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Abstract
The genetic trait of lactase persistence (LP) evolved as an adaptation to milking pas-

toralism in the Old World and is a well-known example of positive natural selection

in humans. However, the specific mechanisms conferring this selective advantage are

unknown. To understand the relationship between milk drinking, LP, growth, repro-

duction, and survival, communities of the Coquimbo Region in Chile, with recent

adoption of milking agropastoralism, were used as a model population.

DNA samples and data on stature, reproduction, and diet were collected from 451 par-

ticipants. Lactose tolerance tests were done on 41 of them. The European −13,910*T
(rs4988235) was the only LP causative variant found, showing strong association

(99.6%) with LP phenotype.

Models of associations of inferred LP status and milk consumption, with fertility,

mortality, height, and weight were adjusted with measures of ancestry and related-

ness to control for population structure. Although we found no statistically significant

effect of LP on fertility, a significant effect (P = 0.002) was observed of LP on body

mass index (BMI) in males and of BMI on fertility (P = 0.003). These results fail to

support a causal relationship between LP and fertility yet suggest the idea of a nutri-

tional advantage of LP. Furthermore, the proportion of European ancestry around the

genetic region of −13,910*T is significantly higher (P = 0.008) than the proportion

of European ancestry genome-wide, providing evidence of recent positive selection

since European–Amerindian admixture. This signature was absent in nonpastoralist

Latin American populations, supporting the hypothesis of specific adaptation to milk-

ing agropastoralism in the Coquimbo communities.
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1 INTRODUCTION

Lactase, the enzyme responsible for the digestion of lactose
in milk, is downregulated after weaning in most mammals,
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including most humans. Lactase persistence (LP) is a genetic
trait that results in continued high levels of lactase activity
in some human adults and allows for digestion of milk as
part of the adult diet. LP (worldwide frequency ∼35%)
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is very frequent in some populations, including most of
Northern Europe and many East African and Middle Eastern
groups, where it is strongly correlated with pastoralist sub-
sistence strategies and milk drinking (Holden & Mace, 1997;
Ingram, Mulcare, Itan, Thomas, & Swallow, 2009a; Jones
et al., 2015). Several different alleles have been identified
as causative of LP in different populations (i.e. there is
evidence of convergent evolution) (Enattah et al., 2002;
Imtiaz et al., 2007; Ingram et al., 2007, 2009b; Jones et al.,
2013; Tishkoff et al., 2007). These variants are located on
extended undisrupted haplotypes (Bersaglieri et al., 2004;
Liebert et al., 2017; Poulter et al., 2003; Ranciaro et al.,
2014; Tishkoff et al., 2007), reflective of their recent origin.
The European LP allele (−13010*T, rs4988235) is thought to
have increased to the current frequencies during the past 5000
to 10,000 years since animals were first milked (Evershed,
Payne, & Sherratt, 2008; Itan, Powell, Beaumont, Burger,
& Thomas, 2009) and has rarely been found before 5000
B.P. (see Liebert et al., 2017, Supplementary Figure 3 for
map and references). These data support the hypothesis of
strong positive natural selection favoring LP in groups that
developed milking practices soon after animal domestication.
According to most authors, very high selection coefficients
(>0.05, which means a 5% increase in progeny for the carriers
of that allele) would have been needed, based on current
frequencies of LP and the time since animal domestication
or the age of the mutations (Aoki, 1991; Bersaglieri et al.,
2004; Gerbault, Moret, Currat, & Sanchez-Mazas, 2009; Itan
et al. 2009; Peter, Huerta-Sanchez, & Nielsen, 2012; Tishkoff
et al., 2007). More recently this has been supported by ancient
DNA studies, as discussed by Mathieson et al. (2015).

It appears that milk consumption must have been very influ-
ential in terms of survival, fertility, or both, but how exactly
this operated is much less clear. It is likely that there were dif-
ferent selective pressures in different geographic regions, but
the nutritional benefits of milk were most likely the driving
force in Europe. A number of studies have reported that peo-
ple with LP are of greater height or weight than people with-
out LP, suggesting that their consumption of milk does con-
fer a clear nutritional advantage (Almon et al. 2010, Almon,
Álvarez-León, & Serra-Majem, 2012; Corella et al., 2011;
Kettunen et al., 2010; Lamri et al., 2013).

