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Abstract: Results of an experimental study into steady uniform flows in compound open channels with 4 

cylindrical obstructions designed to mimic emergent vegetation is presented. Two configurations – fully-5 

covered floodplain and one-line obstructions - are considered, and the hydraulic properties are compared to 6 

those of a smooth, unobstructed compound channel. Particular attention is given to the effect of obstruction 7 

(i.e. vegetation) density on the rating curve, drag coefficients and spanwise profiles of streamwise velocity. 8 

Flow resistance is estimated using the approach introduced by Petryk and Bosmajian and the results are in 9 

agreement with other experimental studies. It was shown that the obstruction configuration significantly 10 

influences the flow velocity in the main channel, and in the case of one-line obstructions the floodplain 11 

velocity is higher than for an unobstructed channel for a given flow rate. Spanwise velocity profiles exhibit 12 

markedly different characters in the one-line and fully-covered configurations.  13 

CE Database subject headings: Vegetated floodplain; Drag coefficient; Water depth-discharge relationship; 14 

Spanwise velocity distribution.  15 
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Introduction 26 

The middle and lowland stretches of most rivers are characterised by compound cross sections that 27 

comprise one or two floodplains and a deeper main channel. Vegetation may be distributed across 28 

the floodplains in a variety of ways, including patches of bushes, grassy meadows and regular arrays 29 

of trees that line the edges of the main channel and follow its meanders. Such arrays may occur 30 

naturally or by design as part of flood protection or habitat creation programs, and may exert 31 

significant influence on the hydraulic properties of the compound channel during flood events. One 32 

of the most prevalent arrangements is ĐoŵŵoŶlǇ kŶoǁŶ as ͞oŶe-liŶe͟ ǀegetatioŶ ǁhiĐh Đoŵpƌises a 33 

single line of trees along the side of the main channel, but arrays of trees that extend much further 34 

across the floodplain may also occur.  35 

Although a number of studies have focused on turbulence, secondary currents and momentum 36 

transfer in non-vegetated compound channels (Tominaga and Nezu 1991, van Prooijen et al. 2005, 37 

Yang et al. 2007, Vermaas et al. 2011), the influence of floodplain vegetation on the flow conditions 38 

and discharge conveyance in compound channels is less well understood and quantified. The impact 39 

of vegetation density,  �,  on the water depth-discharge curve has been studied experimentally by a 40 

number of authors for different vegetation configurations:  (Ismail and Shiono 2006, Sun and Shiono 41 

2009, Terrier 2010) considered one-line vegetation, while (Nehal et al. 2012, Hamidifar and Omid 42 

2013) investigated a wholly-vegetated floodplain.  Masterman and Thorne (1992) established a 43 

theoretical method to estimate the effects of bank vegetation on the channel flow capacity, and  44 

showed that it is possible to relate these effects to the channel width-to-depth ratio; the authors 45 

showed that the effect of bank vegetation on channel discharge capacity declines rapidly as the 46 

width-to-depth ratio increases. Ben-sheng et al. (2002) carried out experiments on a compound 47 

channel with a narrow floodplain and showed that the influence of vegetation on the floodplain flow 48 

capacity in such cases is not significant. Ismail and Shiono (2006) performed experiments in 49 

compound meandering channels with floodplains that were covered with small rectangular blocks to 50 

simulate vegetation. The authors carried out tests with fixed and mobile bed sediments to assess the 51 



influence of floodplain vegetation on sediment transport. The results showed that the influence of 52 

vegetation density on stage discharge curve was minimal for the fixed bed case, but some variation 53 

was observed for the mobile bed case. Yang et al. (2007) performed experiments in a compound 54 

channel that was either unvegetated or fully covered with model structures that were intended to 55 

represent grass, shrubs and trees. The authors found that for a non-vegetated channel the 56 

streamwise velocities always followed a logarithmic distribution, whereas S-shape velocity profiles 57 

were observed when vegetation was introduced on the floodplain. Hirschowitz and James (2009) 58 

estimated the total channel discharge in the presence of emergent vegetation along the banks of a 59 

river as the sum of the discharges of the vegetated and clear channel zones calculated seperately. 60 

A number of researchers have studied the impact of vegetation density on the drag coefficient for 61 

flow past arrays of emergent rigid cylinders (Petryk and Bosmajian 1975, Nepf 1999, Tanino and 62 

Nepf 2008, Kothyari et al. 2009, Stoesser et al. 2010, Cheng and Nguyen 2011, Tinoco and Cowen 63 

2013). Nepf (1999) proposed a model for drag, turbulence and diffusion within emergent vegetation 64 

and showed that the bulk drag coefficient decreases as vegetation density increases for both 65 

random and staggered arrays. Tanino and Nepf (2008) conducted experiments involving flow 66 

through a random array of emergent, rigid cylinders, investigating the effect of Reynolds number 67 

and vegetation density on the resistance properties. It was found that the bulk resistance decreased 68 

with increasing Reynolds number and increased with increasing solid volume fraction (�ሻ. 69 

