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Background and aims: Increased proinsulin relative to insulin levels have been associated with sub-
clinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future
cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proin-
sulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci
associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a
Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in sub-
clinical vascular remodelling.
Methods: We studied the high CVD-risk IMPROVE cohort (n ¼ 3345), which has detailed biochemical
phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Geno-
typing was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported
proinsulin-associated loci. Participants with type 2 diabetes (n ¼ 904) were omitted from the analysis.
Linear regression was used to identify proinsulin-associated genetic variants.
Results: We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from
20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome
15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and
IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted
any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three
variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures.
Conclusions: We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin
levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT.
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hyperinsulinemia, most often a result of systemic insulin
resistance, is associated with increased risk of cardiovascular dis-
ease (CVD) and severity of coronary artery disease (CAD) [1]. Under
normo-glycemic conditions, proinsulin is fully processed to insulin
and C-peptide before secretion, with very low concentrations of
proinsulin being detectable in the blood. During hyperinsulinemia,
increased demand for insulin production results in pancreatic b-
cells failing to correctly process proinsulin to mature insulin [2].
Thus, circulating levels of proinsulin are increased (relative to in-
sulin levels) and this might be a link between insulin resistance and
CVD. In support of this hypothesis, anti-diabetic agents which
modulate glucose levels without increasing insulin secretion (for
example SGLT2-inhibitors) have shown cardiovascular benefits,
whilst those which stimulate insulin (and potentially proinsulin)
secretion, such as sulfonylureas, have shown no CVD benefits and in
some studies, increased CVD risk [3]. Furthermore, subclinical
changes in the wall of the carotid artery, measured by carotid
intima-media thickness (cIMT), have been shown to correlate
positively with proinsulin levels in healthy individuals [4] and
increased proinsulin levels have been demonstrated to predict
future CVD, independently of established risk factors [5e9].
However, it remains to be determined whether increased proin-
sulin levels merely reflect CVD risk-related processes, or whether
proinsulin has a direct adverse functional effect on the vasculature.

Genetic predisposition to increased proinsulin levels [10] pre-
viously demonstrated no effect on CVD events, however we pro-
posed that increased proinsulin levels could be important in earlier
stages of CVD development, such as those reflected by cIMT.

The aims of this project were firstly to explore the existence of
additional proinsulin-associated variants using a large panel of
candidate loci for metabolic or inflammatory processes and sec-
ondly to use MR to assess causality of proinsulin on early-stage
atherosclerosis, represented by cIMT. The IMPROVE cohort is
uniquely positioned to address the second aim, having extensive
genotyping, circulating proinsulin and insulin levels and detailed
cIMT measurements in 2441 participants without type 2 diabetes
(T2D). Demonstration that proinsulin has a causal role in cIMT
would highlight insulin resistance as a target for CVD prevention.
As insulin sensitisation by dietary, lifestyle and pharmaceutical
interventions is possible, the role of proinsulin in CVD warrants
further investigation.

http://creativecommons.org/licenses/by-nc-nd/4.0/


R.J. Strawbridge et al. / Atherosclerosis 266 (2017) 196e204198
2. Materials and methods

2.1. Cohort description: IMPROVE

The IMPROVE study recruitment and ultrasound protocol have
been described in detail [11,12]. In short, IMPROVE consists of
participants without symptoms or history of CVD at enrolment,
who presented with at least three classical risk factors for CVD
(including family history of CVD, diabetes or impaired fasting
glucose, hypoalphalipoproteinemia, hypertension, hyper-
triglyceridemia, hypercholesterolemia, current smoking 11, 12). Be-
tween March 2004 and April 2005, 3711 participants were
recruited from seven centres in five European countries (Finland,
Sweden, the Netherlands, France and Italy). Extensive ultrasound
examinations of cIMT were carried out at baseline and after 15 and
30 months, with linear regression of cIMT over time being used to
calculate cIMT progression variables [11,12]. Primary cIMT pheno-
types used in the present study were the baseline mean and
maximum of the common carotid artery intima-media thickness
(IMTmean and IMTmax, respectively) [11,12], as only these baseline
measures would be available in replication cohorts. Secondary
analyses were conducted on progression of IMTmean and IMTmax as
well as baseline and progression measures of additional segments
(Supplementary Data) [11,12]. At baseline, a structured medical
history and lifestyle questionnaire was completed and blood was
sampled. Standard clinical and biochemical phenotyping was per-
formed. Participants with T2D (n ¼ 904, defined as having been
diagnosed or treated for diabetes, or fasting glucose �7 mmol/L)
were excluded from all analyses. Fasting intact plasma proinsulin
was measured with a sandwich enzyme-linked immunosorbent
assay (DRG Instruments GmbH, Marburg, Germany, Supplementary
Data). Fasting plasma insulin was analysed by electro-
chemiluminescence immunoassay (Meso Scale Discovery, Gai-
thersburg, MD, USA, Supplementary Data). Cohort characteristics
are described in Supplementary Table 1.