To better understand the relationship between milk drink-
ing, LP, growth, reproduction, and survival, milk-dependent
goat herders from the agricultural communities of the Chilean
region of Coquimbo in South America (additional data in
Supplementary Material section 1) were used as a model
population because of their agropastoralist livelihood and the
recent introduction of both animal milking and LP some 400
years ago. This study aimed to assess whether there was any
evidence for differential weight, height, fertility, and survival
in people with LP while also interrogating genetic data for
evidence of selection. If selection of the magnitude reported

has been ongoing in recent generations, it might be detectable
by examining the proportions of European ancestry in the
lactase gene region in relation to genome wide ancestry, as
has been done for other loci in admixed Latin American
samples (Rishishwar et al., 2015; Zhou, Zhao, & Guan, 2016)
and for genes involved in adaptation to hypoxia in admixed
Tibetan populations (Jeong et al., 2014).

2 MATERIALS AND METHODS

2.1 Subjects
The study volunteers were recruited from the agricultural
communities of the Chilean region of Coquimbo in South
America (see Alexander, 2008, Gallardo, 2002, Vergara,
Toro, Bonilla, & Meneses, 2005 and Supplementary Material
sections 1 and 2 for further details.)

2.2 Data collection
A total of 451 adult volunteers were recruited from nine vil-
lages and hamlets in the Coquimbo region. Data collection
methods, questionnaire details, and a demographic profile
based on this sample can be found in Supplementary Material
section 2. Data on number of children were those self-declared
by the parents at interview, thus with some inherent inaccu-
racy. The height and weight of the participants were measured
using a portable scale and stadiometer.

Lactose digestion phenotype was determined, as a surro-
gate for LP phenotype, by lactose tolerance testing using the
breath hydrogen method as described by Ingram et al. (2007)
and in Supplementary Material section 2. Lactose digesters
were those who showed no substantial rise in breath hydro-
gen after 3 hours; those with a maintained rise above 20 ppm
were classified as nondigesters. Participants showing vary-
ing levels of breath hydrogen that did not stabilize above
20 ppm were classified as indeterminate, and those who failed
to produce breath hydrogen throughout the test were classi-
fied as hydrogen nonproducers (i.e. do not have appropriate
hydrogen-producing colonic bacteria).

2.3 DNA methods
Samples of buccal cells were used as a source of DNA and
used for sequencing 706 bp of the LCT enhancer region
(MCM6, intron 13). In addition, each individual was also
typed for a set of 15 autosomal short tandem repeats (STRs),
30 single nucleotide polymorphisms (SNPs) used as Ancestry
Informative Markers (AIMs), and 27 SNPs in chromosome
2 covering the 1.77 Mb region surrounding −13,910C > T,
to be used for haplotype inference and estimations of
whole-genome and local ancestry (see Supplementary
section 3). A previous study conducted in Latin Americans
(Ruiz-Linares et al., 2014) has shown a 70% correlation of
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ancestries deduced from these 30 AIMs with those estimated
from ∼50,000 genome-wide SNPs (after LD pruning). The
27 SNPs in chromosome 2 included two polymorphisms
(rs3754689 and rs2278544) useful for identification of the
core haplotypes described by Hollox et al. (2001). Details
of the genotyped markers can be found in Supplementary
Material section 3.

2.4 Analysis methods
PHASE 2.1.1 (Stephens & Donnelly, 2003; Stephens, Smith,
& Donnelly, 2001) was used to infer 1.77 Mb haplotypes using
the 27 markers surrounding −13,910C > T plus the genotypes
for −13,910C > T (rs4988235) obtained from sequencing to
make a total of 28. A dataset of 190 individuals from differ-
ent Old World populations genotyped for the same variants
(Liebert et al., 2017) was included in this analysis to assess
the ancestral origin of the haplotypes carrying the −13,910*T
allele by comparison.