Nehal et al. (2012) performed experiments to investigate the resistance properties of one specific 70 

type of aquatic plant, Acorus Calmus L, showing that increases in vegetation density are 71 

accompanied by significant increases in the water depth; a staggered arrangement of the plants was 72 

found to produce the largest decrease in flow rate. Hamimed et al. (2013) also found that the 73 

relationship between flow depth and discharge depends strongly on the vegetation density; higher 74 

density leads to larger water depth except for very shallow flows, which are largely insensitive to 75 

changes in vegetation density. Hin et al. 2008 performed in situ flow measurements in vegetated 76 

equatorial streams in Malaysia, arriving at an expression for the apparent friction factor for a natural 77 



compound channel in terms of easily measurable hydraulic parameters. The floodplains of the 78 

streams were very densely vegetated, and as a result the floodplain flow was very small except when 79 

the overbank flow was very large. The researchers observed that the apparent shear was very high 80 

at the interface between the main channel and floodplain. Järvelä (2002) and Wunder et al. (2011) 81 

studied the hydraulic characteristics of natural willows and sedges to understand how type, density 82 

and combination of vegetation affects the bulk resistance in a channel. It was shown that the 83 

resistance is highly dependent on the flow depth, velocity, Reynolds number and vegetal 84 

characteristics. Shucksmith et al. (2011) investigated experimentally flow resistance properties of 85 

two types of live vegetation grown within a laboratory channel and quantified bulk drag coefficients 86 

as a function of plant property during growth.   87 

In the case of one-line vegetation, a number of researchers have chosen to focus on the influnece of 88 

the spacing ratio � ⁄ܦ , where � is the centre-to-centre distance between the trees and D is the trunk 89 

diameter. Terrier (2010), for example, carried out experiments for two spacing ratios, � ⁄ܦ = 8 and 90 

L/D = 16. Circular cylinders and brushes were employed to represent vegetation with and without 91 

foliage, respectively. The results showed that flow rate increased as � ⁄ ܦ increased (i.e. vegetation 92 

density decreased), except when foliage was added. Sun and Shiono (2009) investigated the flow 93 

characteristics in a straight compound channel, with and without one-line vegetation. Two 94 

vegetation densities were applied, � ܦ = ⁄ 3.8 and 13.3, and it was observed that spanwise 95 

distribution of streamwise velocity changed markedly with the introduction of vegetation. The 96 

boundary shear stress was also significantly lower with one-line vegetation than without, which lead 97 

the authors to conclude that sediment transport and bed scour during flood events will be reduced 98 

by the introduction of rigid vegetation along floodplain edges, although there will be an associated 99 

increase in water levels. Sun and Shiono (2009) also reported that the discharge was reduced by 20-100 

26% for L/D = 13.3 and 21-36% for L/D = 3.8 compared to the unvegetated floodplain case. Sanjou et 101 

al. (2010) tested a spacing ratio of L/D = 5 in a compound channel of width ratio ܤcomp/102 ,2.50 = �݉ܤ 

where Bcomp is the overall width and Bmc is the main channel width. They reported reduced main 103 



channel velocities and altered spanwise distribution of velocities with the inclusion of the one-line 104 

vegetation compared to the unvegetated base case; with one-line vegetation two inflection points 105 

were observed in the spanwise profiles near the main channel-floodplain interface, while there was 106 

just one inflection point for the unvegetated compound channel section. These results suggest that 107 

significantly less momentum transfer occurs between the main channel and floodplain when one-108 

line vegetation is introduced. Shiono et al. (2012) carried-out experiments in a flume of length 9m 109 

and width 0.915m, with one-line vegetation with L/D = 17.8 and bed width ratio ܤcomp/2.0 = �݉ܤ. The 110 

velocity distribution was characteristics by bulges in at the shear layer region near the water surface. 111 

Azevedo et al. (2012) modelled one-line vegetation using steel rods of diameter D = 1.0cm placed at 112 

a distance 1.0m apart, i.e. L/D = 100. Laser Doppler Velocimetry (LDV) was used to measure 113 

velocities in a flume of length 11.6m and width 0.79m with ܤcomp/3.85 = �݉ܤ. Secondary currents 114 

were observed and two types of vortical structures, ͞ďottoŵ ǀoƌteǆ͟ and ͞fƌee suƌfaĐe ǀoƌteǆ͟, that 115 

were absent from the unvegetated case, were identified. Inclined up-flows were also observed to 116 

have higher magnitudes than in the unvegetated case. Time-averaged velocities at different vertical 117 

cross sections were shown to be similar except in the area near to the free surface due to the 118 

presence of secondary currents. In the centre of the main channel the velocity profiles were similar 119 

with and without one-line vegetation.  120 

The effects of flow interaction between vegetated and non-vegetated regions in compound open 121 

channels result in a spanwise distribution of the depth-averaged mean velocity that is of tangential 122 

hyperbolic shape (van Prooijen and Uijttewaal 2002, White and Nepf 2007). Physical, mathematical, 123 

and analytical models have been studied by a number of authors with a view of achieving accurate 124 

representations of the spanwise distribution of streamwise velocities (Shiono and Knight 1991, 125 

Pasche and Rouvé 1985, Pope 2000, van Prooijen and Uijttewaal 2002, van Prooijen et al. 2005, 126 

Rameshwaran and Shiono 2007, White and Nepf 2007, Liu and Shen 2008 , White and Nepf 2008, 127 

Tang and Knight 2008, Chen et al. 2010, Tang et al. 2010, Li et al. 2014, Teymourei et al. 2013, Yang 128 

et al. 2013). Experimentally, Pasche and Rouvé (1985) confirmed that depth-averaged velocities are 129 



affected by vegetation in compound channel flows and showed that the inclusion of vegetation 130 

reduced longitudinal flow velocities. van Prooijen et al. (2005) proposed mechanisms for the 131 

momentum exchange in a straight uniform compound channel flow by considering the spanwise 132 

profile of streamwise velocity. White and Nepf (2007) showed that the velocity profiles separate the 133 

channel into two sections of uniform velocity; vegetated and open channel, and a transitional region 134 

between them. The spanwise variation of streamwise velocity in this transitional region is 135 

characterised by a hyperbolic tangent curve. Yang et al. (2007) showed that spanwise distribution of 136 

velocity in vegetated compound channels followed an S-shaped curve with three distinct flow 137 

