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Abstract. Water qualitymonitoring programs are often based upon low-frequency regular sampling regimes fromwhich
loads are estimated. In this study, stream flow (Q) and phosphorus concentrations (C) were measured at 2-hourly intervals

over a 10-week period between October and December 2006 in a tributary of Loch Leven, Scotland. The dataset was
deconstructed to emulate different weekly, daily and composite sampling strategies, the aim being to highlight the large
amount of uncertainty and imprecision in estimating total (TP) and soluble reactive (SRP) phosphorus loads on the basis of

commonly applied sampling strategies and calculation methods. When based on the full dataset, phosphorus (P) loads
estimated from the 2-hourly data were 459 kg TP, 351 kg particulate P (PP) and 78 kg SRP. In contrast, P loads estimated
from different weekly, daily and composite sampling regimes and determined by applying seven different calculation

methods ranged from 22 to 5028 kg TP, 13 to 4588 kg PP and 7 to 286 kg SRP. The results of this study highlight the large
amount of uncertainty and imprecision associated with estimating P loads and contributes to the body of evidence that
high-frequencymonitoring is necessary if P loads to standingwater bodies are to be quantified accurately and the effects of
nutrient management programs interpreted correctly.
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Introduction

Eutrophication is a widespread problem caused by nutrient
pollution. These nutrients enter a waterbody from point and
diffuse sources within its catchment and, in many cases, phos-

phorus (P) is the main driver of the observed biological
response, especially when the receiving waterbody is a lake
(Schindler et al. 2008). Although inputs from point sources are

relatively easy to quantify, determining P loads to waterbodies
from diffuse sources is much more difficult. Nevertheless, it is
important that the method of assessment used provides suffi-
cient data to estimate these loads as accurately as possible.

Catchment management decisions depend on the assumption
that sampling programs provide an accurate estimate of ‘true’
P loads (Cassidy and Jordan 2011).Without this, the effectiveness

of management measures that are aimed at improving water
quality cannot be assessed (Johnes 2007) with a reliable degree
of certainty.

When designing a program to estimate a pollutant load from
a diffuse source accurately, two key issues need to be addressed
(Rekolainen et al. 1991; Johnes 2007). These are (1) how often

should stream flow (Q) and concentration (C) be measured, and
(2) which method should be used to calculate a nutrient load
from these values? The answers to these questions are

influenced by a range of constraints such as financial budgets,

project goals (concentration versus loads) and desired level of
accuracy with respect to ‘true’ loads (Tate et al. 1999; King and
Harmel 2003). Choosing an appropriate approach is difficult

because of the lack of information available on different
sampling strategies and their associated uncertainty and
imprecision.

The most common sampling strategy used by regulatory
authorities in the UK (Greig 2005) and other European Union
(EU) countries (Kristensen and Bøgestrand 1996; Johnes 2007)
is regular time-interval sampling at a very low frequency (i.e.

monthly, or at best, weekly). Simple and cost-effective, low-
frequency sampling was designed to characterise point-source
pollution, which, historically, was the dominant source of

P causing eutrophication. Since the introduction of the EUUrban
Waste Water Treatment Directive, point sources of P have been
reduced. Although sewage sources still appear to influence

reactive P concentrations (Foy 2007), especially in spring–
summer under low flow conditions (Jarvie et al. 2006), in
general, total P input concentrations and loads in many rural

catchments are now dominated by diffuse sources.
It is well established that diffuse P is delivered to water

bodies predominantly during periods of heavy rainfall and

CSIRO PUBLISHING

Marine and Freshwater Research, 2013, 64, 373–386

http://dx.doi.org/10.1071/MF12097

Journal compilation � CSIRO 2013 www.publish.csiro.au/journals/mfr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/19530827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


subsequent storm events (Haygarth and Jarvis 1996; Evans and
Johnes 2004). It has been reported widely that the highest

P loads to standing waters in rural catchments are associated
with high rainfall and surface runoff (e.g. Poinke et al. 1999;
Haygarth et al. 2005; Bowes et al. 2009) and it is also well

established that more than 80% of the annual P load to a
waterbody is transported by just two or three large high-flow
events (Sharpley 2008; Jordan et al. 2012).

