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Abstract:  
 
This paper presents the first study that combines the use of ancient crop and animal 
stable isotopes (carbon and nitrogen) and Zooarchaeology Mass Spectrometry species 
identification (ZooMS) for reconstructing early farming practices at Kouphovouno, a 
Middle-Late Neolithic village in southern Greece (c. 5950-4500 cal. BC). Debate 
surrounding the nature of early farming predominantly revolves around the intensity of 
crop cultivation: did early farmers move around the landscape while practicing temporary 
farming methods such as slash and burn agriculture or did they create more permanent 
fields by investing high labor inputs into smaller pieces of land that produced higher crop 
yields? The need to address these questions using a direct assessment of the intensity 
and scale of cultivation is apparent, and an integrated stable isotope approach provides 
such an opportunity. The results of this study support the model of small-scale mixed 
farming, where crop cultivation and animal husbandry are closely integrated. The 
farmers directed their intensive management towards crops grown for human 
consumption (free-threshing wheat), while growing fodder crop (hulled barley) more 
extensively. Pulses were cultivated under a high-manuring/high-watering regime, likely in 
garden plots in rotation with free-threshing wheat. The diets of the livestock enable us to 
investigate which parts of the landscape were used for browsing and grazing and 
indicate that animal management changed in the Late Neolithic. The sheep and goats 
were now kept in smaller numbers and grazed together and new pasture grasses were 
sought for the grazing of cattle. This study demonstrates that beyond its applicability for 
palaeodietary reconstruction, analysis of stable isotopes of archaeological crop and 
animal remains has important implications for understanding the relationship between 
humans, plants and animals in an archaeological context. 
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1. Introduction 

Recent investigations in the field of stable isotope analysis have demonstrated the 

potential of obtaining direct evidence of ancient agricultural practices from δ15N and δ13C 

analysis of archaeobotanical remains (Araus et al. 1997, 1999; Bogaard et al. 2007, 

2013; Fraser et al. 2011, 2013a; Kanstrup et al. 2011, 2012, 2013; Lightfoot and Stevens 

2012; Wallace et al. 2013). Analysis of modern crops grown under a range of 

experimental and traditional farming regimes has shown that δ15N and δ13C values 

reflect crop growing conditions, such as soil nitrogen composition and crop water 

availability. In addition, some of this work (Bogaard et al. 2007; 2013; Fraser et al. 2011, 

2013a, 2013b; Lightfoot and Stevens 2012) has highlighted the fact that where possible, 

the isotopes of plants must be measured alongside the isotopes of human and faunal 

remains in order to better understand ancient palaeodiets.  

 

The current paper builds on this work by integrating the analysis of ancient crop and 

faunal remains in order to explore the nature of agricultural economy at the Middle-Late 

Neolithic site of Kouphovouno (5950-4500 cal. BC). It has long been argued that 

management of domestic plants and animals in a farming context can be functionally 

interdependent (Bogaard 2004a, 2004b, 2005; Bogaard and Isaakidou 2010; Byrd 2000; 

Flannery 1969; Halstead 1989). Animals can be used to regulate and promote crop 

productivity as well as for “indirect storage” of surplus grain and crops/arable fields can 

serve as fodder and graze for the animals. In light of this view, it has been suggested 

that early farming systems in Greece, and in fact the rest of Europe, employed some 

version of a small-scale mixed farming economy (Bogaard 2004a, 2004b, 2005; 

Halstead 1996, 2000, 2006). Thus, the aim of this paper is to investigate if the stable 

isotope data support or refute an intensive mixed farming model and if the changes in 
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pottery styles observed between the Middle and Late Neolithic accompanied by shifts in 

agricultural management. 

 

2. Methodological background 

Stable isotope signatures of archaeological material (such as bone collagen or charred 

plant material) are useful for reconstructing not only past human and animal diets, but 

practices such as land use and agricultural management (for examples of palaeodietary 

studies, see Chisholm et al. 1982; Richards et al. 2003; Schulting and Richards 2002; 

Schwarcz et al. 1985). The stable isotope values of carbon and nitrogen, expressed as 

δ
13C and δ15N, represent the ratios of the heavier to lighter isotopes (13C:12C and 15N:14N) 

in a given sample compared to internationally set standards (PeeDee Belemnite for 

carbon and AIR for nitrogen). The ratios are expressed in parts per thousand, ‰, and 

are calculated using the following equation:  

 

 

 

For a comprehensive review of the technique, see Lee-Thorp (2008), O’Connell and 

Hedges (1999), Schoeninger and Moore (1992), Schwarcz and Schoeninger (1991). 

 

Plants and animals obtain carbon and nitrogen through metabolic processes such as 

breathing, photosynthesis and digestion. These processes are governed by principles of 

biochemical fractionation that determine the proportions in which the different isotopes of 

each element get assimilated into the organism’s tissues (such as animal 

muscles/bones, and crop grain/straw). When another organism consumes those tissues, 

the isotope chemistry of the consumer reflects the distinct signature of the food source 

plus an enrichment factor. Thus, herbivores have higher δ15N and to a lesser extent δ13C 
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compared to the plant foods they consume and carnivores higher values than the 

herbivores they eat (Bocherens et al. 1995; Chisholm et al. 1982; DeNiro and Epstein 

1978; Hedges 2006; Hedges and Reynard 2007; Lee-Thorp et al. 1989; Sillen et al. 

1989; Vogel and van der Merwe 1977). Collagen δ13C and δ15N values predominantly 

reflect the protein portion of the consumers’ diets (Ambrose and Norr 1993; Chisholm et 

al. 1982), with many amino acids being directly assimilated from the food source 

(Chikaraishi et al. 2009; Corr et al. 2005; McCullagh et al. 2006).  

 

The δ15N of crops reflects the isotopic composition of their nitrogen source. N2-fixers, 

such as lentils and other pulses, host Rhizobium bacteria in the nodules of their roots, 

which convert atmospheric nitrogen to ammonium ions and pass them to the plant or 

surrounding soil. This process does not cause substantial fractionation and as a result, 

these plants have δ15N values closer to the value of atmospheric nitrogen, which is 0‰ 

(Bernhard 2012; Delwiche et al. 1979; Högberg 1997). Non-N2-fixers, such as cereals, 

obtain their nitrogen from the soil and are thus directly affected by the factors that cause 

soil 15N enrichment discussed below (Bogaard et al. 2007; Fraser et al. 2011; Kanstrup 

et al. 2011, 2013). Although in traditional farming contexts, N2-fixers fix mostly 

atmospheric nitrogen, they are also affected by manuring, albeit to a lesser extent than 

non-N2-fixers (Fraser et al. 2011). A possible mechanism for this is direct uptake of 

amino acids present in soil (as has been found to be the case in the non-leguminous 

wheat (Hill et al. 2011)).  

 

Soil 15N enrichment can be caused by natural factors such as soil salinity (Ambrose 

1991; Heaton 1987; although for opposite argument see Yousfi et al. 2010), sea-spray of 

nitrates (Heaton 1987; Virginia and Delwiche 1982), and denitrification (Högberg 1997; 

Tiedje et al. 1982). Significant denitrification occurs in waterlogged conditions such as 
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marshlands. Elevated δ15N values have also been correlated with decreased 

precipitation in experimental and field studies in arid regions in South Africa, the 

southwestern United States, Namibia, and the Kenya Rift Valley (Ambrose 1991; Evans 

and Ehleringer 1993, 1994; Heaton 1987; Heaton et al. 1986; Lopes and Araus 2006; 

Sealy et al. 1987; Swap et al. 2004). Aranibar et al. (2004) observed an aridity effect 

across a precipitation gradient (978 – 230mm of annual rainfall) in the Kalahari desert, 

but argue that 15N enrichment in arid climates may be more affected by unpredictability 

of precipitation rather than lower overall annual rainfall levels. Fraser et al. (2011) assert 

that the aridity effect may be buffered through crop management and therefore invisible 

in agricultural settings.  

 

Anthropogenic factors that cause 15N enrichment include middenning (cf Guttmann 

2005; Bogaard 2012), manuring (Bogaard et al. 2007; Fraser et al. 2011; Kanstrup et al. 

2011, 2013), clear-cutting of forests (Pardo et al. 2002) and burning of fossil fuels 

(Templer et al. 2007). 

 

δ
15N from animal and human collagen can be used to assess the trophic level of the 

individual, which is an indication of where the individual was situated in the food chain 

(DeNiro and Epstein 1981; Hedges and Reynard 2007; Minagawa and Wada 1984). For 

many years, the widely accepted value for isotopic spacing between diet and consumer 

tissue has been 3-5‰ (Ambrose 2000; Bocherens and Drucker 2003; Hedges and 

Reynard 2007), but recent work on isotope spacing in humans by O’Connell et al. (2012) 

suggests that this value may be higher, between 4.6-6‰. Taking all of this work into 

account and assuming that trophic enrichment for humans is comparable to that for 

domestic animals, in this study, we use 5 ± 1‰ as an approximation of tissue-diet 

spacing. 
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Plant δ13C values are determined by the δ13C of the atmospheric CO2 at the time of the 

plant’s growth as well as the degree of fractionation that occurs during photosynthesis. 