regions. Hamidifar and Omid (2013) found that inclusion of vegetation on floodplains led to a 138 

decrease in the depth-averaged velocity over the floodplain and an increase in the main channel. In 139 

their study the depth-averaged velocity in both the main channel and floodplain decreased as 140 

vegetation density increased. Valyrakis et al. (2015) showed experimentally how increasing 141 

riverbank vegetation density decreases the streamwise velocity on the riverbank while increasing it 142 

at the main channel.  143 

In this paper, the effect of vegetation ;oƌ ͞oďstƌuĐtioŶ͟Ϳ density and distribution on the floodplain on 144 

the rating curve, the drag coefficients and the stream-wise velocity distribution in an asymmetric 145 

compound channel is investigated experimentally. The paper is organised as follows: the next 146 

sections outline the theoretical framework on which the analysis is based; after which the 147 

experimental methodology and set-up are introduced. The experimental results are then discussed 148 

and finally some conclusions are drawn.  149 

 150 

Theoretical Considerations 151 

Flow resistance in vegetated streams is due to a combination of form drag and skin friction. The 152 

vegetation-induced drag force is given as follows:  153  �஽ = ଵଶ ௙ܣ஽ܥߩ ௔ܷଶ
                                                              (1) 154 

ǁheƌe �஽ is the dƌag foƌĐe aĐtiŶg oŶ aŶ iŶdiǀidual steŵ, CD is the dƌag ĐoeffiĐieŶt, Af is the fƌoŶtal 155 



aƌea of the steŵ, ߩ is the deŶsitǇ of ǁateƌ aŶd ௔ܷ  is the aǀeƌage ǀeloĐitǇ appƌoaĐhiŶg the steŵ, 156 

ǁhiĐh CheŶg aŶd NguǇeŶ ;ϮϬϭϭͿ pƌopose ĐaŶ ďe ǁell appƌoǆiŵated ďǇ the aǀeƌage poƌe ǀeloĐitǇ 157 

thƌough the ǀegetated ƌegioŶ, Uveg =;Q⁄ܤHͿ/ሺͳ − �ሻ, ǁheƌe Q is the ďulk floǁ ƌate, ܤ is the ĐhaŶŶel 158 

ǁidth, H is the floǁ depth aŶd � is the oďstƌuĐtioŶ ǀoluŵe fƌaĐtioŶ oƌ oďstƌuĐtioŶ deŶsitǇ, defiŶed as 159 

the ƌatio of the ǀoluŵe oĐĐupied ďǇ the oďstƌuĐtioŶs, Vveg, to the total ǀoluŵe, Vtot. Note that iŶ the 160 

folloǁiŶg aŶalǇsis the teƌŵ ͞oďstƌuĐtioŶ͟ is used ƌatheƌ thaŶ ͞ǀegetatioŶ͟ as iŶ soŵe otheƌ siŵilaƌ 161 

studies, iŶ oƌdeƌ to ďe Đleaƌ that the ƌigid ƌods aƌe Ŷot ƌepƌeseŶtatiǀe of all tǇpes of ǀegetatioŶ. Note 162 

also that CheŶg aŶd NguǇeŶ ;ϮϬϭϭͿ suggest Uveg = Uα = ௕ܷ foƌ loǁ oďstƌuĐtioŶ deŶsitǇ, ǁheƌe Uveg is 163 

the floǁ thƌough the oďstƌuĐtioŶs aŶd ௕ܷ is the ďulk floǁ ǀeloĐitǇ. EstiŵatioŶ of the dƌag ĐoeffiĐieŶt 164 

iŶduĐed ďǇ oďstƌuĐtioŶs iŶ stƌeaŵs uŶdeƌ steadǇ, uŶifoƌŵ floǁ ĐoŶditioŶs ĐaŶ ďe estaďlished ďǇ 165 

eƋuatiŶg the gƌaǀitǇ foƌĐe, FG, to the dƌag foƌĐe eǆeƌted ďǇ the oďstƌuĐtioŶs , FD, as folloǁs: 166 �ீ = �஽             ;ϮͿ 167 

Wheƌe, 168 �ீ =  ሻܵ             ;ϯͿ 169݈ܣሺ�ߩ

ǁheƌe ρ is the fluid deŶsitǇ, g is the gƌaǀitatioŶal aĐĐeleƌatioŶ, A is the ĐhaŶŶel Đƌoss-seĐtioŶal aƌea, l 170 

is the ĐhaŶŶel ƌeaĐh, aŶd S is the ďed slope ;ƌefeƌ to the sĐheŵatiĐ iŶ Fig. ϭͿ. EƋuatioŶs ;ϭ-ϯͿ ĐaŶ ďe 171 

ƌeaƌƌaŶged to giǀe the folloǁiŶg eǆpƌessioŶ foƌ the dƌag ĐoeffiĐieŶt, ܥ஽: 172 ܥ஽ = ଶ௚ௌ��2௔             ;ϰͿ 173 

where a is the obstruction density per unit length of the reach (m-1), and can be expressed as � ݈ܤଶ/Ͷܦߨ݉ 174=  , where m is number of stems per unit area occupied by the stems. �  and � are 175 

related as � = �݈. Equation 4 shows that the drag will decrease as a increases. 176 