Statistical sampling theory suggests that shorter sampling
intervals producemore accurate estimates of P loads than longer
intervals (Haan 2002; Harmel and King 2005), because high-
frequency sampling captures important storm events that are

responsible for the delivery of large quantities of diffuse source
pollutants, especially P (Phillips et al. 1999; Jordan et al. 2005).
In spite of this, there has been little progress in increasing

sampling frequency in national monitoring programs across
the EU, even though this could be vital in terms of meeting
the regulatory requirements of the EU Water Framework

Directive.
Several studies have tried to quantify the uncertainty and

imprecision of P loads estimated using different calculation
methods and sampling strategies (Walling et al. 2001; Johnes

2007; Bowes et al. 2009). Other studies have compared estimated
P loads with ‘true’ P loads determined from high-frequency
measurements of P concentration that capture the effects of

storm events using automatic water samplers (7-hourly sam-
pling: Jordan and Cassidy 2011) or in situ water quality
monitoring equipment (Wade et al. 2012). The current study

examined the effect of different calculation methods on P load
estimates and compared estimated and ‘true’ P loads. High-
frequency (2-hourly) sampling data that captured the influence

of winter storm events on P dynamics were used to assess the
uncertainty and imprecision of total P (TP), particulate P (PP)
and soluble reactive P (SRP) load estimation as a result of
(1) different sampling strategies (weekly, daily and composite

sampling), (2) different interpolation and extrapolation calcula-
tion methods and (3) different sampling times. Uncertainty was
determined by comparing estimated P loads to the ‘true’ TP, PP

and SRP loads calculated from 2-hourly, paired measures of
Q and C. The aim of this study was to highlight the inaccuracy
and imprecision associated with different sampling frequencies

and estimation methods because only when load estimates are
accurate and reliable can the effectiveness of targeted nutrient-
reduction programs be assessed correctly.

Materials and methods

Study site

Loch Leven is a shallow loch in lowland Scotland, UK, which
has a surface area of 13.3 km2 andmean andmaximum depths of

3.9m and 25.5m, respectively (Fig. 1). The loch has suffered
from eutrophication problems for many years as a result of high
P loads from the catchment (BaileyWatts and Kirika 1999;May
and Spears 2012). Comparedwith other inland lochs of its size in

Scotland, it has an unusually intensively farmed catchment with
,80%of the area being used for agricultural crops and livestock
production, which are key diffuse sources of P to the loch. The

Pow Burn, on which this study is focussed, is a 12.9-km-long
second-order tributary that flows into Loch Leven. It drains a

catchment area of 10.9 km2 and, during periods of heavy rain-
fall, transports large quantities of P in association with eroded
soils and suspended sediment to the loch (Defew 2008).

Estimation of ‘true’ phosphorus loads

The objectives of this study were achieved by collecting high-
frequency (2-hourly) stream flow (Q) and P concentration (C)
data, deconstructing them to emulate different subdaily, daily,

weekly and composite sampling regimes, and then calculating
TP, PP and SRP loads for the 10-week study period using seven
different calculation methods. ‘True’ P load, in this context, is

defined as that obtained using the 2-hourly data.
The area of the UK inwhich this studywas undertaken has an

average annual rainfall of,1000mm, and high flows associated
with short periods of intensive rainfall can occur at any time of

year; there are no well defined wet or dry periods. The timing of
the intensive sampling campaign was targeted at the period
between October and December, when high-flow events tend to

occur more reliably, because the impact of such events on load
estimation was the focus of the study. However, the study period
was not atypical of the year as a whole; it spanned 19% of the

year and ,18% of the annual average rainfall fell over this
period.

In detail, water samples were collected at the PowBurn every
2 h from 10 October to 5 December 2006 inclusive using a Hach

Lange� EPIC automatic sampler located on the bank of the
stream. All water samples were analysed for TP, total soluble
P (TSP) and SRP content within 48 h of collection following the

methods of Eisenreich et al. (1975) and Murphy and Riley
(1962). SRP concentrations in stream water samples with ‘low’
and ‘high’ initial SRP concentrations (,40 and 250mg L�1,

respectively) that had been stored in the polyethylene bottles of
the automatic sampler under winter temperature conditions
(0–78C) were shown to be stable for up to 48 h (paired t-test,

n¼ 3) (Defew 2008). Therefore, storage of samples for up to
48 h before analysis for SRP content was considered an

Location of sampling on
the Pow Burn

0 100 200 300 km

Fig. 1. Map of Loch Leven and the catchment.
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acceptable method for this study. PP was calculated as PP¼
TP�TSP. Corresponding high-frequency flow data recorded
at 15-min intervals by a continuous flow gaugewere provided by
the Scottish Environment Protection Agency. The ‘true’ TP, PP

and SRP loads for the 10-week period were calculated from
these data using Eqn 1:

Lt ¼ K �
Xn

i¼1

CiQi

 !
ð1Þ

where Lt¼ estimated ‘true’ P load (kg),K¼ conversion factor to
take account of time period of record, n¼ number of samples,

Ci¼ instantaneous P concentration (mg L�1), and Qi¼
instantaneous discharge at time of chemical sampling (m3 s�1).