Since the concentration of CO2 in the atmosphere has fluctuated over time, differences 

in plant δ13C values from different periods do not simply reflect growing conditions and 

fractionation, but the isotopic composition of the carbon source as well. For this reason, 

when comparing crop δ13C across different periods, the values need to be converted into 

∆
13C, which reflect the carbon isotope discrimination independent of atmospheric CO2 

concentration (Farquhar et al. 1982; 1989; Jackson et al. 1994; Wallace et al. 2013). The 

conversion is done following the principles outlined by Farquhar et al. (1989) and using 

the equation:  

 

 

 

δ
13Cair is the isotopic composition of atmospheric CO2 at the time that the plant was 

growing. These values have been preserved in sequence in Antarctic ice-cores and can 

be estimated using the AIRCO2_LOESS data calibrator1 for the time period between 

16,100 B.C.E. and 2003 C.E. (Cleveland et al. 1979; Ferrio et al. 2005; Francey et al. 

1999; Indermühle et al. 1999; Lauenberger et al. 1992). Converting δ13C into ∆13C 

changes the directionality of the effect (i.e. higher δ13C values equate to lower ∆13C 

values), and the sign (negative δ13C values become positive ∆13C values). 

 

Carbon isotope discrimination in plants, encoded in their ∆13C, is driven by the 

photosynthetic mechanism. Many factors are involved in this process (including light 

intensity, temperature, and concentration of CO2 in the atmosphere), but it is argued that 

                                                        
1 http://web.udl.es/usuaris/x3845331/AIRCO2_LOESS.xls 
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in semi-arid climates, ∆13C is most notably affected by water availability (Farquhar et al. 

1982, 1989; Farquhar and Richards 1984; Wallace et al. 2013). The amount of water 

available controls the action of the plant stomata (pores on the surface of the plants), 

which affects how the CO2 is used during photosynthesis. When sufficient amounts of 

water are available, the plant stomata stay open for longer periods of time and CO2 is 

replenished during photosynthesis so that more of the lighter 12C (which reacts more 

quickly in chemical reactions) is available for assimilation. When the water supply is 

limited, the plant periodically closes its stomata to conserve the water. This causes the 

CO2 to be recycled and more of the heavier 13C to be assimilated (Farquhar et al. 1982, 

1989; O’Leary et al. 1981; Smith et al. 1976; Wallace et al. 2013). Measurement of ∆13C 

of crops is thus instrumental for inferring the water status of the crops during their growth 

season.  

 

3. The site 

Kouphovouno is located in mainland southern Greece, c. 2.5km southwest of Sparta on 

the Peloponnesian peninsula (see Fig. 1). The was first occupied in the Middle Neolithic, 

which, in Southern Greece is dated to c.5950 - 5450 cal BC, and continued through the 

Late Neolithic (c. 5450 - 4500 cal BC). Based on AMS carbon dating of seeds from the 

same contexts, the strata represented in this study date to a narrower range of c. 5800 - 

5000 cal. BC (Mee et al. in press).  

 

First excavation of the site was undertaken by O-W. von Vacano in 1941 and this work 

was published by Josette Renard in 1989. The initially exposed strata indicated that the 

site had been occupied between the Middle Neolithic and the Early Helladic II periods. 

The site was reopened in 2001 after two seasons of survey, which indicated that a 

number of burnt structures lay buried under the surface and that the extent of occupation 
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of the site did not vary significantly between the Middle and the Late Neolithic 

(Cavanagh et al. 2004, 2007; Mee et al. in press.). 

 

A further five seasons of excavation recovered well-preserved botanical and faunal 

assemblages across the excavated Areas A-G in contexts ranging from burnt floors and 

hearth structures to destruction layers and midden deposits. The available archaeology 

indicates that the settlement was nucleated and may have been divided into 

neighborhoods. The plant assemblage mostly consists of domestic species of cereals 

and pulses including free-threshing wheat, hulled barley, (one-seeded) einkorn, emmer, 

lentil, common pea, grass pea, and bitter vetch; along with figs and flax. The faunal 

assemblage is dominated by domestic animals such as cattle, sheep, goats, pigs and 

dogs, but wild animals such as red deer, roe deer, wild boar, aurochs, wild goat, hare, 

wolf, fox, cat and weasel were also found in smaller quantities (Cantuel et al. 2008; 

Cavanagh et al. 2004; Gardeisen 2007).  

 

The surrounding Sparta Basin is one of the most fertile regions in Greece, and ample 

arable land was available for cultivation in the Neolithic. The early farmers may have 

sown their crops in the floodplain on which the tell sits, on alluvial fans located 300m to 

the west of the site and/or on unoccupied parts of the tell itself. The environment also 

offered land suitable for animal grazing/browsing and plentiful drainage from nearby 

rivers (Fouache et al. 2007; section by James and Kousoulakou in Cavanagh et al. 

2004). 

 

4. Materials and Methods 

4.1. Choice of samples 
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28 bulk plant samples of charred archaeobotanical material were analyzed in this study. 

The samples include 13 samples of free-threshing wheat grain (Triticum aestivum 

L./Triticum durum Desf.), 7 samples of hulled barley grain (Hordeum vulgare L.), 7 

samples of common pea (Pisum sativum L.) and 1 sample of lentil (Lens culinaris 

Medik.). Other species recovered in the archaeobotanical record (Bogaard unpublished 

data) include wheat of the hulled variety: einkorn (Triticum monococcum L.) and emmer 

(Triticum dicoccum Shrank); these were recovered in smaller quantities, however, and 

could not be included in the isotope sampling 

 

68 samples of animal bone were analyzed in this study. These included 15 samples of 

domestic cattle (Bos taurus), 7 dogs (Canis lupus familiaris), 12 domestic sheep (Ovis 

aries), 7 domestic goats (Capra hircus), 23 domestic pigs (Sus scrofa domesticus), 1 

wild boar (Sus scrofa scrofa), 1 hare (Lepus europaeus), 1 bear (Ursus arctos) and 1 

sample of wild goat (Capra aegagrus/Capra ibex). 

 

See Supplementary Table 1 for details on the archaeological context of the samples. 

Due to the limited number of samples, we have grouped the samples only into two 

chronological phases: Middle Neolithic and Late Neolithic. Elsewhere, some of these 

contexts are discussed to be Transitional MN/LN (Mee et al. in prep). In this study, the 

transitional contexts are treated as Late Neolithic due to the occurrence of Black Ware 

pottery, which is taken to signal the onset of Late Neolithic. 

 

Insert Supplementary Table 1 here.  

 

4.2. Wild vs. domestic plants 
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Most of the samples analyzed in this study represent domestic forms of plants and 

animals. While it would be useful to have a large sample size of wild animals for 

comparison, the 1 sample of bear, 1 sample of hare, 1 sample of wild goat and 1 sample 

of wild boar were all that was available from the wild faunal assemblage. As for the 

crops, there are two reasons why we did not sample any wild species. First, the only wild 

plant that is available in a usable quantity from this site is fig and measuring it would not 

provide us with any useful information. It could not serve as a reference for the 

“environmental background” as it is unknown where the fig trees grew. They may have 

been located adjacent to the fields and thus been affected by arable management. 

Additionally, the isotopic composition of this one species would not illustrate the diversity 

of the isotopic composition of all the grasses and browse available for the herbivores to 

consume. Second, we hesitate to measure the stable isotopes of wild plant species, as 

these have not been studied experimentally and so it is unknown how these plants 

respond to charring and soil 15N enrichment. In light of these limitations, the 

interpretations made in this study are primarily based relative differences between 

(predominantly domestic) species, and reference is made to forage values inferred from 

local herbivore collagen values by subtracting a trophic enrichment factor. 

 

4.3. Pre-treatment 

Pre-treatment of the plant material followed the acid-base-acid protocol described by 

Fraser et al. (2011). The samples were first soaked in 0.5M HCl at 70°C for 30-60min 

and subsequently rinsed 3 times in distilled water. Next, they were soaked in of 0.1M 

NaOH at 70°C for 60min and rinsed as many times as it took to wash out the brown 

humic substances (up to 9 rinses). Lastly, the samples were heated in 0.5M HCl at 70°C 

for 25min and rinsed 3 times in distilled water. Kanstrup et al. (2013) used stronger acid 

and base to pre-treat their archaeobotanical samples (1M HCl and 1M NaOH for 1h, 3h 
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and 16h). They found a difference of 0.9‰ between their pre-treated and non-pretreated 

samples; however, it remains to be determined whether this difference was solely due to 

the removal of contamination or the use of more vigorous pre-treatment. 