Tanino and Nepf (2008) formulated the drag coefficient for floodplain flow through an array of rigid 177 

circular cylinders as: 178 ܥ஽ = { �0ோ௘� + �ଵ}                                                    (5) 179 



where �଴ and �ଵ are functions of the vegetation volume fraction, �ଵ = Ͳ.Ͷ͸ + ͵.ͺ �, �଴ = ͷ.Ͳ +180 ͵ͳ͵.ͳ͹�, and ܴ�஽ = �ܷ௘௚ߥ/ܦ is the cylinder Reynolds number, where ߥ is the fluid kinematic 181 

viscosity and Uveg is defined by Petryk and Bosmajian (1975) as: 182 

�ܷ௘௚ = √ ଶ௚஺௟ௌ஼�௠஽ு          183 

   (6) 184 

Kothyari et al. (2009) proposed the following equation for the drag coefficient of emergent 185 

cylindrical stems based on a set of fluid force measurements in subcritical and supercritical flows:  186 ܥ஽ = ͳ.ͺܴߦ�஽−଴.଴଺[ͳ + Ͳ.Ͷͷ lnሺͳ + ͳͲͲ�ሻ] ∗ ሺͲ.ͺ + Ͳ.ʹ�� − Ͳ.ͳͷ��ଶሻ                 (7)                                    187 

where, ߦ  is a parameter representing the effect of the vegetation staggering pattern, with � = 0.8 188 

for a regular square staggering pattern and �� =  ��೐೒√௚ு  is the Froude number. The authors found 189 

that the drag coefficient varied only slightly with Reynolds number but was very sensitive to changes 190 

in obstruction density. It should be noted that, owing to the shortness of the flume, the flow was not 191 

fully developed and the authors speculated that drag coefficients were therefore higher than they 192 

would have been for fully developed flow. 193 

Cheng and Nguyen (2011) related the drag coefficient to Reynolds number by a new parameter, the 194 

vegetation-related hydraulic radius, rv, which is defined as the ratio of the volume occupied by water 195 

to the total frontal area of all cylinders:  196 �� = �஽ସ ቀଵ−�� ቁ                                                             (8) 197 

The drag coefficient and vegetation Reynolds number can then be expressed as follows:                                                          198 ܥ஽ = ʹ���ܵ �ܷ௘௚ଶ⁄                                                   (9) 199 ܴ�� = �ܷ௘௚�� ⁄ߥ               (10) 200 

The authors found that dependence of ܥ஽  on ܴ�� varies with obstruction density and configuration 201 

(random or staggered) as also observed by (Tanino and Nepf 2008, Kothyari et al. 2009).  202 



In compound channel flows an apparent shear stress, ��௡௧, arises due to the high velocity gradients 203 

that are experienced at the interfaces between neighbouring regions of the cross-section. The shear 204 

stress force is considered as: 205 �� = ��௡௧ܣ௦ℎ௘௔௥               (11) 206 

Where, ܣ௦ℎ௘௔௥  is the shear area, and ��௡௧ is the apparent shear stress 207 

This apparent shear stress was defined by Huthoff (2007) as follows: 208 ��௡௧ = ଵଶ ଶ௠௖ܷ)ߩ� − ܷଶ௙�)                                (12) 209 

where, ��௡௧ = shear stress at the interface between the main channel and the floodplain, � = a 210 

dimensionless interface coefficient, � ≈ Ͳ.ͲʹͲ, ܷ௠௖ = velocity of the flow in the main channel, 211 

௙ܷ� = velocity of flow above the floodplain.  212 

For one-line vegetation, because there are two dips at the interface between the main channel and 213 

the floodplain, the interfacial shear stress is expressed as follows:  214 ��௡௧ = ଵଶ ଶ௠௖ܷ)]ߩ� − ܷଶௗ��) + (ܷଶ௙� − ܷଶௗ��)]                        (13) 215 

where, ௗܷ�� = velocity of the flow near to the interface. 216 

In addition to the Huthoff (2007) expression, a number of methods for quantifying the apparent 217 

shear stress at the interface between the main channel and the floodplain were reviewed in 218 

(Thornton et al. 2000). Two of these methods have been used in the present study. The first of these 219 

was derived by Rajaratnam and Ahmadi (1981) and is defined as follows: 220 

��௡௧ = Ͳ.ͳͷ (ு��ு೑� − ͳ)ଶ (��௙�ܵ)                     (14)                          221 

where, �௠௖ = depth of flow in the main channel, �௙� = depth of flow on the floodplain, � = 222 

specific weight of water and ܵ = friction slope.  223 

 224 

The second approach, derived empirically by Thornton et al. (2000), relates the shear stress, 225 

percentage blockage due to vegetation, �஻ , flow depth, and flow velocities as follows: 226 

��௡௧ = Ͳ.ͳͲʹͷ ቀ�೑����ቁ−ଷ.ସଵସ8 ቀு೑�ு��ቁଶ ሺͳ − �஻ሻ                           (15) 227 



With one-line vegetation, drag coefficient is calculated from the following expression: 228 �஽ = �ீ − �ௌ + ��            (16) 229 

where �ௌ is the bed shear stress force and can be written as: 230 �ௌ =  231 (17)         ݈ܤܴܵ�ߩ

where ܴ is the hydraulic radius.   232 

        233 

Experimental methodology and setups 234 

Experiments were carried out in a 10 m × 1.2 m × 0.3 m glass-walled recirculating flume in the Hyder 235 