Sources of uncertainty

Three potential sources of uncertainty and imprecision were

tested during this study. These were: calculation method, sam-
pling strategy and sampling time.

Calculation method

Seven different calculation methods were used to estimate P
loads (Table 1). These were the most commonly applied

methods in the literature. Methods A–F are interpolation tech-

niques that assume that the P concentration of a water sample is
representative of conditions in the river for the period between
two sampling occasions. In contrast, Method G is an extrapola-

tion technique that describes a relationship between Q and C at
the time of sampling. This relationship is then applied to
continuous or high-frequency measures of Q to predict

P concentrations between the sampling occasions. Phosphorus
load is then calculated over the whole period of interest (Webb
et al. 1997).

Sampling strategy

Eight different weekly sampling strategies were emulated by
varying the start dates of the subsampling of the 2-hourly dataset

as follows: 10, 11, 12, 13, 14, 15, 16 and 17 October. This
created eight groups of data referred to, below, as weekly
sampling Groups 1–8, respectively. Twelve additional datasets,

emulating data collections at daily frequencies and starting at
different times of each day, were also created. Finally, four
different time-averaged composite water sampling strategies
were constructed from the raw data using time-averaged values

ofC andQ calculated from samples that had been collected over
the previous 6, 12, 24 or 48 h, respectively. The rationale for
examining time-averaged composite datasets was that, if this

sampling strategy yielded similar P load estimates to the loads

Table 1. Interpolation (A]F) and extrapolation (G) load-estimation methods using intermittent values of stream flow (Q) and phosphorus

concentration (C) over a fixed period

K¼ conversion factor to take account of period of record. n¼ no. of samples. Ci¼ instantaneous concentration associated with individual samples (mg L�1).

Qi¼ instantaneous discharge at time of sampling (m3 s�1). Qr ¼mean discharge for period of record using continuous measures of Q (m3 s�1). Qp ¼mean

discharge for interval between samples (m3 s�1).Cc5 estimate of P concentration from continuous stream flow value.Qc¼ direct measurement or estimate of

continuous stream flow (m3 s�1). m¼ slope of linear regression. b¼ intercept of linear regression

Method Calculation procedure Reference

A Total load ¼ K
Xn

i¼1

Ci

n

 !
Xn

i¼1

Qi

n

 !
Verhoff et al. (1980)

B Total load ¼ K
Xn

i¼1

Ci

n

 !
Qr Ongley (1973)

C Total load ¼ K
Xn

i¼1

CiQi

n

� �
Rodda and Jones (1983)

D Total load ¼ K
Xn

i¼1

CiQp

 !
Walling and Webb (1981)

E Total load ¼ K

Pn

i¼1

ðCiQiÞ
Pn

i¼1

Qi

Qr Verhoff et al. (1980)

F Total load ¼ K
Xn

i¼1

ðCiQiÞ Rodda and Jones (1983)

G Log-Log linear regressions between Ci and Qi to estimate P concentrations (Cc) on the basis of

continuous measures of stream flow (Qc). Log10Cc¼ (mLog10Qc) þ b. A correction factor (CF) was

applied to account for the inherent underestimation associated with log-log linear regression analysis.

s2¼
Xn

i¼1

ðLog10Ci � Log10CcÞ
ðn� 2Þ

2

CF.¼ exp (2.65s2) Total load ¼ K
Xn

i¼1

ðCcQcÞ
 !

Stevens and Smith (1978),

Ferguson (1986)
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calculated from 2-hourly sampling, it would reduce the resource
required for water sample analysis when constructing loads.

Sampling time

The effect of sampling at different times of day was investi-
gated. Load estimates were calculated from paired measures of
Q and C collected at 01 : 00, 03 : 00. 05 : 00, 07 : 00, 09 : 00,

11 : 00, 13 : 00, 15 : 00, 17 : 00, 19 : 00, 21 : 00 and 23 : 00 hours
during hypothetical weekly and daily sampling programs.