2.2. Genotyping in IMPROVE

IMPROVE has been genotyped using both the Illumina Car-
dioMetabo 200k [13] and Immunochip 200k [14] bead array plat-
forms. Single nucleotide polymorphisms (SNPs) were excluded for
low call rate (<95%), low minor allele frequency (<0.01) and for
deviation from Hardy-Weinberg equilibrium (p < 1*10-6). Partici-
pants were excluded due to low call rate (<95%), aberrant sex
assignment or cryptic relatedness (IBD >0.2). Multi-dimensional
scaling (MDS) components 1e3 were calculated in PLINK [15] to
enable adjustment for population structure. After quality control
2441 participants without T2D and 254,756 SNPs with minor allele
frequency >1% were included in the analysis.

2.3. Identification of proinsulin-associated SNPs in IMPROVE

To identify proinsulin-associated variants [10], 254,756 SNPs
were analysed for influence on proinsulin levels. This also enabled
assessment of the reported [10] proinsulin-associated loci. The re-
ported lead [10], the analysed proxy or the strongest SNP for each
locus are presented in Supplementary Table 2.

Levels of proinsulin, insulin and glucose were natural log nor-
malised prior to analysis. Linear regression, assuming an additive
genetic model, was used to analyse the effect of SNPs on proinsulin
levels. To enable comparison of SNP effects with the proinsulin
genome-wide association study (GWAS) [10], the same three
models explored in that paper were tested: insulin model (age, sex,
population structure and insulin), glucose model (age, sex, popu-
lation structure, insulin and glucose) and body-mass index (BMI)
model (age, sex, population structure, insulin and BMI). Loci with
p < 1� 10�5 (suggestive evidence of association) in anymodel were
selected for replication. Of note, IMPROVE was not part of the prior
proinsulin GWAS [10].
2.4. Replication of proinsulin-associated SNPs

Replication of proinsulin-associated loci was attempted in seven
independent cohorts (Fenland (http://www.mrc-epid.cam.ac.uk/
Research/Studies/Fenland), FHS [16e18], HBCS [19], PIVUS [20,21],
ULSAM [22,23], PROCARDIS cases [24] and PROCARDIS controls
[24], n ¼ 18,773e20,003 participants). Replication cohorts are
described in the Online Data Supplement and cohort characteristics
are presented in Supplementary Table 3. The same analyses and
models as the discovery analysis were applied. To improve power
and examine consistency of effects, replication results were com-
bined in an inverse variance meta-analysis, using GWAMA [25].
2.5. Expression quantitative trait locus analysis

To further characterize the proinsulin-associated locus on
chromosome 15 (rs8029765), genotype-specific gene expression
patterns were assessed. This was conducted in liver biopsies from
participants undergoing elective surgery for aortic valve and/or
ascending aortic disease in ASAP [26] (Supplementary Data) and
biopsies from liver or heart and peripheral bloodmononuclear cells
from organ donation or autopsy specimens in the GTEx [27] data-
base (Supplementary Data).
2.6. In silico analysis of effect on T2D

Proinsulin-increasing alleles of previously identified SNPs rather
surprisingly demonstrated a mixture of positive, negative and null
effects on T2D risk [10]. Thus to assess the impact of the novel
proinsulin-associated locus on chromosome 15 (rs8029765) on risk
of T2D, an in silico lookup was performed in the DIAGRAM con-
sortium data. This study of primarily Europeans included 34,840
T2D cases and 114,981 controls with GWAS or metabochip data and
the results were downloaded from the DIAGRAM consortium
website (http://diagram-consortium.org/downloads.html).
2.7. Effects of proinsulin on cIMT measures in IMPROVE

