groups.	 (Tijms	
et	al.,	2014;	van	der	Flier,	Pijnenburg,	Fox,	&	Scheltens,	2011)	This	
decrease	is	in	line	with	recent	results	from	fMRI	studies	in	healthy	
middle-aged	 controls,	where	 different	 levels	 of	 activity	 in	 V1	 dis-
criminate	between	controls	with	risk	of	AD	who	carry	the	APOE-	ε4 
allele	from	those	who	do	not	(Rajah	et	al.,	2017).

We	found	a	positive	correlation	with	CSF	amyloid	levels,	which	
corresponds to a negative correlation with amyloid load in the brain. 
This	 is	 consistent	with	 the	 finding	 that	 ECM	correlates	 negatively	
with	age,	because	brain	amyloid	load	correlates	positively	with	age	
(Oh,	Madison,	Baker,	Rabinovici,	&	Jagust,	2016).

Cluster	mean	EC	was	 also	 related	 to	 a	 decrease	 in	 normalized	
gray	matter	volume	(NGMV).	Atrophy	differences	in	this	cohort	re-
lated	 to	APOE	genotype	have	been	 reported	previously	 but	were	
limited	to	the	striatum	and	insula	(ten	Kate	et	al.,	2016).

Correlations	between	EC	and	scores	on	the	15-	object	test	(15OT)	
and	trail-	making	test	(TMT)	were	all	positive.	For	the	TMT,	times	to	
finish	did	not	differ	significantly	between	the	groups.	For	the	15OT,	
there was also a difference in scores between the groups: The 
APOE4+	group	had	higher	scores.	This	finding	is	somewhat	counter-
intuitive,	as	the	APOE4+	group	scored	higher	on	the	15OT.	The	plots	
per subgroup show that EC variability against test score is lower in 
e4	carriers.	This	indicates	differences	in	brain	network	organization	
between carriers and noncarriers that make the brain more vulner-
able	 to	AD-	related	 pathology	 (De	Meyer	 et	al.,	 2010;	 Evans	 et	al.,	

Effect of interest p value APOE 4−/4+

Linear fits in subgroups

APOE4− APOE4+

Age p	=	0.007* p	=	5.0	×	10−5* p	=	0.012* 
R2 = 0.034

p	=	0.058 
R2 = 0.048

CSF-	amyloid p	=	0.017* p	=	0.037* p	=	0.085 
R2 = 0.030

p	=	0.159 
R2	=	0.056

NGMV p	=	0.008* p	=	1.4	×	10−4* p	=	0.022* 
R2 = 0.028

p = 0.113 
R2 = 0.034

15OT	test	score p	=	0.001* p	=	1.6	×	10−5* p	=	0.000* 
R2 = 0.071

p = 0.481 
R2 = 0.007

Time	for	TMT	pt.	
A

p	=	0.030* p	=	1.4	×	10−4* p	=	0.032* 
R2	=	0.025

p	=	0.665 
R2 = 0.003

Time	for	TMT	pt.	
B

p	=	0.005* p	=	3.1	×	10−4* p	=	0.035* 
R2 = 0.024

p = 0.102 
R2 = 0.036

Note.	The	*	indicates	p	<0.05

TABLE  2 Correlations of biological 
markers	of	AD	risk	with	EC	means	
measured inside the cluster of significant 
between-	group	differences	(see	Figure	1b)
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F IGURE  2 Cluster	mean	EC	of	all	subjects	plotted	against	subject	age	(a),	CSF	amyloid	levels	(b),	NGMV	(c),	15-	object	test	score	(15OT)	
(d),	and	time	to	complete	the	trail-	making	test	(TMT)	part	A	(e)	and	part	B	(f)
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2014;	Mintun	et	al.,	2006;	Sperling	et	al.,	2011).	In	an	important	way,	
this does not lead to decreased cognitive decline or visuoperceptual 
performance.	Indeed,	previous	studies	have	reported	a	positive	ef-
fect	of	APOE-	ε4	on	cognition	in	young	and	middle-	aged	adults,	sug-
gesting	that	APOE-	ε4- related changes are beneficial in early life but 
detrimental	in	old	age	(Bunce,	Anstey,	Burns,	Christensen,	&	Easteal,	
2011;	 Rusted	 et	al.,	 2013).	 Improved	 attention	 in	 young	 APOE-	ε4 
carriers is one of the fundamental cognitive differences recently re-
ported	(Rusted	et	al.,	2013).

When	stratified	for	APOE4	genotype,	we	found	that	correlations	
of	EC	with	other	markers	were	significant	only	for	the	APOE4−	group.	
Cluster	 mean	 EC	 variability	 is	 lower	 within	 the	 APOE4+	 high-	risk	
group. The mean EC is significantly higher in the low- risk group than 
in	 the	high-		 risk	group,	so	 the	absence	of	 the	age	effect	 in	 the	 lat-
ter	could	point	to	a	localized	decrease	in	centrality	earlier	in	life	for	
the	high-	risk	 subjects	 (Tijms	et	al.,	2014;	van	der	Flier	et	al.,	2011).	
Another	possible	explanation	is	selection	bias	by	removing	subjects	
with	low	MMSE.	If	only	subjects	with	APOE	and/or	amyloid	are	in-
cluded,	they	may	have	a	higher	“cognitive	reserve”:	They	may	be	able	
to	perform	better	with	(more)	brain	pathology	(van	Loenhoud	et	al.,	
2017).

4.3 | APOE- ε4- related centrality changes in the 
visual cortex

The regions where decreased centrality was detected in this study 
are	in	the	visual	cortex.	The	visual	cortex	and	regions	of	the	ventral	

visual processing stream involved in object recognition have been 
recognized	 as	 areas	 affected	 by	AD	 in	 studies	 of	 cortical	 atrophy	
and	using	object	recognition	fMRI	tasks	(Jacobs	et	al.,	2015).	Given	
the	 decrease	 in	 EC	 in	 the	 primary	 visual	 cortex	 is	 correlated	with	
lower	performance	on	the	15-	object	task,	visual	perception	deficits	
may	be	explained	by	APOE-	related	changes,	such	as	posterior	atro-
phy	that	is	specific	to	the	carrier	group	(Adaszewski,	Dukart,	Kherif,	
Frackowiak,	 &	 Draganski,	 2013;	 Yao,	 Hu,	 Liang,	 Zhao,	 &	 Jackson,	
2012).

Our results are partly concordant with recent findings that 
APOE-	ε4 carriers show different brain activity during scene per-
ception	 (Shine,	 Hodgetts,	 Postans,	 Lawrence,	 &	 Graham,	 2015),	
and	 anatomically	 match	 previously	 reported	 cases	 of	 AD-	related	
visuoperceptual	deficits	(Chan	et	al.,	2015)	and	studies	of	posterior	
cortical	atrophy	(Crutch	et	al.,	2012;	Migliaccio	et	al.,	2012).

4.4 | Functional brain network centrality as a 
predictor of APOE genotype

The results for predicting the genetic risk group using the cluster 
mean	EC	yielded	AUC	and	accuracy	higher	than	chance,	but	below	
75%	(1	in	every	4	misclassified).	In	our	sample	of	healthy	elderly,	the	
changes in EC that can be measured between groups are too subtle 
for single- subject classification. With a stronger contrast between 
patients	and	controls,	 the	discriminating	power	of	 regional	EC	dif-
ferences	may	be	useful	for	diagnostic	purposes.	Although	APOE	sta-
tus	is	a	risk	factor	for	AD	(Caselli	et	al.,	2009;	Ossenkoppele	et	al.,	
2013;	Strittmatter,	Saunders,	et	al.,	1993),	many	other	processes	are	
involved	in	causing	dementia,	so	the	difference	between	APOE-	ε4 
carriers	and	noncarriers	may	be	a	relatively	small	AD-	related	effect	
on the brain network.