Calculating uncertainty

The uncertainty or accuracy of a load estimation procedure can
be viewed as the difference between the actual (‘true’) load
transported by a river and the estimated load (Webb et al. 1997;
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Fig. 2. Two-hourly measures of stream flow (upper panel) and P concentrations (lower panel) at the Pow Burn sampling site,

October to December 2006. Ten storm events (A–J) of varying magnitude were captured.
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Johnes 2007). In this study, the error of each load estimate is
presented as a percentage deviation from the ‘true’ load (Eqn 2).

Positive percentage deviations indicated overestimations of
P load, while negative percentage deviations indicated under-
estimated P loads.

Uncertainty ð% deviation from ‘true’ P loadÞ

¼ Lest

Lt

� �
� 100

� �
� 100

ð2Þ

where Lest¼ the estimated P load based on a specific dataset,
andLt¼ the ‘true’ P load based on the high-frequency (2-hourly)
dataset.

Data presentation

The uncertainty (as a measure of % deviation) generated in TP,
PP and SRP load estimates by using different calculation

methods, sampling strategies and sampling times, was com-
pared using frequency distributions fitted to raw data using a
‘largest extreme value’ model in Minitab (ver. 15). Negative

distributions highlighted underestimated P loads, whilst positive
distributions showed overestimated P loads (as indicated by loc
values). The spread of the frequency distribution tail described

the precision of load estimates, which was characterised by the
degree of dispersion generated by a given calculation approach.
A greater degree of dispersion (as indicated by scale values) was

interpreted as indicating a lower degree of precision and
vice versa.

Statistical analyses

All tests were carried out at a 95% confidence level. Anderson–
Darling normality tests were used to assess data distributions.

Data were not normally distributed and were subsequently
log10-transformed. One-way ANOVA and Tukey’s post hoc

analyses were performed to determine whether there were sta-

tistical differences between data groups. For load estimates
calculated from weekly data, calculation method (n¼ 7), sam-
pling group (n¼ 8) and sampling time (n¼ 12) were the three
factors tested. Calculation method (n¼ 7) and sampling time

(n¼ 12) were the factors tested for daily sampling strategies.
Differences between load estimates as a function of calculation
method (n¼ 7) and sampling design (n¼ 4) were tested for

composite sampling datasets.

Results

Nutrient concentrations and stream flow

Fig. 2 shows the high temporal variability in stream flow and
P concentrations in the Pow Burn during the period of the study.

A summary of P concentrations and stream flows measured
during the monitoring period are given in Table 2. Significant
increases in P were closely associated with increasing stream

flow during storm events.

‘True’ phosphorus loads

Based on 2-hourly measures of Q and C, ‘true’ P loads for the
10-week study period were calculated to be 459 kg TP, 78 kg

SRP and 351 kg PP. Together, 10 high-flow events of varying
size contributed 363 kg (79%), 49 kg (63%) and 295 kg (84%) of

the ‘true’ TP, SRP and PP loads, respectively. The largest storm
event alone, which occurred on 26 October 2006 (Fig. 2, Event
D), contributed 157 kg (34%), 13 kg (17%) and 136 kg (39%) of

the ‘true’ TP, SRP and PP loads, respectively, demonstrating the
importance of storm events of varying magnitude in P mobili-
sation and delivery, and highlighting the need to capture such

events during regulatory sampling programs.

Weekly sampling frequency

Sampling strategy

Phosphorus loads calculated using seven calculation meth-
ods over eight different weekly sampling programs, and 12
sampling times, ranged from 89 to 5028 kg TP, 35 to 4588 kg PP

and 41 to 286 kg SRP. Frequency distributions for these datasets
(Fig. 3) showed a tendency for TP, PP and SRP loads to be
underestimated when determined fromweekly datasets, with TP

and PP having a greater negative bias compared with SRP.
Table 3a summarises the accuracy of load estimates based on
different weekly sampling strategies. Results suggest that most
(.70%) of TP, PP and SRP load estimates are likely to be

markedly underestimated as a result of this low sampling
frequency. The number of estimates within �10% of ‘true’
TP, PP and SRP loads was 48 (7%), 37 (6%) and 85 (13%),

respectively (n¼ 672). In addition, there was a very low
probability (,1%) that estimated P loads would be identical
to the ‘true’ P loads, determined to the nearest whole number,

when calculated using data collected at weekly intervals.