 

Pre-treatment of the faunal material followed the standard procedure for bone collagen 

extraction (modified Longin (1971) method described by Richards and Hedges (1999)). 

Bone pieces were demineralized using 0.5M HCl at 5°C over a period of 3-10 days and 

subsequently washed three times in distilled water. The residue was gelatinized in pH3 

HCl solution for 48h at 75°C and subsequently freez e-dried. 

 

4.4. Isotope measurements and precision 

Measurements of plant δ13C were performed at the NERC Isotope Geosciences 

Laboratory on a Costech 4010 on-line to a VG TripleTrap and Optima dual-inlet mass 

spectrometer. Measurements of plant δ15N and faunal δ13C and δ15N were analyzed 

using Continuous Flow Isotope Ratio Mass Spectrometry (CFIRMS) comprised of an 

Elemental analyser (Flash/EA) coupled to a Thermo Finnigan DeltaPlus XL isotope ratio 

mass spectrometer via a ConFlo III interface. Collagen δ13C and δ15N ratios were 

calibrated using internal reference material M1360p (powdered gelatine from British 

Drug Houses) with expected δ13C values of –20.32‰ (calibrated against IAEA CH7) and 

+8.12‰ (calibrated against IAEA N-1 and N-2) for C and N respectively. Plant δ13C and 

δ
15N ratios were calibrated using internal reference material BROC-2 (powdered 

broccoli) with expected delta values of -27.48‰ (against NBS-18, NBS-19 and NBS-22)  

and +1.5‰ (calibrated against IAEA N-1 and N-2) for C and N respectively.   

 

The precision (1σ) of the collagen results, based on the reproducibility of the gelatin 

standard measured six times within each run, was 0.09‰ for the first C run, 0.17‰ for 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 11 

the second C run and 0.14‰ for both N runs. The precision of the plant bulk samples, 

based on the reproducibility of BROC-2 measured six times within each run, was 0.02 

for was the C run and 0.09 for the N. Only those collagen samples that had a C:N ratio 

within the accepted range of 2.9-3.6 were included in the analysis (DeNiro 1985). All 

collagen samples were measured in triplicate except for sample KFO57, where enough 

material was available for only one measurement.  

 

4.5. Charring correction 

Experimental studies (Fraser et al. 2013a) have shown that charring increases plant 

δ
15N values by 1‰ (the species that were studied include Triticum aestivum, Triticum 

monococcum, Tricium dicoccum, Triticum spelta, Hordeum vulage var. distichum and 

nudum, Lens culinaris, Pisum sativum, Vicia faba). Even though Kanstrup et al. (2012) 

did not find any such charring offsets, their samples were only exposed to the 

experimental temperatures for 2 hours, which is too short to replicate the type of charring 

that causes the “optimal” morphological preservation like the one observed in the 

Kouphovouno samples (cf Charles et al. in prep). Following the findings of Fraser et al. 

(2013a), the plant δ15N measurements obtained in this study were corrected for the 

charring effect by subtracting 1‰ from all normalized measurements. 

 

4.6. ZooMS 

Sheep and goat samples were distinguished on the basis of ZooMS (Zooarchaeology 

Mass Spectrometry). This method works on the basis of identifying species-specific 

markers in the amino acid sequences of collagen. The characteristic single peptide 

collagen markers have previously been identified for sheep and goat in a set of modern 

and archaeological specimen (Buckley et al. 2009, 2010). The same collagen that was 
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used to measure the stable isotopes in the present study was sequenced for ZooMS and 

all samples ran in triplicate. 62 out of 63 spots gave successful spectra. 

 

5. Results and Discussion 

5.1. Assessing the reliability of the crop isotope measurements 

There are no set rules for accepting or rejecting plant isotope measurements based on 

their C:N ratios, like there are with collagen. In order to assess the reliability of the crop 

isotope measurements obtained in this study, we compared their C:N ratios to values of 

experimentally charred cereals and pulses (using data from Fraser et al. 2013a; %C 

values come from Supplementary Table 1, %N values come from Supplementary Table 

2; see our Supplementary Table 2 for calculations of C:N ranges). The C:N ratios of the 

Kouphovouno cereals lie between 13.6 and 40.3; those of modern experimentally 

charred cereals are between 17.9 and 33.4. The C:N ratios of the Kouphovouno pulses 

range between 6.7 and 13.4; those of modern experimentally charred pulses are 

between 8.8 and 13.1. Statistically, there are no significant differences between the two 

groups of values (two-tailed equal variance student’s t-test between KFO cereals and 

modern charred cereals, p = 0.68; two-tailed equal variance student’s t-test between 

KFO pulses and modern charred pulses, p = 0.75). Additionally, the %C and %N 

measurements of the Kouphovouno samples show the same trends as the 

experimentally charred material:  

1) pulses have higher %N than cereals, 2) cereals and pulses have indistinguishable %C 

values and 3) there is some species clustering in %N among the cereals (see Fig. 3). It 

is on the basis of the similarity of the C:N ratios and the trends apparent in the %C and 

%N values that we consider the isotope measurements reliable.  

 

Insert Supplementary Table 2 here. 
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5.2. Crop δ15N and soil growing conditions 

Fig. 4 and Table 1 show that there is no overlap between the δ15N values of the free-

threshing wheat and hulled barley from Kouphovouno (mean δ15N of free-threshing 

wheat (n=13) = 5.8 ± 0.7‰; mean δ15N of hulled barley (n=7) = 2.7 ± 1.2‰). The only 

possible explanation for such a striking difference is that the crops were cultivated in 

different soils with distinct soil N properties. We will first consider the environmental and 

then the anthropogenic reasons for explaining the differences between the soils in the 

barley and the wheat fields.  

 

None of the environmental factors discussed earlier are likely to have affected the fields 

around Kouphovouno: 

1) geophysical and hydrological reconstruction of the environment around 

Kouphovouno (Fouache et al. 2007) indicates that the soils in the nearby 

floodplains and alluvial fans were well drained and so it is unlikely that they were 

affected by soil salinity or denitrification 

2) the site is not located on the coast, so nitrates could not have been introduced to 

the land through sea-spray 

3) an ecosystemic aridity effect would have affected the entire region and thus 

could not have elevated the δ15N values of one field and not the other; 

furthermore, the measured ∆13C values indicate that both cereals had enough 

water available to them (discussed below in section 5.4), and so it is unlikely that 

they suffered from different degrees of water stress 

 

Out of the handful of anthropogenic factors that can cause 15N soil enrichment 

mentioned earlier, only one of them is likely to have affected the cultivated soils around 
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Kouphovouno. Burning of fossil fuels is not an issue for the Neolithic period and clear-

cutting of forests only produces a short-term enrichment. The most likely explanation is 

that the 15N enrichment in free-threshing wheat fields was caused by the application of 

farmyard manure, a phenomenon that has been found to raise the δ15N of cultivated 

crops in several different experimental farm settings by up to 10‰ (Bogaard et al. 2007; 

Fraser et al. 2011; Kanstrup et al. 2011, 2013). The reason for the enrichment is that as 

animal dung releases gaseous ammonia through volatilization, the lighter 14N is 

preferentially lost to the atmosphere, leaving behind the heavier 15N, which is eventually 

taken up by the plants in the form of nitrates.  

 

The application of kitchen waste material on cultivated fields can be considered as an 

extension of manuring, as decomposing material also provides 15N enrichment to the soil 

(Bogaard 2012). This practice can be detected with the presence of pottery sherds in 

areas of possible cultivated fields. Results of the land survey at Kouphovouno revealed a 

presence of Neolithic pottery on the top of the mound, and in smaller quantities on the 

slopes and the land adjacent to the tell (see Fig.4 in Cavanagh et al. 2004:83). Some of 

these sherds may have originated from kitchen waste. This raises the possibility that 

kitchen waste may have provided some opportunity for soil enrichment in the land 

proximal to the occupation areas; although the effect would not be as high as that 

provided by manure (cf Bogaard 2012).  

 

Based on their experimental findings, Fraser et al. (2011) define three isotope ranges 

which represent three different levels of manure treatment:  

1) long term high-level of manuring (values of 6‰ or above) 

2) long term cultivation without manuring (values below 2.5‰) 
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3) medium level of manuring resulting from either long-term cultivation with low 

manuring, residual effects after a period of intensive manuring or early years of a 

new cultivation regime (values between 2.5 and 6‰) 

 

The manuring bands established experimentally may be used as a proxy for 

reconstructing farming practices in the Neolithic, but it is important to note that these 

bands can only be used for comparative purposes and not for assigning definite labels to 

any given measured values, as the absolute ratios vary in different climatic zones (due 

to a host of factors such as altitude and mean annual rainfall; van Klinken et al. 1994). In 

the absence of measurements of wild crop species, interpretations of the domestic crops 

measured in this study are confined to inter-species differences and can inform us about 

the differences in cultivation regimes rather than absolute environmental conditions.  