All phenotypes were assessed for normality and natural loga-
rithmic transformation was applied where necessary, prior to
further statistical analysis. The analysis of proinsulin levels for ef-
fect on cIMT measures were adjusted in basic (age, sex and popu-
lation structure) and extended models (age, sex, population
structure, BMI, systolic blood pressure (SBP), high density lipo-
protein (HDL), triglycerides (TGs) and current smoking) [28]. As the
mean cIMT measure encompasses the maximum cIMT measure,
these variables were not considered independent and therefore
related, multiple testing was not corrected for and p < 0.05 was
considered significant. Secondary analyses explored the consis-
tency of effects of proinsulin on other cIMT segments and on
analysis of progression measures, where the baseline measure of
the same segment was also included as a covariate. Because the
secondary analyses were exploratory only, the size and direction of
effects, rather than significance, is the focus of these analyses.
Analyses were performed in STATA (STATAcorp LP, College Station,
Texas, USA).

http://www.mrc-epid.cam.ac.uk/Research/Studies/Fenland
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2.8. Mendelian randomization (MR) to assess causality of
proinsulin on cIMT in IMPROVE

In order to be valid instruments for the MR analyses, the
proinsulin-associated loci should demonstrate the expected asso-
ciations with proinsulin levels. Accordingly, the effect size and di-
rection were examined for all proinsulin-associated loci [10].
Previously published results were considered the gold standard
(given the much larger sample size in the GWAS (n~20,000)
compared with this study) and were thus referred to in further
analyses. Only subjects with complete genotyping for the 11
proinsulin-associated SNPs (10 SNPs in 9 reported loci and the
chromosome 15 SNP/locus identified here) were included in this
analysis (N ¼ 35 excluded).

As individual SNPs had only small effects on proinsulin levels,
we calculated proinsulin-associated SNP scores by summing the
number of alleles associated with higher proinsulin levels. SNP
scores were calculated unweighted (sum of number of proinsulin-
increasing alleles) and weighted (sum of the number of alleles
multiplied by the effect size of the allele reported in the GWAS 10).
As there was little difference between the variance of proinsulin
explained by the unweighted and weighted SNP scores, for
simplicity the unweighted scores were used for further analysis.
The majority of proinsulin-associated SNPs have also been associ-
atedwith othermetabolic traits of relevance to CVD. This pleiotropy
may introduce confounding or explain some of the proinsulin as-
sociations with cIMT. To determine whether this was the case, a
further SNP score was constructed, including only the SNPs which
had no reported metabolic effects (GWAS catalogue, https://www.
ebi.ac.uk/gwas/, Supplementary Data). Analyses were adjusted us-
ing the basic model (age, sex and population structure). Instrument
variable regression, with the proinsulin SNP scores as the in-
struments, was used to assess causality of proinsulin on cIMT var-
iables and was conducted in STATA (STATAcorp LP, College Station,
Texas, USA). Instrument variable analysis assumes that SNPs have
no pleiotropic effects. Therefore, Egger's regression (which can be
used to assess associations which include pleiotropic SNPs) was
also conducted in R (Mendelian randomization package).

2.9. Replication of MR

Replication of the MR experiment was attempted in 12,113
participants from 5 cohorts (2 of which contributed to the SNP-
proinsulin replication analysis) with IMTmean and IMTmax pheno-
types. The replication cohorts are described in the Online Data
Supplement and characteristics are presented in Supplementary
Table 4. The cIMT measures were broadly comparable with
IMPROVE, with multiple measurements of the carotid artery
enabling assessment of both the maximum and mean values, both
left and right carotid arteries being measured (except in ULSAM),
and the 1st cm proximal to the bifurcation being omitted from
common carotid artery measurements (except in PIVUS). Meta-
analysis of SNP score associations with IMT measures was con-
ducted in R using the rma function in the METAFOR package
(https://cran.r-project.org/web/packages/metafor/index.html).

