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Abstract. Water quality monitoring programs are often based upon low-frequency regular sampling regimes from which
loads are estimated. In this study, stream flow (Q) and phosphorus concentrations (C) were measured at 2-hourly intervals
over a 10-week period between October and December 2006 in a tributary of Loch Leven, Scotland. The dataset was
deconstructed to emulate different weekly, daily and composite sampling strategies, the aim being to highlight the large
amount of uncertainty and imprecision in estimating total (TP) and soluble reactive (SRP) phosphorus loads on the basis of
commonly applied sampling strategies and calculation methods. When based on the full dataset, phosphorus (P) loads
estimated from the 2-hourly data were 459 kg TP, 351 kg particulate P (PP) and 78 kg SRP. In contrast, P loads estimated
from different weekly, daily and composite sampling regimes and determined by applying seven different calculation
methods ranged from 22 to 5028 kg TP, 13 to 4588 kg PP and 7 to 286 kg SRP. The results of this study highlight the large
amount of uncertainty and imprecision associated with estimating P loads and contributes to the body of evidence that
high-frequency monitoring is necessary if P loads to standing water bodies are to be quantified accurately and the effects of

nutrient management programs interpreted correctly.
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Introduction

Eutrophication is a widespread problem caused by nutrient
pollution. These nutrients enter a waterbody from point and
diffuse sources within its catchment and, in many cases, phos-
phorus (P) is the main driver of the observed biological
response, especially when the receiving waterbody is a lake
(Schindler ef al. 2008). Although inputs from point sources are
relatively easy to quantify, determining P loads to waterbodies
from diffuse sources is much more difficult. Nevertheless, it is
important that the method of assessment used provides suffi-
cient data to estimate these loads as accurately as possible.
Catchment management decisions depend on the assumption
that sampling programs provide an accurate estimate of ‘true’
P loads (Cassidy and Jordan 2011). Without this, the effectiveness
of management measures that are aimed at improving water
quality cannot be assessed (Johnes 2007) with a reliable degree
of certainty.

When designing a program to estimate a pollutant load from
a diffuse source accurately, two key issues need to be addressed
(Rekolainen et al. 1991; Johnes 2007). These are (1) how often
should stream flow (Q) and concentration (C) be measured, and
(2) which method should be used to calculate a nutrient load
from these values? The answers to these questions are
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influenced by a range of constraints such as financial budgets,
project goals (concentration versus loads) and desired level of
accuracy with respect to ‘true’ loads (Tate ef al. 1999; King and
Harmel 2003). Choosing an appropriate approach is difficult
because of the lack of information available on different
sampling strategies and their associated uncertainty and
imprecision.

The most common sampling strategy used by regulatory
authorities in the UK (Greig 2005) and other European Union
(EU) countries (Kristensen and Begestrand 1996; Johnes 2007)
is regular time-interval sampling at a very low frequency (i.e.
monthly, or at best, weekly). Simple and cost-effective, low-
frequency sampling was designed to characterise point-source
pollution, which, historically, was the dominant source of
P causing eutrophication. Since the introduction of the EU Urban
Waste Water Treatment Directive, point sources of P have been
reduced. Although sewage sources still appear to influence
reactive P concentrations (Foy 2007), especially in spring—
summer under low flow conditions (Jarvie er al. 2006), in
general, total P input concentrations and loads in many rural
catchments are now dominated by diffuse sources.

It is well established that diffuse P is delivered to water
bodies predominantly during periods of heavy rainfall and
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subsequent storm events (Haygarth and Jarvis 1996; Evans and
Johnes 2004). It has been reported widely that the highest
P loads to standing waters in rural catchments are associated
with high rainfall and surface runoff (e.g. Poinke et al. 1999;
Haygarth et al. 2005; Bowes et al. 2009) and it is also well
established that more than 80% of the annual P load to a
waterbody is transported by just two or three large high-flow
events (Sharpley 2008; Jordan et al. 2012).

Statistical sampling theory suggests that shorter sampling
intervals produce more accurate estimates of P loads than longer
intervals (Haan 2002; Harmel and King 2005), because high-
frequency sampling captures important storm events that are
responsible for the delivery of large quantities of diffuse source
pollutants, especially P (Phillips ef al. 1999; Jordan et al. 2005).
In spite of this, there has been little progress in increasing
sampling frequency in national monitoring programs across
the EU, even though this could be vital in terms of meeting
the regulatory requirements of the EU Water Framework
Directive.

