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Abstract

Background: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an
urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess
whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and
apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification.

Methods: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical
Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal
cognition (CN, n= 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n= 375, age 69.
1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n= 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive).
Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and
surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed
models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4
information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was
applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects.

Results: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in
AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.
07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores
and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal
and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after
additionally adding imaging measures.
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Conclusions: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated
classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate
level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.

Keywords: Alzheimer’s disease, Mild cognitive impairment, Biomarkers, Magnetic resonance imaging, Amyloid, Machine
learning, Support vector machine, European Medical Information Framework for Alzheimer’s Disease

Background
Alzheimer’s disease (AD) is characterized pathologically by
beta-amyloid (Aβ) plaques and neurofibrillary tangles of
misfolded tau protein [1]. As amyloid pathology may arise
up to two decades before the onset of dementia, research
focus has shifted towards the pre-dementia stage, which
provides an opportunity for secondary prevention [2–4].
The design of clinical trials targeting the amyloid pathway
in this early stage would be facilitated by the ability to re-
cruit subjects with amyloid pathology. Amyloid pathology
can be assessed in cerebrospinal fluid (CSF), obtainable by
lumbar puncture, or on positron emission tomography
(PET) scans. However, obtaining CSF is relatively invasive
and PET scans are costly, invasive by exposing subjects to
radiation and are not universally available. As the estimated
prevalence of amyloid pathology between the ages of 60
and 80 ranges from 10 to 33% for cognitively normal (CN)
subjects and from 37 to 60% for subjects with mild cogni-
tive impairment (MCI) [5], assessing amyloid pathology
with CSF or PET for screening purposes is likely inefficient.
Finding minimally invasive biomarkers predicting amyloid
pathology could reduce the number of invasive, costly and
time-consuming measures in clinical trials.
Brain atrophy markers derived from structural magnetic

resonance imaging (MRI) could serve as a potential bio-
marker for amyloid pathology [6–12]. In this study, we
evaluate the use of easily obtainable MRI measures for the
prediction of amyloid pathology. We included both visual
rating scores, which can be easily performed in clinical set-
tings, and quantitative measures of subcortical volumes,
cortical thickness and surface area, which can be derived
from freely available software and may be more sensitive
than visual ratings. We first assessed univariate associations
between MRI measures and amyloid pathology. Next, we
used support vector machine (SVM) analysis to develop a
multi-variable classifier for predicting brain amyloid path-
ology at a single subject level. Besides imaging measures,
we also included other non-invasive measures relevant to
AD in the classifier, including demographic information,
cognitive testing and apolipoprotein E (APOE) ε4 genotype.

Methods
Participants
We included participants from the European Medical In-
formation Framework for Alzheimer’s Disease Multimodal

Biomarker Discovery (EMIF-AD MBD) study. The aim of
this study was to discover novel diagnostic and prognostic
markers for pre-dementia AD, by making use of existing
data and samples [13]. The EMIF-AD MBD study pooled
data of 494 CN, 526 MCI and 201 AD-dementia partici-
pants from three multicentre and eight single-centre stud-
ies. Inclusion criteria were: presence of normal cognition,
MCI or a clinical diagnosis of AD-type dementia; availabil-
ity of data on amyloid pathology, measured in CSF or on
PET; age above 50 years; availability of MRI scans, plasma,
DNA or CSF samples (at least two of the modalities); and
absence of major neurological, psychiatric or somatic dis-
orders that could cause cognitive impairment.
From the 1221 subjects included in the EMIF-AD

MBD study, MRI scans of 873 subjects were contrib-
uted by the different studies (Fig. 1). Based on visual
assessment, 863 MRI scans were of sufficient quality
for visual rating, consisting of 365 CN, 398 MCI and
100 AD-dementia participants. Data were obtained
from the following cohorts: DESCRIPA [14], EDAR
[15], PharmaCog [16] and single-centre studies at VU
University Medical Centre [17], San Sebastian GAP
[18], University of Antwerp [19], Leuven [20], Univer-
sity of Lausanne [21], University of Gothenburg [22]
and Barcelona IDIBAPS [23]. Each study was approved
by the local medical ethics committee. Subjects had
provided written informed consent at the time of in-
clusion in the MBD study for sharing of data, fluid
samples and scans.