3. Results

3.1. Identification of proinsulin-associated SNPs

Analysis of the combined chip (adjusting for population struc-
ture, age, sex, insulin as well as BMI or glucose 10) identified a total
of 16 SNPs in 3 loci reaching the suggestive level of significance for
association with proinsulin (p < 1*10-5) (Fig. 1 and Supplementary
Tables 5 and 6). Consistent with the published proinsulin GWAS
[10], more proinsulin-associated SNPs were identified using the
glucose-adjusted model. Most (n ¼ 13) of these SNPs were located
in the ARAP1 locus. This locus was identified previously [10], so this
finding was taken to be a positive control and gave us confidence in
the other loci identified. Conditional analysis for the two known
signals (rs77756118 and rs11603334) in the ARAP1 locus rendered
these SNPs non-significant (Fig. 2). On chromosome 6, rs2323000
and rs6910151 represent the same signal. On chromosome 15
(rs8029765), the signal is located 29 Mb from the LARP6 and 20 Mb
from the VPS13C loci. Conditioning on LARP6 (strongest SNP) and
VPS13C (reported lead SNP) signals had negligible effects on chro-
mosome 15 signal (Fig. 2 and Supplementary Table 7), which thus
appeared to be a distinct signal. The reason that this SNP was not
identified in the previous GWAS meta-analysis was most likely its
relatively large effect size in IMPROVE (Beta¼ 0.09), comparedwith
that in the GWAS discovery analysis (Beta ¼ 0.01)10. A stronger
effect size in the IMPROVE study compared with the GWAS is
plausible: We believe proinsulin levels are important in CVD, and
the IMPROVE cohort is enriched for CVD risk factors. In contrast, the
GWAS included a much wider spectrum of CVD burden. Hence two
proinsulin-associated SNPs, rs2323000 and rs8029765, were taken
forward to replication.
3.2. Replication of proinsulin-associated SNPs

Replication results of the two proinsulin-associated SNPs from
seven independent cohorts were meta-analysed
(n ¼ 18,773e20,004). The meta-analysis refuted the chromosome
6 locus association with proinsulin levels (Table 1). However,
nominal significance was observed for the minor allele of
rs8029765 (chromosome 15) being associated with higher proin-
sulin levels in most models (insulin model: Beta ± Se 0.013 ± 0.006,
p ¼ 0.04 (combined discovery and replication 0.020 ± 0.006,
p ¼ 0.001); BMI model: 0.014 ± 0.006, p ¼ 0.03 (combined dis-
covery and replication 0.020 ± 0.006, p ¼ 0.002)). Additionally
adjusting for glucose did not materially alter the effect size
(0.012 ± 0.006, p ¼ 0.0709 (combined discovery and replication
0.020 ± 0.006, p ¼ 0.003)). The replication meta-analyses indicated
that the effect sizes in women were not significantly different from
those in men (p ¼ 0.0659), with no evidence of heterogeneity be-
tween the strata (I2 ¼ 0, sex heterogeneity p ¼ 0.80). These data
provide evidence for a novel proinsulin-associated locus on chro-
mosome 15, which did not influence risk of T2D (OR 1.00, confi-
dence interval (CI) 0.95e1.06, p ¼ 0.89, n ¼ 51,411 [29]). rs8029765
(and the SNP in high LD, rs4450375, R2 > 0.8, Supplementary Fig. 1)
has not previously been reported to be associated with any of the
metabolic or cardiovascular traits we studied.
3.3. Expression QTL for chromosome 15 locus

The relevance of the chromosome 15 locus was assessed by
examining nearby genes for genotype-specific expression. In the
GTEx heart (n ¼ 190), liver (n ¼ 97) or PBMC (n ¼ 338) data,
generated from relatively healthy individuals, no significant eQTLs
were identified. However, in the ASAP cohort, which is significantly
burdened with cardiovascular disease, levels of expression were
detectable for eight genes in the chromosome 15 locus: MAN2A2,
HDDC3, UNC45A, RCCD1, PRC1, VPS33B, SV2B, SLCO3A1. In liver
samples (n ¼ 209), rs8029765 was significantly associated with
expression of UNC45A (Supplementary Fig. 2, p¼ 5.6*10�3) with the
proinsulin-increasing allele demonstrating lower expression of
UNC45A. The unc-45 myosin chaperone A encoded by the UNC45A
gene is a widely expressed chaperone protein [30].