Hydraulics Laboratory at Cardiff University, UK. The bed slope was set to 0.001 for all test cases. A 236 

compound channel with one floodplain was installed in the flume by attaching slabs of plastic, 76 cm 237 

wide and 2.4 cm thick, alongside one of the side walls. The floodplain was therefore 76 cm wide, and 238 

the bankfull depth of the main channel was 2.4 cm (Fig. 2). The floodplain bed slope was equal to 239 

that of the main channel, i.e. Smc = Sfp = S = 0.001. Flow depths were controlled by a tailgate that was 240 

loĐated at the doǁŶstƌeaŵ eŶd of the fluŵe’s ǁoƌkiŶg seĐtioŶ. Uniform flow was verified by 241 

measuring the water level at 1m intervals along the working section, using a digital surface 242 

displacement gauge that outputs a voltage that is proportional to the length of its submerged 243 

section. The voltage signal was then amplified and logged on a workstation using data acquisition 244 

software. The volumetric flow rate was measured using a Nixon probe velocimeter, which itself was 245 

carefully calibrated using a previously established calibration curve for the flume.  The surface 246 

displacement gauge and Nixon velocimeter were also used for all measurements of water level and 247 

velocity that are presented in this article.  Level and velocity measurements were taken during 120 248 

seconds at a sampling frequency of 1Hz; 120 samples of instantaneous level and velocity were 249 

therefore available. The samples were checked by eye and any anomalous values were removed 250 

before the temporal mean was calculated.  251 

Wooden rods of three different diameters (D = 5.0 cm, 2.5 cm and 1.25 cm) were used as laboratory 252 

models for rigid emergent vegetation elements. Three canonical configurations were tested: 253 



unobstructed channel, fully covered floodplain and one-line vegetation. For the case of the fully 254 

covered floodplain the rods were inserted into holes that were drilled into the plastic floodplain in a 255 

staggered fashion; the centre-to-centre separation of the holes in streamwise and spanwise 256 

directions was 12.5 cm (Fig. 2a). This arrangement produced solid volume fractions of 24.8% (dense 257 

vegetation), 6.2% (medium) and 1.5% (sparse) for the three different rod diameters. These volume 258 

fractions represent a broad range and are comparable to fractions that have been studied by other 259 

researchers, for example Nepf (1999) and Tanino and Nepf (2008). For the case of one-line 260 

vegetation the rods were inserted into holes that were drilled along a line parrallel to the sides of 261 

the flume: the streamwise centre-to-centre separation of the holes was 12.5 cm and the hole 262 

centres were 2.5 cm from the edge of the main channel (Fig. 2b). This arrangement produced 263 

normalised vegetation spacings of L/D = 2.5, 5 and 10 for the three different rod diameters.  264 

Five discharges were tested for all vegetation configurations and rod diameters: 4.66 l/s, 5.87 l/s, 265 

7.51 l/s, 8.87 l/s and 11.03 l/s. Table 1 provides a summary of flow conditions for all test cases. 266 

For each discharge the water depth at the centre of the main channel was measured at streamwise 267 

iŶteƌǀals of  ϭ ŵ iŶ the seĐtioŶ ϯ ŵ ≤ x ≤ 9 ŵ. Measurements of mean streamwise velocity, U, were 268 

carried out in sections in which the flow was considered to be fully developed (refer to Fig. 4 for 269 

evidence of this). Figure 3 illustrates the velocity measurement locations for the wholl-vegetated 270 

and one-line configurations: for the fully covered floodplain, velocities in two sections were 271 

measured (x = 4.76 m, and 8.52 m), while for the one-line case four sections were considered (x = 272 

4.76 m, 7.76 m, 8.15 m and 8.52 m). In the main channel velocities were measured at two depths, 273 

0.2�௠௖ and at 0.8�௠௖, and the average was taken (ܷ = ( ଴ܷ.ଶு௠௖+ ଴ܷ.8ு௠௖)/2). The first spanwise 274 

measurement location was 6.5 cm from the main channel side-wall, and further measurements were 275 

taken at 5 cm spanwise intervals until a distance 7 cm from the edge of the floodplain (Zone I in Fig. 276 

3); over these last 7 cm (Zone II) measurements were taken at 1 cm spanwise intervals to improve 277 

the resolution in this complex region. On the floodplain (Zone III) the velocity was measured at the 278 

mid-depth, i.e. ܷ = ଴ܷ.ହு௙�, with two measurements between neighbouring rods in the same row 279 



taken. For the one-line vegetation case the same procedure was followed in the main channel 280 

(Zones I and II) as for the fully covered case but on the floodplain (Zone III) the velocities were 281 

measured at 5 cm spanwise intervals from the rod centre to the side wall. For the unobstructed 282 

channel case the same procedure was adopted for the main channel (Zones I and II) as for the other 283 

two cases, while on the floodplain (Zone III) measurements were taken 5 cm spanwise intervals 284 

between the edge of the main channel and the side wall.  285 

 286 

Results and Discussions 287 

Spanwise distribution of streamwise velocity 288 

Figure 4 presents spanwise profiles of mean depth-averaged streamwise velocity for the fully 289 

covered floodplain and one-line vegetation cases. Figures 4a, 4b and 4c correspond to the three 290 

different flow rates tested with one-line vegetation and Figs. 4d, 4e and 4f correspond to the 291 

different flow rates with a fully covered floodplain. Note that the velocity has been normalised on 292 

the bulk streamwise velocity for the whole system, Ubulk. Profiles measured at two (one-line) or four 293 

(fully covered) streamwise locations are presented: the close agreement between profiles measured 294 

at different streamwise locations indicates that the flow in the measurement section of the flume 295 

was fully developed.  296 

Figure 5 presents comparisons of spanwise profiles of mean depth-averaged streamwise velocity for 297 

the different configurations (unobstructed, fully covered and one-line) for the three flow rates that 298 

were tested. Note that for the fully covered floodplain and one-line cases only data pertaining to the 299 