Clinical and cognitive data
From all parent cohorts, clinical information and neuro-
psychological tests were collected centrally, harmonized,
pooled and stored in an online data platform as previ-
ously described [13]. In short, all parent cohorts admin-
istered the Mini-Mental State Examination (MMSE),
and performed neuropsychological testing covering vari-
ous cognitive domains, although the tests used varied
across the different cohorts. For the cognitive domains
memory, language, attention, executive functioning and
visuo-construction, one priority test was selected from
each cohort (Additional file 1: Table S1) and z-scores
were computed based on local normative data when
available, or published normative data from healthy con-
trols otherwise.
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APOE genotyping
For the entire EMIF-AD MBD cohort, APOE genotyping
data from the local genetic analyses were available for 1121
(91%) individuals. Central genetic analyses were performed
at Lübeck University, Germany for 805 DNA and 148
whole blood samples. From the blood samples, DNA was
extracted using the QIAamp® DNA Blood Mini Kit (QIA-
GEN GmbH, Hilden, Germany) resulting in 953 DNA sam-
ples, of which 926 passed quality control. Genome-wide
SNP genotyping was performed using the Infinium Global
Screening Array (GSA) with Shared Custom Content (Illu-
mina Inc.). APOE genotypes were determined either dir-
ectly (rs7212) or by imputation (rs429358). For 80 samples
for which no local APOE genotype was available, and for 45
mismatches between local and GSA-derived genotypes, the
APOE genotype was determined using TaqMan assays
(ThermoFisher Scientific, Foster City, CA, USA) on a
QuantStudio-12 K-Flex system. TaqMan re-genotyping
confirmed 23 GSA genotypes and 21 local genotypes. For
one failed sample we retained the local genotype. We classi-
fied individuals as APOE ε4 carriers or non-carriers accord-
ing to their genotype status at rs429358 (C-allele = ε4).

Amyloid classification
In the current selection (n = 863), amyloid status was de-
fined by central analysis of CSF when available (n = 510),
otherwise by local amyloid PET (n = 174) or local CSF
(n = 179) measures. Central CSF analysis was performed
at Gothenburg University, Sweden and included Aβ1–40
and Aβ1–42 measured using the V-PLEX Plus Aβ Peptide
Panel 1 (6E10) Kit (Meso Scale Discovery, Rockville, MD,
USA), as described by the manufacturer. The central
cut-off value for Aβ positivity was an Aβ42/40 ratio < 0.061.
Amyloid PET was performed in one cohort using [18F]flu-
temetamol according to local standardized procedures,

with a standardized uptake value ratio (SUVR) cut-off
value > 1.38 used for abnormality [24]. In short, SUVR im-
ages were computed from spatially normalized summed
images with cerebellar grey matter as the reference region.
The cut-off value was derived from an independent data-
set [25] and based on the statistical difference between
AD dementia patients and cognitively normal subjects
[24]. Local CSF amyloid was determined according to
local protocols with local cut-off values. The number of
amyloid positive subjects per diagnosis per cohort is pre-
sented in Additional file 1: Table S2.

MRI acquisition
At each site, imaging was acquired according to local pro-
tocols. From each parent cohort, we centrally collected
the T1-weighted images, and if available also fluid-attenu-
ated inversion recovery (FLAIR) and susceptibility
weighted images (SWI) or T2*, at the VU University Med-
ical Center, where a visual quality check was performed.
The acquired sequences and acquisition parameters for
the T1-weighted scans for each cohort are presented in
Additional file 1: Table S3. Usually, MRI was assessed at
baseline together with baseline cognitive and amyloid mea-
sures. For 104 subjects there was more than a 1-year differ-
ence between MRI acquisition and amyloid assessment. In
cases where amyloid was abnormal and acquired before
MRI, this subject was included in the analysis (n = 42). In
cases where amyloid was normal and acquired after MRI,
this subject was included in the analysis (n = 9). All other
cases were excluded (n = 53). For 99 subjects there was
more than a 1-year difference between baseline cogni-
tive assessment and MRI. For these cases, we did not
use the cognitive data in the multi-variable analysis.
Demographic differences between subjects who were
included and excluded for differences in time between

Fig. 1 Number of included subjects. EMIF-AD MBD European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker
Discovery, MRI magnetic resonance imaging
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MRI and amyloid or cognitive assessment are presented
in Additional file 1: Tables S4 and S5.

MRI visual rating
MRI scans with sufficient quality (n = 863) were visually
rated by a single experienced rater, blinded to demographic
information during rating. Medial temporal lobe atrophy
(MTA) was assessed on coronal reconstructions of the
T1-weighted images using a 5-point scale ranging from no
atrophy (0) to end-stage atrophy (4) [26]. The MTA results
from the left and right hemisphere were averaged. Global
cortical atrophy (GCA) was assessed on transversal FLAIR
or T1 images using a 4-point scale [27]. Posterior atrophy
was assessed using a 4-point scale [28] and averaged over
hemispheres. White matter hyperintensities were visually
assessed on FLAIR images (n = 812) using the 4-point Faze-
kas scale (none, punctate, early confluent, confluent) [29].
Microbleeds were assessed on SWI and/or T2* images
(n = 445) and defined as rounded hypointense homoge-
neous foci of up to 10 mm in diameter in the brain par-
enchyma. Microbleeds were dichotomized as present
(≥ 1 microbleeds) or absent (0 microbleeds).