The AIMs data were merged with reference panels con-
taining European CEU (Utah residents from the collec-
tion of the Centre d'Etude du Polymorphism Humain) and
African YRI (Yoruba in Ibadan, Nigeria) from The 1000
Genomes Project Consortium (2012) and Amerindian sam-
ples (Ruiz-Linares et al., 2014). These were used for super-
vised (k = 3 components) runs of the clustering program
Admixture (Alexander, Novembre, & Lange, 2009) for mea-
suring the proportions of continental ancestry genome wide.
Because of the very low (<0.05) estimated proportion of
African ancestry, Admixture was also used without Africans
as one of the parental populations, both supervised and unsu-
pervised, k = 2 for analysis of the AIMs. For the unsupervised
(k = 2) run, the reference European and Amerindian samples
had averages of 96% and 99% for their respective ancestry
components.

To conduct Local Ancestry analysis (i.e. compare ancestry
proportions surrounding a specific genomic region with
genome-wide ancestry proportions (sensu Falush, Stephens,
& Pritchard, 2003, Padhukasahasram, 2014) at this genomic
region, the chromosome 2 data were merged with the ref-
erence panel containing the same European, African, and
Amerindian reference samples as discussed. After merging,
a set of 16 SNPs, of the original 28 SNPs, LD pruned with
PLINK (r2

< 0.5) (recommended settings from Purcell et al.,
2007), was retained for further analysis (see Supplementary
Material section 3). Supervised ancestry estimates using
Admixture for this genomic region were compared with the
genome-wide ancestry assessed using the AIMS. The dif-
ference, or “Δ–ancestry,” in European continental ancestry
for this genomic region from the genome-wide estimate
(Tang et al., 2007) was calculated for each individual. A
nonparametric Wilcoxon signed-rank test was applied to
test for a significant difference between the pairwise (i.e.

across each individual) distributions of local vs genome-wide
European ancestry. A one-sided hypothesis was tested of
whether the European local ancestry distribution is greater
in value than the genome-wide ancestry distribution. Power
calculations were performed based on simulations. (Refer
to supplementary Material section 5 for more detailed
information.)

To test for inbreeding, an average value of Fis (F) was cal-
culated for each individual based on 1000 values sampled
from the likelihood distribution of homozygosity of the 15
STRs genotyped. To compare these values, the same proce-
dures were used with a dataset of 153 African individuals (62
Jaali and 91 Somali), data already available in the lab, and
previously reported as unrelated at the grandparental level and
genotyped at the same loci (Ingram et al., 2007, 2009b). A fur-
ther indicator of relatedness, namely the proportion of shared
STR alleles (PSA) (Cardoso, Lau, Eiras Dias, Fevereiro, &
Maniatis, 2012; Chakraborty & Jin, 1993; Zhao et al., 2007),
was also determined.

Multiple regression models used to explore the effect of
LP on stature and fertility were adjusted for nongenetic and
genetic variables as described in the Results section. For
the STRs, membership of clusters was taken from an unsu-
pervised run of STRUCTURE (Falush et al., 2003, Falush,
Stephens, & Pritchard, 2007; Hubisz, Falush, Stephens, &
Pritchard, 2009; Pritchard, Stephens, & Donnelly, 2000) and
determining the best value for k using the method described
by Evanno, Regnaut, and Goudet (2005). For the mixed-effect
models, a PSA matrix was also incorporated.

Because each analysis uses different numbers of genetic
markers and different demographic data and can be done
over a different sample size, a summary of samples and data
used for each analysis is presented in Supplementary Material
section 6.

3 RESULTS

3.1 Genotype–phenotype association
Altogether data were collected from 451 participants. Of
these, 41 were phenotyped for lactose digestion; 19 partic-
ipants were classified as lactose digesters and 17 as nondi-
gesters (Table 1). Lactose digestion status could not be
determined for 5 participants (4 indeterminate and 1 hydrogen
nonproducer).