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://cran.r-project.org/web/packages/metafor/index.html


Fig. 1. Manhattan plots of the association between SNPs and proinsulin levels in participants without T2D, adjusted for the glucose model.
SNPs within 250 Kb up or downstream of SNPs with p < 1*10�5 are highlighted in green. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

R.J. Strawbridge et al. / Atherosclerosis 266 (2017) 196e204200
3.4. Effects of proinsulin on IMTmean and IMTmax

As anticipated, proinsulin levels demonstrated correlations with
almost all established risk variables for CVD in the IMPROVE cohort
(Supplementary Table 8). For further analysis of IMT measures,
models were adjusted for relevant confounders [28]. No statisti-
cally significant associations were observed between proinsulin
levels and the primary cIMT phenotypes IMTmean and IMTmax.
Nominal associations (p < 0.05) were observed with the IMTmax
progression, but not baseline measures, independently of estab-
lished CVD risk factors (Table 2). Secondary analyses indicated that
the common carotid (excluding the 1st cm proximal to the bifur-
cation) demonstrated (non-significant) associations between
higher proinsulin levels and larger cIMT measures (Supplementary
Table 9). All other segments demonstrated inverse associations.
3.5. Effect of proinsulin-increasing SNP scores on IMTmean and
IMTmax

Reported proinsulin-associated SNPs demonstrated effects sizes
generally comparable with those previously reported [10]
(Supplementary Tables 2 and 10), thus were appropriate for use
in the MR analysis. A total of 11 proinsulin-associated SNPs were
included in the SNP score used for the MR analysis (10 previously
reported SNPs in 9 loci and the chromosome 15 SNP, rs8029765).
Instrument variable analysis demonstrated that the 11-SNP score
was significantly and inversely associated with baseline IMTmean

and IMTmax but not with progression measures (Table 3). However,
MR-Eggers (which is more robust when pleiotropy is present [31])
refuted a significant association between the 11-SNP score and
IMTmean (�0.020 ± 0.033 p ¼ 0.5721) or IMTmax (�0.060 ± 0.054
p ¼ 0.2738). As pleiotropic SNPs can bias estimates [31], a further
score was constructed, using only non-pleiotropic SNPs (SNX7
rs1571500, LARP6 rs7163439 and UNC45A rs8029765). This SNP
score was not associated with baseline or progression of cIMT
measures (Table 3). Replication of the non-pleiotropic SNP score
was attempted in 12,113 participants with baseline mean and
maximum IMT measures comparable with those in IMPROVE.
Meta-analysis of the effect of the 3-SNP score on baseline IMTmean
and IMTmax demonstrated no association (Supplementary Fig. 4
and Supplementary Table 11). Analyses of secondary IMT pheno-
types demonstrated that no single segment differed from the pri-
mary phenotypes analysed (Supplementary Table 12). Proinsulin
levels according to SNP score are presented in Supplementary
Table 13.

3.6. Mendelian randomization refutes causality of proinsulin on
cIMT

Proinsulin levels vary over time with measurement of levels
reflecting the exposure of the vasculature to proinsulin at a single
point in time. In contrast, the proinsulin-increasing SNP score re-
flects a lifetime of exposure to proinsulin. For causality to be
demonstrated, the direction of effect of the proinsulin-increasing
SNP score on cIMT needs to be consistent with the effect of
higher levels of proinsulin on cIMT. A further requirement is that
the SNPs only act on cIMT through proinsulin levels.

Here, the direction of effect was consistent between proinsulin
levels and proinsulin-increasing SNP scores: higher levels of pro-
insulin were (non-significantly) associated with smaller cIMT
measures in IMPROVE and proinsulin-increasing SNP scores were
associated with smaller cIMT measures. However, this finding does
not imply causality, because when only the non-pleiotropic SNPs
were included in the SNP score, no association with cIMT was
observed. Taken together, proinsulin per se is unlikely to have a
causal effect on cIMT.