5  | LIMITATIONS AND FUTURE 
DIREC TIONS

The	limited	brain	coverage	of	the	slice	stack	used	for	the	fMRI	acqui-
sition does not fully employ the benefits of a whole- brain network 
analysis	like	ECM.	The	acquisition	parameters	were	chosen	to	limit	
scanning time while still capturing the regions of the default mode 
network	(Raichle	&	Snyder,	2007),	a	group	of	regions	whose	activity	
and	connectivity	measures	change	significantly	in	patients	with	AD.	
Future	fMRI	studies	of	brain	network	changes	in	AD	should	provide	
whole- brain coverage to make optimal use of modern analysis meth-
ods.	Another	 limitation	 is	 that	 it	 is	unknown	who	will	develop	AD	
pathology; this will be clearer in follow- up studies of this sample that 
are ongoing.

6  | CONCLUSION

Using	 ECM	 of	 resting-	state	 fMRI	 data	 in	 healthy	 controls,	 we	
have identified functional brain network changes in carriers of the 

F IGURE  3 Receiver	operating	curve	(ROC)	for	predicting	the	
APOE	risk	group	with	a	logistic	regression,	using	the	mean	ECM	
in	the	cluster	of	between-	group	differences	(see	Figure	2b)	as	the	
main	predictor	and	age	and	15-	object	test	scores	as	covariates.	The	
shaded	areas	are	the	95%	confidence	intervals.	The	area	under	the	
curve	(AUC)	measured	with	this	model	was	64.4%
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APOE-	ε4	allele,	a	genetic	risk	factor	for	AD,	which	are	directly	linked	
to age and cognitive performance in healthy aging.

ACKNOWLEDG MENTS

Alle	 Meije	 Wink	 received	 funding	 from	 the	 Dutch	 Society	 for	
Scientific	Research	(NWO)	Memorabel	(grant	733050204).	The	net-
works@risk	project	 at	CITA-	Alzheimer	was	 funded	by	 Instituto	de	
Salud	Carlos	III	 (ISCIII,	grant	PI12/02262).	Betty	M.	Tijms	received	
funding	from	NWO-	Memorabel	(grant	7330598).

CONFLIC T OF INTERE S TS

No	conflict	of	interests	were	declared.

ORCID

Alle Meije Wink  http://orcid.org/0000-0002-8197-0118 

Betty M. Tijms  http://orcid.org/0000-0002-2612-1797 

Mara ten Kate  http://orcid.org/0000-0002-8290-8543  

R E FE R E N C E S

Adaszewski,	 S.,	 Dukart,	 J.,	 Kherif,	 F.,	 Frackowiak,	 R.,	 &	 Draganski,	 B.	
(2013).	How	early	can	we	predict	Alzheimer’s	disease	using	compu-
tational anatomy? Neurobiology of Aging,	34,	2815–2826.	https://doi.
org/10.1016/j.neurobiolaging.2013.06.015

Agosta,	F.,	Pievani,	M.,	Geroldi,	C.,	Copetti,	M.,	Frisoni,	G.	B.,	&	Filippi,	
M.	(2012).	Resting	state	fMRI	in	Alzheimer’s	disease:	Beyond	the	de-
fault mode network. Neurobiology of Aging,	33,	1564–1578.	https://
doi.org/10.1016/j.neurobiolaging.2011.06.007

Alcolea,	D.,	Martínez-Lage,	P.,	Izagirre,	A.,	Clerigué,	M.,	Carmona-Iragui,	
M.,	Alvarez,	R.	M.,	…	Molinuevo,	J.	L.	(2014).	Feasibility	of	lumbar	punc-
ture	 in	 the	 study	of	 cerebrospinal	 fluid	biomarkers	 for	Alzheimer’s	
Disease:	A	multicenter	study	in	Spain.	Journal of Alzheimer’s Disease,	
39,	719–726.	https://doi.org/10.3233/JAD-131334

Alegret,	M.,	Vinyes-Junqué,	G.,	Boada,	M.,	Martínez-Lage,	P.,	Cuberas,	
G.,	 Espinosa,	 A.,	 …	 Tárraga,	 L.	 (2010).	 Brain	 perfusion	 correlates	
of	 visuoperceptual	 deficits	 in	Mild	 Cognitive	 Impairment	 and	mild	
Alzheimer’s	 disease.	 Journal of Alzheimer’s Disease,	 21,	 557–567.	
https://doi.org/10.3233/JAD-2010-091069

Altmann,	A.,	Ng,	B.,	Landau,	S.	M.,	Jagust,	W.	J.,	&	Greicius,	M.	D.	(2015).	
Regional brain hypometabolism is unrelated to regional amyloid 
plaque	 burden.	 Brain,	 138,	 3734–3746.	 https://doi.org/10.1093/
brain/awv278

Ba,	M.,	Kong,	M.,	Li,	X.,	Ng,	K.	P.,	Rosa-Neto,	P.,	&	Gauthier,	S.	 (2016).	
Is	ApoE	 ɛ	 4	 a	 good	biomarker	 for	 amyloid	 pathology	 in	 late	 onset	
Alzheimer’s	disease?	Translational Neurodegeneration,	5,	20.	https://
doi.org/10.1186/s40035-016-0067-z

Bateman,	R.	 J.,	Xiong,	C.,	Benzinger,	T.	L.	S.,	Fagan,	A.	M.,	Goate,	A.,	
Fox,	N.	C.,	…	Morris,	J.	C.	(2012).	Clinical	and	biomarker	changes	in	
dominantly	 inherited	Alzheimer’s	 disease.	New England Journal of 
Medicine,	367,	795–804.	https://doi.org/10.1056/NEJMoa1202753

Bavelas,	 A.	 (1948).	 A	 mathematical	 model	 for	 group	 structures.	
Human Organization,	 7,	 16–30.	 https://doi.org/10.17730/
humo.7.3.f4033344851gl053

Binnewijzend,	 M.	 A.	 A.,	 Adriaanse,	 S.	 M.,	 Van	 der	 Flier,	 W.	 M.,	
Teunissen,	C.	E.,	de	Munck,	J.	C.,	Stam,	C.	J.,	…	Wink,	A.	M.	(2014).	

Brain	 network	 alterations	 in	 Alzheimer’s	 disease	 measured	 by	
Eigenvector	 centrality	 in	 fMRI	 are	 related	 to	 cognition	 and	 CSF	
biomarkers. Human Brain Mapping,	 35,	 2383–2393.	 https://doi.
org/10.1002/hbm.22335

Binnewijzend,	M.	A.	A.,	Schoonheim,	M.	M.,	Sanz-Arigita,	E.,	Wink,	A.	M.,	
van	der	Flier,	W.	M.,	Tolboom,	N.,	…	Barkhof,	F.	(2012).	Resting-	state	
fMRI	changes	in	Alzheimer’s	disease	and	mild	cognitive	impairment.	
Neurobiology of Aging,	 33,	 2018–2028.	 https://doi.org/10.1016/j.
neurobiolaging.2011.07.003

Bonham,	L.	W.,	Geier,	E.	G.,	Fan,	C.	C.,	Leong,	 J.	K.,	Besser,	L.,	Kukull,	
W.	A.,	&	Yokoyama,	J.	S.	(2016).	Age-	dependent	effects	of	APOE	ε4 
in	preclinical	Alzheimer’s	disease.	Annals of Clinical and Translational 
Neurology,	3,	668–677.	https://doi.org/10.1002/acn3.333