Complete sequencing of the enhancer region showed that
18 of the 19 digesters carried the European variant causative
of LP, −13,910*T, but none of the nondigesters did. No
other LP variants or unreported variants were found from
the examination of the sequences. Phenotyped digester status
was highly associated with predicted LP status according to
−13,910C > T genotype (CT + TT considered as digesters,
Fisher's exact test, P < 0.001).
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T A B L E 1 Association of lactose digestion phenotypes obtained
from lactose tolerance tests (LTTs) with −13,910 C > T genotype.
According to a full dominance model, homozygotes for the −13,910*C
allele (CC) are predicted non-digesters, while homozygotes for the
−13,910*T allele (TT) and heterozygotes (CT), are digesters

LTT phenotype CC CT TT Total
Nondigesters 17 0 0 17

Digesters 1 16 2 19

Indeterminate 3 0 1 4

H2 nonproducer 1 0 0 1

Total 22 16 3 41

3.2 Allele frequencies and haplotypic
background of −13,910*T alleles
Samples from a total of 437 of the 451 collected were suc-
cessfully sequenced, and it was possible to determine the
presence of the European −13,910*T allele, at a frequency
of 0.22, and absence of any other polymorphic sites known
or likely to be causal of LP. This is a slightly lower fre-
quency than that of 0.27 found in the subset of samples
in Table 1. Genotype frequencies for this locus, rs4988235
(reported in Fernández et al., 2016), were in agreement with
expectations from Hardy-Weinberg equilibrium (χ2 = 1.15;
P >0.05).

Haplotype analysis of the 1.77 Mb chromosome 2 region
identified 624 distinct haplotypes (See Supplementary Mate-
rial, figure S4.1) and showed that 90% of −13,910*T alleles
are associated with a European-like extended A core haplo-
typic background of greater than 900 Kb in length, confirm-
ing −13,910*T as a European introduction. There was no evi-
dence of population differentiation with respect to rs4988235
across the nine communities (Fisher's exact test, genotypic
P = 0.4215; allelic P = 0.366). Supplementary Material fig-
ure S4.2 shows examples of data separated by village and the
lack of significant substructure.

3.3 Relatedness
To control for relatedness, a possible problem resulting from
the small size of these populations, 15 autosomal STRs
were used. Cases with incomplete genotyping were removed,
resulting in a final sample of 351 individuals used for the
analyses. All 15 markers showed high variability, and there
was no significant difference between expected and observed
heterozygosity over all loci (t-test, P = 0.8264). Across loci,
the observed variance in heterozygosity was similar to the
expected variance (Bartlett test of homogeneity of variances
K2 = 0.1742; P = 0.6764) (Barlett, 1954; Evans, Bartlett,
Sweijd, Cook, & Elliott, 2004).

Average values of Fis calculated for each individual (see
Methods) resulted in values of Fis ranging from 0.071 to
0.611, with a mean of 0.149 and a standard deviation (SD) of

0.07. In the African dataset of individuals reported as unre-
lated at the grandparental level, Fis ranges from 0.072 to
0.471, with a mean of 0.151 and an SD of 0.072. Both datasets
show similar positively skewed distributions, with a longer
tail in the Chilean dataset caused by outliers with high Fis,
but differences in these distributions are not significant (two
samples Kolmogorov–Smirnov test; P = 0.913; see Keller
& Arcese, 1998 for an example of this analysis), suggesting
that inbreeding in the Chilean samples is not significantly
higher than inbreeding in the reportedly unrelated African
individuals.

3.4 Ancestry
Genotypes of 30 AIMs were obtained for all 437 individu-
als, but those with too many missing genotypes (>20% fail-
ure rate) were removed, resulting in a final sample size of 408
individuals used for the analyses. None of the 30 loci deviated
significantly from Hardy-Weinberg equilibrium (P > 0.05).
These markers were used to estimate proportions of Euro-
pean, African, and Amerindian ancestry for each individual,
according to their similarity to a reference dataset of 876 indi-
viduals from three parental populations: 299 Europeans, 169
Africans, and 408 Amerindians (obtained by Ruiz-Linares
et al., 2014).

The distribution of estimated ancestry proportions can be
examined visually in a trivariate histogram (Ruiz-Linares
et al., 2014, Supplementary Text S1), showing a wide range
of Amerindian–European admixture, with marginal African
contribution (Figure 1). The proportion of Amerindian ances-
try gives a mean of 0.47 (s = 0.12; min–max = 0–0.8), and the
proportion of European ancestry has a mean of 0.48 (s = 0.13;
min–max = 0.09–1). In contrast, the proportion of African
ancestry is only 0.05 on average (s = 0.06; min–max = 0–
0.29). There was no significant difference in the mean propor-
tion of European ancestry across the communities (one-way
analysis of variance [ANOVA]; P = 0.51; see Supplementary
Material section 4 for more information).