Calculation method

Negatively skewed frequency distributions indicated a clear

tendency for all calculation methods to tend towards under-
estimating P loads (Fig. 3). There were statistical differences
between P load estimates calculated using different methods
(Table 4a). Tukey’s post hoc analysis showed that TP and PP

loads calculated by Methods A, B and F were statistically
different from those calculated by Method G. In this case, TP
and PP loadswere underestimated themost byMethodsA,B and

F, whilst Method G underestimated TP and PP loads the least
and could be considered more accurate. However, Method G
appeared to be less precise than Methods A, B and F, given that

the dispersion of estimated loads was greater. Similarly, Meth-
ods C and D yielded the least precise load estimates. This was
also true for estimates of SRP. However, patterns of accuracy
and precision were slightly different for SRP than TP and PP.

Table 2. Summary of nutrient concentrations and stream flow

data from high-frequency monitoring survey (10 October 2006 to

5 December 2006) (n5 672)

Minimum Maximum Median Mean

TP (mg L�1) 63 2156 114 197

SRP (mgL�1) 32 375 51 56

PP (mgL�1) 11 2021 51 124

Flow (m3 s�1) 0.067 3.82 0.219 0.260

Uncertainties in estimated P loads Marine and Freshwater Research 377
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Methods A and F underestimated SRP loads the most and
estimates were statistically lower than those from all other
calculation methods; however, the extrapolation method (G)

did not improve the accuracy associated with SRP load estima-
tion compared with interpolation methods.

Sampling group

Frequency distributions for all weekly sampling groups
(i.e. 1–8, as defined in theMethods section above) are presented
in Fig. 3. The data show that TP, PP and SRP loads were most

greatly underestimated in Sampling Groups 3 and 4. For TP and
PP, the least uncertainty was associated with weekly Sampling
Groups 1, 5 and 8. SRP loads were most accurate when
calculated using data in Sampling Groups 1 and 8. However,

there was a lower degree of precision associated with Groups 1,
5 and 8 compared with Groups 3 and 4. There were statistical
differences between TP and PP load estimates using data from

different sampling groups (Table 4). SamplingGroups [3 and 4],

[1, 5 and 8], and [2, 6 and 7] were statistically different (Tukey’s
post hoc analysis). For SRP load estimates, Groups [1 and 8],
[3, 6 and 7], [2 and 5], and [4] were statistically different (Tukey’s

post hoc analysis). These results show that sampling day is an
important factor affecting the accuracy of P load estimates.

Sampling time

Load estimate accuracy and precision were also notably
influenced by the time at which weekly paired measures of
C and Q were collected (Fig. 3). For TP and PP, there were

statistical differences between load estimates calculated using
data collected at different times of day (Table 4c). Loads
calculated using values collected at 01.00 hours and 03.00 hours
were estimated more accurately than loads calculated using

C and Q values between 19.00 hours and 23.00 hours (Tukey’s
post hoc analysis). Similarly, SRP loads calculated using values
ofC andQmeasured between 13.00 hours and 19.00 hours were

more accurate.

Table 3. Accuracy of load estimations by seven different calculation methods based on different (a) weekly,

(b) daily and (c) composite sampling strategies

Number/percentage of load estimates deviating from ‘true’ load

TP PP SRP

(a) Weekly sampling

Overestimate 102 (15.2%) 107 (15.9%) 184 (27.4%)

Underestimate 567 (84.4%) 562 (83.6%) 480 (71.4%)

Identical to ‘true’ load 3 (0.4%) 3 (0.5%) 8 (1.2%)

Total no. of estimates 672 (100%) 672 (100%) 672 (100%)

(b) Daily sampling

Overestimate 20 (23.8%) 11 (13.1%) 26 (31%)

Underestimate 63 (75%) 66 (78.6%) 56 (66.6%)

Identical to ‘true’ load 1 (1.2%) 7 (8.3%) 2 (2.4%)

Total no. of estimates 84 (100%) 84 (100%) 84 (100%)

(c) Composite sampling

Overestimate 0 (%) 0 (%) 0 (%)

Underestimate 28 (100%) 28 (100%) 24 (86%)

Identical to ‘true’ load 0 (%) 0 (%) 4 (14%)

Total no. of estimates 28 (100%) 28 (100%) 28 (100%)

Table 4. Results (F and significance values) of one-way ANOVA between P load estimates based on (a) weekly sampling, (b) daily sampling and