Several studies have tried to quantify the uncertainty and
imprecision of P loads estimated using different calculation
methods and sampling strategies (Walling et al. 2001; Johnes
2007; Bowes et al. 2009). Other studies have compared estimated
P loads with ‘true’ P loads determined from high-frequency
measurements of P concentration that capture the effects of
storm events using automatic water samplers (7-hourly sam-
pling: Jordan and Cassidy 2011) or in situ water quality
monitoring equipment (Wade et al. 2012). The current study
examined the effect of different calculation methods on P load
estimates and compared estimated and ‘true’ P loads. High-
frequency (2-hourly) sampling data that captured the influence
of winter storm events on P dynamics were used to assess the
uncertainty and imprecision of total P (TP), particulate P (PP)
and soluble reactive P (SRP) load estimation as a result of
(1) different sampling strategies (weekly, daily and composite
sampling), (2) different interpolation and extrapolation calcula-
tion methods and (3) different sampling times. Uncertainty was
determined by comparing estimated P loads to the ‘true’ TP, PP
and SRP loads calculated from 2-hourly, paired measures of
Q and C. The aim of this study was to highlight the inaccuracy
and imprecision associated with different sampling frequencies
and estimation methods because only when load estimates are
accurate and reliable can the effectiveness of targeted nutrient-
reduction programs be assessed correctly.

Materials and methods
Studly site

Loch Leven is a shallow loch in lowland Scotland, UK, which
has a surface area of 13.3 km? and mean and maximum depths of
3.9m and 25.5m, respectively (Fig. 1). The loch has suffered
from eutrophication problems for many years as a result of high
P loads from the catchment (Bailey Watts and Kirika 1999; May
and Spears 2012). Compared with other inland lochs of'its size in
Scotland, it has an unusually intensively farmed catchment with
~80% of'the area being used for agricultural crops and livestock
production, which are key diffuse sources of P to the loch. The
Pow Burn, on which this study is focussed, is a 12.9-km-long
second-order tributary that flows into Loch Leven. It drains a
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Fig. 1. Map of Loch Leven and the catchment.

catchment area of 10.9 km? and, during periods of heavy rain-
fall, transports large quantities of P in association with eroded
soils and suspended sediment to the loch (Defew 2008).

Estimation of ‘true’ phosphorus loads

The objectives of this study were achieved by collecting high-
frequency (2-hourly) stream flow (Q) and P concentration (C)
data, deconstructing them to emulate different subdaily, daily,
weekly and composite sampling regimes, and then calculating
TP, PP and SRP loads for the 10-week study period using seven
different calculation methods. ‘True’ P load, in this context, is
defined as that obtained using the 2-hourly data.

The area of the UK in which this study was undertaken has an
average annual rainfall of ~1000 mm, and high flows associated
with short periods of intensive rainfall can occur at any time of
year; there are no well defined wet or dry periods. The timing of
the intensive sampling campaign was targeted at the period
between October and December, when high-flow events tend to
occur more reliably, because the impact of such events on load
estimation was the focus of the study. However, the study period
was not atypical of the year as a whole; it spanned 19% of the
year and ~18% of the annual average rainfall fell over this
period.

In detail, water samples were collected at the Pow Burn every
2 h from 10 October to 5 December 2006 inclusive using a Hach
Lange® EPIC automatic sampler located on the bank of the
stream. All water samples were analysed for TP, total soluble
P (TSP) and SRP content within 48 h of collection following the
methods of Eisenreich ef al. (1975) and Murphy and Riley
(1962). SRP concentrations in stream water samples with ‘low’
and ‘high’ initial SRP concentrations (~40 and 250 pgL™",
respectively) that had been stored in the polyethylene bottles of
the automatic sampler under winter temperature conditions
(0-7°C) were shown to be stable for up to 48 h (paired #-test,
n=13) (Defew 2008). Therefore, storage of samples for up to
48h before analysis for SRP content was considered an
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Table 1. Interpolation (A-F) and extrapolation (G) load-estimation methods using intermittent values of stream flow (Q) and phosphorus
concentration (C) over a fixed period

K = conversion factor to take account of period of record. n = no. of samples. C; = instantaneous concentration associated with individual samples (ug L™ ").