MRI quantitative analysis
Good quality 3D T1 images (n = 850) were uploaded on
the N4U platform (https://neugrid4you.eu/) for automated
quantitative processing. Subcortical volumes, cortical
thickness and surface area measures were estimated from
3D T1 MRI using Freesurfer (version 5.3.0, https://sur-
fer.nmr.mgh.harvard.edu) as previously described [30]. All
segmentations were visually inspected. We excluded data
from 20 subjects for subcortical volumes (five due to
complete failure of the algorithm and 15 due to segmenta-
tion errors) and from 75 subjects for cortical thickness and
surface area (five due to complete failure of the algorithm,
66 due to segmentations errors of the cortical ribbon and
four for other failures). Subcortical volumes were normal-
ized by total intracranial volume (TIV). Cortical thickness
and surface area were available for 68 regions according to
the Desikan–Killiany atlas implemented in Freesurfer. Add-
itionally, we computed two AD-signature meta-ROI mea-
sures that have previously been presented in the literature:
one by Dickerson et al. [10] consisting of the average cortical
thickness in angular, precuneus, supramarginal, superior
frontal, superior parietal, temporal pole, inferior temporal,
medial temporal and inferior frontal cortex; and one by Jack
et al. [31] consisting of the surface-area weighted average
mean cortical thickness in entorhinal, inferior temporal,
middle temporal and fusiform regions.

Statistical methods
Univariate analysis
Univariate statistical analyses were performed in R (version
3.3.1). Comparisons of clinical characteristics between

amyloid positive and negative subjects within each diagnos-
tic group were performed using independent t tests or
Mann–Whitney U tests for continuous variables and
chi-square tests for categorical variables. Baseline compari-
sons in quantitative MRI measures between groups were
performed with linear mixed models (continuous outcome
measures) (lme4 package, version 1.1–12; lmerTest package
2.0–36), mixed effects ordered logistic regressions (ordinal
outcome measures) (ordinal package, version 2015.6–28)
and mixed effects logistic regressions (dichotomous out-
come measures) (lme4 package). In each model, we entered
amyloid status (negative, positive) and diagnosis (CN, MCI
and AD) and their interaction as fixed effects. Age (centred
on mean), gender and APOE ε4 status were added as covar-
iates. Cohort was added as a random intercept. The ana-
lyses were corrected within diagnostic group (in total 22
tests: five visual ratings, 14 subcortical volumes, three cor-
tical thickness summary measures) for multiple hypothesis
testing with the p.adjust() function using the false discovery
rate, and indicated as pFDR.

Multi-variable analysis
To find the best multi-variable predictor of amyloid path-
ology, we used a supervised machine-learning approach
based on SVM analysis. In SVM, two classes are separated
by finding a hyperplane that maximizes the margin of sep-
aration between data points of each class in a high-dimen-
sional feature space. SVMs are used extensively in
neuroimaging as they have been shown to predict out-
comes with high accuracy and possess the ability to model
diverse and high-dimensional data [32]. We built a classifier
to separate amyloid positive from amyloid negative subjects
separately in the CN and MCI subgroups and, for the sake
of completeness, also in the whole sample (including CN,
MCI and AD-dementia patients). To address the imbalance
between the number of amyloid positive and amyloid nega-
tive subjects in each diagnostic group, we adopted the
re-weighting strategy [33]. That means we adjusted weights
of each SVM feature inversely proportional to amyloid
positive versus negative frequencies.

Machine-learning approach We used the python Scikit-
learn library (version 0.19.1) to perform SVM classification
[34]. To prevent overfitting (i.e. the classifier works perfectly
on the training data, but is poorly generalizable to new data),
we performed feature relevance evaluation and dimensional-
ity reduction using a tree-based feature selection approach
with a nested 10-fold cross-validation design [35, 36]. This
was performed separately within each subgroup (CN, MCI
and whole sample).
The nested cross-validation consists of an inner loop for

model building and parameter estimation, and an outer
loop for model testing. Consequently, the dataset was di-
vided into two parts: a training plus validation subset and
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a test subset. In the inner loop, SVM models were trained
with varying SVM hyper-parameters (i.e. cost parameters
C and kernel function) based on a grid search, and a fea-
ture selection was performed using classification trees.
The validation set was used to determine the SVM
hyper-parameters over the grid of possible values. The
performance of the resulting model, with optimized SVM
hyper-parameters and features, was subsequently evalu-
ated on the test set in the outer loop. For this outer loop,
we used a 10-fold cross-validation scheme so that the data
were divided into 10 equally sized parts. Nine of these
were used as the training/validation set and one as the test
set, and the 10 parts were permuted in each iteration of
the outer loop so that each one was used for testing once.
Finally, the SVM results were averaged over the 10 folds
to estimate the predictive power of the proposed model
on the whole dataset.