3.5 Assessment of population stratification of
−13,910*T carriers by relatedness and ancestry
Relatedness and ancestry were both examined in relation
to predicted LP status to evaluate the importance of the
confounding effect of these sources of population structure.
This was done using an unsupervised analysis, both by
clustering the STR markers and the AIMs (Figure 2) and
using inferred LP status as though LP and LNP were two
different populations, taking −13,910*T as causal of LP
and a model of full dominance of the causal allele. Neither
test indicated spurious stratification of the two phenotypic
groups. Additionally, neither estimated values of Fis nor the
proportion of European ancestry as measured using the AIMs
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F I G U R E 1 Histogram of estimated ancestry proportion from
three parental populations. European, African, and Amerindian using
Admixture 1.23. The peak number of individuals (vertical axis) is
concentrated between European and Amerindian ancestry, with little
contribution from Africa [Colour figure can be viewed at
wileyonlinelibrary.com]

with Admixture are significantly different between inferred
lactase nonpersistent and inferred lactase persistent groups
(Fis LNP = 0.14; Fis LP = 0.15, t-test P = 0.25; European
ancestry LP = 0.5, NLP = 0.48, t-test P = 0.062).

3.6 Local ancestry and lactase persistence
Local ancestry assignment at the LCT region was conducted
in two different ways after removing an individual of recent
European origin. Because the derived allele (−13,910*T)
for the causal SNP, rs4988235, is absent in both African
and Amerindian parental populations, a supervised run of
Admixture, grouping African and Amerindian reference sam-
ples into a “non-European” reference group, was performed
in which the two reference groups were labeled European
and non-European. A second supervised run of Admixture
excluding African reference samples, as well as Chilean goat
herders with >1% African ancestry was also performed with
only European and Amerindian reference groups. European
local ancestry estimates for both admixture runs were con-
sistent. Similar admixture runs were done (after LD prun-
ing) for SNPs in the 1.77 Mb region housing LCT on
chromosome 2.

“Δ–ancestry,” the difference in European continental
ancestry estimates for the LCT region and the genome-wide
estimate, was 3% for both the first (n = 433) and second
(n = 163) runs. This is consistent with the idea that if there is

recent positive selection for the European allele at rs4988235
in the Chilean goat herders since admixture, the difference
between local and genome-wide ancestry should be posi-
tive for most individuals. The differences were significant
in both cases, with P values of 0.0082 and 0.0095, respec-
tively, for the two runs (one-sided Wilcoxon signed-rank
test).

To contrast this analysis with urban nonpastoralist Latin
American populations sampled in the 1000 Genomes
Phase 3 (The 1000 Genomes Project Consortium 2012),
the analysis was repeated with the MXL (Mexicans from
Los Angeles, USA; n = 55) and PEL (Peruvians in Lima,
Peru; n = 76) population groups, the two other groups with
low levels of African ancestry according to 1000 Genomes
Project. The same set of 16 SNPs and the same AIMs
were extracted from the 1000 Genomes database, and a
supervised run of Admixture with the two reference groups,
European and Amerindian, was performed on both pop-
ulations. The Wilcoxon test for enrichment of European
local ancestry was not significant for either groups, with
P values of 0.5632 for MXL and 0.9138 for PEL. This
analysis was further validated for all three mainland Latin
American groups from 1000 Genomes: MXL, PEL, and
CLM (Colombians from Medellin, Colombia; n = 93) using
the available whole-genome high-density genotype data.
(See Supplementary section 6 for further details and power
calculations.)

3.7 Lactase persistence and milk
consumption
Estimated consumption of fresh milk using number of glasses
of fresh milk per day gives a relatively low average (0.57
glasses per day) but with a high SD (±0.74 glasses). This
variation does not seem to be related to LP and showed
no significant association with genotypes (mean CC = 0.55,
mean CT = 0.52, mean TT = 0.72, ANOVA P = 0.47), with
inferred LP status (mean digester = 0.55, SD = 0.7; mean
nondigester = 0.55, SD = 0.7; t-test P = 0.94), or with lac-
tose digester status based on lactose tolerance tests (mean
digester = 0.54, mean nondigester = 0.54, t-test P = 0.99).