0, = instantaneous discharge at time of sampling (m*s~'). O, = mean discharge for period of record using continuous measures of Q (m>s~"). Q, =mean

discharge for interval between samples (m® s !). C, = estimate of P concentration from continuous stream flow value. Q. = direct measurement or estimate of

: 3.1
continuous stream flow (m” s

). m =slope of linear regression. » = intercept of linear regression

Method Calculation procedure

Reference

A Total load = K (zn: i’) (z": %)
=1

i=1

B Total load = K (Z C',) 0,
n

i=1

C Total load = K Z (%)
i=1

D Total load = K <Z C,-Q,,)
i1

n

Verhoff et al. (1980)

Ongley (1973)

Rodda and Jones (1983)

Walling and Webb (1981)

2.(GO)
E Total load = K’Zln— O, Verhoff et al. (1980)
2 O
F Total load = K > (Ci0)) Rodda and Jones (1983)
=1
G Log-Log linear regressions between C; and Q; to estimate P concentrations (C,) on the basis of Stevens and Smith (1978),

continuous measures of stream flow (Q,). Log;oC. = (mLog;o0.) + b. A correction factor (CF) was

Ferguson (1986)

applied to account for the inherent underestimation associated with log-log linear regression analysis.

n 2
2\ (LogioGi = LogiCe)
sz (n—2)

i=1

i=1

CF. = exp (2.65s%) Total load = K <Z(CCQC)>

acceptable method for this study. PP was calculated as PP =
TP — TSP. Corresponding high-frequency flow data recorded
at 15-min intervals by a continuous flow gauge were provided by
the Scottish Environment Protection Agency. The ‘true’ TP, PP
and SRP loads for the 10-week period were calculated from
these data using Eqn 1:

L=K- (ic,g,) (1)

where L, = estimated ‘true’ P load (kg), K = conversion factor to
take account of time period of record, » =number of samples,
C;=instantaneous P concentration (ug L"), and 0=
instantaneous discharge at time of chemical sampling (m>s™").

Sources of uncertainty

Three potential sources of uncertainty and imprecision were
tested during this study. These were: calculation method, sam-
pling strategy and sampling time.

Calculation method

Seven different calculation methods were used to estimate P
loads (Table 1). These were the most commonly applied

methods in the literature. Methods A—F are interpolation tech-
niques that assume that the P concentration of a water sample is
representative of conditions in the river for the period between
two sampling occasions. In contrast, Method G is an extrapola-
tion technique that describes a relationship between Q and C at
the time of sampling. This relationship is then applied to
continuous or high-frequency measures of Q to predict
P concentrations between the sampling occasions. Phosphorus
load is then calculated over the whole period of interest (Webb
et al. 1997).

Sampling strategy

Eight different weekly sampling strategies were emulated by
varying the start dates of the subsampling of the 2-hourly dataset
as follows: 10, 11, 12, 13, 14, 15, 16 and 17 October. This
created eight groups of data referred to, below, as weekly
sampling Groups 1-8, respectively. Twelve additional datasets,
emulating data collections at daily frequencies and starting at
different times of each day, were also created. Finally, four
different time-averaged composite water sampling strategies
were constructed from the raw data using time-averaged values
of C and Q calculated from samples that had been collected over
the previous 6, 12, 24 or 48 h, respectively. The rationale for
examining time-averaged composite datasets was that, if this
sampling strategy yielded similar P load estimates to the loads
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Fig. 2. Two-hourly measures of stream flow (upper panel) and P concentrations (lower panel) at the Pow Burn sampling site,
October to December 2006. Ten storm events (A—J) of varying magnitude were captured.

calculated from 2-hourly sampling, it would reduce the resource
required for water sample analysis when constructing loads.

Sampling time
The effect of sampling at different times of day was investi-

gated. Load estimates were calculated from paired measures of
QO and C collected at 01:00, 03:00. 05:00, 07:00, 09: 00,

11:00, 13:00, 15:00, 17:00, 19:00, 21 : 00 and 23 : 00 hours
during hypothetical weekly and daily sampling programs.

Calculating uncertainty

The uncertainty or accuracy of a load estimation procedure can
be viewed as the difference between the actual (‘true’) load
transported by a river and the estimated load (Webb ef al. 1997;
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Johnes 2007). In this study, the error of each load estimate is
presented as a percentage deviation from the ‘true’ load (Eqn 2).
Positive percentage deviations indicated overestimations of
P load, while negative percentage deviations indicated under-
estimated P loads.