 

Both cereal crops measured in this study fall into the medium manuring category, but the 

varying degree of 15N enrichment suggests that free-threshing wheat was manured more 

intensively than barley. This may reflect the farmers’ awareness that barley can grow in 

more marginal conditions (Ceccarelli 1994; Ceccarelli et al. 2007; Guo et al. 2009), 

which may have been the basis for assigning differential value to the crops.  

 

The experimentally manured crops used to establish the manuring bands are based on 

treatments of 20 – 35 tons of manure per hectare. Rowley-Conwy (1981) estimates that 

a pair of oxen can produce about 12 tons of manure per year. Combined with manure 

produced by other domestic animals kept on an intensive scale – goats, sheep, and pigs 

– it is conceivable that enough manure was available during the Neolithic to achieve 

similar levels of soil enrichment. Most of the manure would have needed to be applied 

manually on the fields, as letting the animals graze on the fields during an off-season 
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wouldn’t provide the degree of enrichment implied by the isotope data. This suggests 

that the manuring strategy involved a very conscious and planned manipulation of the 

soil and was not simply a by-product of herding animals in the arable landscape. The 

intensive soil treatment attests to the long-term use of the fields, as it takes a number of 

years for the enriched N from manure to become available for uptake by crops. For this 

reason, it is unlikely that the crops were grown in a regime of shifting cultivation; rather, 

the same fields were used over a time-span of several generations on a schedule of 

rotation with pulses (to allow the soil to regenerate). As manuring leaves a long-term 

residual effect on the soil, these pulses would also be affected by the intensive soil 

treatment and evidence of this would provide more support for this hypothesis (see 

Section 5.3).  

 

It is also possible that draught animals were used for spreading the manure on the fields 

and evidence of pathologies indicating the use of cattle for traction in the Middle 

Neolithic at Kouphovouno may support this view (Cantuel 2010, unpublished). 

 

Two of the three Late Neolithic barley values are notably lower in δ15N than the rest of 

the barley values (see Fig. 5). Even though the sample size is extremely limited, this 

may suggest that there was a shift towards reduced manuring of barley in the Late 

Neolithic. 

  

Another way of inferring 15N enrichment in cultivated crops is by comparing the 

measured crop values to a local ‘unmanured baseline’ – a projection of the value of the 

forage consumed by local herbivores (cf Bogaard et al. 2013). The advantage of 

estimating this baseline is that it represents a diet composed of a mixture of wild plants, 

rather than individual measurements of possible wild plants, which would be the case if 
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wild plants were measured. In Kouphovouno, the mean domestic herbivore value (an 

average of the sheep, goats, cattle, and wild goat δ15N) is 4.9‰. Subtracting the 

approximate value of trophic enrichment of 5 ± 1‰ (see above) from the value of the 

local domestic herbivores gives a value of local forage of -0.1 ± 1‰. This figure is lower 

than the value of most of the measured crops, so this line of evidence corroborates the 

argument that both cereals grew in soils more enriched in 15N than the land on which the 

animals browsed/grazed. An exception are two barley samples from the Late Neolithic, 

which indicate reduced manuring of this crop in the later phase (see above).  

 

5.3. Pulse δ15N and soil growing conditions 

Pulses are N2-fixers that obtain most of their nitrogen from the atmosphere, and for this 

reason, they are less affected by soil 15N enrichment factors than crops such as cereals. 

The peas cultivated in Neolithic Kouphovouno (mean δ15N = 1.3 ± 0.3‰) exhibit 

noticeable enrichment over their primary source of nitrogen: AIR, which is 0‰ (see Fig. 

4). Low-intensity manuring of pulses is almost invisible in the isotope record as it causes 

increases in δ15N which are almost indistinguishable from measurement error (Fraser et 

al. 2011). As a result, when there is a noticeable enrichment (an example is intensively 

manured farm-grown pulses in the island of Evvia (Fraser et al. 2011:2800, Fig.5), we 

are led to argue that the crops were grown under a high-intensity manuring regime. 

 

5.4. Cereal ∆13C and water status 

Wheat and barley ∆13C values (16.5 ± 0.5‰ and 18.4 ± 0.4‰ respectively) indicate that 

the water status of these two crops did not differ to a large extent. Based on controlled 

experiments on the effects of different watering regimes on the ∆13C of modern cereals 

and pulses, Wallace et al. (2013) define three ‘watering bands’ that indicate the broad 

approximations of the water status of ‘poorly watered’, ‘moderately watered’ and ‘well 
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watered’ crops. Wheat grain in the ‘moderately watered band’ exhibits values between 

16 and 17‰; those grains that have values higher than 17‰ fall into the ‘well-watered 

band’ and those that are lower than 16‰ are grouped into the ‘poorly watered band’. 

The bands for barley have been defined by adding a mean offset of 1.5‰ to the wheat 

bands, owing to a known physiological offset between the two crops (Araus et al. 1997, 

1999; Jiang et al. 2006; Wallace et al. 2013).  

 

Both cereal crops measured in this study fall into the ‘moderately watered band’ (see 

Fig. 6) and prompt us to suggest that both crops had sufficient amounts of water 

available to them. The fact that barley is situated slightly higher within its watering band 

than wheat should not be considered significant, because the boundaries of the barley 

band have uncertainty attached to them, owing to the fact that the physiological offset 

between wheat and barley (used to define the barley bands) has been variably reported 

as lying between 1 and 2‰ (Araus et al. 1997, 1999; Jiang et al. 2006). In addition, 

Wallace et al. (2013) argue that crops grown under the same regime may have ∆13C 

variable by ± 0.5-1‰. What is clear from the present data is that both cereals received 

sufficient amounts of water during their growth.  

 

5.5. Pulse ∆13C and water status 

The pulses, represented by peas and a single sample of lentil, exhibit a clearly distinct 

water status compared to the cereals. The watering bands for pulses defined through 

Wallace et al.’s (2013) controlled experiments have similar values to those of wheat 

grain: ‘moderately watered pulses’ lie between 16 and 17‰, ‘highly watered pulses’ are 

situated above 17‰ and ‘poorly watered pulses’ fall below 16.  
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The mean ∆13C of the peas (18.9 ± 0.9‰) and the value of the lentil (19.1‰) (Fig. 6) lie 

c. 2‰ above the well-watered pulse band. Experimental studies have shown that there 

are no obvious trends with seasonality and ∆13C, only that pulses seem to be more 

sensitive to water input than cereals (pulses grown in dry soils look ‘very dry’ and pulses 

grown in wet soils look ‘very wet’) (Wallace et al. 2013). The effect this sensitivity would 

have on the pulse ∆13C, however, would not be as great as to account for the high ∆13C 

values measured in this study. For this reason, we argue that the pulses were watered 

artificially. 

 

The higher standard deviation of the peas (0.9‰ compared 0.5‰ and 0.4‰ of the 

cereals) may indicate that the pulses were being watered by hand, a practice that has 

been suggested as a possible cause of high ∆13C variability in archaeobotanical remains 

from Assiros Toumba (Wallace 2011, unpublished). There is no archaeological evidence 

for the use of irrigation at Kouphovouno. In modern collections, such higher ∆13C 

variability was observed at a small-scale ‘traditional farm’ situation on the Greek island of 

Evvia, where the application of water was not standardized among different farmers 

(Wallace et al. 2013).  

 

Thus, both the carbon and nitrogen lines of evidence suggest that pulse crops were 

being cultivated on an intensive, likely ‘garden type’ scale. Note that even though there 

is a slight suggestion that in the Late Neolithic, the δ13C of peas increased (see Fig. 5) 

(and therefore ∆13C decreased), all the peas still fall well above the moderately watered 

band. 

 

5.6. Animal δ13C & δ15N and diets  
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The δ13C and δ15N values of the animal bone collagen reflect patterns that conform to 

general expectations, but also enable us to look at more subtle differences in the diets of 

the Neolithic livestock (see Fig. 4 and Table 2). Sheep, goats and cattle all cluster in the 

same region, which is a result of their herbivorous nature. More subtle differences in the 

feeding strategies of the sheep and goat in the Middle and Late Neolithic periods are 

discussed below in section 5.8. The values of the pigs and the dogs are more elevated 

on the δ15N scale, which is in line with their more omnivorous dietary habits. The δ13C of 

the dogs is less negative than that of the pigs, which may be the result of higher 

consumption of meat products (different authors report offsets of +1-2.6‰ for the 

‘carnivore effect’: Bocherens et al. 1995; Lee-Thorp et al. 1989; Sillen et al. 1989). The 

same is the case for the one value of bear. Part of the reason for the high δ15N of the 

pigs may be that they consumed kitchen waste, which may have contained the grains or 

by-products of manured crops (discussed below in section 5.7). The one value of cattle 

with extremely elevated δ15N is considered to be an outlier.  