Similar results were found in the analysis of consump-
tion of milk products, which contain variable amounts of lac-
tose, with no association between avoidance of milk products
and genotype (χ2 P = 0.4), inferred digester status (Fisher's
exact test, P = 0.92), or lactose digestion (Fisher's exact test,
P = 1).

3.8 Lactase persistence and body mass index
Multiple regression analysis was used to examine the associa-
tion between inferred LP and body size using BMI and height
as response variables. Explanatory variables included in the
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n = 431

n = 431

n = 431

n = 355

F I G U R E 2 Results of cluster analysis according to inferred lactase persistence (LP) status and sex. Inf. LP = Inferred lactase persistent. No
statistically significant difference was found between LP and nonpersistence (LNP) status in the Ancestry Informative Markers (AIMs) clustering.
The proportion of European ancestry obtained by supervised Admixture analysis for k = 3 gives LP = 0.5, LNP = 0.47, t-test P = 0.058. The average
proportion of European Ancestry (blue) for k = 2 unsupervised is LP = 0.53; LNP = 0.51; t-test P = 0.135. Note that by clustering at k = 2 for
ancestry, the small African component seen in Figure 1 is not detected. For the single tandem repeat (STR) markers (lower panel) the colors simply
reflect the two clusters for k = 2 obtained by STRUCTURE, and although there are village level differences in the clustering of the STRs
(Figure S4.2), there are not between LP and LNP [Colour figure can be viewed at wileyonlinelibrary.com]

model were lactose digestion status (based on −13,910C > T
genotype), age, glasses of milk consumed per day, propor-
tion of measured European ancestry (as assessed from k = 2),
wealth, inbreeding coefficient (Fis), and proportion of assign-
ment to one cluster of a k = 2 run of STRUCTURE based
on STRs. Additionally, the age at first birth variable was
included for females (as an indicator of growth cessation). A
mixed-effects model (Gałecki & Burzykowski, 2013; Hender-
son, 1984), additionally using the PSA matrix to adjust for
kinship, as found to be a powerful by Cardoso et al. (2012),
was also run. The single apparently 100% European outlier
was removed for these analyses. Table 2 shows the effects
on BMI and height in these multiple regression analyses, and
Supplementary Figure 4.4 shows the effect on BMI at the vil-
lage level.

Inferred LP status showed a significant effect on BMI in
males, increasing it by 1.998 kg/m2 ± 0.691 Standard Error
(SE) (t = 2.892, df = 102, P = 0.0047) but no significant
effect on BMI in females nor on height in any of the models.
BMI in females is significantly affected by the proportion of
European ancestry, which for each percentile decreases by
0.065 kg/m2 ± 0.028 SE. Also, age at first birth affects BMI;
each extra year decreases BMI by 0.139 kg/m2 ± 0.068 SE
The only variable with significant effect on height was age,
which decreases height in both sexes. The BMI versus age

plot in LP and LNP females and males is shown in Figure 3.
It is somewhat surprising that the proportion of ancestry was
not correlated with height in this data set, unlike in other
mixed Latin American data sets (e.g. Ruiz-Linares et al.,
2014).

The mixed-effects regression model identified the same
fixed effects as significant, but the P value of each variable
was slightly lower than in the model without inclusion of
PSA matrix as random effects. Together these results showed
a greater BMI in inferred LP (T allele carriers) compared
with non-LP males. This effect is statistically significant even
after controlling for age, milk consumption, ancestry, wealth,
inbreeding, and relatedness (Table 2). Inferred LP does not
have a significant effect on size in females in either model.