(c) composite sampling strategies

TP PP SRP

(a) Weekly sampling

Calculation method F¼ 3.83, P¼ 0.001 F¼ 4.19, P, 0.001 F¼ 4.38, P, 0.001

Sampling group F¼ 62.62, P, 0.001 F¼ 75.74, P, 0.001 F¼ 54.31, P, 0.001

Sampling time F¼ 7.10, P, 0.001 F¼ 6.97, P, 0.001 F¼ 6.13, P, 0.001

(b) Daily sampling

Calculation method F¼ 3.19, P, 0.001 F¼ 3.49, P, 0.005 F¼ 1.36, P¼ 0.241

Sampling time F¼ 8.66, P, 0.01 F¼ 10.11, P, 0.001 F¼ 3.31, P, 0.001

(c) Composite sampling

Calculation method F¼ 1.75, P¼ 0.158 F¼ 3.30, P¼ 0.02 F¼ 0.08, P¼ 0.998

Composite design F¼ 9.58, P, 0.01 F¼ 4.65 P¼ 0.01 F¼ 82.57, P, 0.01

.

.
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Daily sampling frequency

Sampling strategy

Estimated loads ranged from 22 to 1891 kg TP, from 13 to

1503 kg PP and from 7 to 276 kg SRP. The percentage deviation
of P estimates calculated using daily measures of C and Q at
different times of each sampling day, and using seven different
calculationmethods, is shown in Fig. 4. In comparison toweekly

sampling strategies, P loads were mostly underestimated when
calculated from daily data (Table 3b). Collecting data at a daily
frequency did not result in any increase in the likelihood of the

estimated P loads being identical to ‘true’ P loads (Table 3b).
The number of estimates within�10% of ‘true’ TP and PP loads
was low, i.e. 9 (13%) and 8 (10%), respectively (n¼ 84).

However, 37 (44%) of SRP load estimates were within �10%

of the ‘true’ load, a notable improvement in comparison with
weekly sampling programs.

Calculation method

TP, PP and SRP loads were consistently underestimated by
calculation Methods A and B when based on data collected at
daily frequency (Fig. 4). TP and PP loads estimated by Methods

A and B were found to be statistically different from loads
estimated by all other methods (Table 4b). Frequency distribu-
tion analysis suggested that Method C resulted in the most

accurate TP and PP loads (Fig. 5), although this method was the
least precise. The extrapolation method (G) had the greatest
precision, but still tended towards underestimating P loads.

This method was particularly good for estimating SRP loads.

Sampling time (hrs)
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Fig. 4. Percentage deviation from ‘true’ phosphorus loads for the period 10 October to 5 December 2006. Loads are based on seven

different calculation methodologies (A–G), using daily paired phosphorus concentrations and stream flows at different times of day

(01.00 hours to 23.00 hours).
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Method G could be considered the best of the methods tested for
estimating ‘true’ TP, PP and SRP loads if data are collected

daily.

Daily sampling time

Results showed that sampling time affected the accuracy of P
load estimates, even when sampling frequency was daily, and
was an important factor influencing the accuracy of load

estimates calculated using different methods (Fig. 4). Statistical
analysis showed that there were significant differences between
P loads estimated using different sampling times (Table 4b). TP

and PP loads estimated from data collected between 23.00 hours
and 05.00 hours were statistically different from loads calculated
using data collected between 11.00 hours and 21.00 hours.
Similarly, SRP loads calculated from data collected between

23.00 hours and 09.00 hours were statistically different from
other sampling times (Tukey’s post hoc analysis). Frequency
distribution analysis showed that loads calculated using values

of C and Q measured in the afternoon were the most inaccurate
(i.e. differed most from the 2-hourly load), but the most precise
(Fig. 5). In contrast, loads were more accurate when calculated

from data collected in the early hours of the morning, but these
had low precision (Fig. 5).

Composite sampling design

Fig. 6 shows percentage deviations of load estimates calculated
by seven different methods using four different composite
sampling strategies. Results indicate that TP, PP and SRP loads

were consistently underestimated, regardless of increased
sampling frequency or calculation method (Table 3).

Calculation method

Frequency distribution analysis showed that Methods A and
B were the least accurate and underestimated P loads by the
greatest amount, whilst loads were more accurate and precise

when Methods E and G were applied to composite datasets
(Fig. 7). TP and SRP load estimates were not significantly
different as a result of using different calculation methods

(Table 3). However, there were statistical differences between
estimated PP loads; PP loads calculated using Methods E and G
were significantly lower than those from Methods A and B.