Uncertainty (% deviation from ‘true’ P load)

- <<LL,[> : 100) 100 @)

where L, , =the estimated P load based on a specific dataset,
and L, = the ‘true’ P load based on the high-frequency (2-hourly)
dataset.

Data presentation

The uncertainty (as a measure of % deviation) generated in TP,
PP and SRP load estimates by using different calculation
methods, sampling strategies and sampling times, was com-
pared using frequency distributions fitted to raw data using a
‘largest extreme value’ model in Minitab (ver. 15). Negative
distributions highlighted underestimated P loads, whilst positive
distributions showed overestimated P loads (as indicated by loc
values). The spread of the frequency distribution tail described
the precision of load estimates, which was characterised by the
degree of dispersion generated by a given calculation approach.
A greater degree of dispersion (as indicated by scale values) was
interpreted as indicating a lower degree of precision and
vice versa.

Statistical analyses

All tests were carried out at a 95% confidence level. Anderson—
Darling normality tests were used to assess data distributions.
Data were not normally distributed and were subsequently
logg-transformed. One-way ANOVA and Tukey’s post hoc
analyses were performed to determine whether there were sta-
tistical differences between data groups. For load estimates
calculated from weekly data, calculation method (n=7), sam-
pling group (n =8) and sampling time (n = 12) were the three
factors tested. Calculation method (n=7) and sampling time
(n=12) were the factors tested for daily sampling strategies.
Differences between load estimates as a function of calculation
method (n=7) and sampling design (n =4) were tested for
composite sampling datasets.

Results
Nutrient concentrations and stream flow

Fig. 2 shows the high temporal variability in stream flow and
P concentrations in the Pow Burn during the period of the study.
A summary of P concentrations and stream flows measured
during the monitoring period are given in Table 2. Significant
increases in P were closely associated with increasing stream
flow during storm events.

“True’ phosphorus loads

Based on 2-hourly measures of Q and C, ‘true’ P loads for the
10-week study period were calculated to be 459 kg TP, 78 kg
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Table 2. Summary of nutrient concentrations and stream flow
data from high-frequency monitoring survey (10 October 2006 to
5 December 2006) (n = 672)

Minimum Maximum Median Mean
TP (ugL™ " 63 2156 114 197
SRP (ugL ™" 32 375 51 56
PP (ugL™") 11 2021 51 124
Flow (m*s ™) 0.067 3.82 0.219 0.260

SRP and 351 kg PP. Together, 10 high-flow events of varying
size contributed 363 kg (79%), 49 kg (63%) and 295 kg (84%) of
the ‘true’ TP, SRP and PP loads, respectively. The largest storm
event alone, which occurred on 26 October 2006 (Fig. 2, Event
D), contributed 157 kg (34%), 13 kg (17%) and 136 kg (39%) of
the ‘true’ TP, SRP and PP loads, respectively, demonstrating the
importance of storm events of varying magnitude in P mobili-
sation and delivery, and highlighting the need to capture such
events during regulatory sampling programs.

Weekly sampling frequency
Sampling strategy

Phosphorus loads calculated using seven calculation meth-
ods over eight different weekly sampling programs, and 12
sampling times, ranged from 89 to 5028 kg TP, 35 to 4588 kg PP
and 41 to 286 kg SRP. Frequency distributions for these datasets
(Fig. 3) showed a tendency for TP, PP and SRP loads to be
underestimated when determined from weekly datasets, with TP
and PP having a greater negative bias compared with SRP.
Table 3a summarises the accuracy of load estimates based on
different weekly sampling strategies. Results suggest that most
(>70%) of TP, PP and SRP load estimates are likely to be
markedly underestimated as a result of this low sampling
frequency. The number of estimates within +10% of ‘true’
TP, PP and SRP loads was 48 (7%), 37 (6%) and 85 (13%),
respectively (n=672). In addition, there was a very low
probability (<1%) that estimated P loads would be identical
to the ‘true’ P loads, determined to the nearest whole number,
when calculated using data collected at weekly intervals.