D = 2.5cm cases have been presented. The velocity is normalised Ubulk. The plots provide clear 300 

confirmation that, as would be expected, flow velocity above a fully covered floodplain is noticeably 301 

lower than that above an unobstructed floodplain. However the plots also reveal that the inclusion 302 

of one-line vegetation produces higher velocities above the floodplain compared to the 303 

unobstructed case. Correspondingly, the streamwise velocities in the main channel are highest for 304 

the fully covered floodplain case, lowest for the unobstructed case and intermediate for the one-line 305 



case. Also noteworthy are the characters of the velocity distributions: for the fully covered and 306 

unobstructed floodplains the spanwise profiles follow an S-shaped curve but for one-line vegetation 307 

the profiles exhibit a distinct dip at the interface between the main channel and the floodplain.  308 

Spanwise profiles of depth-averaged mean streamwise velocity for the case of an unobstructed 309 

floodplain are shown in Fig. 6, illustrating the effect of flow rate on the velocity distribution. The plot 310 

reveals that the normalised velocity in the main channel decreases with increasing flow rate, while 311 

increasing above the floodplain.  312 

Figures 7a, 7b and 7c present spanwise profiles of depth-averaged mean streamwise velocity for the 313 

case of a fully covered floodplain. Each of the three sub-figures corresponds to a different flow rate, 314 

and in each sub-figure data pertaining to the three obstruction densities are plotted. In all cases the 315 

data exhibit S-shaped spanwise profiles, and the velocity in the main channel increases with 316 

increasing obstruction density. The floodplain velocities are shown to be largely independent of 317 

obstruction density, with the exception of the highest flow rate case (Fig. 7c), where the floodplain 318 

velocity is slightly larger for the lowest obstruction density. 319 

Figure 7d, 7e and 7f present spanwise profiles of depth-averaged mean streamwise velocity for the 320 

case of one-line vegetation, for the three different flow rates that have been considered. The 321 

velocity gradients either side of the interface between the main channel and the floodplain are very 322 

strong, leading to very high shear stresses and strong large scale vortices as shown by (Mulahasan et 323 

al. 2015). The profiles also reveal very pronounced local minima close to the line of vegetation, 324 

indicating suppression of momentum transfer between the main channel and the floodplain, which 325 

is in agreement with the findings of Sun and Shiono (2009) and Shiono et al. (2012), who also 326 

observed similarly pronounced minima at the edge of the floodplain. 327 

Estimation of mean drag coefficients  328 

Figure 8 presents the variation of drag coefficient with Reynolds number, based on Ubulk, and stem 329 

diameter, for the fully covered floodplain case. The experimental drag coefficient values for the 330 

present study have been estimated using the simple streamwise momentum balance, and are 331 



plotted alongside experimental data from a number of previous experimental studies. Note that the 332 

drag coefficient was calculated at all four measurement cross-sections (Fig. 3) and the mean was 333 

calculated. In addition, empirical relationships proposed by Tanino and Nepf (2008), Kothyari et al 334 

(2009) and Cheng and Nguyen (2011) have been applied to the hydraulic conditions investigated in 335 

the present study, and the resulting drag coefficient estimates have also been included in the plot. 336 

Clearly the collated data shows that the drag coefficient displays a high degree of sensitivity to 337 

changes in both Reynolds number and obstruction density. The experimental data from the present 338 

study appears to follow the general trend displayed by the other data sets, although there is 339 

considerable scatter. It is interesting that the lowest density ratio data sets of Tinco and Cowen 340 

(2013) (� = 1.0%) is the notable outlier from the general trend; in this case the drag coefficient 341 

appears to be largely independent of Reynolds number. Application of the empirical relationships to 342 

the hydraulic conditions tested in the present study generally produces very close agreement with 343 

the measured drag coefficients. 344 

Figure 9 shows the influence of rod diameter on the drag coefficient-Reynolds number relationship 345 

for the case of one-line vegetation. The figure clearly shows that drag coefficient decreases with 346 

increasing Reynolds number, and the range of measured drag coefficient increases with decreasing 347 

rod diameter. It is noteworthy that for all three rod diameters the gradients of the lines are  348 

noticeably steep. The drag coefficient is therefore very sensitive to changes in Reynolds number in 349 

the range investigated. As disĐussed iŶ the ͞TheoƌetiĐal CoŶsideƌatioŶs͟ seĐtioŶ of this aƌtiĐle, 350 

various researchers have proposed different empirical relationships to allow the determination of 351 

the interfacial shear stress in compound channels. Equations 12 to 15 have been used to estimate 352 

the interfacial shear stress for the flow cases investigated in the present study, and Fig. 10 reveals 353 

the effect of the choice of equation on the estimated drag coefficient.  Also included in the plot are 354 

data from the experimental study of Tanino and Nepf (2008) and Tanino and Nepf (2008)’s proposed 355 

drag coefficient equation for the wholly vegetated case. The plot reveals that the data from the 356 

present investigation, which populate the Reynolds number range 1800 < Re < 8400, largely follow 357 



the same trend as the experimental data of Tanino and Nepf. The plot also suggests that the choice 358 

of empirical equation does not significantly affect the estimation of drag coefficient: there is 359 

relatively little scatter between the four data sets. 360 

Impact of Vegetation on the Water Depth-Discharge Curve  361 

The influence of obstruction density on the water depth-discharge relationship for the fully covered 362 

floodplain case is shown in Fig. 11a. The plot clearly illustrates that in general the inclusion of a fully 363 

covered floodplain produces a marked increase in water depth compared to the unobstructed case 364 

for a given flow rate. The increase is smallest at the lowest flow rate and becomes more noticeable 365 

as flow rate increases. As would be expected, increasing the rod diameter, and therefore the 366 

obstruction density, results in further increases in water level. The water level increases with flow 367 

rate in all cases: interestingly, water depth appears to increase linearly with flow rate when the 368 

floodplain is vegetated but this is not the case for the unobstructed channel.   369 