Bookheimer,	 S.	 Y.,	 Strojwas,	 M.	 H.,	 Cohen,	 M.	 S.,	 Saunders,	 A.	 M.,	
Pericak-Vance,	M.	A.,	Mazziotta,	J.	C.,	&	Small,	G.	W.	(2000).	Patterns	
of	 brain	 activation	 in	 people	 at	 risk	 for	 Alzheimer’s	 disease.	New 
England Journal of Medicine,	343,	450–456.	https://doi.org/10.1056/
NEJM200008173430701

Buckner,	R.	L.,	Sepulcre,	J.,	Talukdar,	T.,	Krienen,	F.	M.,	Liu,	H.,	Hedden,	
T.,	…	Johnson,	K.	A.	(2009).	Cortical	hubs	revealed	by	intrinsic	func-
tional	connectivity:	Mapping,	assessment	of	stability,	and	relation	to	
Alzheimer’s	disease.	Journal of Neuroscience,	29,	1860–1873.	https://
doi.org/10.1523/JNEUROSCI.5062-08.2009

Bullmore,	E.	T.,	Suckling,	J.,	Overmeyer,	S.,	Rabe-Hesketh,	S.,	Taylor,	E.,	
&	Brammer,	M.	J.	 (1999).	Global	and	voxel	and	cluster	tests	and	by	
theory and permutation and for a difference between two groups 
of	 structural	MR	 images	 of	 the	 brain.	 IEEE Transactions on Medical 
Imaging,	18,	32–42.	https://doi.org/10.1109/42.750253

Bunce,	D.,	Anstey,	K.	J.,	Burns,	R.,	Christensen,	H.,	&	Easteal,	S.	(2011).	
Does	possession	of	apolipoprotein	E	ɛ4	benefit	cognitive	function	in	
healthy young adults? Neuropsychologia,	49,	1693–1697.	https://doi.
org/10.1016/j.neuropsychologia.2011.02.042

Caselli,	 R.	 J.,	 Dueck,	 A.	 C.,	 Osborne,	 D.,	 Sabbagh,	 M.	 N.,	 Connor,	 D.	
J.,	 Ahern,	G.	 L.,	…	 Reiman,	 E.	M.	 (2009).	 Longitudinal	modeling	 of	
age-	related	memory	decline	and	 the	APOE	ε4 effect. New England 
Journal of Medicine,	 361,	 255–263.	 https://doi.org/10.1056/
NEJMoa0809437

Chan,	 L.	 T.	 A.,	 Lynch,	W.,	De	May,	M.,	Horton,	 J.	 C.,	Miller,	 B.	 L.,	 &	
Rabinovici,	 G.	 D.	 (2015).	 Prodromal	 posterior	 cortical	 atro-
phy:	 Clinical,	 neuropsychological,	 and	 radiological	 correlation.	
Neurocase,	 21,	 44–55.	 https://doi.org/10.1080/13554794.2013. 
860176

Crutch,	S.	J.,	Lehmann,	M.,	Schott,	J.	M.,	Rabinovici,	G.	D.,	Rossor,	M.	N.,	
&	Fox,	N.	C.	(2012).	Posterior	cortical	atrophy.	Lancet Neurology,	11,	
170–178.	https://doi.org/10.1016/S1474-4422(11)70289-7

Cummings,	J.,	&	Zhong,	K.	(2014).	Biomarker-	driven	therapeutic	manage-
ment	 of	 Alzheimer’s	 disease:	 Establishing	 the	 foundations.	Clinical 
Pharmacology and Therapeutics,	95,	67–77.	https://doi.org/10.1038/
clpt.2013.205

D’Agostino,	 R.	 B.,	 Vasan,	 R.	 S.,	 Pencina,	 M.	 J.,	 Wolf,	 P.	 A.,	 Cobain,	
M.,	 Massaro,	 J.	 M.,	 &	 Kannel,	 W.	 B.	 (2008).	 General	 cardio-
vascular	 risk	 profile	 for	 use	 in	 primary	 care:	 The	 Framingham	
Heart	 Study.	 Circulation,	 117,	 743–753.	 https://doi.org/10.1161/
CIRCULATIONAHA.107.699579

Damoiseaux,	 J.	 S.,	 Seeley,	W.	W.,	Zhou,	 J.,	 Shirer,	W.	R.,	Coppola,	G.,	
Karydas,	 A.,	 …	 Greicius,	 M.	 D.	 (2012).	 Gender	 modulates	 the	
APOE	 ε4 effect in healthy older adults: Convergent evidence 
from functional brain connectivity and spinal fluid tau levels. 
Journal of Neuroscience,	 32,	 8254–8262.	 https://doi.org/10.1523/
JNEUROSCI.0305-12.2012

Deary,	I.	J.,	Whiteman,	M.	C.,	Pattie,	A.,	Starr,	J.	M.,	Hayward,	C.,	Wright,	
A.	F.,	…	Whalley,	L.	J.	(2002).	Ageing:	Cognitive	change	and	the	APOE	
ε4 allele. Nature,	418,	932.	https://doi.org/10.1038/418932a

de	Haan,	W.,	Mott,	K.,	van	Straaten,	E.	C.	W.,	Scheltens,	P.,	&	Stam,	C.	J.	
(2012).	Activity	dependent	degeneration	explains	hub	vulnerability	

http://orcid.org/0000-0002-8197-0118
http://orcid.org/0000-0002-8197-0118
http://orcid.org/0000-0002-2612-1797
http://orcid.org/0000-0002-2612-1797
http://orcid.org/0000-0002-8290-8543
http://orcid.org/0000-0002-8290-8543
https://doi.org/10.1016/j.neurobiolaging.2013.06.015
https://doi.org/10.1016/j.neurobiolaging.2013.06.015
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.3233/JAD-131334
https://doi.org/10.3233/JAD-2010-091069
https://doi.org/10.1093/brain/awv278
https://doi.org/10.1093/brain/awv278
https://doi.org/10.1186/s40035-016-0067-z
https://doi.org/10.1186/s40035-016-0067-z
https://doi.org/10.1056/NEJMoa1202753
https://doi.org/10.17730/humo.7.3.f4033344851gl053
https://doi.org/10.17730/humo.7.3.f4033344851gl053
https://doi.org/10.1002/hbm.22335
https://doi.org/10.1002/hbm.22335
https://doi.org/10.1016/j.neurobiolaging.2011.07.003
https://doi.org/10.1016/j.neurobiolaging.2011.07.003
https://doi.org/10.1002/acn3.333
https://doi.org/10.1056/NEJM200008173430701
https://doi.org/10.1056/NEJM200008173430701
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1109/42.750253
https://doi.org/10.1016/j.neuropsychologia.2011.02.042
https://doi.org/10.1016/j.neuropsychologia.2011.02.042
https://doi.org/10.1056/NEJMoa0809437
https://doi.org/10.1056/NEJMoa0809437
https://doi.org/10.1080/13554794.2013.860176
https://doi.org/10.1080/13554794.2013.860176
https://doi.org/10.1016/S1474-4422(11)70289-7
https://doi.org/10.1038/clpt.2013.205
https://doi.org/10.1038/clpt.2013.205
https://doi.org/10.1161/CIRCULATIONAHA.107.699579
https://doi.org/10.1161/CIRCULATIONAHA.107.699579
https://doi.org/10.1523/JNEUROSCI.0305-12.2012
https://doi.org/10.1523/JNEUROSCI.0305-12.2012
https://doi.org/10.1038/418932a


     |  11 of 13WINK et al.

in	 Alzheimer’s	 disease.	 PLoS Computational Biology,	 8,	 e1002582.	
https://doi.org/10.1371/journal.pcbi.1002582

de	 Haan,	W.,	 van	 der	 Flier,	W.	M.,	Wang,	 H.,	 Van	Mieghem,	 P.	 F.	
A.,	 Scheltens,	P.,	&	Stam,	C.	 J.	 (2012).	Disruption	of	 functional	
brain	networks	in	Alzheimer’s	disease:	What	can	we	learn	from	
graph spectral analysis of resting- state magnetoencephalog-
raphy? Brain Connectivity,	 2,	 45–55.	 https://doi.org/10.1089/
brain.2011.0043