Sampling strategy

In comparison to weekly and daily sampling regimes, TP and
PP loads were consistently underestimated and highly unlikely

to be identical to ‘true’ loads (Table 3c). Phosphorus loads
calculated from a high-frequency composite sampling design
were statistically different (Table 4); loads calculated from a

composite sampling design of three samples collected over 6 h
were statistically different from other composite sampling
strategies. Frequency distribution analysis indicated that TP,
PP and SRP loadsweremost grossly underestimatedwhen based

on values of Q and C calculated from three samples collected
over 6 h (Fig. 7). Phosphorus loads estimated using average
values of C and Q calculated from six samples collected over

12 h were found to be the most accurate (but still notably
underestimated the ‘true’ load).

Overview of results

Increasing sampling frequency from weekly to daily paired
measurements ofC andQ reduced inaccuracy for all P fractions.
Although more accurate than weekly sampling, it was clear that
P loads were still, on average, underestimated by daily sampling

regimes. However, daily sampling appeared to notably increase
the likelihood of estimating SRP loads within 10% of ‘true’
loads. The time at whichmeasures ofC andQwere collected had

a significant impact on the accuracy of P load estimates. For
daily datasets, early morning sampling tended to result in
overestimations, whilst late-night sampling resulted in under-

estimations. In comparison with daily sampling, composite
sampling strategies increased the accuracy of TP and PP load
estimates, but they were consistently underestimated. Again,
composite sampling notably increased the likelihood of esti-

mating SRP loads within 10% of ‘true’ loads. Interestingly,
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Fig. 6. Percentage deviation from ‘true’ phosphorus loads for the period 10

October to 5 December 2006. Loads were estimated using seven different

calculation methods (A–G), and average concentration and stream flow

values from four different composite sampling designs.
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increasing the sampling frequency to three samples in 6 h
resulted in a greater degree of underestimation of P loads

compared with less frequent composite datasets.
Interpolation methods were most likely to underestimate

P loads by the largest amount. Methods A and B, in particular,

were notably inaccurate, particularly for TP and PP, regardless
of sampling strategy. The log-log extrapolation method
(Method G) increased the accuracy of P load estimates and

improved precision, but still tended towards underestimation
even with an increase in sampling frequency from weekly to
daily or when composite datasets were applied.

Discussion

The accuracy and precision associated with different load-
calculation methods and sampling strategies were investigated
in this study. First, the results have highlighted the importance of
high-flow events in delivering phosphorus to Loch Leven during

the winter months, with 10 high-flow events contributing 79%,
84% and 63% of the winter TP, PP and SRP loads, respectively.
The largest event alone contributed 34%, 49% and 17% of the

‘true’ TP, PP and SRP loads, respectively. Although intensive
2-hourly samplingwas conducted in only one year, 2006was not
an unusual year in terms of rainfall and P loads. Rainfall mea-

sured in the northern part of the Loch Leven catchment in 2006
was 1200mm, compared with an annual mean of 1061mm
(1992–2006), and catchment-widemonthly PP and SRP loads to

Loch Leven for 2005 were highest in October and November
2005 (Defew 2008). The results support the findings of Jordan
et al. (2005), who concluded that relatively few high-flow
events deliver most of the P input to standing water bodies. So,

accounting for the influence of high-flow events on P transport is
crucial to estimating reliable P loads to a water body.

The results of this study confirm that different interpolation

methods give different results and have a low degree of accuracy
and precision. Methods A and B showed least variation between
load estimates, but consistently and greatly underestimated

P loads when based on weekly, daily and composite sampling
strategies. This degree of underestimationwas the result of using
a time-weighted, rather than a flow-weighted, mean concentra-
tion value in the calculation procedure. Furthermore, it is likely

that a flow-weighted composite sampling strategy would have
yielded more accurate P load estimates than a time-weighted
sampling strategy (Harmel et al. 2006). Interpolation Methods