3.9 Lactase persistence and number of
children
Differences between inferred LP and inferred non-LP indi-
viduals in number of children ever born (CEB) and number
of surviving children were examined to identify whether
there was any direct evidence of ongoing differences in
fitness between the two groups. Because of the general
trend toward lower mortality rate because of demographic
transition, deaths of children were rare events in this sample
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T A B L E 2 Effects of predicted lactase persistence (LP) and lactose digestion status on height and body mass index (BMI). Models also adjusted
for age, milk consumption, proportion of European ancestry, wealth, inbreeding coefficient (F), and relatedness or consanguinity. Additionally, the
age at first birth variable was included for females

Height:

Inferred LP†
Proportion European
ancestry Age

Group n
log-
likelihood R2 𝛃 P-value 𝛃 P-value 𝛃 P-value

Males (Lm‡) 110 −371.65 0.08 1.102 0.47 5.083 0.43 −0.070 0.081

Males (Mx§) 110 −371.65 – 1.102 0.45 5.084 0.41 −0.070 0.067

Females (Lm) 188 −581.32 0.18 −0.324 0.70 −0.006 1.00 −0.137 <0.001
Females (Mx) 188 −581.33 – −0.324 0.69 −0.006 1.00 −0.137 <0.001
Both (Lm) 330 −1074.47 0.50 0.400 0.58 2.157 0.46 −0.120 <0.001
Both (Mx) 330 −371.65 0.08 1.102 0.47 5.083 0.43 −0.070 0.081

BMI:

Inferred LP
Proportion European
ancestry Age

Group n
log-
likelihood R2 𝛃 P-value 𝛃 P-value 𝛃 P-value

Males (Lm) 110 −285.05 0.09 1.998 0.0047 −0.482 0.87 0.019 0.31

Males (Mx) 110 −285.05 – 1.998 0.0027 −0.482 0.86 0.019 0.29

Females (Lm) 187 −550.07 0.06 0.446 0.54 −6.526 0.021 0.012 0.61

Females (Mx) 187 −550.08 – 0.446 0.53 −6.525 0.017 0.012 0.60

Both (Lm) 329 −957.32 0.51 0.998 0.057 −4.728 0.023 0.013 0.36

Both (Mx) 327 −952.24 – 1.010 0.049 −4.772 0.020 0.013 0.37

†Inferred LP from rs4988235 (−13010C > T genotype).
‡Lm : linear model. Variance inflation factor (VIF) was < 1.1 in all cases.
§Mx : mixed model. Variance inflation factor (VIF) was < 1.1 in all cases.

and occurred almost exclusively for participants born before
1970. Only 14% of the female participants reported to have
experienced the death of a child.

The low child mortality rate makes it difficult to compare
the number of child deaths between inferred LP and non-LP
groups. We therefore compared the ratio of CEB and of sur-
viving children in both groups, and this showed no signif-
icant difference (t-test: df = 37.7, P = 0.12). (Cox propor-
tional hazards: n = 1261 children, number of casualties = 85,
P = 0.53.)

Additional analyses were done based only on number of
CEB, and in this case, inferred digesters have 2.92 children on
average, and inferred nondigesters have an average of 2.94, a
difference that is not significant (t-test: df = 341.22, P = 0.86).
However, for this sample size to detect with a power of 0.9,
any difference in average number of children would have to
be greater than 0.4.

Zero-inflated regression, a generalized model of count
data with a high frequency of zeros, was used to model the
effect of LP on the number of CEB and number of surviving
children, with explanatory variables LP status, as well as
sex, age, wealth, glasses of milk consumed per day, and
BMI (Table 3). There is no evidence of an effect of inferred
LP status on number of children and therefore no direct
evidence of improved fitness in LP individuals from this

dataset. But interestingly, the effect of BMI on total number
of CEB is statistically significant (P = 0.002) for the whole
group, including both sexes, after controlling for the other
variables.

4 DISCUSSION

The evidence for strong positive natural selection favoring
LP in the past in some populations is overwhelming, but the
specific mechanisms are unknown. There has been much dis-
cussion about the advantages of calcium absorption at high
latitudes and water content in arid environments, as well as
others not related to milk consumption (Gerbault et al., 2009;
Sverrisdóttir et al., 2014). This study aims to obtain evidence
of ongoing selection and better understand possible mecha-
nisms using the agropastoralist communities of goat herders
from Chile as a model population.