Feature selection As the input for the classifier, we used
demographic information, neuropsychological information,
APOE ε4 genotype and MRI measures (visual ratings, sub-
cortical volumes, regional cortical thickness and regional
surface area measures). To combine information measured
on different scales, continuous demographic and MRI mea-
sures were normalized to z-scores. In the adopted tree-
based feature selection strategy, the Gini index was used to
measure the relevance of each feature [37]. Features with a
Gini index above the mean were kept, others were dis-
carded. The complete list of features considered and
selected, in the whole dataset and for CN and MCI separ-
ately, is reported in Additional file 1: Table S8.

Performance evaluation To assess the performance of
the classifier, we computed the averaged receiver operating
characteristic (ROC) area under the curve (AUC), specifi-
city, sensitivity and accuracy for the testing datasets. We
initially maximized the Youden index, and then also ex-
plored the results when setting the sensitivity at 80%, 85%,
90%, 95% and 100%. To assess the added value of combin-
ing different sources of information, we also built classifiers
including only demographic information and a single other
biomarker type (neuropsychological tests, APOE ε4 geno-
type, MRI measures). Differences in AUC ROCs between
classifiers were assessed with DeLong’s test.

Results
Demographic and cognitive comparisons
We included 810 subjects divided over three diagnostic
groups: CN (n = 337), MCI (n = 375) and AD dementia
(n = 98). Within the CN group, 92 (27%) subjects were
amyloid positive, in the MCI group 235 (63%) and in the
AD-dementia group 95 (97%). Demographic and clinical
data according to diagnosis and amyloid status are pre-
sented in Table 1. The amyloid positive MCI subjects

were older and had lower cognitive scores compared to
the amyloid negative MCI subjects. In CN, there were
no differences in age or cognition between amyloid positive
and amyloid negative subjects. Amyloid positive subjects
were more often APOE ε4 carriers in both the MCI and
CN groups.

Univariate association between MRI measures and
amyloid pathology
Within the MCI group, subjects with amyloid pathology
had higher visual rating scores of medial temporal lobe
atrophy, global cortical atrophy and parietal atrophy
compared to amyloid negative subjects (Table 2). There
were no differences in Fazekas score or presence of micro-
bleeds. Amyloid positive MCI subjects had statistically
significantly lower bilateral hippocampus, amygdala, thal-
amus, left caudate and right putamen volumes, and a
trend towards lower right caudate (puncorrected = 0.08) and
bilateral accumbens (both puncorrected = 0.07) volumes
compared to amyloid negative MCI subjects (Table 3).
Amyloid positive MCI subjects also had lower whole
brain average cortical thickness, as well as in the two
AD-signature meta-ROIs, compared to amyloid nega-
tive MCI subjects.
In the CN group, amyloid positive subjects had statisti-

cally significantly lower right hippocampus, left amygdala,
left thalamus and bilateral accumbens volumes compared
to amyloid negative subjects. The effect of amyloid
pathology on hippocampal volume was stronger in MCI
subjects compared to CN subjects (significant inter-
action diagnosis × amyloid status). Amyloid positive
CN subjects had lower values in the Jack AD-signature
meta-ROI (puncorrected = 0.02), but not in the Dickerson
AD-signature meta-ROI (puncorrected = 0.3) or whole
brain average cortical thickness (puncorrected = 0.3) com-
pared to amyloid negative CN subjects. There were no
differences in visual rating scores between amyloid
positive and amyloid negative CN subjects. All individ-
ual cortical thickness and surface area regions are pre-
sented in Additional file 1: Tables S6 and S7.
Compared to amyloid positive CN subjects, amyloid

positive MCI subjects had lower bilateral hippocampal
and amygdala volumes (all p < 0.001) and lower whole
brain average cortical thickness (p = 0.001), as well as in
the two AD-signature meta-ROIs (both p < 0.001).

Multi-variable classifier results
The features selected by the classifier in CN subjects, MCI
subjects and the whole sample are presented in Additional
file 1: Table S8. Across diagnoses, APOE ε4 genotype was
the most important feature. Other relevant features selected
across samples were age, the neuropsychological memory
scores and various MRI measures such as hippocampus
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and amygdala volumes, as well as cortical thickness in tem-
poral and parahippocampal regions (Fig. 2).
Combining the informative selected features in the