Calculation method

Negatively skewed frequency distributions indicated a clear
tendency for all calculation methods to tend towards under-
estimating P loads (Fig. 3). There were statistical differences
between P load estimates calculated using different methods
(Table 4a). Tukey’s post hoc analysis showed that TP and PP
loads calculated by Methods A, B and F were statistically
different from those calculated by Method G. In this case, TP
and PP loads were underestimated the most by Methods A, B and
F, whilst Method G underestimated TP and PP loads the least
and could be considered more accurate. However, Method G
appeared to be less precise than Methods A, B and F, given that
the dispersion of estimated loads was greater. Similarly, Meth-
ods C and D yielded the least precise load estimates. This was
also true for estimates of SRP. However, patterns of accuracy
and precision were slightly different for SRP than TP and PP.
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Table 3. Accuracy of load estimations by seven different calculation methods based on different (a) weekly,
(b) daily and (c) composite sampling strategies

Number/percentage of load estimates deviating from ‘true’ load

TP
(a) Weekly sampling
Overestimate 102 (15.2%)
Underestimate 567 (84.4%)

Identical to ‘true’ load

Total no. of estimates
(b) Daily sampling

Overestimate

3 (0.4%)
672 (100%)

20 (23.8%)

Underestimate 63 (75%)

Identical to ‘true’ load 1 (1.2%)

Total no. of estimates 84 (100%)
(c) Composite sampling

Overestimate 0 (%)

Underestimate 28 (100%)

Identical to ‘true’ load 0 (%)

Total no. of estimates 28 (100%)

PP SRP

107 (15.9%) 184 (27.4%)

562 (83.6%) 480 (71.4%)
3(0.5%) 8 (1.2%)

672 (100%) 672 (100%)

11 (13.1%) 26 (31%)
66 (78.6%) 56 (66.6%)
7 (8.3%) 2 (2.4%)
84 (100%) 84 (100%)
0 (%) 0 (%)
28 (100%) 24 (86%)
0 (%) 4 (14%)

28 (100%) 28 (100%)

Table 4. Results (F and significance values) of one-way ANOVA between P load estimates based on (a) weekly sampling, (b) daily sampling and
(c) composite sampling strategies

TP

PP SRP

(a) Weekly sampling
Calculation method
Sampling group
Sampling time

(b) Daily sampling
Calculation method
Sampling time

(c) Composite sampling
Calculation method
Composite design

F=3.83,P=0.001
F=62.62,P<0.001
F=7.10,P<0.001

F=3.19,P<0.001
F=8.66,P<0.01

F=1.75,P=0.158
F=9.58,P<0.01

F=4.19,P<0.001
F=175.74, P <0.001
F=697,P<0.001

F=438,P<0.001
F=5431,P<0.001
F=6.13,P<0.001

F=3.49, P<0.005
F=10.11, P<0.001

F=136,P=0.241
F=3.31,P<0.001

F=3.30,P=0.02
F=4.65P=0.01

F=0.08, P=0.998
F=8257,P<0.01

Methods A and F underestimated SRP loads the most and
estimates were statistically lower than those from all other
calculation methods; however, the extrapolation method (G)
did not improve the accuracy associated with SRP load estima-
tion compared with interpolation methods.

Sampling group

Frequency distributions for all weekly sampling groups
(i.e. 1-8, as defined in the Methods section above) are presented
in Fig. 3. The data show that TP, PP and SRP loads were most
greatly underestimated in Sampling Groups 3 and 4. For TP and
PP, the least uncertainty was associated with weekly Sampling
Groups 1, 5 and 8. SRP loads were most accurate when
calculated using data in Sampling Groups 1 and 8. However,
there was a lower degree of precision associated with Groups 1,
5 and 8 compared with Groups 3 and 4. There were statistical
differences between TP and PP load estimates using data from
different sampling groups (Table 4). Sampling Groups [3 and 4],

[1,5and 8], and [2, 6 and 7] were statistically different (Tukey’s
post hoc analysis). For SRP load estimates, Groups [1 and 8],
[3,6 and 7], [2 and 5], and [4] were statistically different (Tukey’s
post hoc analysis). These results show that sampling day is an
important factor affecting the accuracy of P load estimates.

Sampling time

Load estimate accuracy and precision were also notably
influenced by the time at which weekly paired measures of
C and Q were collected (Fig. 3). For TP and PP, there were
statistical differences between load estimates calculated using
data collected at different times of day (Table 4c¢). Loads
calculated using values collected at 01.00 hours and 03.00 hours
were estimated more accurately than loads calculated using
C and Q values between 19.00 hours and 23.00 hours (Tukey’s
post hoc analysis). Similarly, SRP loads calculated using values
of C and Q measured between 13.00 hours and 19.00 hours were
more accurate.