Delbeuck,	X.,	der	Linden,	M.	V.,	&	Collette,	F.	(2003).	Alzheimer’	disease	
as a disconnection syndrome? Neuropsychology Review,	13,	 79–92.	
https://doi.org/10.1023/A:1023832305702

De	 Meyer,	 G.,	 Shapiro,	 F.,	 Vanderstichele,	 H.,	 Vanmechelen,	 E.,	
Engelborghs,	S.,	De	Deyn,	P.	P.,	…	Alzheimer’s	Disease	Neuroimaging	
Initiative	(2010).	Diagnosis-	independent	alzheimer	disease	biomarker	
signature in cognitively normal elderly people. Archives of Neurology,	
67,	949–956.	https://doi.org/10.1001/archneurol.2010.179

Drzezga,	A.,	Becker,	J.	A.,	Dijk,	K.	R.	A.	V.,	Sreenivasan,	A.,	Talukdar,	T.,	
Sullivan,	C.,	…	Sperling,	R.	A.	(2011).	Neuronal	dysfunction	and	dis-
connection of cortical hubs in non- demented subjects with elevated 
amyloid burden. Brain,	 134,	 1635–1646.	 https://doi.org/10.1093/
brain/awr066

Evans,	S.,	Dowell,	N.	G.,	Tabet,	N.,	Tofts,	P.	S.,	King,	S.	L.,	&	Rusted,	J.	
M.	(2014).	Cognitive	and	neural	signatures	of	the	APOE	E4	allele	in	
mid- aged adults. Neurobiology of Aging,	35,	1615–1623.	https://doi.
org/10.1016/j.neurobiolaging.2014.01.145

Filippini,	N.,	Ebmeier,	K.	P.,	MacIntosh,	B.	J.,	Trachtenberg,	A.	J.,	Frisoni,	G.	
B.,	Wilcock,	G.	K.,	…	Mackay,	C.	E.	(2011).	Differential	effects	of	the	
APOE	genotype	on	brain	function	across	the	 lifespan.	NeuroImage,	
54,	602–610.	https://doi.org/10.1016/j.neuroimage.2010.08.009

Filippini,	N.,	MacIntosh,	B.	J.,	Hough,	M.	G.,	Goodwin,	G.	M.,	Frisoni,	G.	
B.,	Smith,	S.	M.,	…	Mackay,	C.	E.	 (2009).	Distinct	patterns	of	brain	
activity	 in	young	carriers	of	 the	APOE-	ε4 allele. Proceedings of the 
National Academy of Sciences of the United States of America,	 106,	
7209–7214.	https://doi.org/10.1073/pnas.0811879106

Fleisher,	 A.	 S.,	 Sherzai,	 A.,	 Taylor,	 C.,	 Langbaum,	 J.	 B.	 S.,	 Chen,	 K.,	 &	
Buxton,	 R.	 B.	 (2009).	 Resting-	state	 BOLD	 networks	 versus	 task-	
associated	 functional	 MRI	 for	 distinguishing	 Alzheimer’s	 disease	
risk groups. NeuroImage,	47,	 1678–1690.	 https://doi.org/10.1016/j.
neuroimage.2009.06.021

Friedman,	J.,	Hastie,	T.,	&	Tibshirani,	R.	(2010).	Regularization	paths	for	
generalized	linear	models	via	coordinate	descent.	Journal of Statistical 
Software,	33,	1–22.

Goveas,	J.	S.,	Xie,	C.,	Chen,	G.,	Li,	W.,	Ward,	B.	D.,	Franczak,	M.	B.,	…	Li,	
S.-J.	(2013).	Functional	network	endophenotypes	unravel	the	effects	
of apolipoprotein E Epsilon 4 in middle- aged adults. PLoS ONE,	8,	
e55902.	https://doi.org/10.1371/journal.pone.0055902

Greve,	D.	N.,	&	Fischl,	B.	(2009).	Accurate	and	robust	brain	image	align-
ment using boundary- based registration. NeuroImage,	 48,	 63–72.	
https://doi.org/10.1016/j.neuroimage.2009.06.060

Hampel,	H.,	 Frank,	R.,	Broich,	K.,	Teipel,	 S.	 J.,	Katz,	R.	G.,	Hardy,	 J.,	…	
Blennow,	K.	 (2010).	Biomarkers	 for	Alzheimer’s	disease:	Academic,	
industry and regulatory perspectives. Nature Reviews. Drug Discovery,	
9,	560–574.	https://doi.org/10.1038/nrd3115

Hardy,	J.,	&	Selkoe,	D.	J.	(2002).	The	amyloid	hypothesis	of	Alzheimer’s	
disease: Progress and problems on the road to therapeutics. Science,	
297,	353–356.	https://doi.org/10.1126/science.1072994

Hedden,	 T.,	 Dijk,	 K.	 R.	 A.	 V.,	 Becker,	 J.	 A.,	Mehta,	 A.,	 Sperling,	 R.	 A.,	
Johnson,	K.	A.,	&	Buckner,	R.	L.	(2009).	Disruption	of	functional	con-
nectivity in clinically normal older adults harboring amyloid burden. 
Journal of Neuroscience,	29,	12686–12694.	https://doi.org/10.1523/
JNEUROSCI.3189-09.2009

Heise,	 V.,	 Filippini,	 N.,	 Ebmeier,	 K.	 P.,	 &	 Mackay,	 C.	 E.	 (2011).	 The	
APOE	 ε4 allele modulates brain white matter integrity in healthy 
adults. Molecular Psychiatry,	16,	 908–916.	https://doi.org/10.1038/
mp.2010.90

Jack,	 C.	 R.,	 Bennett,	 D.	 A.,	 Blennow,	 K.,	 Carrillo,	 M.	 C.,	 Feldman,	
H.	 H.,	 Frisoni,	 G.	 B.,	 …	 Dubois,	 B.	 (2016).	 A/T/N:	 An	 unbiased	
descriptive	 classification	 scheme	 for	 Alzheimer	 disease	 bio-
markers. Neurology,	 87,	 539–547.	 https://doi.org/10.1212/
WNL.0000000000002923

Jack,	C.	R.,	Knopman,	D.	S.,	Jagust,	W.	J.,	Petersen,	R.	C.,	Weiner,	M.	W.,	
Aisen,	P.	S.,	…	Trojanowski,	J.	Q.	(2013).	Tracking	pathophysiological	
processes	in	Alzheimer’s	disease:	An	updated	hypothetical	model	of	
dynamic biomarkers. The Lancet. Neurology,	12,	207–216.	https://doi.
org/10.1016/S1474-4422(12)70291-0

Jack,	 C.	 R.,	 Knopman,	 D.	 S.,	 Jagust,	 W.	 J.,	 Shaw,	 L.	 M.,	 Aisen,	 P.	 S.,	
Weiner,	 M.	 W.,	 …	 Trojanowski,	 J.	 Q.	 (2010).	 Hypothetical	 model	
of	 dynamic	 biomarkers	 of	 the	 Alzheimer’s	 pathological	 cas-
cade. The Lancet. Neurology,	 9,	 119–128.	 https://doi.org/10.1016/
S1474-4422(09)70299-6

Jacobs,	H.	I.	L.,	Gronenschild,	E.	H.	B.	M.,	Evers,	E.	A.	T.,	Ramakers,	I.	H.	
G.	B.,	Hofman,	P.	A.	M.,	Backes,	W.	H.,	…	Van	Boxtel,	M.	P.	J.	(2015).	
Visuospatial	 processing	 in	 early	Alzheimer’s	 disease:	 A	multimodal	
neuroimaging study. Cortex,	64,	394–406.	https://doi.org/10.1016/j.
cortex.2012.01.005