 

5.7. Projected chaff δ13C & δ15N and pig foddering 

Measurement of plant isotope values enables us to not only infer ancient crop growing 

conditions, but also to evaluate their potential contributions to the human and animal 

diets. Having measured three different crop types cultivated at Kouphovouno, we are 

now better equipped to try to interpret which of the crops may have been consumed by 

the domestic animals.  

 

Experimental studies have shown that there is a c. -2.4‰ offset in δ15N and -1.9‰ in 

wheat δ13C and -1.7% in barley δ13C between cereal grain and rachis (the stem within 

the cereal ear) (Fraser et al. 2011; Wallace et al. 2013). Fig. 7 shows the projected 

values of the free-threshing wheat and barley chaff for the Kouphovouno crops (wheat 
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chaff: δ15N ≈ 3.5‰, δ13C ≈ -23.8‰; barley chaff: δ15N ≈ 0.3‰, δ13C ≈ -25.6‰). Among all 

the animals studied, pigs are the ones that would have obtained most of their food from 

in or around the village (Rivals et al. 2011). Subtracting the diet-tissue spacing value of 5 

± 1‰ (see above) from the measured δ15N of the pigs (mean 5.9 ± 0.9‰), we get a 

value of c. 0.9 ± 1‰ for the composition of the pig diets. This is consistent with a diet 

made up of a mixture of barley grain and/or by-product, a small contribution from the by-

product of wheat, any component of the pulses, or other vegetation with comparable 

isotopic composition. What the pigs could not have been consuming to a significant 

extent is the free-threshing wheat grain. This result suggests that wheat was grown 

exclusively for human consumption and thus had a different cultural value to barley in 

this Neolithic context.  

 

5.8. Sheep & goat diets and diachronic change  

Sheep and goats are often grouped into one domestic animal category due to the 

morphological similarity of their skeletons, but the two species exhibit distinct 

grazing/browsing adaptations and are thus expected to have different diets. In this study, 

the differentiation of sheep and goat bones using ZooMS analysis allowed us to 

investigate the very nature of those differences. 

 

The two major factors to consider while differentiating between sheep and goat diets on 

an isotopic level are: 1) the type of habitat in which the animals graze/browse, 2) the 

choice of plants or plant parts that they consume; and these two factors may be 

influenced by the sizes of the animal herds. Sheep prefer to graze on grassy vegetation 

in open habitats while goats favor more leafy and woody vegetation in closed 

environments. If kept in large numbers, the animals are likely herded separately and 

taken to their optimal habitats (Halstead pers.comm.; Shipley 1999). Their diets thus 
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reflect both habitat and plant choices. If kept in smaller numbers, the sheep and goat are 

likely herded together in the same pasture areas or on parts of the arable landscape 

(Halstead 2006; Halstead pers. comm.). Differences in their isotope values are thus 

mostly influenced by the plant part choices made by each species. 

 

Fig. 8a shows that sheep and goat at Neolithic Kouphovouno exhibit isotopically 

diverging diets, and further that these differences changed between the Middle and the 

Late Neolithic. In the Middle Neolithic, the diets of these animals differed on the δ13C 

scale (this difference is statistically significant at the 99% confidence level; two-tailed 

equal variance student’s t-test, p = 0.0041), while in the Late Neolithic, they differed on 

the δ15N scale (the differences are statistically significant at 95% confidence; two-tailed 

equal variance student’s t-test, p = 0.043). Mean δ13C of MN sheep (n=5) = -20.8 ± 

0.2‰; mean δ13C of MN goats (n=3) = -20.1 ± 0.1‰. Mean δ13C of LN sheep (n=7) = -

20.3 ± 0.4‰; mean δ13C of LN goats (n=4) = -20.1 ± 0.3‰). Mean δ15N of LN sheep = 

5.3 ± 0.7‰; mean δ15N of LN goats = 4.2 ± 0.9‰; mean δ15N of MN sheep = 4.8 ± 0.4‰; 

mean δ15N of MN goats = 5.0 ± 1.0‰. 

 

Middle Neolithic sheep and goats at Kouphovouno have similar δ15N, but the sheep have 

lower δ13C than the goats. Woody vegetation tends to have lower δ13C values due to its 

higher content of lignin (see Svendsen (2001) on lignin composition of browse and 

Benner et al. (1987) on the carbon isotopic composition of lignin), although several 

factors are likely to determine the differences between grass and leaf δ13C in the same 

environment (see Escudero et al. (2008) for a study on how leaf longevity is related to 

water availability, photosynthetic rates and δ13C in woody plants). If the assumption that 

δ
13C of woody vegetation in the Sparta basin was lower than that of grass is correct and 

the difference in δ13C of the sheep and goats was due to the choice of plants, goats 
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would be expected to have lower δ13C values. As this is not the case, the isotopic 

distinctions are likely a result of feeding in different habitats.  

 

There are two types of habitats which could produce more 13C depleted grasses for the 

sheep to consume. The first are forested environments affected by the canopy effect. 

This phenomenon has been argued to cause depletion in 13C in the understories of 

forest canopies (as opposed to leaves/parts of trees situated higher up or vegetation 

growing in more open environments) due to a combination of two factors: i) the re-

assimilation of recycled and 13C-depleted CO2 from respiration and/or decomposition of 

forest litter, and ii) fractionation caused by reduced light intensity in the lower parts of 

forests during photosynthesis (Bonafini et al. 2013; Drucker et al. 2008; Heaton 1999; 

van der Merwe and Medina 1991).  

 

The second type of habitat where the Middle Neolithic sheep could have obtained their 

13C depleted grasses are areas with wetter soils (cf Farquhar et al. 1982, 1989; Wallace 

et al. 2013). As sheep prefer to subsist in more open environments rather than forested 

canopies, this latter explanation is more likely. The distinction in diets between the MN 

ovicaprids may be the result of large enough herd sizes, which justified the management 

of sheep and goat in different habitats. The one sample of goat measured, which comes 

from the Middle Neolithic, has a less negative δ13C than all the MN sheep and goat (see 

Fig. 8a). This suggests that it was not exploiting either of the habitats that the sheep and 

goat were subsisting in. The limited sample sizes (3 MN goats, 4 LN goats, 5 MN sheep 

and 7 LN sheep) remind us that we must exercise caution with interpreting these results, 

but the discussion presented herein is only concerned with statistically significant 

differences. Still, the main aim of this part of the discussion is to demonstrate the 
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avenues of research that can be pursued with this type of stable isotope data, rather 

than to provide conclusive answers to the archaeological questions.  

 

In the Late Neolithic, the isotopes of the sheep and goats are variable on the δ15N scale, 

while the δ13C are indistinguishable (but both δ13C and δ15N values are more variable on 

an intra-species level). In light of the feeding strategies discussed above, it is possible 

that in the later part of the Neolithic, the sizes of the sheep and goat herds decreased 

and both animals were now being managed together and the slight differences in their 

δ
15N differed were caused by the choice of plants and plant parts. The famers may have 

made greater use of the arable land for grazing during a fallow season, and this would 

be consistent with Halstead’s (2000) model of intensive mixed farming, where small 

flocks are managed within the interstices of the cultivated land.  

 

Beyond informing us about the possible distinctions in the feeding strategies of the 

Neolithic sheep and goat, the results presented herein indicate that there was a shift in 

the management strategy of the ovicaprids between the two Neolithic phases. This shift 

may have manifested itself with a decrease in the size of the sheep herds, leading to a 

reduced predominance of sheep in the livestock population. A similar shift has been 

observed more broadly by Halstead (2000) between the Early and the Late Greek 

Neolithic: in the Early Neolithic, faunal assemblages were dominated by sheep, while 

Late Neolithic assemblages show a more balanced representation of all the domestic 

animals.  

 

The changes in animal management at Kouphovouno happened in the context of shifts 

in ceramic styles and expression of socio-cultural identity. In the Middle Neolithic, the 

pottery style was more uniform and greater emphasis was placed on expression of 
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group identity, while in the Late Neolithic, a more diversified pottery style signaled a 

movement towards greater individuality (Mee et al. in prep.). At the same time, different 

livestock management strategies may have been fueled by a changed attitude towards 

land ownership. 

 

5.9. Cattle & dog diets and environmental change? 

The results discussed so far indicate that there was a diachronic change in the feeding 

strategies of the sheep and goats. Conversely, Fig. 8b shows that the diets of pigs did 

not change through time (the differences are not statistically significant: two-tailed equal 

variance student’s t-test for the δ13C values, p = 0.11; two tailed equal variance student’s 

t-test for the δ15N values, p = 0.95). A closer look at the other major domestic animals, 

cattle and dogs, add to the story about change in animal management strategies in the 

Late Neolithic. 

