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A three-dimensional integral boundary layer code was developed to allow fast compu-
tations of boundary layer flows for the purpose of ice accretion modelling. The model is
derived in this paper. It is based on a surface Finite-Volume approach. The unsteady equa-
tions of momentum deficit and kinetic energy deficit are solved until convergence is reached,
preventing from specifying explicitly the stagnation point or separation line. A validation
of the code is also presented in the present article. First, the 3D solver is cross-checked
against a 2D solver on test cases of self-similar flows and on a NACA0012 configuration.
The modelling of the effects of three-dimensionality is also assessed on a self-similar flow
test-case. Moreover, the use of unstructured grids is also validated. Finally, an example of
the use of the code for the computation of ice accretion is presented.

I Introduction

Icing certification cost can be significantly reduced by developing simulation tools to evaluate the ice accretion
effects for a wide range of icing conditions. 2D tools are already integrated in the process of certification.
Since numerous simulations must be performed, these icing tools must have little computational cost.

The improvement of 3D tools would allow to reduce the safety margins used when performing multiple 2D
simulations around 3D iced elements. But 3D icing suites are still not as efficient as 2D tools. ONERA is
developing a fully 3D ice accretion suite called IGLOO3D. This tool couples codes solving the air flow, the
trajectories of water droplets and the ice accretion (Messinger approach), respectively. The surface codes of
IGLOO3D, such as the ice accretion solver MESSINGER3D, solve 3D systems of equation on surface grids
(contrary to partially 3D icing suites solving 2D equations along streamlines).

The aerodynamic computation produces both the flowfield transporting the supercooled water droplets and
the skin friction and heat transfer coefficient on the iced walls. To that end, it is possible to use a Navier-
Stokes solver, which is the current option used in IGLOO3D.1 However, this approach is time-consuming.
For the 2D codes used for certification, the computational cost is far cheaper: obviously, IGLOO3D also
computes an additional dimension, but more significantly, the 2D aerodynamic resolution is usually based on
an inviscid (or potential) computation coupled to a boundary layer integral method, which is much cheaper
than a Navier-Stokes computation.

Consequently, a 3D integral boundary layer code is being developed in order to allow a very similar ap-
proach in IGLOO3D. Currently, simplified integral boundary layer models, such as the well-known method
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of Thwaites,2 are commonly employed in 2D icing suites. However, the direct extension of the simplified
integral method to 3D is not straightforward.

Consequently, a general Finite-Volume formulation was employed for the solution of the system of equations.
As a first step, the aforementioned discretization approach was developed and implemented in a 2D prototype
of the ONERA’s 2D icing suite IGLOO2D.3 The extension and validation of this integral boundary layer
method in three dimensions is presented in the present article. It must be noted that it is common practice
in icing codes to weakly couple the inviscid and boundary layer codes (the effect of the boundary layer on the
inviscid flow is neglected). The issue of 3D viscous-inviscid interaction methods will thus not be addressed
in this paper.

The derivation of the model will be presented in section II. The Finite-Volume Method used to discretize
the system will be exposed in section III. Validation and cross-checking of the 3D code against the 2D code
in 2D configurations will be addressed in section IV, as well as a validation on a 3D configuration. The use
of the integral boundary layer code for ice accretion computation will be shown in section V.

II Derivation of the model

II.A Brief state-of-the-art of 3D integral boundary-layer methods

The integral form of the boundary layer equations is obtained by integrating their differential form along a
direction normal to the surface of the body. The obtained equations, referred to as “Integral boundary layer
(IBL) equations” are differential equations whose variables are integral quantities. The information that is
lost upon the process of integration has to be replaced by some set of closure relations so as to make the
problem determinate.

At least for usual (and simple enough) closure relations, it can be demonstrated that the IBL equations
are hyperbolic.3,4 This allows to define stable spatial discretization schemes. This also makes the Finite
Volume Method a good choice for the resolution of the IBL equations. This method was first employed by
Mughal.5 Previous works on the 3D IBL equations mainly employed Finite Difference Method in curvilin-
ear coordinates.6,7 With such methods, it is difficult to handle surface curvature discontinuities8 and the
IBL equations become very complex due to the introduction of numerous metric coefficients and geodesic
curvature terms.9 These difficulties are eliminated by the use of the Finite Volume Method.

In his first approach, Mughal solved the steady versions of the IBL equations in their conservative form.
In the present paper, the unsteady version will be solved, as was also presented in Mughal’s PhD thesis4

and used in more recent articles of Drela and co-workers.8 In addition to the simplicity of implementation,
this approach prevents the need to explicitly locate the attachment line or the stagnation point prior to the
computation. The derivation of the unsteady conservative IBL equations will be presented in section II.B.

Moreover, the integral boundary layer variables are calculated by on-the-fly integration of the velocity profiles
like in Mughal’s PhD thesis.4 This will allow defining closure relations for arbitrary velocity profiles if
required and numerically assess some integrals for the computations of numerical fluxes for instance. The
used velocity profiles will be exposed in section II.C.

Finally, it can be noticed that Lokatt and Eller recently developed a Finite-Volume scheme for unstructured
grids which they applied to the 3D IBL equations.10 The same kind of method will be used here in order to
ensure conservation on arbitrarily curved surfaces, as explained in section III.