Jansen,	W.	J.,	Ossenkoppele,	R.,	Knol,	D.	L.,	Tijms,	B.	M.,	Scheltens,	P.,	
Verhey,	F.	R.,	…	Zetterberg,	H.	 (2015).	Prevalence	of	cerebral	amy-
loid	pathology	in	persons	without	dementia:	A	meta-	analysis.	Journal 
of the American Medical Association,	 313,	 1924–1938.	 https://doi.
org/10.1001/jama.2015.4668

Jenkinson,	M.,	Bannister,	P.,	Brady,	M.,	&	Smith,	S.	(2002).	Improved	op-
timization	for	the	robust	and	accurate	linear	registration	and	motion	
correction of brain images. NeuroImage,	 17,	 825–841.	 https://doi.
org/10.1006/nimg.2002.1132

Jones,	 D.	 T.,	 Graff-Radford,	 J.,	 Lowe,	 V.	 J.,	Wiste,	 H.	 J.,	 Gunter,	 J.	 L.,	
Senjem,	M.	L.,	…	Jack,	C.	R.	 Jr	 (2017).	Tau,	amyloid,	and	cascading	
network	failure	across	the	Alzheimer’s	disease	spectrum.	Cortex,	97,	
143–159.	https://doi.org/10.1016/j.cortex.2017.09.018

Lee,	E.-S.,	Yoo,	K.,	Lee,	Y.-B.	M.,	Chung,	J.,	Lim,	J.-E.,	Yoon,	B.,	…	Initiative	
for	 the	 ADN	 (2016).	 Default	 mode	 network	 functional	 connec-
tivity	 in	 early	 and	 late	 mild	 cognitive	 impairment:	 Results	 From	
the	 Alzheimer’s	 disease	 neuroimaging	 initiative.	 Alzheimer Disease 
and Associated Disorders,	 30,	 289–296.	 https://doi.org/10.1097/
WAD.0000000000000143

Lehmann,	M.,	Madison,	C.	M.,	Ghosh,	 P.	M.,	 Seeley,	W.	W.,	Mormino,	
E.,	Greicius,	M.	D.,	…	Rabinovici,	G.	D.	(2013).	Intrinsic	connectivity	
networks	in	healthy	subjects	explain	clinical	variability	in	Alzheimer’s	
disease. Proceedings of the National Academy of Sciences of the United 
States of America,	 110,	 11606–11611.	 https://doi.org/10.1073/
pnas.1221536110

Lim,	Y.	Y.,	&	Mormino,	E.	C.,	for	the	Alzheimer’s	Disease	Neuroimaging	
Initiative.	(2017).	APOE	genotype	and	early	β- amyloid accumulation 
in older adults without dementia. Neurology,	89,	1028–1034.	https://
doi.org/10.1212/WNL.0000000000004336

Lohmann,	 G.,	 Margulies,	 D.	 S.,	 Horstmann,	 A.,	 Pleger,	 B.,	 Lepsien,	 J.,	
Goldhahn,	D.,	…	Turner,	R.	(2010).	Eigenvector	centrality	mapping	for	
analyzing	connectivity	patterns	in	FMRI	data	of	the	human	brain.	PLoS 
ONE,	5,	e10232.	https://doi.org/10.1371/journal.pone.0010232

Machulda,	 M.	 M.,	 Jones,	 D.	 T.,	 Vemuri,	 P.,	 McDade,	 E.,	 Avula,	 R.,	
Przybelski,	S.,	…	Jack,	C.	R.	(2011).	Effect	of	APOE	ε4 status on in-
trinsic network connectivity in cognitively normal elderly subjects. 
Archives of Neurology,	 68,	 1131–1136.	 https://doi.org/10.1001/
archneurol.2011.108

Martinez-Lage,	P.,	Izagirre,	A.,	Ecay-Torres,	M.,	Estanga,	A.,	Clerigue,	M.,	
Diaz,	Z.,	…	Linazasoro,	G.	(2013).	Prevalence	of	preclinical	Alzheimer’s	
disease	among	young	adults:	The	Gipuzkoa	Alzheimer	Project	study.	
Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association,	9,	
P731.	https://doi.org/10.1016/j.jalz.2013.05.1462

Mazziotta,	 J.,	 Toga,	 A.,	 Evans,	 A.,	 Fox,	 P.,	 Lancaster,	 J.,	 Zilles,	 K.,	 …	
Mazoyer,	 B.	 (2001).	 A	 probabilistic	 atlas	 and	 reference	 system	

https://doi.org/10.1371/journal.pcbi.1002582
https://doi.org/10.1089/brain.2011.0043
https://doi.org/10.1089/brain.2011.0043
https://doi.org/10.1023/A:1023832305702
https://doi.org/10.1001/archneurol.2010.179
https://doi.org/10.1093/brain/awr066
https://doi.org/10.1093/brain/awr066
https://doi.org/10.1016/j.neurobiolaging.2014.01.145
https://doi.org/10.1016/j.neurobiolaging.2014.01.145
https://doi.org/10.1016/j.neuroimage.2010.08.009
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1016/j.neuroimage.2009.06.021
https://doi.org/10.1016/j.neuroimage.2009.06.021
https://doi.org/10.1371/journal.pone.0055902
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1038/nrd3115
https://doi.org/10.1126/science.1072994
https://doi.org/10.1523/JNEUROSCI.3189-09.2009
https://doi.org/10.1523/JNEUROSCI.3189-09.2009
https://doi.org/10.1038/mp.2010.90
https://doi.org/10.1038/mp.2010.90
https://doi.org/10.1212/WNL.0000000000002923
https://doi.org/10.1212/WNL.0000000000002923
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/j.cortex.2012.01.005
https://doi.org/10.1016/j.cortex.2012.01.005
https://doi.org/10.1001/jama.2015.4668
https://doi.org/10.1001/jama.2015.4668
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/j.cortex.2017.09.018
https://doi.org/10.1097/WAD.0000000000000143
https://doi.org/10.1097/WAD.0000000000000143
https://doi.org/10.1073/pnas.1221536110
https://doi.org/10.1073/pnas.1221536110
https://doi.org/10.1212/WNL.0000000000004336
https://doi.org/10.1212/WNL.0000000000004336
https://doi.org/10.1371/journal.pone.0010232
https://doi.org/10.1001/archneurol.2011.108
https://doi.org/10.1001/archneurol.2011.108
https://doi.org/10.1016/j.jalz.2013.05.1462


12 of 13  |     WINK et al.

for	 the	 human	 brain:	 International	 Consortium	 for	 Brain	Mapping	
(ICBM).	Philosophical Transactions of the Royal Society of London Series 
B Biological Sciences,	 356,	 1293–1322.	 https://doi.org/10.1098/
rstb.2001.0915

Meinzer,	M.,	Antonenko,	D.,	Lindenberg,	R.,	Hetzer,	S.,	Ulm,	L.,	Avirame,	
K.,	 …	 Flöel,	 A.	 (2012).	 Electrical	 brain	 stimulation	 improves	 cogni-
tive performance by modulating functional connectivity and task- 
specific activation. Journal of Neuroscience,	32,	1859–1866.	https://
doi.org/10.1523/JNEUROSCI.4812-11.2012

Mevel,	K.,	Chételat,	G.,	Eustache,	F.,	&	Desgranges,	B.	 (2011).	The	de-
fault	 mode	 network	 in	 healthy	 aging	 and	 Alzheimer’s	 Disease.	
International Journal of Alzheimer’s Disease,	2011,	 e535816.	https://
doi.org/10.4061/2011/535816