 

All the Late Neolithic dogs have more negative δ13C values than all the Middle Neolithic 

dogs (δ13C of MN dogs (n=3) = -18.6 ± 0.5‰; δ13C of LN dogs (n=4) = -19.6 ± 0.1‰) 

(see Fig. 8c; two-tailed equal variance student’s t-test shows significance at the 99% 

confidence level, p = 0.0088). Their δ15N values are indistinguishable (two-tailed 

student’s equal variance t-test, p = 0.58). As the bulk of dog diet is not composed of just 

grasses and leaves but of a more diverse range of food sources which have undergone 

further fractionation after being consumed by primary herbivores, their δ13C do not reflect 

the water status of the areas from which their foods were derived. Thus, the lower δ13C 

values cannot be a result of subsisting on food items grown in wetter soils (as is the 

case with Middle Neolithic sheep).  
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The diachronic difference in δ13C could be the result of reduced consumption of meat 

products in the Late Neolithic in conjunction with an increased consumption of cultivated 

crops. Meat products have a positive effect on both δ13C and δ15N (for the carnivore 

effect in δ13C see Bocherens et al. 1995; Lee-Thorp et al. 1989; Sillen et al. 1989; for 

trophic level enrichment in δ15N see DeNiro and Epstein 1981; Hedges and Reynard 

2007; Minagawa and Wada 1984). Consumption of less meat in the Late Neolithic would 

decrease the dogs’ δ13C and δ15N values, but an increased consumption of manured 

crop products would compensate for the decrease in δ15N so in the end, only the effect 

on carbon would be detectable. The crop products could have been obtained by 

scavenging on human food waste. Note that this suggestion does not exclude the 

possibility of meat consumption in the LN altogether. It is still likely that dogs consumed 

more meat than pigs due to their less negative δ13C values, but what this discussion 

centers on (once again taking the limited sample size into account) is the likelihood that 

in the Late Neolithic, the dogs consumed it to a smaller extent than in the Middle 

Neolithic. 

  

The browsing and grazing adaptations of herbivores exist on a continuum, in a way that 

the animals pick and chose the most nutritious food that is available, whether it be grass 

or browse (Lisa Shipley, pers.comm.). For this reason, there is a lot of overlap between 

the dietary choices of sheep, goat and cattle. There is a statistically significant difference 

at the 95% confidence between the δ15N values of the Middle Neolithic cattle (n=4) and 

Late Neolithic cattle (n=11) (two-tailed equal variance student’s t-test, p = 0.010). 

Despite the limited sample size, we will attempt to explain what such a difference may 

mean. As with the ovicaprids, the feeding strategy of the cattle changed in the Late 

Neolithic (see Fig. 8d). The Middle Neolithic cattle are situated in the same δ13C region 

as the Middle Neolithic sheep (two-tailed equal variance student’s t-test, p = 0.40) and 
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this may be because they shared the same wetter pasture grasses, perhaps along the 

banks of the Eurotas river. In the Late Neolithic, the cattle seems to divide into two 

clusters; one that overlaps with the Middle Neolithic sheep and one that does not (see 

Fig. 8d). This may mean that while the same pasture grasses were still consumed by 

cattle in the Late Neolithic, some cattle may have been kept in other, drier, areas as well. 

The cattle that may have grazed along the banks of the Eurotas also exhibit quite a wide 

range of δ15N values, which includes the lowest δ15N value of all the domestic animals at 

Kouphovouno. This may be related to consumption of a wide range of different grasses 

in this habitat. 

 

Most of the domestic animals apart from pigs seem to have experienced a shift in 

feeding strategies between the Middle and the Late Neolithic. On the isotopic scale, 

these shifts did not move in the same direction. The dogs’ δ13C decreased, the sheep 

δ
13C increased, the goats’ and cattle’ δ15N decreased while the sheep δ15N increased. 

This suggests that the changes were not the result of some environmental change (one 

that would cause an increase in δ15N in all Late Neolithic vegetation, for example), but 

that the changes were related to shifts in management of the farm animals.  

 

6. Synthesis and conclusion 

 

This study is one of the first to integrate plant and animal dietary isotopes (see also 

Fraser et al. (2013b) and Lightfoot and Stevens (2012)) and the first to combine this 

methodology with collagen sequencing of sheep and goats. The data provide support for 

the model of small-scale mixed agriculture and settlement organization put forth by 

previous archaeobotanical and archaeozoological investigations (Bogaard 2004a, 

2004b, 2005; Bogaard and Isaakidou 2010; Halstead 1996, 2000, 2006; Kotsakis 1999). 
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Beyond providing support to this theory, however, the stable isotopic method offers new 

insight for understanding the integration of the crop cultivation and animal husbandry 

and how these regimes functioned within the given settlement organization over the 

long-term. Some of the interpretations in this study are limited by small sample sizes, 

and their primary value is in demonstrating what sorts of questions this methodology can 

address rather than for providing definite answers for the prehistoric farming techniques. 

 

Even though the tell at Kouphovouno was not excavated in its entirety and we therefore 

do not know how dense the settlement was, the available archaeology indicates that the 

village was nucleated or organized into neighborhoods. Such settlement configuration 

would have provided opportunity for intensive agriculture either on the periphery of the 

settlement and/or in plots adjacent to the neighborhoods. The more proximal fields 

would have been more valuable as they provided the opportunity for high labor-

investment under a small-scale intensive treatment (cf Jones et al. 1999). This is where 

the crops grown for human consumption – free-threshing wheat and pulses – were likely 

grown in rotation with one another, receiving manure in the form of dung from the 

domestic animals.  

 

In the Late Neolithic, the application of manure may have been less labor-intensive. The 

few LN barley samples indicates that this crop likely received less manure than it did 

during the Middle Neolithic and the wheat/pulse fields may have been manured directly 

by sheep and goat grazing on the arable plots. Furthermore in this Neolithic phase, the 

scale of sheep/goat management seems to have decreased, dogs fed on smaller 

amounts of meat products and larger amounts of cultivated crops and cattle were likely 

taken to two different areas for grazing. These diachronic shifts in crop and animal 

management highlight the fact that even though small-scale mixed farming embraced 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 29 

the “Neolithic package” in a seemingly consistent fashion across the continent, it did 

allow for enough flexibility for changes in the scale of crop and animal husbandry and 

the amount of labor-investment.  
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List of figure captions 
 
Fig. 1  Geographical location of Kouphovouno in Laconia, Peloponnese (prepared by 
Jean Cantuel, from Rivals et al. 2011) 
 
Fig. 2  Plan of the archaeological excavations at Kouphovouno undertaken between 
2001 and 2007 
 
Fig. 3  %C and %N values of experimentally charred and uncharred cereals and pulses 
compared to free-threshing wheat, hulled barley and peas from Kouphovouno (KFO). 
The experimental cereals (circled) include bread wheat, einkorn wheat, emmer wheat, 
hulled barley and naked barley. The experimental pulses (circled) include peas, lentils 
and broad beans (data comes from Fraser et al. 2013a) 
 
Fig. 4  δ15N and δ13C of all bulk plant and animal collagen samples from Neolithic 
Kouphovouno 
 
Fig. 5  δ15N and δ13C of bulk samples of Middle Neolithic (MN) and Late Neolithic (LN) 
crops from Kouphovouno 
 
Fig. 6  ∆13C of bulk plant values from Neolithic Kouphovouno (the values were converted 
from δ13C following the principles outlined by Farquhar et al. 1989 and Ferrio et al. 2005, 
see text). Measured values are plotted with watering bands established by Wallace et al. 
(2013) 
 
Fig. 7  Animal collagen and bulk plant δ15N and δ13C values with projected values of 
chaff for free-threshing wheat and hulled barley, assuming a δ15N offset of -2.4‰ for of 
both cereals and δ13C offset of -1.9‰ for wheat and -1.7‰ for barley; following Fraser et 
al. (2011) and Wallace et al. (2013) 
 
Fig. 8  δ15N and δ13C of Middle Neolithic (MN) and Late Neolithic (LN) (a) sheep and 
goat, (b) pigs, (c) dogs and (d) cattle.  
 