The expected outputs of the IBL method are mainly the skin friction and the heat transfer coefficients over
the iced surfaces, which are major parameters for the ice accretion computation. The skin friction is linked
to the boundary layer dynamics and will be computed directly from the dynamic integral equations exposed
in section II.B. A similar approach could be used for solving the integral heat transfer inside the boundary
layer. This topic is poorly addressed in the literature. As a first attempt, Reynolds-like analogies often used
in icing codes will be employed in this work (section II.D). Consequently, only the derivation of the 3D
dynamic integral boundary layer equations is addressed.
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II.B 3D integral boundary layer system

The 3D unsteady incompressible differential boundary layer equations constitute the basis of the integral
formulation. In a body-fitted coordinate system where z is normal to the surface, they read:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (1)

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −1

ρ

∂P

∂x
+

1

ρ

∂τxz
∂z

(2)

∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

= −1

ρ

∂P

∂y
+

1

ρ

∂τyz
∂z

(3)

0 = −1

ρ

∂P

∂z
(4)

where q = (ux, uy, uz) is the velocity vector, ρ is the density, τ is the shear stress vector τ:z = µ∂u:

∂z , µ is the
dynamic viscosity of air and P is the pressure.

Like in the 2D code,3 the integral system is based on the momentum equation and the kinetic energy
equation. The latter equation is derived with the following procedure (where the subscript ()e stands for the
external flow quantities):

( u2
xe× (eq. (1)) - 2ux× (eq. (2)) + u2

ye× (eq. (1)) - 2uy× (eq. (3)) )

Assuming that the external velocity field is irrotational, the kinetic energy conservation equation may be
written as follows:

∂u2
x

∂t
+
∂u3

x

∂x
+
∂u2

xuy
∂y

+
∂u2

xuz
∂z

= ux
∂|qe|2

∂x
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2ux
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∂τxz
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−

∂u2
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∂t
−
∂uxu

2
y

∂x
−
∂u3

y

∂y
−
∂uzu

2
y

∂z
+ uy

∂|qe|2

∂y
+

2uy
ρ

∂τyz
∂z

(5)

The 3D unsteady incompressible differential boundary layer equations are integrated in the direction normal
to the wall, yielding a system of three equations involving integral quantities.

More specifically,
∫∞

0
(eq. (2)) dz -

∫∞
0
uxe× (eq. (1)) dz and

∫∞
0

(eq. (3)) dz -
∫∞

0
uye× (eq. (1)) dz

produce the transport equation (6) for the momentum deficit in the surface tangential directions.∫∞
0

(eq. (5)) dz -
∫∞

0
|qe|2× (eq. (1)) dz yields the transport equation (7) for the deficit of kinetic energy.

∂M

∂t
+ ∇̃ · ¯̄T = −∇̃qe ·M +

τw
ρ

(6)

∂

∂t

(
tr( ¯̄T )

)
+ ∇̃ ·

(
E − ¯̄Tqe

)
= 2D − ¯̄T : ∇̃qe + qe ·

(
∇̃qe ·M − τw

ρ

)
(7)

where ∇̃ denotes the in-plane gradient. The involved variables are:

M =

∫ ∞
0

(qe − q) dz Mass flux defect (8)

¯̄T =

∫ ∞
0

((qe − q)⊗ q)) dz Momentum flux defect (9)

E =

∫ ∞
0

(
q
(
|qe|2 − |q|2

))
dz Kinetic energy defect (10)

D =
1

ρ

∫ ∞
0

τw ·
∂q

∂z
dz Dissipation integral (11)

τw =

µ∂q∂z
∣∣
z=0

, laminar regime

µ∂q∂z
∣∣
z=0
− ρq′q′z, turbulent regime

Shear stress vector (12)
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The system is expressed in a tensorial form, making it independent of the coordinate system used. The no-
tations are quite similar to the ones of Drela,8 although Drela accounts for compressibility and for additional
equations. The link between these notations and more usual displacement δ1. and momentum θ.. integral
boundary layer thicknesses is (expressed in a global coordinate system (X,Y ,Z)):

M =

|qe|δ1X|qe|δ1Y
|qe|δ1Z

 ¯̄T = |qe|2

θXX θXY θXZ

θY X θY Y θY Z

θZX θZY θZZ

 (13)

II.C Closure relations

Since the closure relations of the literature have initially been derived for 2D boundary layers and the effect
of the transverse flow is expected to be low, closure is provided in a local coordinate system aligned with the
external streamlines,

s =
qe
|qe|

, c = − s× n
|s× n|

, n = nw (14)

where nw is the vector normal to the surface. The in-plane velocity thus reads:

q̃(η) = |qe|(ûs(η)s+ ûc(η)c) (15)

where η = z/δ. δ is an estimate of the boundary layer thickness.

II.C.1 Laminar regime

The closure relations used for the velocity profiles in laminar regime read:

ûs(η) = 1− [1 + asη] (1− η)
ps−1

(16)

ûc(η) = acη (1− ûs(η)) (17)

For the streamwise velocity ûs, it is possible to express as and ps as functions of the shape factor H = δ1s
θss

.3

For instance:

as(H) =
√
ps(H)2 − ps(H)(ps(H) + 1)Hg(H)− 1 (18)

The function g(H) was derived by Cousteix11 to fit the skin friction coefficient obtained for the Falkner-Skan
solutions. ps(H) and g(H) are given in appendix.

At the wall (η = 0), ûs satisfies the no-slip condition and the derivative of the velocity is consistent with the
friction obtained in the self-similar Falkner-Skan solutions. At the edge of the boundary layer, ûs(1) = 1 and
the derivatives of the velocity are vanishing up to (ps-2)th order. Moreover, both δ1s and θss are consistent
with this velocity profile.