380 Marine and Freshwater Research

350 - Sampling time (hrs) W1 O3 05 @7

300 -
250 +
200 +
150 ~
100 +
50

0
—50 4
—100 ~
150 -

% Deviation from ‘true’ TP load

350 -
300 -
250 A
200 A
150
100 4
50
04
—50 A
—100 ~
—150 -

% Deviation from ‘true’ PP load

300 A
250
200 -
150 4
100 4
50
0
—50 A
—100 -
—150 -

% Deviation from ‘true’ SRP load

L. H. Defew et al.

WMo O1 [@O13 @15
Wi7 O1© O21 @23

D E F G

Calculation method

Fig. 4. Percentage deviation from ‘true’ phosphorus loads for the period 10 October to 5 December 2006. Loads are based on seven
different calculation methodologies (A—G), using daily paired phosphorus concentrations and stream flows at different times of day

(01.00 hours to 23.00 hours).

Daily sampling frequency
Sampling strategy

Estimated loads ranged from 22 to 1891 kg TP, from 13 to
1503 kg PP and from 7 to 276 kg SRP. The percentage deviation
of P estimates calculated using daily measures of C and Q at
different times of each sampling day, and using seven different
calculation methods, is shown in Fig. 4. In comparison to weekly
sampling strategies, P loads were mostly underestimated when
calculated from daily data (Table 35). Collecting data at a daily
frequency did not result in any increase in the likelihood of the
estimated P loads being identical to ‘true’ P loads (Table 3b).
The number of estimates within £10% of ‘true’ TP and PP loads
was low, i.e. 9 (13%) and 8 (10%), respectively (n=84).
However, 37 (44%) of SRP load estimates were within +10%

of the ‘true’ load, a notable improvement in comparison with
weekly sampling programs.

Calculation method

TP, PP and SRP loads were consistently underestimated by
calculation Methods A and B when based on data collected at
daily frequency (Fig. 4). TP and PP loads estimated by Methods
A and B were found to be statistically different from loads
estimated by all other methods (Table 45). Frequency distribu-
tion analysis suggested that Method C resulted in the most
accurate TP and PP loads (Fig. 5), although this method was the
least precise. The extrapolation method (G) had the greatest
precision, but still tended towards underestimating P loads.
This method was particularly good for estimating SRP loads.
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Method G could be considered the best of the methods tested for
estimating ‘true’ TP, PP and SRP loads if data are collected
daily.

Daily sampling time

Results showed that sampling time affected the accuracy of P
load estimates, even when sampling frequency was daily, and
was an important factor influencing the accuracy of load
estimates calculated using different methods (Fig. 4). Statistical
analysis showed that there were significant differences between
P loads estimated using different sampling times (Table 45). TP
and PP loads estimated from data collected between 23.00 hours
and 05.00 hours were statistically different from loads calculated
using data collected between 11.00 hours and 21.00 hours.
Similarly, SRP loads calculated from data collected between
23.00 hours and 09.00 hours were statistically different from
other sampling times (Tukey’s post hoc analysis). Frequency
distribution analysis showed that loads calculated using values
of C and O measured in the afternoon were the most inaccurate
(i.e. differed most from the 2-hourly load), but the most precise
(Fig. 5). In contrast, loads were more accurate when calculated
from data collected in the early hours of the morning, but these
had low precision (Fig. 5).

Composite sampling design

Fig. 6 shows percentage deviations of load estimates calculated
by seven different methods using four different composite
sampling strategies. Results indicate that TP, PP and SRP loads
were consistently underestimated, regardless of increased
sampling frequency or calculation method (Table 3).

Calculation method

Frequency distribution analysis showed that Methods A and
B were the least accurate and underestimated P loads by the
greatest amount, whilst loads were more accurate and precise
when Methods E and G were applied to composite datasets
(Fig. 7). TP and SRP load estimates were not significantly
different as a result of using different calculation methods
(Table 3). However, there were statistical differences between
estimated PP loads; PP loads calculated using Methods E and G
were significantly lower than those from Methods A and B.