SVM resulted in AUC= 0.81 ± 0.06 in MCI subjects, AUC
= 0.74 ± 0.08 in CN subjects and AUC= 0.85 ± 0.05 in the
whole sample to classify amyloid positive versus amyloid
negative subjects (Fig. 3; Additional file 2: Figure S1). In
MCI, the combined classifier including information from
all modalities performed statistically significantly better
than the classifiers based on demographic information
combined with neuropsychology or imaging measures
alone. The classifier including demographic variables and
APOE ε4 genotype did not improve after additionally add-
ing imaging and cognitive variables in MCI. In CN, the
combined classifier including information from all modal-
ities (demographics, cognitive, genetics and imaging)

performed statistically significantly better than the classi-
fiers including variables from only a subset of these mo-
dalities (Fig. 3; Additional file 2: Figure S2). The results
from the SVM including only imaging variables are dis-
played in Additional file 2: Figure S3.
Table 4 presents the accuracy, sensitivity and specificity

of the combined SVM in CN subjects, MCI subjects and
the whole sample maximizing the Youden index, and at
different levels of sensitivity. When optimizing both speci-
ficity and sensitivity, the positive predictive value for amyl-
oid pathology was 0.84 in MCI (a 42% increase compared
to the a priori probability (i.e. prevalence) of 0.59) and the
negative predictive value was 0.62. In CN, the SVM ob-
tained a positive predictive value of 0.41 (a 64% increase
compared to the prevalence of 0.25) and a negative pre-
dictive value of 0.84.

Table 1 Baseline characteristics by diagnosis and amyloid status

Characteristic Cognitively normal Mild cognitive impairment Alzheimer-type dementia

Amyloid negative Amyloid positive Amyloid negative Amyloid positive Amyloid negative Amyloid positive

N, % within diagnosis 245 (73) 92 (27) 140 (37) 235 (63) 3 (3) 95 (97)

Age (years) 66.1 ± 7.2 67.5 ± 7.2 67.3 ± 8.0 70.2 ± 7.0*** 63.1 ± 8.0 67.1 ± 7.7

Male gender 120 (49) 47 (51) 73 (52) 105 (45) 3 (100) 48 (51)

Education (years) 13.2 ± 3.5 12.8 ± 3.8 10.8 ± 4.0 11.1 ± 3.7 10.3 ± 5.1 11.1 ± 3.3

MMSE 28.9 ± 1.2 28.8 ± 1.2 27.1 ± 2.2 26.0 ± 2.6*** 27.7 ± 1.2 22.4 ± 4.0**

Memory immediate 0.10 ± 1.00 0.08 ± 1.10 − 0.64 ± 1.32 −1.22 ± 1.44*** −0.45 ± 0.91 −2.25 ± 1.06

Memory delayed 0.25 ± 1.01 0.30 ± 1.09 −0.90 ± 1.29 − 1.37 ± 1.41** −0.96 ± 1.33 − 2.28 ± 1.04

Language −0.21 ± 1.01 0.01 ± 1.04 −0.65 ± 1.30 −0.88 ± 1.27 −0.76 ± 0.38 −1.95 ± 1.02*

Attention 0.32 ± 1.03 0.26 ± 0.89 −0.74 ± 1.79 −0.81 ± 1.63 0.54 ± 0.52 − 2.03 ± 1.94*

Executive functioning 0.35 ± 1.09 0.12 ± 1.15 − 0.76 ± 1.89 −1.11 ± 1.98* 0.46 ± 0.32 −2.49 ± 2.46*

Visuo-construction − 0.23 ± 1.36 − 0.19 ± 1.20 0.18 ± 1.46 −0.30 ± 1.66* −0.59 ± 2.09 −1.30 ± 2.00

APOE ε4 genotype 89 (36) 53 (58)*** 27 (19) 160 (66)*** 2 (67) 66 (69)

Available markers

Visual 245 (100) 92 (100) 140 (100) 235 (100) 3 (100) 95 (100)

Subcortical volumes 240 (98) 90 (98) 130 (93) 230 (98)* 2 (67) 89 (94)

Cortical thickness 232 (95) 88 (96) 119 (85) 200 (85) 2 (67) 88 (93)

Data presented as mean ± standard deviation or count (%). Demographic characteristics based on maximum available data (visual rating)
APOE apolipoprotein E, MMSE Mini-Mental State Examination
*p < 0.05, **p < 0.01, ***p < 0.001, difference between amyloid positive and negative within diagnostic group

Table 2 Visual rating scores according to diagnosis and amyloid status

Score Cognitively normal Mild cognitive impairment Alzheimer-type dementia

Amyloid negative Amyloid positive Amyloid negative Amyloid positive Amyloid negative Amyloid positive

MTA 0 (0–1) 0 (0–1) 0.5 (0–1) 1 (0.5–1.5)†† 1 (0.5–2) 1 (1–2)

GCA 0 (0–1) 0 (0–1) 0 (0–1) 1 (0–1)†† 1 (0–2) 1 (1–1)

Parietal 1 (0–1) 0.5 (0–1) 1 (0–1) 1 (0–1.63)† 2 (0–2) 1 (1–2)

Fazekas 1 (0–1) 1 (0–1) 1 (0–1) 1 (1–2) 1 (1–1) 1 (0–2)