Migliaccio,	R.,	Agosta,	F.,	Toba,	M.	N.,	Samri,	D.,	Corlier,	F.,	de	Souza,	L.	
C.,	&	Bartolomeo,	P.	(2012).	Brain	networks	in	posterior	cortical	at-
rophy:	A	single	case	tractography	study	and	literature	review.	Cortex,	
48,	1298–1309.	https://doi.org/10.1016/j.cortex.2011.10.002

Mintun,	M.	A.,	LaRossa,	G.	N.,	Sheline,	Y.	I.,	Dence,	C.	S.,	Lee,	S.	Y.,	Mach,	
R.	H.,	…	Morris,	J.	C.	(2006).	[11C]PIB	in	a	nondemented	population:	
Potential	 antecedent	 marker	 of	 Alzheimer	 disease.	 Neurology,	 67,	
446–452.	https://doi.org/10.1212/01.wnl.0000228230.26044.a4

Navas,	 A.,	 Papo,	 D.,	 Boccaletti,	 S.,	 del-Pozo,	 F.,	 Bajo,	 R.,	 Maestú,	 F.,	
…	 Buldú,	 J.	 M.	 (2013).	 Functional hubs in mild cognitive impair-
ment.	 ArXiv13070969	 Q-Bio.	 Retrieved	 from	 http://arxiv.org/
abs/1307.0969.	[accessed	15	March	2015]

Oh,	 H.,	 Madison,	 C.,	 Baker,	 S.,	 Rabinovici,	 G.,	 &	 Jagust,	 W.	 (2016).	
Dynamic	relationships	between	age,	amyloid-	β	deposition,	and	glu-
cose	metabolism	 link	 to	 the	 regional	 vulnerability	 to	 Alzheimer’s	
disease. Brain,	 139,	 2275–2289.	 https://doi.org/10.1093/brain/
aww108

Ossenkoppele,	 R.,	 van	 der	 Flier,	W.	M.,	 Zwan,	M.	D.,	 Adriaanse,	 S.	 F.,	
Boellaard,	 R.,	 Windhorst,	 A.	 D.,	 …	 van	 Berckel,	 B.	 N.	 M.	 (2013).	
Differential	effect	of	APOE	genotype	on	amyloid	 load	and	glucose	
metabolism	 in	 AD	 dementia.	 Neurology,	 80,	 359–365.	 https://doi.
org/10.1212/WNL.0b013e31827f0889

Power,	 J.	D.,	Barnes,	K.	A.,	 Snyder,	A.	Z.,	 Schlaggar,	B.	 L.,	&	Petersen,	
S.	E.	(2012).	Spurious	but	systematic	correlations	in	functional	con-
nectivity	MRI	networks	arise	from	subject	motion.	NeuroImage,	59,	
2142–2154.	https://doi.org/10.1016/j.neuroimage.2011.10.018

Qi,	 Z.,	Wu,	X.,	Wang,	 Z.,	 Zhang,	N.,	Dong,	H.,	 Yao,	 L.,	&	 Li,	 K.	 (2010).	
Impairment	 and	 compensation	 coexist	 in	 amnestic	 MCI	 default	
mode network. NeuroImage,	 50,	 48–55.	 https://doi.org/10.1016/j.
neuroimage.2009.12.025

Raichle,	M.	E.,	&	Snyder,	A.	Z.	(2007).	A	default	mode	of	brain	function:	a	
brief history of an evolving idea. NeuroImage,	37,	1083–1090.	https://
doi.org/10.1016/j.neuroimage.2007.02.041

Rajah,	M.	N.,	Wallace,	L.	M.	K.,	Ankudowich,	E.,	Yu,	E.	H.,	Swierkot,	A.,	
Patel,	R.,	&	Pasvanis,	 S.	 (2017).	 Family	history	 and	APOE4	 risk	 for	
Alzheimer’s	disease	 impact	 the	neural	 correlates	of	episodic	mem-
ory by early midlife. NeuroImage Clinical,	14,	 760–774.	 https://doi.
org/10.1016/j.nicl.2017.03.016

Reiman,	E.	M.,	Caselli,	R.	J.,	Yun,	L.	S.,	Chen,	K.,	Bandy,	D.,	Minoshima,	
S.,	…	Osborne,	D.	(1996).	Preclinical	evidence	of	Alzheimer’s	disease	
in	persons	homozygous	 for	 the	ε4 allele for apolipoprotein E. New 
England Journal of Medicine,	334,	752–758.	https://doi.org/10.1056/
NEJM199603213341202

Robin,	X.,	Turck,	N.,	Hainard,	A.,	Tiberti,	N.,	Lisacek,	F.,	Sanchez,	J.-C.,	&	
Müller,	M.	(2011).	pROC:	an	open-	source	package	for	R	and	S+	to	an-
alyze	and	compare	ROC	curves.	BMC Bioinformatics,	12,	77.	https://
doi.org/10.1186/1471-2105-12-77

Rombouts,	 S.	 A.	 R.	 B.,	 Damoiseaux,	 J.	 S.,	 Goekoop,	 R.,	 Barkhof,	 F.,	
Scheltens,	 P.,	 Smith,	 S.	M.,	 &	 Beckmann,	 C.	 F.	 (2009).	Model-	free	
group	 analysis	 shows	 altered	 BOLD	 FMRI	 networks	 in	 demen-
tia. Human Brain Mapping,	 30,	 256–266.	 https://doi.org/10.1002/
hbm.20505

Rorden,	 C.,	 Karnath,	 H.-O.,	 &	 Bonilha,	 L.	 (2007).	 Improving	 lesion-	
symptom mapping. Journal of Cognitive Neuroscience,	19,	1081–1088.	
https://doi.org/10.1162/jocn.2007.19.7.1081

Rueckert,	 D.,	 Sonoda,	 L.	 I.,	 Hayes,	 C.,	 Hill,	 D.	 L.	 G.,	 Leach,	 M.	 O.,	 &	
Hawkes,	D.	J.	(1999).	Nonrigid	registration	using	free-	form	deforma-
tions:	application	to	breast	MR	images.	IEEE Transactions on Medical 
Imaging,	18,	712–721.	https://doi.org/10.1109/42.796284

Rusted,	 J.	M.,	 Evans,	 S.	 L.,	 King,	 S.	 L.,	 Dowell,	 N.,	 Tabet,	 N.,	 &	 Tofts,	
P.	 S.	 (2013).	 APOE	 e4	 polymorphism	 in	 young	 adults	 is	 associ-
ated	 with	 improved	 attention	 and	 indexed	 by	 distinct	 neural	 sig-
natures. NeuroImage,	 65,	 364–373.	 https://doi.org/10.1016/j.
neuroimage.2012.10.010

Sanz-Arigita,	E.	J.,	Schoonheim,	M.	M.,	Damoiseaux,	J.	S.,	Rombouts,	S.	
A.	R.	B.,	Maris,	E.,	Barkhof,	F.,	…	Stam,	C.	J.	 (2010).	Loss	of	“Small-	
World”	 networks	 in	 Alzheimer’s	 Disease:	 Graph	 analysis	 of	 fMRI	
resting- state functional connectivity. PLoS ONE,	5,	e13788.	https://
doi.org/10.1371/journal.pone.0013788

Seeley,	W.	W.,	 Crawford,	 R.	 K.,	 Zhou,	 J.,	 Miller,	 B.	 L.,	 &	 Greicius,	 M.	
D.	 (2009).	 Neurodegenerative	 diseases	 target	 large-	scale	 human	
brain networks. Neuron,	 62,	 42–52.	 https://doi.org/10.1016/j.
neuron.2009.03.024