Sampling strategy

In comparison to weekly and daily sampling regimes, TP and
PP loads were consistently underestimated and highly unlikely
to be identical to ‘true’ loads (Table 3c). Phosphorus loads
calculated from a high-frequency composite sampling design
were statistically different (Table 4); loads calculated from a
composite sampling design of three samples collected over 6 h
were statistically different from other composite sampling
strategies. Frequency distribution analysis indicated that TP,
PP and SRP loads were most grossly underestimated when based
on values of O and C calculated from three samples collected
over 6h (Fig. 7). Phosphorus loads estimated using average
values of C and Q calculated from six samples collected over
12h were found to be the most accurate (but still notably
underestimated the ‘true’ load).

L. H. Defew et al.
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Fig. 6. Percentage deviation from ‘true’ phosphorus loads for the period 10
October to 5 December 2006. Loads were estimated using seven different
calculation methods (A-G), and average concentration and stream flow
values from four different composite sampling designs.

Overview of results

Increasing sampling frequency from weekly to daily paired
measurements of C and Q reduced inaccuracy for all P fractions.
Although more accurate than weekly sampling, it was clear that
P loads were still, on average, underestimated by daily sampling
regimes. However, daily sampling appeared to notably increase
the likelihood of estimating SRP loads within 10% of ‘true’
loads. The time at which measures of C and Q were collected had
a significant impact on the accuracy of P load estimates. For
daily datasets, early morning sampling tended to result in
overestimations, whilst late-night sampling resulted in under-
estimations. In comparison with daily sampling, composite
sampling strategies increased the accuracy of TP and PP load
estimates, but they were consistently underestimated. Again,
composite sampling notably increased the likelihood of esti-
mating SRP loads within 10% of ‘true’ loads. Interestingly,
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increasing the sampling frequency to three samples in 6h
resulted in a greater degree of underestimation of P loads
compared with less frequent composite datasets.

Interpolation methods were most likely to underestimate
P loads by the largest amount. Methods A and B, in particular,
were notably inaccurate, particularly for TP and PP, regardless
of sampling strategy. The log-log extrapolation method
(Method G) increased the accuracy of P load estimates and
improved precision, but still tended towards underestimation
even with an increase in sampling frequency from weekly to
daily or when composite datasets were applied.

Discussion

The accuracy and precision associated with different load-
calculation methods and sampling strategies were investigated
in this study. First, the results have highlighted the importance of
high-flow events in delivering phosphorus to Loch Leven during
the winter months, with 10 high-flow events contributing 79%,
84% and 63% of the winter TP, PP and SRP loads, respectively.
The largest event alone contributed 34%, 49% and 17% of the
‘true’ TP, PP and SRP loads, respectively. Although intensive
2-hourly sampling was conducted in only one year, 2006 was not
an unusual year in terms of rainfall and P loads. Rainfall mea-
sured in the northern part of the Loch Leven catchment in 2006
was 1200 mm, compared with an annual mean of 1061 mm
(1992-2006), and catchment-wide monthly PP and SRP loads to
Loch Leven for 2005 were highest in October and November
2005 (Defew 2008). The results support the findings of Jordan
et al. (2005), who concluded that relatively few high-flow
events deliver most of the P input to standing water bodies. So,
accounting for the influence of high-flow events on P transport is
crucial to estimating reliable P loads to a water body.

The results of this study confirm that different interpolation
methods give different results and have a low degree of accuracy
and precision. Methods A and B showed least variation between
load estimates, but consistently and greatly underestimated
P loads when based on weekly, daily and composite sampling
strategies. This degree of underestimation was the result of using
a time-weighted, rather than a flow-weighted, mean concentra-
tion value in the calculation procedure. Furthermore, it is likely
that a flow-weighted composite sampling strategy would have
yielded more accurate P load estimates than a time-weighted
sampling strategy (Harmel e al. 2006). Interpolation Methods
C, D and E showed a higher degree of accuracy but lower
precision, as indicated by a wider range of over- and under-
estimated P loads. Notable overestimates by these three inter-
polation methods were specifically due to the inclusion of
high-flow measures of Q and C in the calculation procedures.
In general terms, although based on limited data, the results of
this study tend to suggest that none of the common interpolation
methods tested is capable of estimating P loads accurately or
precisely, even when sampling frequency is increased to daily
and datasets include high-flow events. They also raise concerns
that the inclusion of storm event data can result in lower
accuracy of calculated P loads if an inappropriate calculation
method is used. It is, therefore, concluded that the use of
interpolation methods is not the best approach to estimating
P loads. Instead, sampling strategies should focus on collecting
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data that will enable the unique relationships between Cand Q in
different tributaries and catchments to be determined more
accurately.