 
Table 1  Stable isotope results of Neolithic bulk crop samples from Kouphovouno 
 
Table 2  Stable isotope results of Neolithic faunal samples from Kouphovouno 
 
Supplementary Table 1  Details of the archaeological contexts from Kouphovouno 
sampled for stable isotope analysis 
 
Supplementary Table 2  %C, %N and C:N values for Kouphovouno cereals and pulses 
and for experimentally charred modern cereals and pulses (the latter come from Fraser 
et al. 2013a). See Section 2 in Results and Discussion on how the C:N ranges were 
used to assess the reliability of the plant isotope measurements in this study. 
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Lab 
code 

Area/ 
context 

Phase (Middle 
Neolithic/Late 

Neolithic) 
δ

13C δ
15Na %C %N C:Nb δ

13C of CO2
c ∆

13Cd 

Free-threshing wheat (n=13) 
KFO3 C0266 MN -22.4 4.9 46.9 2.8 19.6 -6.6 16.2 
KFO5 C0295 MN -22.3 7.1 48.1 3.2 17.5 -6.6 16.1 
KFO9 C0800 MN -23.4 5.4 49.0 3.1 18.3 -6.6 17.2 
KFO10 C0804 MN -22.5 5.8 51.3 2.9 20.6 -6.6 16.2 
KFO11 C0806 MN -22.2 5.6 40.1 3.4 13.6 -6.6 16.0 
KFO12 C0812 MN -23.3 6.6 36.0 2.2 19.5 -6.6 17.0 
KFO13 C0825 MN -23.0 7.0 51.5 2.9 20.4 -6.6 16.8 
KFO16 C0905 MN -22.3 5.2 40.1 2.9 16.2 -6.6 16.1 
KFO18 C0911 MN -22.3 5.5 46.2 2.8 19.2 -6.6 16.1 
KFO19 C0918 MN -22.5 5.9 50.8 3.1 19.0 -6.6 16.2 
KFO2 B0185 LN -23.4 5.9 48.6 3.1 18.3 -6.4 17.4 
KFO6 G1-1624 LN -22.4 5.4 56.1 3.1 21.0 -6.4 16.4 
KFO7 G1-1627 LN -23.0 5.5 50.6 2.8 21.3 -6.4 17.0 

                   
  average all wheat -22.7 5.8     16.5 
  standard devision (1σ) 0.4 0.7     0.5 
  average MN wheat -22.6 5.9     16.4 
  standard devision (1σ) 0.4 0.8     0.4 
  average LN wheat -22.9 5.6     16.9 
  standard devision (1σ) 0.5 0.3     0.5 

Hulled barley (n=7)  
            

KFO4 C0266 MN -24.5 3.1 49.8 2.3 25.3 -6.6 18.3 
KFO14 C0854 MN -24.2 4.2 54.3 2.3 27.4 -6.6 18.0 
KFO15 C0905 MN -24.5 2.7 50.2 2.0 29.1 -6.6 18.3 
KFO17 C0911 MN -24.4 3.5 44.1 2.2 23.1 -6.6 18.2 
KFO1 B0134 LN -24.6 0.7 43.4 2.0 25.7 -6.6 18.4 
KFO20 G1-2003 LN -24.4 2.7 45.1 2.0 26.1 -6.4 18.4 
KFO8 H0709 LN -25.1 1.6 56.0 1.6 40.3 -6.4 19.2 

                   
  average all barley -24.5 2.7     18.4 
  standard devision (1σ) 0.3 1.2     0.4 
  average MN barley -24.4 3.4     18.2 
  standard devision (1σ) 0.1 0.6     0.1 
  average LN barley -24.7 1.7     18.7 
  standard devision (1σ) 0.4 1.0     0.5 

Pea (n=7) 
KFO24 C0844 MN -26.1 0.9 48.2 6.0 9.3 -6.6 20.1 
KFO27 C0905 MN -25.9 1.6 50.4 4.4 13.4 -6.6 19.8 
KFO28 C0918 MN -25.1 1.3 28.1 3.6 9.1 -6.6 19.0 
KFO29 C1024 MN -24.4 1.1 45.3 4.5 11.8 -6.6 18.2 
KFO21 B0134 LN -24.8 1.4 46.6 4.3 12.6 -6.6 18.7 
KFO22 G1-1666 LN -23.4 1.2 54.1 5.3 11.9 -6.4 17.4 
KFO23 H0709 LN -24.8 1.7 39.4 6.8 6.7 -6.4 18.8 
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  average all peas -24.9 1.3     18.9 
  standard devision (1σ) 0.9 0.3     0.9 
  average MN peas -25.4 1.2     19.3 
  standard devision (1σ) 0.8 0.3     0.9 
  average LN peas -24.3 1.4     18.3 
  standard devision (1σ) 0.8 0.3     0.8 

Lentil (n=1)  
KFO25 C0850 MN -25.2 - 33.2 -  -6.6 19.1 

            
a All reported plant δ15N values have been corrected for the charring effect by subtracting 1‰ (cf Fraser 
et al. 2013) 
b calculated using %C from the δ13C measurement and %N from the δ15N measurement; using 
equation: (%C/%N)*(14/12) 
c average value for the chronological time period  
d calculated using AIRCO2_LOESS data calibrator (Ferrio et al. 2005)  
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Lab no. 
Area/ 

Context 

Phase (Middle 
Neolithic/Late 

Neolithic) δ
13C δ

15N %C %N C:N 

Bos taurus (n = 15)  

KOUP-26 C1705 MN -21.0 5.4 22.1 7.3 3.5 

KOUP-27 C1705 MN -17.7 8.4 33.7 11.7 3.4 

KOUP-30 C1705 MN -20.7 5.1 26.0 8.7 3.5 

KOUP-52 C1713 MN -20.6 5.6 25.7 9.1 3.3 

KOUP-57 G1-2000 LN -19.8 4.8 35.7 12.7 3.3 

KOUP-58 G1-2000 LN -21.0 3.8 32.4 11.9 3.2 

KOUP-68 G1-2001 LN -20.9 4.3 37.1 13.0 3.3 

KOUP-69 G1-2001 LN -20.9 4.9 32.7 11.5 3.3 

KOUP-70 G1-2001 LN -20.3 4.8 36.1 12.7 3.3 

KOUP-71 G1-2001 LN -20.9 5.2 38.7 13.8 3.3 

KOUP-75 G2-1102 LN -20.1 4.8 42.0 14.1 3.5 

KOUP-84 G2-1115 LN -19.7 5.2 38.2 13.4 3.3 

KOUP-93 G2-1136 LN -20.8 3.9 24.6 8.0 3.6 

KOUP-96 G2-1139 LN -21.0 2.7 40.2 13.5 3.5 

KOUP-97 G2-1139 LN -21.1 3.9 39.7 13.7 3.4 

             

  average all cattle -20.4 4.9     

  standard devision (1σ) 0.9 1.2     

  average MN cattle -20.0 6.1     

  standard devision (1σ) 1.5 1.5     

  average LN cattle -20.6 4.4     

  standard devision (1σ) 0.5 0.8     

Canis (n = 7)  

KFO51 C1705 MN -19.1 7.3 38.9 13.8 3.3 

KFO52 C1705 MN -18.3 7.8 40.6 14.3 3.3 

KFO53 C1705 MN -18.3 7.6 39.7 14.2 3.3 

KFO65 G1-2000 LN -19.6 7.8 41.1 14.8 3.3 

KFO68 G1-2001 LN -19.6 6.8 44.3 15.4 3.4 

KFO74 G2-1132 LN -19.4 8.1 38.9 14.0 3.2 

KFO76 G2-1136 LN -19.9 8.7 34.4 12.7 3.2 

          

  average all dog -19.2 7.7     

  standard devision (1σ) 0.6 0.6     

  average MN dog -18.6 7.6     

  standard devision (1σ) 0.5 0.3     

  average LN dog -19.6 7.9     

  standard devision (1σ) 0.2 0.8     

Ovis aries (n = 12)  

KOUP-13 C1705 MN -20.8 5.2 35.9 12.4 3.4 
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KOUP-16 C1705 MN -20.6 4.2 34.1 11.7 3.4 

KOUP-39 C1713 MN -20.5 4.8 24.7 8.9 3.2 

KOUP-41 C1713 MN -21.1 5.3 32.0 11.5 3.2 

KOUP-42 C1713 MN -20.8 4.6 40.0 14.2 3.3 

KOUP-65 G1-2001 LN -20.6 6.1 32.0 11.7 3.2 

KOUP-66 G1-2001 LN -20.6 4.7 40.9 14.1 3.4 

KOUP-67 G1-2001 LN -19.6 5.1 38.4 13.4 3.4 

KOUP-79 G2-1103 LN -20.0 6.3 40.8 14.3 3.3 

KOUP-81 G2-1104 LN -20.9 5.4 39.0 13.2 3.5 

KOUP-83 G2-1115 LN -20.2 4.4 16.6 5.8 3.3 

KOUP-92 G2-1136 LN -20.2 5.1 40.3 13.2 3.6 

          

  average all sheep -20.5 5.1     

  standard devision (1σ) 0.4 0.6     

  average MN sheep -20.8 4.8     

  standard devision (1σ) 0.2 0.4     

  average LN sheep -20.3 5.3     

  standard devision (1σ) 0.4 0.7     

Capra (n = 7)  