Selkoe,	D.	J.	(2002).	Alzheimer’s	disease	is	a	synaptic	failure.	Science,	298,	
789–791.	https://doi.org/10.1126/science.1074069

Sheline,	Y.	I.,	Morris,	J.	C.,	Snyder,	A.	Z.,	Price,	J.	L.,	Yan,	Z.,	D’Angelo,	G.,	
…	Mintun,	M.	A.	(2010).	APOE4	allele	disrupts	resting	state	fMRI	con-
nectivity	in	the	absence	of	amyloid	plaques	or	decreased	CSF	Aβ42. 
Journal of Neuroscience,	30,	17035–17040.	https://doi.org/10.1523/
JNEUROSCI.3987-10.2010

Shine,	 J.	 P.,	 Hodgetts,	 C.	 J.,	 Postans,	M.,	 Lawrence,	 A.	 D.,	 &	Graham,	
K.	 S.	 (2015).	 APOE-	ε4	 selectively	modulates	 posteromedial	 cortex	
activity during scene perception and short- term memory in young 
healthy adults. Scientific Reports,	5,	16322.	https://doi.org/10.1038/
srep16322

Smith,	 S.	 M.	 (2002).	 Fast	 automated	 brain	 extraction.	 Human Brain 
Mapping,	17,	143–155.	https://doi.org/10.1002/(ISSN)1097-0193

Smith,	S.	M.,	&	Brady,	J.	M.	(1997).	SUSAN—A	new	approach	to	low	level	
image processing. International Journal of Computer Vision,	23,	45–78.	
https://doi.org/10.1023/A:1007963824710

Smith,	S.	M.,	Jenkinson,	M.,	Woolrich,	M.	W.,	Beckmann,	C.	F.,	Behrens,	
T.	E.	J.,	 Johansen-Berg,	H.,	&	Matthews,	P.	M.	 (2004).	Advances	 in	
functional	and	structural	MR	image	analysis	and	implementation	as	
FSL.	NeuroImage,	23(Suppl	1),	S208–S219.	https://doi.org/10.1016/j.
neuroimage.2004.07.051

Sperling,	R.	A.,	Aisen,	P.	S.,	Beckett,	L.	A.,	Bennett,	D.	A.,	Craft,	S.,	Fagan,	
A.	M.,	&	Phelps,	C.	H.	(2011).	Toward	defining	the	preclinical	stages	
of	Alzheimer’s	disease:	Recommendations	from	the	National	Institute	
on	Aging-	Alzheimer’s	Association	workgroups	on	diagnostic	guide-
lines	for	Alzheimer’s	disease.	Alzheimer’s & Dementia: The Journal of 
the Alzheimer’s Association,	 7,	 280–292.	 https://doi.org/10.1016/j.
jalz.2011.03.003

Sperling,	R.	A.,	Dickerson,	B.	C.,	Pihlajamaki,	M.,	Vannini,	P.,	LaViolette,	
P.	 S.,	 Vitolo,	O.	V.,	…	 Johnson,	K.	A.	 (2010).	 Functional	 alterations	
in	 memory	 networks	 in	 early	 Alzheimer’s	 disease.	NeuroMolecular 
Medicine,	12,	27–43.	https://doi.org/10.1007/s12017-009-8109-7

Sperling,	R.	A.,	 LaViolette,	P.	 S.,	O’Keefe,	K.,	O’Brien,	 J.,	Rentz,	D.	M.,	
Pihlajamaki,	M.,	…	Johnson,	K.	A.	 (2009).	Amyloid	deposition	 is	as-
sociated with impaired default network function in older persons 
without dementia. Neuron,	63,	 178–188.	 https://doi.org/10.1016/j.
neuron.2009.07.003

Spires-Jones,	 T.	 L.,	 &	 Hyman,	 B.	 T.	 (2014).	 The	 intersection	 of	 amy-
loid	 beta	 and	 tau	 at	 synapses	 in	 Alzheimer’s	 disease.	Neuron,	 82,	 
756–771.	https://doi.org/10.1016/j.neuron.2014.05.004

Strittmatter,	W.	 J.,	 Saunders,	A.	M.,	 Schmechel,	D.,	Pericak-Vance,	M.,	
Enghild,	 J.,	 Salvesen,	 G.	 S.,	 &	 Roses,	 A.	 D.	 (1993).	 Apolipoprotein	
E:	high-	avidity	binding	to	beta-	amyloid	and	 increased	frequency	of	

https://doi.org/10.1098/rstb.2001.0915
https://doi.org/10.1098/rstb.2001.0915
https://doi.org/10.1523/JNEUROSCI.4812-11.2012
https://doi.org/10.1523/JNEUROSCI.4812-11.2012
https://doi.org/10.4061/2011/535816
https://doi.org/10.4061/2011/535816
https://doi.org/10.1016/j.cortex.2011.10.002
https://doi.org/10.1212/01.wnl.0000228230.26044.a4
http://arxiv.org/abs/1307.0969
http://arxiv.org/abs/1307.0969
https://doi.org/10.1093/brain/aww108
https://doi.org/10.1093/brain/aww108
https://doi.org/10.1212/WNL.0b013e31827f0889
https://doi.org/10.1212/WNL.0b013e31827f0889
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2009.12.025
https://doi.org/10.1016/j.neuroimage.2009.12.025
https://doi.org/10.1016/j.neuroimage.2007.02.041
https://doi.org/10.1016/j.neuroimage.2007.02.041
https://doi.org/10.1016/j.nicl.2017.03.016
https://doi.org/10.1016/j.nicl.2017.03.016
https://doi.org/10.1056/NEJM199603213341202
https://doi.org/10.1056/NEJM199603213341202
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1002/hbm.20505
https://doi.org/10.1002/hbm.20505
https://doi.org/10.1162/jocn.2007.19.7.1081
https://doi.org/10.1109/42.796284
https://doi.org/10.1016/j.neuroimage.2012.10.010
https://doi.org/10.1016/j.neuroimage.2012.10.010
https://doi.org/10.1371/journal.pone.0013788
https://doi.org/10.1371/journal.pone.0013788
https://doi.org/10.1016/j.neuron.2009.03.024
https://doi.org/10.1016/j.neuron.2009.03.024
https://doi.org/10.1126/science.1074069
https://doi.org/10.1523/JNEUROSCI.3987-10.2010
https://doi.org/10.1523/JNEUROSCI.3987-10.2010
https://doi.org/10.1038/srep16322
https://doi.org/10.1038/srep16322
https://doi.org/10.1002/(ISSN)1097-0193
https://doi.org/10.1023/A:1007963824710
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1007/s12017-009-8109-7
https://doi.org/10.1016/j.neuron.2009.07.003
https://doi.org/10.1016/j.neuron.2009.07.003
https://doi.org/10.1016/j.neuron.2014.05.004


     |  13 of 13WINK et al.

type	4	allele	in	late-	onset	familial	Alzheimer	disease.	Proceedings of 
the National Academy of Sciences of the United States of America,	90,	
1977–1981.	https://doi.org/10.1073/pnas.90.5.1977

Strittmatter,	W.	J.,	Weisgraber,	K.	H.,	Huang,	D.	Y.,	Dong,	L.	M.,	Salvesen,	
G.	S.,	Pericak-Vance,	M.,	…	Roses,	A.	D.	(1993).	Binding	of	human	apo-
lipoprotein E to synthetic amyloid beta peptide: Isoform- specific ef-
fects	and	implications	for	late-	onset	Alzheimer	disease.	Proceedings 
of the National Academy of Sciences of the United States of America,	90,	
8098–8102.	https://doi.org/10.1073/pnas.90.17.8098

ten	Kate,	M.,	Sanz-Arigita,	E.	J.,	Tijms,	B.	M.,	Wink,	A.	M.,	Clerigue,	M.,	
Garcia-Sebastian,	M.,	…	Barkhof,	F.	 (2016).	 Impact	of	APOE-	ɛ4	and	
family history of dementia on gray matter atrophy in cognitively 
healthy middle- aged adults. Neurobiology of Aging,	38,	14–20.	https://
doi.org/10.1016/j.neurobiolaging.2015.10.018