Figure 11b presents the variation of water depth with flow rate for the one-line vegetation case. The 370 

inclusion of one-line vegetation produces a much smaller increase in water depth compared to the 371 

fully covered floodplain (Fig. 11a). This is due to the fact that the overall obstruction density, and 372 

therefore flow blockage, for the one-line case is naturally much smaller than in the full-vegetated 373 

case. The plot does indicate, however, that water depth is noticeably more sensitive to changes in 374 

L/D for one-line vegetation than to changes in density for a fully covered floodplain. It can clearly be 375 

seen that there has been a significant increase in the water depth as the obstruction density is 376 

increased in comparison with non-vegetated floodplain (Fig. 11a). The mean increase in the water 377 

depth is 15.88%, 15.13% and 13.1% for dense, medium and sparse obstruction densities 378 

respectively.  379 

  380 

Conclusions 381 

Laboratory experiments were carried out to quantify the influence of floodplain vegetation on the 382 

rating curve, mean drag coefficient and spanwise distribution of streamwise velocity in compound 383 



open channels. Two configurations - fully covered floodplain and one-line obstructions - were tested 384 

along with a smooth unobstructed compound channel. Vegetation elements were modelled by 385 

emergent rigid wooden rods of circular cross-section. For the cases with obstructions (i.e. 386 

vegetation) the effect of obstruction density was investigated, and in all cases three flow rates were 387 

tested. 388 

The results showed that for a fully covered floodplain the water depth increased by 15.88%, 15.13% 389 

and 13.1% for dense, medium and sparse obstruction densities respectively compared to the 390 

unobstructed case. One-line obstructions produced a smaller increase in flow depth than the fully 391 

covered floodplain. 392 

It was observed that for a fully covered floodplain the drag coefficient increases with increasing 393 

obstruction density. For all obstruction densities the drag coefficient was observed to decrease as 394 

Reynolds number increased. Applying the empirical equations of Tanino and Nepf (2008), Kothyari, 395 

et al. (2009) and Cheng and Nguyen (2011) to estimate the drag coefficients for the hydraulic 396 

conditions presently tested produced values in the range of experimental data from the literature, 397 

with relatively little scatter. The experimentally-recorded drag coefficients agreed well with Tinco 398 

aŶd CoǁeŶ’s ;ϮϬϭϯͿ ƌesults foƌ ŵediuŵ obstruction density, but the agreement for low obstruction 399 

density is less convincing.  400 

For one-line obstructions, it was observed that drag coefficient increases with decreasing rod 401 

diameter. Empirical equations from the literature were used to estimate the interfacial shear stress 402 

at the interface between the main channel and the floodplain: accounting for the interfacial shear 403 

stress in this way produced more accurate estimations of the overall drag coefficient compared to 404 

simply equating drag force to the overall bed shear stress. Using Tanino and Nepf’s (2008) empirical 405 

equation for the range of hydraulic parameters presently tested produced estimations for drag 406 

coefficient in the region of 1.0.  407 

Spanwise profiles of depth-averaged mean streamwise velocity confirmed that introduction of a fully 408 

covered floodplain results in a considerable reduction in floodplain velocities compared to the 409 



unobstructed case, while one-line obstructions produce an increase in floodplain velocity. Velocity in 410 

the main channel is lower for fully covered floodplains and higher for one-line obstructions. The 411 

spanwise distributions of streamwise velocity for fully covered and unobstructed floodplains follow 412 

S-shaped curves whereas for one-line obstructions a very pronounced dip is observed at the 413 

interface between the main channel and the floodplain. 414 
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 419 

Notation 420 

The following symbols were used in this paper: 421 ܣ =  cross sectional area of flow; 422 � = obstruction (or vegetation) density per unit length of reach; 423 ܣ௕௘ௗ = area of bed occupied by vegetation; 424 ܣ௙ =  projected area; 425 ܣ௦ℎ௘௔௥ = shear area; 426 ܣ�௘௚ = area of vegetation; 427 ܥ஽ = drag coefficient; 428 ܥ஽� = vegetated drag coefficient; 429 ܦ =  cylinder diameter; 430 �ܤ = percent flow blockage; 431 �஽ = drag force per unit volume; 432 �ீ = gravity force; 433 �� =  Froude number; 434 �� =  interface shear stress; 435 



� = gravitational acceleration; 436 �௠௖ = depth of flow in the main channel; 437 � =  flow depth; 438 �௙� = depth of flow on the floodplain; 439 � =   spanwise spacing; 440 ݈ =  channel reach length; 441 ݉ =  number of cylinders per unit area; 442 ܳ = discharge; 443 ܴ = hydraulic radius; 444 ܴ�஽ =  cylinder Reynolds number; 445 ܴ�� = vegetated Reynolds number; 446 �� = vegetated-related hydraulic radius; 447 ܵ = channel bed slope; 448 ܸܵ� =  solid volume fraction; 449 ܷ = average velocity; 450 

Ubulk = bulk velocity for whole flume; 451 

௔ܷ = average velocity approaching the cylinder; 452 

௙ܷ� =velocity of flow on the floodplain; 453 ܷ௠௖ = velocity of the flow in the main channel; 454 

�ܷ௘௚ = velocity of flow within the vegetation elements; 455 � = lateral streamwise width; 456 � =flume width; 457 �଴ & �ଵ = functions of solid volume fraction; 458 � = specific weight of water; 459 ߦ =  parameter representing the cylinder staggered pattern; 460 ߥ = kinematic viscosity; 461 



ߩ = density of water; 462 ��௡௧ = apparent shear stresses at the interface; 463 � = obstruction (or vegetation) density ; 464 � = proportionality coefficient. 465 
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TABLE 1 Summary of flow conditions 625 

Config. 
D          

(cm) 

Q 

(l/s) 

Hmc 

(cm) 