A 3D boundary layer is characterized by the presence of a cross-stream velocity component, due to transverse
pressure gradients. For the crosswise velocity ûc, the profile derived by Mughal4 for unidirectional crossflow

calculations is employed. From the calculation of δ1c = δ
∫ 1

0
−ûc(η)dη (since uce = 0 in the streamline-aligned

coordinate system), ac is linked to the solved variables through:

ac = −δ1c
δ1s

Hg(H)

b(H)

ps(H) (ps(H) + 1)

1 +
2as(H)

ps(H) + 2

(19)

where b(H) is given in appendix and the following relation has been used to express δ: δ = δ1s
b(H)
Hg(H) .3 ûc

then satisfies the no-slip condition at the wall and ûc = 0 at the edge of the boundary layer. The derivatives
of the velocity are vanishing at this location up to (ps-2)th order. Finally, δ1c and θcc are consistent with
this velocity profile.

The two profiles are used to compute the dissipation integral (equation (11)) and the shear stress vector
(equation (12)).
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II.C.2 Turbulent regime

The streamwise velocity profile employed for the turbulent regime is based on the work of Tai,12 whereas
the crosswise component is neglected, as a first attempt:

ûs(η) = η(H−1)/2 (20)

ûc(η) = 0 (21)

It is worth mentioning that more evolved approaches have been developed to model turbulent boundary layers
(velocity profiles of Swafford13 or Drela’s approach of transporting turbulent shear stress8 for instance). In
particular, the relations used for the current paper do not allow the turbulent boundary layer separation.
Those approaches could be assessed in the future.

Besides, empirical relations are used for the friction and dissipation coefficients. Two options are available
for the streamwise skin friction, the relation proposed by Ludwieg and Tillmann:14

Cfs =
τws

ρ|qe|2/2
= 0.246× 10−0.678HReθss

−0.268, (22)

which is assumed valid for Reθss > 1200, or the one proposed by White:15

Cfs =
τws

ρ|qe|2/2
=

0.3 e−1.33H

(logReθss)
1.74+0.31H

. (23)

The dissipation coefficient is given by Drela’s relation:16

D = |qe|3
H∗

2

[
Cfs
6

(
4

H
− 1

)
+ 0.03

(
H − 1

H

)3
]
, (24)

where:

H∗ = 1.505 +
4

Reθss
+

(
0.165− 1.6√

Reθss

)
(H0 −H)1.6

H
if H < H0 (25)

H∗ = 1.505 +
4

Reθss
+ (H −H0)2

0.04

H
+ 0.007

lnReθss(
H −H0 + 4

lnReθss

)2

 if H > H0 (26)

and

H0 = 4 if Reθss < 400 (27)

H0 = 3 +
400

Reθss
if Reθss ≥ 400 (28)

Again, the crosswise components are cancelled as a first approximation.

Regarding prediction of transition, the local criterion of Drela17 was implemented for flows on smooth walls.

ReθssT = 155 + 89

[
0.25 tanh(

10

H − 1
− 5.5) + 1

]
ñ1.25 (29)

ñ = −8.43− 2.4 ln

(
τ ′

100

)
(30)

τ ′ = 2.7 tanh

(
Tu

2.7

)
, (31)
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where Tu is the turbulence rate (in %). However, the code is expected to be run mostly on rough walls.
The criterion widely used in icing suites18 is thus also proposed: transition occurs for a roughness Reynolds

number Rek =
ks|qe|
νe

larger than 600, where ks is the equivalent sand grain roughness height and νe is the

kinematic viscosity of air.

II.C.3 Rotation to the global coordinate system

Once the closure relations have been computed, the velocity profiles are rotated to the global coordinate
system ((q)LCS → (q)GCS) by using the rotation matrix ¯̄R:

(q)GCS =

uXuY
uZ

 =

X · s X · c X · n
Y · s Y · c Y · n
Z · s Z · c Z · n


usuc
un

 = ¯̄R(q)LCS (32)

In a similar manner, the primary variables are transformed from the global to the local coordinate system
(in order to construct the velocity profiles) as follows:

(M)LCS =
¯̄
RT (M)GCS (33)

II.C.4 Calculation of the shape factor

The proposed closure of the problem requires knowledge of the following parameters: H, δ1s, δ1c. δ1s and
δ1c are easily obtained from the solved variables (M)GCS by the rotation described earlier. However, in 3D,
the shape factor H = δ1s

θss
is not explicitly present in the formulation since θss is only linked to the solved

variables through:
tr( ¯̄T ) = |qe|2(θss + θcc) (34)

Thus, an iterative process regarding the calculation of the shape factor H has to follow. To that end, the

definition of θcc = δ
∫ 1

0
−ûc(η)2dη is used:

1

H
=

tr( ¯̄T )

|qe|2δ1s
− θcc
δ1s

=
tr( ¯̄T )

|qe|2δ1s
+
δ
∫ 1

0
û2
c dη

δ1s
(35)

Since ûc depends on H and the primary variables, it is now possible to obtain H by solving equation (35)
in an iterative way. For instance, for the case of the laminar flow, equation (35) to be solved becomes:

1

H
=

tr( ¯̄T )

|qe|2δ1s
+

b(H)ac(H)2

Hg(H)ps(H)(2ps(H)− 1)(2ps(H) + 1)

(
1 +

3as(H)

ps(H) + 1
+

6as(H)2

(ps(H) + 1)(2ps(H) + 3)

)
(36)

II.D Computation of heat transfer

The approach used here is commonly used in 2D ice accretion codes, as shown by Gent et al.19 It is also the
way heat transfer coefficients are inferred from dynamic data in the ONERA’s 2D code IGLOO2D.18 The
heat transfer coefficient hc is inferred from a Reynolds-like analogy:

hc = Stρecpe|qe| (37)

where ρe is the air density, cpe is the specific heat capacity at constant pressure for air and the Stanton
number St depends on the regime.