Microbleeds present 6 (21%) 4 (20%) 29 (25%) 56 (29%) 1 (50%) 17 (22%)

Data presented as median (interquartile range) or count (%)
APOE apolipoprotein E, FDR false discovery rate, GCA global cortical atrophy, MTA medial temporal lobe atrophy
†pFDR < 0.05, ††pFDR < 0.01, difference between amyloid positive and negative within diagnostic group. Analyses corrected for age, gender, APOE ε4 genotype
and cohort
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Discussion
In this study, we found that amyloid pathology is associ-
ated with brain atrophy in CN and MCI subjects. Using
machine-learning techniques, we built a classifier based
on a combination of demographic, cognitive, APOE ε4
genotype and MRI data that could predict amyloid status
at single subject level with a moderate level of accuracy.
The performance of the classifier was higher in MCI sub-
jects than in CN subjects. These results are of interest for
clinical trial designers who wish to recruit amyloid positive
subjects for inclusion.
Our results on the association between amyloid path-

ology and MRI measures in MCI are in line with previous
studies that also found more cortical and subcortical atro-
phy in amyloid positive compared to amyloid negative MCI
subjects [6, 7]. In CN, amyloid pathology has previously
been associated with cortical atrophy [9–11], and lower
hippocampal volume in some studies [8, 9], but not in all
[11, 38]. To capture cortical changes associated with AD,
two different AD-signature meta-ROIs have been proposed
in the literature [10, 31]. In MCI, both AD-signature mea-
sures were related to amyloid pathology. In CN, only the
AD-signature meta-ROI by Jack et al. [31] was associated
with amyloid pathology in our study, suggesting that this
one is more sensitive in the early disease stage. We also

found an effect of amyloid pathology on nucleus accum-
bens volume, which was most pronounced in CN subjects.
Although nucleus accumbens volumes are not often mea-
sured in AD-related studies, it has been hypothesized that
this structure could show secondary neurodegeneration in
AD in response to reduced input from connections to
medial-temporal lobe structures [39]. It should be noted,
however, that the nucleus accumbens is a small structure,
which is difficult to segment automatically. These results
require further validation in future studies.
The optimal features selected in the SVM by the

tree-based approach included some, but not all, of the var-
iables that showed differences between amyloid positive
and amyloid negative subjects in the univariate analyses.
Similarly, some of the features selected did not show sta-
tistically significant univariate group differences, although
for many a trend towards lower values in amyloid positive
subjects compared to amyloid negative subjects was ob-
served. By combining the selected features derived from
demographic information, neuropsychological examin-
ation, MRI measures and APOE ε4 genotype, we were able
to classify MCI and CN subjects as amyloid positive or
negative with a moderate level of accuracy.
The AUC for prediction of amyloid pathology was

slightly higher in the MCI group compared to the CN

Table 3 Quantitative MRI measures according to diagnosis and amyloid status

MRI measure Cognitively normal Mild cognitive impairment Alzheimer-type dementia F value

Amyloid
negative

Amyloid
positive

Amyloid
negative

Amyloid
positive

Amyloid
negative

Amyloid
positive

Diagnosis Amyloid Diagnosis ×
amyloid

Hippocampus left 3837 (39) 3752 (58) 3638 (46) 3353 (47)††† 3051 (340) 3124 (61) 32.0*** 0.7 3.5*

Hippocampus right 3960 (53) 3830 (66)# 3760 (57) 3389 (57)††† 3905 (337) 3172 (70)# 19.7*** 12.3*** 5.4**

Amygdala left 1501 (36) 1439 (40)# 1405 (37) 1294 (37)††† 1604 (171) 1188 (42)# 9.2*** 11.0** 2.5

Amygdala right 1567 (52) 1535 (55) 1522 (53) 1398 (53)††† 1612 (183) 1290 (57) 4.6** 6.7** 3.2*

Thalamus left 6834 (101) 6614 (119)# 6951 (107) 6689 (108)† 6187 (564) 6787 (126) 1.1 0.04 1.1

Thalamus right 6388 (104) 6320 (113) 6419 (106) 6173 (107)††† 5600 (420) 6185 (117) 2.4 0.4 3.2*

Caudate left 3419 (67) 3336 (80) 3571 (71) 3407 (71)† 4151 (393) 3387 (85) 2.9 6.1* 1.7

Caudate right 3491 (88) 3396 (98) 3584 (91) 3463 (91) 4575 (407) 3413 (103)# 3.7* 10.7** 3.4*

Putamen left 4831 (105) 4779 (117) 4689 (108) 4609 (109) 4692 (478) 4509 (122) 2.1 0.4 0.1

Putamen right 4627 (121) 4607 (130) 4659 (123) 4461 (124)† 4524 (444) 4302 (134) 0.6 0.9 1.5