4. Discussion

It has previously been reported that circulating levels of proin-
sulin are predictive of CVD [5e9]. To the best of our knowledge, this
is the first study to examine whether proinsulin has a causal effect
on early vascular processes, such as increased thickness of the ca-
rotid artery wall measured by cIMT. In this study we identified a
proinsulin-associated locus and used this, and other previously
reported proinsulin-associated SNPs [10], in a MR experiment,



Fig. 2. Regional plots of suggestive loci.
(A) Chromosome 11 locus; (B) chromosome 11 locus after conditioning on the previously reported ARAP1 loci (rs11603334 and rs77756118); (C) chromosome 15 locus; (D)
chromosome 15 locus adjusted for the previously reported, nearby loci (LARP6 rs7163439 and VPS13C rs4502156); (E) chromosome 6 locus.
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Table 1
Replication meta-analysis of suggestive novel associations with proinsulin levels.

CHR SNP BP A1 A2 MAF Insulin model
(Na ¼ 20,003)

BMI model (Na ¼ 19,986) Glucose model
(Na ¼ 19,684)

Direction ISq

Beta Se p Beta Se p Beta Se p

6 rs2323000 81729597 T C 0.049 �0.001 0.011 0.9022 0.002 0.011 0.8671 0.000 0.011 0.9727 — þ -þþ 0
15 rs8029765 91955915 G T 0.178 0.013 0.006 0.0387 0.014 0.006 0.0307 0.012 0.006 0.0709 -þþþþþþ 0

Where: A1 is the minor/effect allele; A2, major/non effect allele; MAF, minor allele frequency; Insulin model, adjusted for age, sex, MDS1-3, insulin; BMI model, adjusted for
age, sex, MDS 1e3, insulin, BMI; Glucose model, adjusted for age, sex, MDS1-3, insulin, glucose; Full model, adjusted for age, sex, MDS 1e3, insulin, BMI, smoking, LDL, TGs,
glucose. Na, Smallest N; Direction, direction of effect in each cohort; ISq, heterogeneity I square value. Direction and Isq were the same for all models. Cohorts: PROCARDIS
cases, PROCARDIS controls, PIVUS, ULSAM, HBCS, FHS, FENLAND.
Bold indicates significant results.

Table 2
Associations between proinsulin levels and IMT measures in IMPROVE.

Basic þ proinsulin Extended þ proinsulin

Beta Se p Beta Se p

Baseline IMTmean �0.004 0.003 0.180 �0.004 0.003 0.124
IMTmax �0.002 0.005 0.668 0.000 0.005 0.977

Progressiona IMTmean 0.000 0.001 0.864 0.000 0.001 0.689
IMTmax �0.011 0.005 0.032 �0.011 0.005 0.047

Basic model, MDS1-3, age, sex, insulin; extended model, MDS1-3, age, sex, insulin,
BMI, SBP, HDL, TGs, current smoking.

a Also adjusted for the baseline measure.

Table 3
Effect of the proinsulin-raising SNP score on IMT phenotypes in IMPROVE.

Proinsulin SNP
score
(11 SNPs)

Non-metabolic
SNP score
(3 SNPs)

Beta p Beta p

Baseline IMTmean �0.002 0.045 �0.002 0.263
IMTmax �0.004 0.027 �0.005 0.206

Progressiona IMTmean 0.000 0.816 0.000 0.583
IMTmax 0.001 0.755 �0.003 0.538

Basic model, MDS1-3, age, sex, insulin.
a Also adjusted for the baseline measure.
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which demonstrated that proinsulin is unlikely to be a causal factor
in determining cIMT.

The robust proinsulin-associated loci generally had sizes and
directions of effect in IMPROVE that were comparable with those
previously reported [10], which added support to the validity of the
proinsulin-associated SNP, and enabled the use of proinsulin SNP
scores in an MR analysis. The locus (lead SNP rs8029765) demon-
strated a genotype-specific effect on UNC45A expression, with the
allele associated with higher levels of proinsulin being associated
with lower expression of UNC45A. Low levels of UNC45A have been
shown to inhibit cell proliferation and differentiation whereas high
levels are associated with a number of cancers [32]. The chaperone
protein encoded by UNC45A is also involved in intra-cellular traf-
ficking, via its association with myosin [32,33]. It is possible that
genetically low UNC45A levels could influence proinsulin levels,
either via aberrant trafficking of vesicles (leading to release of
incompletely processed proinsulin) or as a result of a reduced
number of b -cells in the pancreas (leaving the pancreas more
vulnerable to damaging stress during insulin resistance and
hyperinsulinemia). Five genetic variants in the UNC45A genomic
region have been reported in association with metabolic traits
(GWAS catalogue, dated 20161017). However, these are all ~500 kb
from the chromosome 15 locus and are at most in low linkage
disequilibrium with rs8029765 (r2 < 0.11, Supplementary Fig. 3). In
addition, they show no association with proinsulin levels in this
study (smallest p > 0.2411), suggesting that these signals are un-
related. The lack of effect of rs8029765 on T2D is consistent with
other proinsulin-associated loci, for example PCSK1, which
demonstrated strong effects on proinsulin levels but convincingly
null effects on T2D10.