For a laminar flow, the equation of Smith and Spalding is employed. It links the heat transfer coefficient to
the evolution of the velocity at the edge of the boundary layer along a streamline (s is the wrap distance
from the attachment line):

St =
0.2926

√
νe

|qe|Pr

√
|qe|2.87/

∫ s

0

|qe|1.87ds (38)
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where Pr is the Prandtl number.

The heat transfer coefficient in turbulent rough wall conditions is obtained with:

St =
Cfs,r/2

Prt +
√
Cfs,r/2/Stk

(39)

where Stk = 1.92Pr−0.8Re−0.45
k , Prt is the turbulent Prandtl number and Rek =

ksuτ
νe

. uτ is the friction

velocity. Cfs,r is the streamwise skin friction coefficient expected on a rough wall, which is computed from
the streamwise momentum thickness computed by the integral method:

Cfs,r
2

=
0.168

(log (864θss/ks + 2.568))
2 (40)

III Finite-Volume resolution

The system of equations (6), (7) can be written in the following manner:

∂U

∂t
+ ∇̃ · F (U) = S(U) (41)

where the components of the flux vector F can be written:

F =

 ¯̄T(
E − ¯̄Tqe

)T
 =

 |qe|2 ¯̄θ

|qe|3
(
δ3 − ¯̄θ

qe
|qe|

)
where ¯̄θ and δ3 are defined as follows:

¯̄θ =

∫ ∞
0

((
qe
|qe|
− q

|qe|

)
⊗ q

|qe|

)
(42)

δ3 =

∫ ∞
0

(
q

|qe|

(
1− |q|

2

|qe|2

))
(43)

Following an unstructured-mesh Finite-Volume formulation, the system is integrated over a cell Ωi between
time tn and tn+1 (∆tn = tn+1 − tn):

∫
Ωi

U(tn+1)dΩ−
∫
Ωi

U(tn) dΩ = −
∑

j∈N (i)

tn+1∫
tn

∫
Γij

F · nij dΓdt+

tn+1∫
tn

∫
Ωi

S dΩdt (44)

where the divergence theorem has been used for the transformation of the volume integral to surface integral,
Γij is the edge shared by cell Ωi with one of its neighbors Ωj . The vector nij is the local unit normal to the
edge Γij in the tangent plane of cell Ωi and pointing outward.

Equation (44) can be reshaped in the following discrete form:

Un+1
i = Un

i −
∆tn

|Ωi|
∑

j∈N (i)

F ij |Γij |+ ∆tnSi (45)

where Un
i is the discrete mean value of the unknowns in cell Ωi at time tn, F ij is the numerical flux at the
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edge Γij and Si is the discrete source term in cell Ωi:

Un
i

def'
1

|Ωi|

∫
Ωi

U(tn)dΩ (46)

F ij
def'

1

∆tn
1

|Γij |

tn+1∫
tn

∫
Γij

F · nijdΓdt (47)

Si
def'

1

∆tn
1

|Ωi|

tn+1∫
tn

∫
Ωi

S dΩdt (48)

To complete the discretization of the continuous model, the spatial and temporal schemes used to express the
numerical flux F ij are detailed in the following paragraphs. Regarding the source term Si, the computation
of the velocity gradient is performed with a linear least-squares method (first order in space).

III.A Spatial scheme

Conservation
In the employed Finite Volume formulation, the fluxes’ contribution to the residuals has to be expressed

in the plane of every associated cells to obtain a conservative scheme. However, in the general case of an
embedded surface, two neighboring cells may not be co-planar. Therefore, two different expressions for the
flux through the shared edge are required as, in this general case, the following relationship is only true for
a planar mesh:

F ji = −F ij (49)

In the present study, the conservative character of the equations is preserved by employing a set of rotations,
similarly to what is proposed by Lokatt and Eller.10 A schematic depicting the involved variables is provided
in figure 1.

nji
nij

F i Fj
j

i

qe,i

qe,j

u
¡

qi(n)

qj(n)

δi

δjnce
ll,i

ncell,j

Figure 1: Schematic of fluxes’ calculation method in a 2D cut of an embedded surface.

Therefore, we introduce the rotation matrix ¯̄Qij which is used to express tensorial quantities from the plane
associated to cell Ωi in the plane associated to cell Ωj . The process to build the matrix was adapted from
the method described in Lokatt10 (where the fluxes are expressed in the local coordinate system contrary to
the present method) and consists of the following steps:

• Definition of the axis of rotation, uij =
ncell,i × ncell,j
|ncell,i × ncell,j |

• Definition of the angle of rotation, αij = cos−1 (ncell,i · ncell,j)
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• Definition of the rotation matrix ¯̄Qij around the previously defined axis,

¯̄Qij = cosαij
¯̄I + sinαij [uij ]× + (1− cosαij)uij ⊗ u (50)

where [uij ]× is the cross product matrix of uij , ⊗ is the tensor product and ¯̄I is the identity matrix.

Then, the following relation holds:

F ji = − ¯̄QijF ij and F ij = − ¯̄QjiF ji = − ¯̄QT
ijF ji (51)

Flux expression
Based on the formulation employed in the 2D version of the code,3 a first order upwind scheme is used in

order to ensure stability. The upwinding of the numerical flux is based on the edge velocity qe,ij which is
defined in the tangential plane associated to cell Ωi by:

qe,ij =
1

ωi + ωj

(
ωiqe,i + ωj

¯̄Qjiqe,j

)
(52)

where ωi and ωj are inverse distance weighting factors that rely only on the mesh geometry:

ωi = |GiGij |−1, ωj = |GjGji|−1 (53)

where Gi, Gj and Gij(= Gji) are the centers of gravity of cells Ωi, Ωj and edge Γij respectively.