Pallidum left 1366 (32) 1412 (37) 1370 (33) 1385 (33) 1488 (168) 1390 (39) 0.3 0.05 0.6

Pallidum right 1388 (26) 1382 (31) 1384 (28) 1379 (28) 1361 (148) 1392 (33) 0.02 0.01 0.03

Accumbens left 465 (23) 432 (24)# 434 (23) 411 (23) 526 (79) 375 (25) 2.1 6.7** 1.5

Accumbens right 497 (22) 467 (23)# 466 (22) 443 (22) 425 (78) 419 (24) 2.3 4.0* 0.6

Average CT 2.29 (0.02) 2.28 (0.02) 2.27 (0.02) 2.22 (0.02)††† 2.22 (0.07) 2.19 (0.02) 5.3** 1.6 1.5

CT Dickerson 2.54 (0.02) 2.52 (0.02) 2.50 (0.02) 2.45 (0.02)†† 2.48 (0.09) 2.38 (0.02) 8.3*** 3.5 1.6

CT Jack 2.68 (0.03) 2.63 (0.03)# 2.63 (0.03) 2.56 (0.03)††† 2.67 (0.10) 2.47 (0.03)# 6.7** 9.3** 1.7

Data presented as estimate (standard error). Estimates derived from linear mixed models including diagnosis × amyloid, age, gender and APOE ε4 genotype as
covariates and cohort as random effect
APOE apolipoprotein E, CT cortical thickness, FDR false discovery rate, MRI magnetic resonance imaging
†pFDR < 0.05, ††pFDR < 0.01, †††pFDR < 0.001, #puncorrected < 0.05, compared to amyloid negative within diagnostic group
*p < 0.05, **p < 0.01, ***p < 0.001 for F statistic of main effect
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Fig. 2 Freesurfer regions selected as features for the classifier in cognitively normal (top row) and mild cognitive impairment (bottom row). Colour
bars represent averaged feature weight

Fig. 3 Classifier results. Receiver operating characteristic (ROC) curves of support vector machine classifier to predict amyloid pathology in cognitively
normal (left panel) and mild cognitive impairment (right panel) subjects. Red: results from the combined classifier, including demographic information,
neuropsychological tests, MRI measures and APOE ε4 genotype. Specific features selected presented in Additional file 1: Table S8. Classifier results from
demographic information combined with only neuropsychology (green), or MRI measures (blue) or APOE ε4 genotype (yellow). ROC significant
differences assessed with DeLong’s test. *p < 0.05, **p < 0.001, ns not significant. APOE, apolipoprotein E, MRI magnetic resonance imaging
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group, and in line with a previous study in MCI [40]. In
that study, a SVM classifier to predict amyloid pathology
in subjects with MCI was also developed. Using cognitive
data, hippocampal volume, APOE ε4 genotype and periph-
eral blood protein markers from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, they obtained
AUC = 0.80 for predicting amyloid pathology in subjects
with MCI. In contrast to a previous study [12], we did not
find that combining MRI markers with APOE ε4 genotype
improved prediction of amyloid pathology in MCI over
only including APOE ε4.
Our results in CN are comparable to the result from a

similar study using data from the ADNI and a monocentric
cohort [41]. In that study, a machine-learning-based classi-
fier including demographic variables, APOE ε4 genotype,
cognitive testing and structural MRI data reached an AUC
of around 0.6 in CN subjects to predict amyloid positivity.
Other studies have used combinations of demographic in-
formation, APOE ε4 genotype and cognitive testing (with-
out imaging measures) to predict amyloid positivity in CN

[42, 43]. They obtained positive predictive values of 0.65
and 0.63 for amyloid positivity, which was a 43–59% in-
crease compared to the baseline prevalence in the cohort
(0.41 and 0.44 respectively). In comparison, in our study we
obtained a positive predictive value of 0.41 for amyloid
pathology in CN, with a baseline prevalence of 0.25 in our
cohort, which is a 64% increase in predictive value. To re-
cruit 1000 CN subjects with amyloid pathology, using the
classifier could reduce the number of subjects needing to
undergo amyloid assessment from 3925 to 2439, which is a
38% decrease. Assuming a cost of €850 for the pre-screen-
ing (including MRI, APOE genotyping and cognitive test-
ing) and €3500 for an amyloid PET scan, using the classifier
for pre-screening could reduce the total screening costs by
nearly €2 million in this CN population. This example is
based on an optimized sum of sensitivity and specificity
(Youden index). For clinical trial design, it might be more
interesting to optimize the sensitivity of the classifier, which
would minimize the proportion of falsely excluded amyloid
positive subjects, at the cost of the positive predictive value.