A commonly used alternative to interpolation methods has
been the application of the logjo-log;o regression method,
together with a correction factor that was proposed by Stevens
and Smith (1978) and Ferguson (1986) (Method G) to account
for the variability in Q and C values between sampling occa-
sions. This study found that this method resulted in more
accurate values, but still resulted in load underestimation
compared with that estimated from the 2-hourly sampling
regime, despite application of the statistical correction factor
designed to account for the inherent underestimation associated
with the use of log-log linear regression models. Investigation of
individual datasets showed that underestimation is a direct
consequence of the specific range of Q and C values from which
relationships were generated; daily data values explained the
relationship between Q and C more precisely. These results
support similar conclusions made by Webb et al. (1997), that
frequency of sample collection is a key factor controlling the
accuracy of P load estimates.

It has been suggested that storm chasing can increase the
accuracy and precision of daily load estimates using extrapola-
tion methods (Robertson and Roerish 1999; Soerens and Nelson
2002). The only datasets in this study to most accurately
estimate loads were those comprising values of O and C taken
from the largest high-flow event (i.e. Fig. 2, event D) only.
Datasets that included Q and C values from smaller high-flow
events resulted in larger overestimations. This was due to an
overestimation of P concentrations at higher flows, because
P concentrations usually decline before discharge reaches its peak
(Thomas and Lewis 1995; Bowes et al. 2009). The results from
this study suggest that the log;o-log;o extrapolation technique
remains preferable to interpolation methods for generating the
least inaccurate P load estimates for short periods and, to achieve
the most accurate estimates of P loads, data should be collected
at a minimum frequency of daily.

Interestingly, the results showed that the day and time of
sampling affected the accuracy of the load estimates for
weekly and daily sampling strategies, respectively. The impli-
cation of this for routine water-sampling programs is that the
day and time of sampling should be varied to avoid systematic
over- or underestimation of loads. Bowes et al. (2009) provide
evidence that sampling was required at midday in the River
Frome catchment in order to estimate P loads within 10% of
‘true’ loads. This study also supports the conclusion that daily
sampling should be undertaken at a time of day that reflects
nutrient-impacting activities in the catchment. However,
although daily sampling did increase the accuracy of P load
estimates for the Pow Burn, it was found that estimates were
still unlikely to be within 10% of the ‘true’ load, particularly
for PP and TP. This is a reflection of the relatively fast
temporal changes in PP and TP concentrations that occur in
response to increasing stream flow in contrast to SRP (see
Fig. 2), perhaps reflecting small sewage point sources of SRP,
as has been suggested in other UK rural catchments (e.g. Jarvie
et al. 2006). Sampling protocols need to target the largest high-
flow events to obtain the most reliable relationship between
QO and C.
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Conclusions

The results of this study show that commonly used interpolation
methods and weekly sampling frequency are unlikely to give
reliable estimates of P loads where temporal changes in stream
flow and P concentrations happen very quickly in response to
rainfall and surface runoff. In catchments where continuous
stream flow data are available, the log;o-log;q extrapolation
method provides the most accurate load estimation on the basis
of infrequent sampling. The accuracy of load estimates can be
increased when using this extrapolation method by including
C and Q values from the largest high-flow events, as the rela-
tionship between C and Q is better explained. Regulatory
authorities should, therefore, begin to target high-flow events
during their sampling programs if they cannot increase sampling
frequency due to financial or resource constraints. However,
there is little guidance or information available for determining
suitable settings for high-flow monitoring in small watersheds
(Harmel at al. 2003). It is recommended that, before the
implementation of a sampling program, some knowledge be
gained on the character of an individual catchment’s high-flow
events (e.g. duration, flow ranges and pollutant behaviour). This
information would aid the design and implementation of a
successful monitoring program that is intended to provide a truly
representative P load, whilst meeting financial constraints. This
study also highlights the large degree of error that can occur
when estimating P loads to water bodies and the difficulty that
this may present when attempting to assess and interpret
reductions in P loads as a result of nutrient reduction measures.
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