C, D and E showed a higher degree of accuracy but lower
precision, as indicated by a wider range of over- and under-
estimated P loads. Notable overestimates by these three inter-

polation methods were specifically due to the inclusion of
high-flow measures of Q and C in the calculation procedures.
In general terms, although based on limited data, the results of

this study tend to suggest that none of the common interpolation
methods tested is capable of estimating P loads accurately or
precisely, even when sampling frequency is increased to daily
and datasets include high-flow events. They also raise concerns

that the inclusion of storm event data can result in lower
accuracy of calculated P loads if an inappropriate calculation
method is used. It is, therefore, concluded that the use of

interpolation methods is not the best approach to estimating
P loads. Instead, sampling strategies should focus on collecting

data that will enable the unique relationships betweenC andQ in
different tributaries and catchments to be determined more

accurately.
A commonly used alternative to interpolation methods has

been the application of the log10-log10 regression method,

together with a correction factor that was proposed by Stevens
and Smith (1978) and Ferguson (1986) (Method G) to account
for the variability in Q and C values between sampling occa-

sions. This study found that this method resulted in more
accurate values, but still resulted in load underestimation
compared with that estimated from the 2-hourly sampling
regime, despite application of the statistical correction factor

designed to account for the inherent underestimation associated
with the use of log-log linear regressionmodels. Investigation of
individual datasets showed that underestimation is a direct

consequence of the specific range ofQ andC values fromwhich
relationships were generated; daily data values explained the
relationship between Q and C more precisely. These results

support similar conclusions made by Webb et al. (1997), that
frequency of sample collection is a key factor controlling the
accuracy of P load estimates.

It has been suggested that storm chasing can increase the

accuracy and precision of daily load estimates using extrapola-
tion methods (Robertson and Roerish 1999; Soerens and Nelson
2002). The only datasets in this study to most accurately

estimate loads were those comprising values of Q and C taken
from the largest high-flow event (i.e. Fig. 2, event D) only.
Datasets that included Q and C values from smaller high-flow

events resulted in larger overestimations. This was due to an
overestimation of P concentrations at higher flows, because
P concentrations usually decline before discharge reaches its peak

(Thomas and Lewis 1995; Bowes et al. 2009). The results from
this study suggest that the log10-log10 extrapolation technique
remains preferable to interpolation methods for generating the
least inaccurate P load estimates for short periods and, to achieve

the most accurate estimates of P loads, data should be collected
at a minimum frequency of daily.

Interestingly, the results showed that the day and time of

sampling affected the accuracy of the load estimates for
weekly and daily sampling strategies, respectively. The impli-
cation of this for routine water-sampling programs is that the

day and time of sampling should be varied to avoid systematic
over- or underestimation of loads. Bowes et al. (2009) provide
evidence that sampling was required at midday in the River
Frome catchment in order to estimate P loads within 10% of

‘true’ loads. This study also supports the conclusion that daily
sampling should be undertaken at a time of day that reflects
nutrient-impacting activities in the catchment. However,

although daily sampling did increase the accuracy of P load
estimates for the Pow Burn, it was found that estimates were
still unlikely to be within 10% of the ‘true’ load, particularly

for PP and TP. This is a reflection of the relatively fast
temporal changes in PP and TP concentrations that occur in
response to increasing stream flow in contrast to SRP (see

Fig. 2), perhaps reflecting small sewage point sources of SRP,
as has been suggested in other UK rural catchments (e.g. Jarvie
et al. 2006). Sampling protocols need to target the largest high-
flow events to obtain the most reliable relationship between

Q and C.

384 Marine and Freshwater Research L. H. Defew et al.



Conclusions

The results of this study show that commonly used interpolation
methods and weekly sampling frequency are unlikely to give
reliable estimates of P loads where temporal changes in stream

flow and P concentrations happen very quickly in response to
rainfall and surface runoff. In catchments where continuous
stream flow data are available, the log10-log10 extrapolation
method provides the most accurate load estimation on the basis

of infrequent sampling. The accuracy of load estimates can be
increased when using this extrapolation method by including
C and Q values from the largest high-flow events, as the rela-

tionship between C and Q is better explained. Regulatory
authorities should, therefore, begin to target high-flow events
during their sampling programs if they cannot increase sampling

frequency due to financial or resource constraints. However,
there is little guidance or information available for determining
suitable settings for high-flow monitoring in small watersheds

(Harmel at al. 2003). It is recommended that, before the
implementation of a sampling program, some knowledge be
gained on the character of an individual catchment’s high-flow
events (e.g. duration, flow ranges and pollutant behaviour). This

information would aid the design and implementation of a
successfulmonitoring program that is intended to provide a truly
representative P load, whilst meeting financial constraints. This

study also highlights the large degree of error that can occur
when estimating P loads to water bodies and the difficulty that
this may present when attempting to assess and interpret

reductions in P loads as a result of nutrient reduction measures.
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