Then, the numerical flux is calculated with upstream values according to the sign of the face velocity:

• If (qe,ij · nij) ≥ 0 then :

F ij =

 |qe,ij |2¯̄θinij

|qe,ij |3
(
δ3i − ¯̄θi

qe,i
|qe,i|

)
· nij

 and F ji = − ¯̄QijF ij (54)

• else:

F ji =

 |qe,ji|2¯̄θjnji

|qe,ji|3
(
δ3j − ¯̄θj

qe,j
|qe,j |

)
· nji

 and F ij = − ¯̄QjiF ji (55)

where ¯̄θ and δ3 are respectively computed by numerical integration of (42) and (43) with a Simpson method
in the upwind cell.

As also mentioned in Bayeux’s paper,3 the present scheme cannot capture the separation of the boundary
layer. This issue will be addressed in future works.

Treatment of the stagnation point
It must be mentioned that it was identified in the 2D code that the discretization of the equations (and

more specifically the one of kinetic energy conservation) needs to be corrected3 to have a better numerical
treatment of the stagnation point. This correction consists of an additional source term aimed at recovering
the consistency of the numerical method in the vicinity of the stagnation point. It was adapted as follows
from the work of Bayeux:3

Sstag =
E − ¯̄Tqe
|qe|3

·
[
∇̃ ·
(
|qe|3 ¯̄I

)
− 3|qe|2 ∇̃ ·

(
|qe| ¯̄I

)]
, (56)

which has been discretized consistently with the employed numerical flux:
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Sstag,i =
1

|Ωi|
Ei − ¯̄T iqe,i
|qe,i|3

·

 ∑
j∈N (i)

(
|qe,ij |3|Γij |nij

)
− 3|qe,i|2

∑
j∈N (i)

(
|qe,ij ||Γij |nij

) (57)

The current formulation was derived for streamwise aligned meshes. It will be fully adapted to unstructured
meshes in the future.

III.B Temporal scheme

An explicit Euler method has been employed for the discretization of the transport term while the source
terms can be implicit, in an attempt to increase the stability of the method:

Un+1
i = Un

i −
∆tn

|Ωi|
∑

j∈N (i)

F nij |Γij |+ ∆tni S
n+1
i (58)

After linearization of the source term, the solution is given by:

Un+1
i = Un

i + [I −∆tni ∇US
n
i ]
−1

∆tni

− 1

|Ωi|
∑

j∈N (i)

F nij |Γij |+ S
n
i

 (59)

where ∇US is the jacobian matrix of the source term which is calculated by numerical differenciation.

In equation (59), a local time stepping approach is used to obtain a faster convergence to the steady-state
solution. The timestep value ∆ti is computed in each cell Ωi to satisfy the following empirical CFL condition
based on the convective time scale:

∆ti < CFL
∆xi

|qe,i|
(60)

where ∆xi is the characteristic cell length given by:

∆xi =
|Ωi|∑

j∈Ni
|Γij |

(61)

IV Validation of the method

A first step towards the validation of the method is to compare it against 2D theoretical test-cases (self-
similar boundary layer solutions of Falkner and Skan). The impact of the structured or unstructured grid
will be evaluated on the theoretical test-case, as well as the grid refinement and the effect of rotations.

The 3D code, BLIM3D, will also be cross-checked against its already validated 2D version, BLIM2D, on a
NACA0012 airfoil test-case to validate the laminar-turbulent transition. Numerical results are also compared
with a reference solution given by an ONERA in-house code (CLICET) based on the full Prandtl equations.21

The last test case is focused on the study of a self-similar solution for a 3D boundary layer as proposed by
Cooke22 to assess the ability of the proposed method to deal with 3D flows.

It has to be noted that in all of the subsequent simulations, the CFL value was set to CFL = 0.9.
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IV.A Falkner-Skan conditions

The theoretical test-cases are the self-similar boundary layer solutions of Falkner and Skan. This family of
solutions corresponds to 2D laminar boundary layers developing along the x direction when the external flow
velocity is ue(x) = cxm, where c and m are two constants. The pressure gradient is thus dependent on m.
It is positive (adverse) for negative values of m. m = 0 corresponds to a flow over a flat plate (zero pressure
gradient). The pressure gradient is negative (favorable) for positive values of m. One may notice that m =
1 represents a 2D stagnation point flow.

A very important parameter that characterizes the state of the boundary layer is the shape factor H. It
can be proven that for the special cases of self-similar solutions, the shape factor is constant all along the
surface. Besides, the skin friction Cf = Cfs and θ = θss are major parameters for icing (since the heat
transfer coefficient can be inferred from θ as seen in section II.D). The comparisons will thus focus on H,
Cf and θ.

IV.A.1 Computations on structured and unstructured grids

The computations were performed with both the 2D and 3D codes. A mesh with 512 equidistant points was
used in the streamwise direction. In order to properly compare the results between the two codes, the same
mesh was used in 3D, with only one cell in the transverse direction for structured meshes. The results given
by BLIM3D on unstructured Delaunay meshes (with the same characteristic cell size) are also presented.

Zero pressure gradient (Blasius solution) The case of a flat plate subjected to a constant external
velocity field was studied. The Reynolds number of the computation is Re = 81800, the flow is expected to
be laminar over the entire length of the plate.
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Figure 2: BLIM2D and BLIM3D results, on structured (str) and unstructured (uns) meshes, for the
case m = 0 plotted against the local Reynolds number Res.