Table 4 Sensitivity, specificity, accuracy, PPV and NPV of the SVM classifier

Group Sensitivity Specificity Accuracy PPV NPV Threshold SVM

Optimized sensitivity and specificity

Cognitively normal 0.61 0.71 0.68 0.41 0.84 0.70

Mild cognitive impairment 0.71 0.77 0.74 0.84 0.62 0.33

Whole sample 0.75 0.79 0.77 0.80 0.74 0.48

80% sensitivity

Cognitively normal 0.80 0.55 0.62 0.41 0.88 0.77

Mild cognitive impairment 0.80 0.64 0.74 0.79 0.66 0.47

Whole sample 0.80 0.69 0.75 0.74 0.76 0.56

85% sensitivity

Cognitively normal 0.85 0.46 0.57 0.38 0.89 0.80

Mild cognitive impairment 0.85 0.54 0.73 0.75 0.68 0.53

Whole sample 0.85 0.59 0.73 0.69 0.78 0.64

90% sensitivity

Cognitively normal 0.90 0.36 0.51 0.35 0.91 0.84

Mild cognitive impairment 0.90 0.46 0.73 0.73 0.74 0.60

Whole sample 0.90 0.51 0.71 0.67 0.83 0.70

95% sensitivity

Cognitively normal 0.95 0.24 0.44 0.32 0.92 0.87

Mild cognitive impairment 0.95 0.37 0.73 0.71 0.83 0.70

Whole sample 0.95 0.40 0.69 0.63 0.88 0.79

100% sensitivity

Cognitively normal 1.00 0.11 0.36 0.30 1.00 0.91

Mild cognitive impairment 1.00 0.08 0.66 0.64 1.00 0.87

Whole sample 1.00 0.04 0.54 0.53 1.00 0.95

Results from combined classifier, including demographic information, neuropsychological tests, MRI measures and APOE ε4 genotype. Specific features selected
presented in Additional file 1: Table S8. Values averaged across 10-fold cross-validation. Youden’s J statistic employed
APOE apolipoprotein E, MRI magnetic resonance imaging, NPV negative predictive value, PPV positive predictive value, SVM support vector machine
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As can be seen in Table 4, with increasing sensitivity (and
higher negative predictive value), the positive predictive
value of the classifier becomes lower, which would lead to
increasing costs of pre-screening.
We chose SVM as a classification method for several

reasons. First, it is based on a robust strategy (i.e.
maximum-margin hyper-plane), which is considered to be
one of the best to reduce the prediction error in a classifi-
cation task [44, 45]. Second, only few parameters need to
be tuned in order to make it fully operational, making
SVM relatively easy to set up and use. Finally, it is particu-
larly well suited for the separation of two classes (in this
case, amyloid positive and amyloid negative).
A strength of our study is that, unlike previous studies

[40–42], we performed our study in a heterogeneous co-
hort, in which data acquisition protocols were not stan-
dardized and different MR scanners and acquisition
parameters were used. In this heterogeneous cohort, we
showed a similar predictive accuracy compared to pro-
spective research cohorts, which used standardized data
acquisition protocols. This highlights the robustness of
our approach and suggests that the results may also be
generalizable to other cohorts. This will need to be tested
in future studies. Our results may be of interest for studies
recruiting subjects from parent cohorts to be included in
(secondary) prevention studies targeting anti-amyloid
therapeutics [4]. Our findings suggest that for individuals
with MCI, screening for amyloid positivity can best be
done by age and APOE ε4 genotype, with limited added
value of MRI. In CN, MRI measures have an added value
above the other markers.
This study has some limitations. First, we used data ac-

quired at various centres, which had different inclusion cri-
teria for subjects and used different protocols for data
collection. However, as already discussed, this also increased
generalizability. Second, not everyone had the same measure
of amyloid pathology. When possible, we used centralized
analysis of the CSF Aβ42/40 ratio to identify amyloid positiv-
ity, which has been shown to correlate highly with PET
measures of amyloid pathology [46, 47]. For data from one
cohort, we only had amyloid PET data available. Although
CSF and PET measures are usually in good agreement, some
studies have suggested that CSF values might become ab-
normal earlier than PET [48, 49]. Finally, the same dataset
was used to train and test the SVM classifier. Although
nested k-fold cross-validation grants good generalizability of
the SVM model [36], studies in independent datasets are
needed to further validate our results.

Conclusions
Amyloid pathology is associated with structural MRI
changes in AD typical regions in CN subjects and in
subjects with MCI. We developed a classifier that can
predict amyloid pathology at a single subject level using

a combination of easily obtainable, non-invasive measures.
Our results are of interest for trial designers who intend to
recruit a large number of amyloid positive subjects. Imple-
menting pre-screening procedures consisting of simple,
non-invasive tests could substantially reduce screening fail-
ure rates. In future studies, the classifier might be improved
by adding data from other minimally invasive tests, such as
blood proteins and genetic markers [40]. In the EMIF-AD
MBD study, plasma proteomics and metabolomics, and
genomics and epigenomics, will also be analysed.
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