We have confirmed the introduction of European hap-
lotypes carrying the variant −13,910*T (rs4988235) into
this group and shown that about 40% of the population are
lactase persistent. We found that individuals homozygous for
−13,910*C, who are inferred to be lactase nonpersistent, did
not consume significantly less lactose than lactase persistent
individuals, suggesting no avoidance of milk caused by
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Superimpose

Superimpose

Age

Age

F I G U R E 3 Comparison of increment of body mass index (BMI) with age between −13,910*T carriers in males and females. There is a
significant difference in BMI between inferred lactase persistent (LP) (T allele carriers: TT and CT) and inferred non–lactase persistent males (LNP)
C allele homozygotes (CC). This trend remains significant adjusting for age, milk consumption, ancestry, wealth, inbreeding, and relatedness.
However, there is no significant difference in BMI between inferred LP and non-LP females [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Zero-inflated regression model tested for number of children ever born and number of surviving children

Children ever born Surviving children
Covariate 𝛃 SE P-value 𝛃 SE P-value
Digester (yes) −0.053 0.063 0.395 −0.050 0.065 0.447

Sex (male) −0.109 0.070 0.117 −0.075 0.074 0.312

Age 0.025 0.002 <0.001 0.023 0.002 <0.001
Body mass index 0.022 0.007 0.002 0.022 0.007 0.002
European ancestry −0.009 0.242 0.971 −0.154 0.255 0.547

Glasses of milk per day −0.013 0.041 0.746 −0.016 0.043 0.714

Wealth −0.212 0.213 0.321 −0.225 0.222 0.312
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symptoms of milk intolerance. However, a significant effect
of LP on BMI was found in this population, indicating that
males carrying−13,910*T might obtain more nutritional ben-
efit from the same amount of milk. It should be noted that this
benefit could come from additional components of the milk, as
well as lactose, because noncarriers are more likely to develop
diarrhoea, potentially compromising uptake of other nutrients
because of damage to their small-intestinal epithelium.

The findings reported here agree with previous work show-
ing an association between LP and obesity in European pop-
ulations (Almon et al. 2010; Corella et al., 2011; Kettunen
et al., 2010; Lamri et al., 2013; Malek, Klimentidis, Kell, &
Fernández, 2013) and admixed Latin American populations
(Hartwig, Horta, Smith, de Mola, & Victora, 2016). However,
in the present study, an increment in BMI was only observed
in males, which might possibly be caused by sex biases in
feeding practices for children in these communities, a prac-
tice reported in several rural communities worldwide (Chen,
Huq, & D'Souza, 1981; Khera, Jain, Lodha, & Ramakrishnan,
2014). An increment in BMI could be considered on its own
to be an evolutionary advantage whenever there are episodes
of food shortage or famine, protecting against life-threatening
weight loss, but could result in obesity in populations where
food is abundant. It should be noted that LP is not overrep-
resented among obese individuals in our study (defined as
BMI > 30 kg/m2, Fisher's exact test, P = 0.2; see Figure 3).

In this study, we have also found a significant effect of BMI
on number of children, as reported in other studies (Power
& Schulkin, 2008; Speakman, 2006; Weng, Bastian, Taylor,
Moser, & Ostbye, 2004), but the model does not show a sta-
tistically significant effect of LP on fitness mediated through
BMI. This may simply be due to a lack of power because the
numbers of child deaths in our sample was very low.

The significant enrichment for European ancestry in the
Chilean goat herders is, however, suggestive of positive selec-
tion for the European allele −13,910*T at rs4988235 since
admixture. Although the SNP set was small and a haplotype-
based method for determining local ancestry might have been
preferable, the effect we observed here was not found in urban
nonpastoralist Latin Americans either as tested using the same
SNPs. No published genome-wide studies have reported a sig-
nal of recent selection of the LCT region in other admixed
Latin American populations, and our own attempts to find
that using public genome-wide data for other Latin Ameri-
can populations also failed to show this (see Supplementary
section 5). Although stochastic effects causing this pattern in
the goat herders cannot be excluded, these results support the
notion that the effect we observe is indicative of recent selec-
tion (i.e. since admixture) in this population caused by adop-
tion of milking and milk dependence, and it is consistent with
the idea that LP offers a way to gain weight. We propose that
this conferred a selective advantage in reproductive fitness
and survival, which would have been more evident before the

recent demographic transition and in the context of famine or
low food availability.
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