The shape factor H, the skin friction coefficient Cf and the (streamwise) momentum thickness θ obtained
from the 2D and 3D versions of the code are plotted against the local Reynolds number in the direction of
the external streamlines Res = qes/νe in figure 2. One can observe the accordance in the results between
the two versions of the code. At the same time, one can see how the integral method compares against the
analytical solution to the differential boundary layer equations, as proposed by Blasius (relative error on H
lower than 0.1% according to values reported in table 1).

Non-zero pressure gradient Two test-cases were studied with favorable pressure gradient, for two
different values of the exponent m. The first one corresponds to a 2D stagnation point flow (case m = 1)
and the second one to an accelerated boundary layer (case m = 1/3). The corresponding numerical results
are presented in figures 3 and 4 respectively.
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Figure 3: BLIM2D and BLIM3D results, on structured (str) and unstructured (uns) meshes, for the
2D stagnation point flow (case m = 1) plotted against the local Reynolds number Res.
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Figure 4: BLIM2D and BLIM3D results, on structured (str) and unstructured (uns) meshes, for the
accelerated boundary layer (case m = 1/3) plotted against the local Reynolds number Res.

Cases m=0 m=1/3 m=1

theory 2.59110 2.29694 2.21623

2D code 2.59294 2.29726 2.22039

3D code (str) 2.59380 2.29890 2.21986

3D code (uns) 2.59380 2.29892 2.22008

Table 1: Results on shape factor H (asymptotic values).

For both cases, the results obtained are almost identical for both 2D and 3D methods on structured meshes.
The relative error on the shape factor is negligible (table 1). Due to the simplifications introduced in the
treatment of the stagnation point (section III.A), small discrepancies can be observed for the shape factor
(figure 3a) and the momentum thickness (figure 3c) for low Reynolds numbers of the 2D stagnation point
flow (case m = 1) for the 3D results with an unstructured mesh. Nevertheless, the results produced on the
structured and the unstructured meshes are in good agreement for higher local Reynolds numbers.

For the case of an accelerated boundary layer (m = 1/3), a small error is observed for both the 2D and the
3D method at low Reynolds numbers, which is consistent with the fact that the stagnation point correction
is active in this region and it was developed to correctly handle the m = 1 case. The evolution of this error
against the mesh size is detailed in the next paragraph.
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IV.A.2 Mesh convergence

The ability of the method to converge when the mesh size decreases is now presented. To that end, the
rate of convergence of the method was assessed in the case of an external velocity field belonging in the
Falkner-Skan family with an exponent equal to m = 1/3. Uniform structured grids were used with different
refinements in the streamwise direction and one cell in the transverse direction.

For a constant grid refinement ratio r, the expression of the convergence rate p may be written as follows:20

p =
log
(
f3−f2
f2−f1

)
log r

(62)

where fi is the average of the shape factor H over the grid i and r is the characteristic cell size ratio between
two meshes (i.e. in our case r = 0.5). Figure (5) shows that the numerical solution for the shape factor
converges as expected to a constant value when the mesh is refined. Quantitative results are also reported
in table 2. The convergence rate is close to 1, which is in good agreement with the fact that a first order
scheme is used for the spatial discretization.

Figure 5: BLIM3D convergence assessed on the
shape factor

Mesh size < H > p

64 2.30050 -

128 2.29965 -

256 2.29925 1.09

512 2.29907 1.16

1024 2.29899 1.22

Table 2: BLIM3D convergence rate (based on
the average shape factor < H >).

IV.A.3 Coordinate system transformation

Another interesting test case to be studied before proceeding with more complex geometries and external
velocity fields was to re-run the previous simulations with the flat plate being arbitrarily placed in the
3D space. Additionally, the velocity vector was not aligned to the flat plate but the incoming flow was
creating an angle of 45 degrees with it. The goal of this test case was to verify that the process of rotation
between the local and global coordinate systems was properly performed (since the global and the local
coordinate systems were no more the same). In the aforementioned simulation, the velocity vector was
qe =

(
1/
√

3, 1/
√

3, 1/
√

3
)
m/s and was tangential to the plane of the flat plate.

The geometry of the problem along with the external velocity field are presented in figure 6a. As observed
in figure 6b, the results obtained for the inclined and non-inclined cases are identical and therefore the
coordinate system transformations are deemed to be properly executed.

IV.B NACA0012 case

The goal of this test case is to assess the ability of the 3D method to correctly compute the laminar-turbulent
transition over a NACA0012 profile. The numerical results of BLIM3D are compared against BLIM2D and
the code CLICET which is considered as the reference.

A 2D mesh of 512 cells, with a more refined region close to the leading edge, was used for the 2D computations
with BLIM2D and CLICET. The 3D mesh was generated from the 2D mesh thanks to an extrusion in the
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Figure 6: (a) Problem’s geometry and (b) shape factor H plotted against the local Reynolds number
Res for the inclined and non-inclined test cases.

transverse direction over 3 cells. In this way, both meshes have the same refinement along the streamwise
direction in order to have comparable results.

The data set for this test case is given in table 3. The wall is assumed to be smooth. The local criterion
proposed by Drela (equation (29)) was thus used for this test case. Besides, Ludwieg-Tillmann relation
(equation (22)) was employed for the turbulent skin friction closure. An arbitrary initial condition was
imposed at the beginning of the calculation. It is important to notice that the position of the stagnation
point and the position of the transition are automatically determined during the 3D code calculation.