Tijms,	B.	M.,	Kate,	M.	T.,	Wink,	A.	M.,	Visser,	P.	J.,	Ecay,	M.,	Clerigue,	M.,	
…	Barkhof,	F.	 (2016).	Gray	matter	network	disruptions	and	amyloid	
beta in cognitively normal adults. Neurobiology of Aging,	37,	154–160.	
https://doi.org/10.1016/j.neurobiolaging.2015.10.015

Tijms,	B.	M.,	Wink,	A.	M.,	de	Haan,	W.,	van	der	Flier,	W.	M.,	Stam,	C.	J.,	
Scheltens,	P.,	&	Barkhof,	F.	(2013).	Alzheimer’s	disease:	Connecting	
findings from graph theoretical studies of brain networks. 
Neurobiology of Aging,	 34,	 2023–2036.	 https://doi.org/10.1016/j.
neurobiolaging.2013.02.020

Tijms,	B.	M.,	Yeung,	H.	M.,	Sikkes,	S.	A.	M.,	Möller,	C.,	Smits,	L.	L.,	Stam,	C.	
J.,	…	Barkhof,	F.	(2014).	Single-	subject	gray	matter	graph	properties	
and their relationship with cognitive impairment in early-  and late- 
onset	 Alzheimer’s	 disease.	Brain Connectivity,	4,	 337–346.	 https://
doi.org/10.1089/brain.2013.0209

van	der	Flier,	W.	M.,	Pijnenburg,	Y.	A.,	Fox,	N.	C.,	&	Scheltens,	P.	(2011).	
Early-	onset	 versus	 late-	onset	Alzheimer’s	 disease:	The	 case	of	 the	
missing	APOE	ɛ4	allele.	Lancet Neurology,	10,	280–288.	https://doi.
org/10.1016/S1474-4422(10)70306-9

van	Loenhoud,	A.	C.,	Wink,	A.	M.,	Groot,	C.,	Verfaillie,	 S.	C.	 J.,	Twisk,	
J.,	Barkhof,	F.,	…	Ossenkoppele,	R.	(2017).	A	neuroimaging	approach	
to	 capture	 cognitive	 reserve:	 Application	 to	 Alzheimer’s	 disease.	
https://doi.org/10.1002/hbm.23695

van	Wijk,	B.	C.	M.,	Stam,	C.	J.,	&	Daffertshofer,	A.	(2010).	Comparing	brain	
networks	of	different	size	and	connectivity	density	using	graph	theory.	
PLoS ONE,	5,	e13701.	https://doi.org/10.1371/journal.pone.0013701

Verghese,	 P.	 B.,	 Castellano,	 J.	 M.,	 &	 Holtzman,	 D.	 M.	 (2011).	
Apolipoprotein	 E	 in	 Alzheimer’s	 disease	 and	 other	

neurological disorders. The Lancet. Neurology,	10,	241–252.	https://
doi.org/10.1016/S1474-4422(10)70325-2

Wang,	L.,	Roe,	C.	M.,	Snyder,	A.	Z.,	Brier,	M.	R.,	Thomas,	J.	B.,	Xiong,	C.,	
…	Ances,	B.	M.	(2012).	Alzheimer	disease	family	history	impacts	rest-
ing state functional connectivity. Annals of Neurology,	72,	571–577.	
https://doi.org/10.1002/ana.23643

Wang,	P.,	Zhou,	B.,	Yao,	H.,	Zhan,	Y.,	Zhang,	Z.,	Cui,	Y.,	…	Jiang,	T.	(2015).	
Aberrant	 intra-		 and	 inter-	network	 connectivity	 architectures	 in	
Alzheimer’s	disease	and	mild	cognitive	impairment.	Scientific Reports,	
5,	14824.	https://doi.org/10.1038/srep14824

Wink,	A.	M.,	de	Munck,	 J.	C.,	van	der	Werf,	Y.	D.,	van	den	Heuvel,	O.	
A.,	 &	 Barkhof,	 F.	 (2012).	 Fast	 Eigenvector	 centrality	 mapping	 of	
voxel-	wise	 connectivity	 in	 functional	magnetic	 resonance	 imaging:	
Implementation,	validation,	and	interpretation.	Brain Connectivity,	2,	
265–274.	https://doi.org/10.1089/brain.2012.0087

Xia,	M.,	Wang,	 J.,	&	He,	Y.	 (2013).	BrainNet	Viewer:	 a	network	visual-
ization	 tool	 for	 human	 brain	 connectomics.	 PLoS ONE,	8,	 e68910.	
https://doi.org/10.1371/journal.pone.0068910

Yao,	Z.,	Hu,	B.,	Liang,	C.,	Zhao,	L.,	Jackson,	M.,	&	the	Alzheimer’s	Disease	
Neuroimaging	 Initiative	 (2012).	 A	 longitudinal	 study	 of	 atrophy	 in	
amnestic mild cognitive impairment and normal aging revealed by 
cortical thickness. PLoS ONE,	 7,	 e48973.	 https://doi.org/10.1371/
journal.pone.0048973

Yu,	J.-T.,	Tan,	L.,	&	Hardy,	J.	(2014).	Apolipoprotein	E	in	Alzheimer’s	dis-
ease:	An	update.	Annual Review of Neuroscience,	37,	79–100.	https://
doi.org/10.1146/annurev-neuro-071013-014300

Zhang,	 H.-Y.,	 Wang,	 S.-J.,	 Liu,	 B.,	 Ma,	 Z.-L.,	 Yang,	 M.,	 Zhang,	 Z.-J.,	 &	
Teng,	 G.-J.	 (2010).	 Resting	 brain	 connectivity:	 Changes	 during	 the	
progress	of	Alzheimer	disease.	Radiology,	256,	598–606.	https://doi.
org/10.1148/radiol.10091701

How to cite this article:	Wink	AM,	Tijms	BM,	ten	Kate	M,	
et	al.	Functional	brain	network	centrality	is	related	to	APOE	
genotype in cognitively normal elderly. Brain Behav. 
2018;8:e01080. https://doi.org/10.1002/brb3.1080

https://doi.org/10.1073/pnas.90.5.1977
https://doi.org/10.1073/pnas.90.17.8098
https://doi.org/10.1016/j.neurobiolaging.2015.10.018
https://doi.org/10.1016/j.neurobiolaging.2015.10.018
https://doi.org/10.1016/j.neurobiolaging.2015.10.015
https://doi.org/10.1016/j.neurobiolaging.2013.02.020
https://doi.org/10.1016/j.neurobiolaging.2013.02.020
https://doi.org/10.1089/brain.2013.0209
https://doi.org/10.1089/brain.2013.0209
https://doi.org/10.1016/S1474-4422(10)70306-9
https://doi.org/10.1016/S1474-4422(10)70306-9
https://doi.org/10.1002/hbm.23695
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1016/S1474-4422(10)70325-2
https://doi.org/10.1016/S1474-4422(10)70325-2
https://doi.org/10.1002/ana.23643
https://doi.org/10.1038/srep14824
https://doi.org/10.1089/brain.2012.0087
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0048973
https://doi.org/10.1371/journal.pone.0048973
https://doi.org/10.1146/annurev-neuro-071013-014300
https://doi.org/10.1146/annurev-neuro-071013-014300
https://doi.org/10.1148/radiol.10091701
https://doi.org/10.1148/radiol.10091701
https://doi.org/10.1002/brb3.1080