The MR analyses can be used to demonstrate causality if i)
proinsulin levels are associated with cIMT; ii) SNPs demonstrate
robust associations with proinsulin; and iii) SNPs influence cIMT
only through proinsulin, and not via other mechanisms. Proinsulin
levels have been shown to influence cIMT in a previous report from
a cross-sectional study of healthy middle-aged men [4]. However,
in IMPROVE the association was weak and non-significant. Robust
associations between SNPs and proinsulin levels have been re-
ported [10] and were consistent in IMPROVE. Whilst some associ-
ation was observed between the 11-SNP score and cIMT,
adjustment for pleiotropy (using MR-Eggers) or omission of the
pleiotropic SNPs (3-SNP score) rendered the associations with cIMT
non-significant. These results suggest that associations between
proinsulin and cIMT are most likely due to confounding and
pleiotropic effects of SNPs. Despite these findings, CVD prevention
strategies which aim to reduce insulin resistance are still of value,
as insulin resistance promotes other CVD risk factors including
obesity and leads to T2D. In addition, proinsulin processing to in-
sulin also releases c-peptide, which negatively correlate with HDL
levels [34], therefore reducing hyperinsulinemia could enable
increased HDL levels.

A limitation of this study is lack of power to detect an associa-
tion, with much larger sample sizes (n > 350,000) being required to
conclusively address this question. MR analyses are frequently
weakened by small effect sizes of genetic variants and inability to
collect large enough sample sizes to enable drawing of definitive
conclusions. In the absence of sufficient sample sizes with cIMT
measures, alternative methodologies would be required to confirm
these findings. Metabolic phenotypes are particularly challenging
because of the complexity of interlinking mechanisms.

A unique strength of this study is the detailed measurements of
the cIMT. The secondary analyses in the present study demon-
strated that a positive association between proinsulin and cIMTwas
limited to only one sengment in the carotid tree, which is an
interesting and novel observation. However the uniqueness of
IMPROVE is also a limiting factor in that there are few available
cohorts with comparable cIMT measures, which precludes repli-
cation of the cIMT segments considered in the secondary analysis.
IMT measures are often rather variable, especially when consid-
ering progression over a relatively short time frame. We recognise
this limitation, but note that the standard deviations for the studies
included in this analysis are not excessive, that there is consistency
across the studies and we have focused on the baseline measures
and merely comment upon progression data. The weak association
between proinsulin and cIMT is a weakness of this study, however
there is prior independent evidence for the association between
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proinsulin and cIMT [4]. Biomarker measurements reflect a snap-
shot in time, whereas genetic variants reflect the lifetime exposure
to biomarker levels. Thus by using genetic variants robustly asso-
ciated with proinsulin levels, MR analyses give a more stable life-
time risk assessment. For a genetic discovery analysis, the IMPROVE
cohort is relatively small. However, the high CVD-risk profile of all
subjects renders it a relevant cohort for association studies of CVD-
associated biomarkers. In addition, all participants had at least 3 of
9 established CVD risk factors [12], meaning that the repertoire of
potential confounders was very varied across the cohort and
thereby limiting the potential for selection bias. Replication of the
chromosome 15 proinsulin-associated SNP was conducted in a
population of similar size to that utilised in the proinsulin GWAS
[10], thus giving confidence to this finding.

In conclusion, we have identified a proinsulin-associated locus
and used MR to demonstrate that proinsulin per se is unlikely to
have a causal effect on cIMT, a proxy measurement for early
atherosclerosis.
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