Profile NACA0012

chord length (m) 0.5

AoA () 0

M∞ 0.15

T∞ (K) 263

P∞ (Pa) 80000

Table 3: Operating conditions for the NACA0012 test case

Figure 7 shows that the results produced by BLIM3D are in very good agreement with BLIM2D and CLICET.
The location of the laminar-turbulent transition, where the skin friction abruptly increases and the shape
factor decreases, is well predicted. The laminar regime is very well captured, whereas the turbulent region is
correctly reproduced despite small discrepancies which were often observed with BLIM2D. The use of more
evolved closure relations should improve these results.

IV.C Falkner-Skan-Cooke conditions

The validation of the 3D character of the method was carried out against an extension of the self-similar
solutions to 3D as proposed by Cooke,22 which essentially represents the solution for a laminar boundary
layer flow over an infinite swept wing. According to their work, an analytical solution is obtained in 3D when
the streamwise component of the external velocity field is following the 2D Falkner-Skan family of velocity
profiles, while the crosswise velocity is constant, i.e. qe = ((X/L)

m
, cst, 0).
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Figure 7: Comparisons of the numerical results with respect to the curvilinear abscissa of the
NACA0012 profile.

In such cases, it can be shown after the work of Cooke22 that the shape factors defined as

HXX =
uXeδ1X
|qe|θXX

, HY Y =
uY eδ1Y
|qe|θY Y

(63)

are expected to remain constant along the surface of the body.

A square flat grid was used for the test case (figure 8). In order to simulate the infinite conditions of the
flow, periodicity boundary conditions were applied at the boundaries Ymin, Ymax. The velocity profile was
set to : qe = (100x, 1, 0).

As it can be observed in figure 8, BLIM3D is able to calculate the expected skewing between the external and
the wall limiting streamlines. The calculated values for the shape factor are well calculated when compared
to the theoretical ones (figure 9). However, and possibly connected to the discretization error appearing in
the region of the leading edge, the boundary layer requires a certain length to fully develop and reach its
self-similar state as it was already discussed in section IV.A.1. The stagnation point correction does not act
properly here, which could be due to the fact that it was developed for a real stagnation point and not for
a separation line as is computed here.

(a) External streamlines (b) Wall limiting streamlines

Figure 8: External and wall limiting (skin friction) streamlines, qe = (100x, 1, 0).
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V Ice accretion computation using the 3D Integral Boundary Layer code

The 3D integral boundary layer code, BLIM3D, was included in ONERA’s 3D icing suite, IGLOO3D. This
means that BLIM3D is fed by an inviscid code compatible with IGLOO3D structure, here elsA. Then it
provides the heat transfer coefficient and skin friction to the 3D Messinger code MESSINGER3D.

A NACA0012 glaze ice case was used to demonstrate the capabilities of BLIM3D to be used for ice accretion
computation. A glaze ice case was used because the shape of this kind of rather warm ice depends greatly
on the computation of the heat transfer in the boundary layer. The conditions of the case are given in table
4. The flow is 2D but a 3D unstructured grid was generated as shown in figure 10. It is composed of 39940
triangles, and a local refinement is used in the vicinity of the stagnation point.

AOA Chord P∞ T∞ M∞ LWC MVD) ∆t

(o) (m) (Pa) (K) (g/m3) (µm) (s)

NACA0012 airfoil 0 0.533 95937 264.82 0.2056 0.61 40 672

Table 4: Conditions of the test-case, AOA: angle of attack; P∞, T∞, M∞: static pressure, static
temperature and Mach number of incoming airflow; LWC: Liquid Water Content of incoming flow;
MVD: Median Volume Diameter of supercooled water droplets; ∆t: accretion time.

The rough models of BLIM3D were used for laminar-turbulent transition and heat transfer (the roughness
height is 0.533 mm) and, as shown in table 5, the two closure relations for skin friction were assessed
(Ludwieg-Tillmann, equation (22), and White, equation (23)).

Table 5 shows that several computations were performed on the NACA0012 case. The ONERA’s 2D icing
code IGLOO2D was run with both predictor (a single aerodynamics - droplet - accretion loop is made) and
predictor-corrector approach (two loops are made and the grid is updated to account for the effect of the ice
shape on the airflow and the droplet trajectories). The in-house solvers STRMESH2D, EULER2D, SIM2D,
TRAJL2D and MESSINGER2D18 were used for the structured mesh, the inviscid flow, the simplified integral
boundary layer, the Lagrangian trajectography and the ice acrretion computations, respectively.

In addition, the same test-case was also run with the usual approach of IGLOO3D, consisting of computing
the airflow with elsA code (RANS approach on a structured grid), and the droplet trajectories with the
Eulerian code SPIREE (monodisperse approach here). For this approach, several methods are available to
compute the heat transfer coefficient. For this paper, the relations of section II.D, fed by the smooth-wall
momentum thickness provided by elsA, were used. This approach is very similar to IGLOO2D and thus

16 of 21

American Institute of Aeronautics and Astronautics



Figure 10: NACA0012 surface mesh for BLIM3D

Code Gas Droplet Friction hc Grid Predictor- Output

flow trajectories closure closure corrector

IGLOO3D elsA SPIREE section 3D structured Predictor Boundary

RANS II.D 1312 elements layer, ice

IGLOO3D elsA Euler SPIREE Ludwieg- section 3D unstructured Predictor Boundary

BLIM3D Tillmann II.D 39940 elements layer, ice

IGLOO3D elsA Euler SPIREE White section 3D unstructured Predictor Boundary

BLIM3D II.D 39940 elements layer, ice

IGLOO2D EULER2D TRAJL2D section 2D structured Predictor- Boundary

SIM2D II.D 128 elements Corrector layer, ice

IGLOO2D EULER2D Ludwieg- 2D structured Boundary

BLIM2D Tillmann 128 elements layer

IGLOO2D EULER2D White 2D structured Boundary

BLIM2D 128 elements layer

Table 5: Various computations performed on the NACA0012 glaze ice case.

often produces satisfactory results on 2D configurations. For both the RANS and BLIM3D approaches,
IGLOO3D was used in predictor mode.