Hfp 

(cm) 

Ubulk 

(cm/s) 
ReD ReR Fr 

SVF 

(%) 
L/D 

 

Non-

vegetated 

floodplain 

 

 

- 4.66 3.96 1.56 16.07 - 3661 0.26 - - 

- 5.82 4.61 2.21 15.81 - 4523 0.24 - - 

- 7.51 5.26 2.86 16.84 - 5782 0.23 - - 

- 8.87 5.59 3.19 18.27 - 6794 0.25 - - 

- 11.03 6.12 3.72 20.08 - 8376 0.26 - - 

One-line 

 

 

 

5.00 4.66 4.39 1.99 13.64 6781 3635 0.21 - 2.5 

5.00 5.82 5.12 2.72 13.55 6736 4486 0.19 - 2.5 

5.00 7.51 5.83 3.43 14.60 7257 5730 0.19 - 2.5 

5.00 8.87 6.49 4.09 14.94 7427 6699 0.19 - 2.5 

5.00 11.03 6.98 4.58 16.90 8400 8267 0.20 - 2.5 

2.50 4.66 4.22 1.82 14.51 3606 3646 0.23 - 5.0 

2.50 5.82 4.71 2.31 15.31 3804 4516 0.23 - 5.0 

2.50 7.51 5.39 2.99 16.27 4044 5770 0.22 - 5.0 

2.50 8.87 5.95 3.55 16.78 4169 6756 0.22 - 5.0 

2.50 11.03 6.54 4.14 18.39 4570 8323 0.23 - 5.0 

1.25 4.66 4.22 1.82 14.51 1803 3646 0.23 - 10 

1.25 5.82 4.69 2.29 15.41 1914 4517 0.23 - 10 

1.25 7.51 5.34 2.94 16.49 2049 5774 0.23 - 10 

1.25 8.87 5.78 3.38 17.45 2168 6774 0.23 - 10 

1.25 11.03 6.14 3.74 19.99 2484 8374 0.26 - 10 

Fully covered 

 

5.00 4.66 4.46 2.06 13.32 6619 3633 0.20 24.8 - 

5.00 5.82 5.14 2.74 13.48 6699 4486 0.19 24.8 - 

5.00 7.51 6.18 3.78 13.50 6709 5700 0.17 24.8 - 

5.00 8.87 6.99 4.59 13.57 6746 6650 0.16 24.8 - 

5.00 11.03 7.95 5.55 14.34 7128 8148 0.16 24.8 - 

2.50 4.66 4.37 1.97 13.74 3415 3638 0.21 6.2 - 

2.50 5.82 5.01 2.61 13.98 3475 4495 0.20 6.2 - 

2.50 7.51 6.20 3.8 13.44 3340 5699 0.17 6.2 - 

2.50 8.87 7.00 4.6 13.55 3367 6649 0.16 6.2 - 

2.50 11.03 7.95 5.55 14.34 3564 8148 0.16 6.2 - 

1.25 4.66 4.35 1.94 13.87 1724 3639 0.21 1.5 - 

1.25 5.82 4.89 2.49 14.48 1800 4503 0.21 1.5 - 

1.25 7.51 6.05 3.65 13.89 1726 5712 0.18 1.5 - 

1.25 8.87 6.69 4.29 14.36 1785 6681 0.18 1.5 - 

1.25 11.03 7.78 5.38 14.73 1831 8169 0.17 1.5 - 
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Figure Captions 631 

Fig. 1. Schematic showing an open channel with emergent vegetation represented by circular rods. 632 

Fig. 2. Experimental set-ups: a) fully covered floodplain b) one-line vegetation. 633 

Fig. 3. Schematics (top-view) of measurement section of flume showing measurement locations; (a) 634 

fully covered floodplain, (b) one-line vegetation and unobstructed floodplain. Dashed lines denote 635 

water level measurement cross-sections. Zones I, II and III denote zone of different resolution for 636 

velocity measurements. 637 

Fig. 4. Spanwise profiles of mean depth-averaged streamwise velocity: a) fully covered, Q=4.66l/s; b) 638 

fully covered, Q=7.51l/s; c) fully covered, Q=11.03l/s, c) one-line, Q=4.66l/s; d) one-line, Q=7.51l/s; 639 

e) one-line, Q=11.03l/s. Medium obstruction density (D=2.5cm) for all cases. 640 

Fig. 5. Spanwise profiles of mean depth-averaged streamwise velocity for fully covered floodplain 641 

and one-line vegetation in comparison to non-vegetated floodplain: a) Q=4.66 l/s; b) Q=7.51 l/s; and 642 

c) Q=11.03 l/s 643 

Fig. 6. Spanwise profiles of mean depth-averaged streamwise velocity for unobstructed compound 644 

channel  645 

Fig. 7. Impact of the obstruction density on the spanwise velocity profiles: a) fully covered, 646 

Q=4.66l/s; b) fully covered, Q=7.51l/s; c) fully covered, Q=11.03l/s; d) one-line, Q=4.66l/s; e) one-647 

line, Q=7.51l/s; and f) one-line, Q=11.03l/s. 648 

Fig. 8. Drag coefficient-Reynolds number relationship for fully covered floodplain 649 

Fig. 9. Impact of rod diameter on the drag coefficient-Reynolds number relationship from water 650 

balance equation (FD = FG-FT-FS) for one-line vegetation 651 

Fig. 10. Drag coefficient-Reynolds number relationship: effect of choice of theoretical approach to 652 

calculate interfacial shear stress 653 

Fig. 11. Stage-discharge curves for compound channel flow: a) fully covered and unobstructed 654 

floodplains; b) one-line vegetation and unobstructed floodplain.  655 