Figure 11 gathers the results produced by the various approaches. The horns are globally well captured
with IGLOO2D, although they are a little too large because too much water runback occurs. Moreover, the
corrector phase does not bring a major improvement for this test-case compared to the predictor step. This
justifies the use of a single predictor step with IGLOO3D.

Regarding the IGLOO3D computations, the usual Navier-Stokes approach produces an ice shape which is
very similar to IGLOO2D, despite small discrepancies in the vicinity of the stagnation point (figure 11a). This
can be explained by the smaller heat transfer coefficient obtained with IGLOO3D compared to IGLOO2D
(figure 12). Consequently, the ice is less cooled, the runback is thus enhanced and the solidification lessened.

When BLIM3D is used, the ice shapes given by IGLOO3D are very dependent on the closure model retained
for the skin friction (figures 11b and 11c). Ludwieg-Tillmann model fails to capture the correct location of
the horns, whereas White model is much more satisfactory. This can be linked to the fact that the latter
is not valid for low Reθss . Indeed, the transition on rough walls forces the transition to occur very rapidly,
and the order of magnitude of Reθss is only a few tens. As a consequence, figure 12a shows that the heat
transfer coefficient given by Ludwieg-Tillmann model is largely overestimated over the horns (see figure 13
to identify the location of the horns in terms of the wrap distance s from the stagnation point). Although it
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(a) Navier-Stokes (b) BLIM3D Ludwieg-Tillmann

(c) BLIM3D White (d) BLIM3D White

Figure 11: IGLOO3D computations with Navier-Stokes or BLIM3D approach and two different closure
relations

is still overestimated with White model (figure 12b), the agreement becomes much better between BLIM3D,
IGLOO2D (SIM2D) and IGLOO3D used along with elsA.

It is worth recalling that the heat transfer coefficient is dependent on the momentum thickness calculated
by the boundary layer code. Figure 14 shows that BLIM3D and its 2D counterpart BLIM2D (run on the
same mesh as IGLOO2D SIM2D with the same inviscid data) produce very similar results, although the
BLIM3D results are a little noisy due to the unstructured grid. However, the momentum thickness given by
SIM2D and elsA are larger. Small discrepancies are often observed in turbulent regime between BLIM2D and
SIM2D.3 However, close to the stagnation point, this discrepancy becomes significant because the momentum
thickness is small. This is again a consequence of the acceleration of transition due to roughness.

BLIM3D was thus included successfully in IGLOO3D. But a proper choice of the turbulent closure relations
had to be made and more work is necessary on the turbulent regime to further improve the results.
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(a) BLIM3D Ludwieg-Tillmann (b) BLIM3D White

Figure 12: Heat transfer computed with the different approaches employed for the computation of the
NACA0012 glaze case

(a) BLIM3D Ludwieg-Tillmann (b) BLIM3D White

Figure 13: Ice thickness computed with the different approaches employed for the computation of the
NACA0012 glaze case

VI Conclusion

The present article described a 3D integral boundary layer method and its application to icing problems.
A 3D code was developed and included in the ONERA’s 3D icing suite, IGLOO3D in order to reduce the
computational cost of the airflow during the process of ice accretion computations.

The solved equations which were presented are an extension of the 2D system of equations of Bayeux et al.3

The unsteady momentum and kinetic energy equations are written in conservation form. Regarding heat
transfer, a 2D-like approach is used to infer the heat transfer coefficient from the dynamics of the boundary
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(a) BLIM3D Ludwieg-Tillmann (b) BLIM3D White

Figure 14: Streamwise momentum thickness computed with the different approaches employed for the
computation of the NACA0012 glaze case

layer.

The solver is based on the Finite Volume method, using an upwind scheme, which was presented in the
present paper. It is worth mentioning that the equations are solved over the whole iced surface.

Several validation cases were presented to ensure that the code properly catches the boundary layer char-
acteristics. Moreover, an unstructured NACA0012 test-case was presented to demonstrate the ability of
the method to be efficiently included in ice accretion computations. The results show a great sensitivity of
the heat transfer coefficient and thus of the glaze ice shapes to the momentum thickness produced by the
code. Since laminar-turbulent transition occurs very rapidly on ice, it has been shown that proper turbulent
closure relations have to be employed.

Appendix

The functions used in this paper for the laminar velocity profile exponent ps(H), the streamwise skin friction

coefficient g(H) =
Cfs

2 Reθss and b(H) are:

ps(H) =


2.4834 +

0.7877

(H − 1.9538)
1.6001 if H ≤ Hcrit

2 +
2.0411× 1011

(H + 25.89)
7.7560 if H > Hcrit

(64)

g(H) =



2.99259

[(
1

H
− 1

2Hcrit

)1.7

−
(

1

2Hcrit

)1.7
]
, for H ≤ Hcrit

0.20644− 90.30936

((
1

Hcrit

)1.3

− 1

H1.3

)3.35661

+

(H − 1)

[
−0.06815 + 46.34236

(
1

H2
crit

− 1

H2

)2.338238
]
, for H > Hcrit

(65)

b(H) = ps(H)−
√
ps(H)2 − ps(H) (ps(H) + 1)Hg(H) (66)

Hc = 4.02923 is the value of the shape factor at separation of the boundary layer.
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