KOUP-12 C1705 MN -20.2 4.9 31.2 10.6 3.5 

KOUP-14 C1705 MN -20.1 6.0 38.2 13.2 3.4 

KOUP-37 C1713 MN -20.1 4.0 35.1 12.4 3.3 

KOUP-59 G1-2000 LN -20.1 5.4 33.8 11.9 3.3 

KOUP-60 G1-2000 LN -19.7 4.1 35.7 12.6 3.3 

KOUP-64 G1-2001 LN -20.1 3.3 35.1 12.9 3.2 

KOUP-88 G2-1132 LN -20.5 3.9 37.6 13.3 3.3 

          

  average all goat -20.1 4.5     

  standard devision (1σ) 0.2 1.0     

  average MN goat -20.1 5.0     

  standard devision (1σ) 0.1 1.0     

  average LN goat -20.1 4.2     

  standard devision (1σ) 0.3 0.9     

Sus domesticus (n = 23)  

KFO44 C1705 MN -20.7 5.0 45.5 15.6 3.4 

KFO45 C1705 MN -20.5 5.3 39.9 14.3 3.3 

KFO46 C1705 MN -20.0 6.6 38.1 13.0 3.5 

KFO48 C1705 MN -19.8 7.4 40.4 14.1 3.4 

KFO49 C1705 MN -20.0 6.3 41.1 14.5 3.3 

KFO50 C1705 MN -20.2 6.9 39.5 13.9 3.3 

KFO54 C1710 MN -20.5 7.0 39.9 14.3 3.3 

KFO55 C1713 MN -20.3 4.9 37.8 13.9 3.2 
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KFO56 C1713 MN -20.2 5.0 43.1 15.0 3.4 

KFO57 C1713 MN -20.3 5.2 38.3 13.3 3.4 

KFO58 C1713 MN -20.1 5.6 42.8 15.2 3.3 

KFO59 C1713 MN -20.0 5.0 38.6 14.0 3.2 

KFO60 C1713 MN -19.1 6.3 40.3 14.6 3.2 

KFO61 G1-2000 LN -20.1 6.0 40.3 14.4 3.3 

KFO62 G1-2000 LN -20.0 6.2 41.5 14.9 3.3 

KFO63 G1-2000 LN -20.6 5.8 42.7 15.3 3.3 

KFO66 G1-2001 LN -21.1 4.4 39.9 14.3 3.3 

KFO67 G1-2001 LN -19.6 6.4 42.1 14.9 3.3 

KFO69 G2-1103 LN -21.0 7.5 36.5 12.7 3.4 

KFO71 G2-1104 LN -20.7 4.6 38.1 13.4 3.3 

KFO72 G2-1132 LN -20.5 6.4 45.2 14.9 3.5 

KFO73 G2-1132 LN -20.3 6.7 38.9 14.2 3.2 

KFO75 G2-1136 LN -20.4 5.1 38.1 14.1 3.2 

          

  average all pig -20.3 5.9     

  standard devision (1σ) 0.4 0.9     

  average MN pig -20.1 5.9     

  standard devision (1σ) 0.4 0.9     

  average LN pig -20.4 5.9     

  standard devision (1σ) 0.5 1.0     

Sus scrofa (n=1)  

KFO47 C1705 MN -21.4 3.9 41.0 14.3 3.4 

          

Lepus (n=1)  

KOUP-53 C1713 MN -21.8 2.4 35.4 13.4 3.1 

          

Ursus (n=1)  

KFO64 G1-2000 LN -19.7 8.3 37.2 13.8 3.2 

          

Capra sp. (n=1)  

KOUP-38 C1713 MN -19.7 4.2 17.4 6.4 3.2 
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Fig. 12 %C and %N values of experimentally charred and uncharred cereals and 
pulses compared to free-threshing wheat, hulled barley and peas from 
Kouphovouno. The experimental cereals include bread wheat, einkorn wheat, emmer 
wheat, hulled barley and naked barley. The experimental pulses include peas, lentils 
and broad bean (data obtained from Fraser pers. comm.).
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Fig. 4 Stable carbon and nitrogen isotope values of Neolithic plant and animal remains from Kouphovouno
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Fig. 19 Plant and animal δ13C and δ15N with projected values of rachis for free-threshing 
wheat and hulled barley, assuming an offset of 2.4‰ for N for both cereals and -1.9‰ for wheat C 
and -1.7‰ for barley C, following Fraser et al. (2011)
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Vaiglova et al. JAS Kouphovouno 
 
Highlights 
 

� integrated stable isotope analysis of crops and animals reveals nuanced 
husbandry practices 

� Middle and Late Neolithic crops were manured and watered to varying 
degrees 

� herding practices varied among species 
� diachronic changes in faunal isotopes reflect management shifts 
� this study reveals the sophisticated character of early mixed farming 
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Context 
number Context type Date Relation to other 

contexts 

Number of 
stable isotope 
samples 

Samples deriving 
from this context 

AREA C           
C1024 destruction layer consisting of 

stones, clay and fragments of 
burnt building clay lying on top 
of a burnt floor 

Middle Neolithic immediately below plough 
soil C1001/C1704 

1 plant KFO29 

C1705 upper part of a probable dump 
rich in pottery and animal bone 

Middle Neolithic lay immediately north of 
the north wall of Structure 
C1; lay below plough soil 
C1704 

17 faunal KOUP-12, KOUP-13, 
KOUP-14, KOUP-16, 
KOUP-26, KOUP-27, 
KOUP-30, KFO44, 
KFO45, KFO46, 
KFO47, KFO48, 
KFO49, KFO50, 
KFO51, KFO52, 
KFO53  

C1713 lower part of a probable dump 
with patches of clay with 
charcoal inclusions 

Middle Neolithic pre-dates C1705 13 faunal KOUP-37 KOUP-38, 
KOUP-39, KOUP-41, 
KOUP-42, KOUP-52, 
KOUP-53, KFO55, 
KFO56, KFO57, 
KFO58, KFO59, 
KFO60 

C0295 top layer of a later Middle 
Helladic grave fill, the fill 
consisted solely of MN pottery 

Middle Neolithic the grave also cut through 
contexts C0905, C0911 
and C0918 

1 plant KFO5 

C0266 floor of Structure C4, most 
likely an outside working area 
with a saddle quern and a 
cache of charred seeds 

Middle Neolithic same context as C0905 
excavated in a different 
year 

2 plant KFO3, KFO4 

C0905 floor of Structure C4, most 
likely an outside working area 
with a saddle quern and a 
cache of charred seeds 

Middle Neolithic; AMS 
date of a free-
threshing wheat grain 
from this context: 
5613-5478 cal BC 

same context as C0266 
excavated in a different 
year; set above C0911 

3 plant KFO15, KFO16, 
KFO27 
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C0911 destruction layer Middle Neolithic; AMS 
date of a free-
threshing wheat grain 
from this context: 
5664-5546 cal BC 

pre-dates C0905 and post-
dates C0918 

2 plant KFO17, KFO18 

C0918 floor of structure C4 containing 
chipped stone and a large 
quern (still in use with floor 
C0905) 

Middle Neolithic;  AMS 
date of a free-
threshing wheat grain 
from this context: 
5615-5483 cal BC 

pre-dates C0911 2 plant KFO19, KFO28 

C1710 stone base of the south wall of 
Structure C II 

Middle Neolithic pre-dates construction of 
floors of the structure 
which are likely 
contemporary with C0905 
and C0918 

1 faunal KFO54 

C0800 fill Middle Neolithic pre-dates C0806 and 
C0804 

1 plant KFO9 

C0806 lining of pit C0804 Middle Neolithic lining of pit C0804 1 plant KFO11 
C0804 fill of small pit containing 

chipped stone, animal bones 
and stones 

Middle Neolithic pre-dates C0918; C0806 
consists of material lining 
the pit 

1 plant KFO10 

C0812 levelled surface consisting of 
occupation debris used to 
make a floor foundation 

Middle Neolithic pre-dates C0918 1 plant KFO12 

C0825 foundation packing for the floor 
of a surface rich in charcoal 

Middle Neolithic pre-dates C0812 1 plant KFO13 

C0844 building debris forming a 
relatively flat foundation on 
which C0825 was placed 

Middle Neolithic;  AMS 
date of an 
indeterminate wheat 
grain from this context: 
5716-5574 cal BC 

pre-dates C0825 1 plant KFO24 

C0850 dumped material with frequent 
inclusions of charcoal and 
oxidised clay 

Middle Neolithic pre-dates C0844 1 plant KFO25 
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C0854 the bottom layer of sounding C 
containing frequent charcoal 
inclusions, situated above 
natural sediment 

Middle Neolithic;  AMS 
date of hulled barley 
grains from this 
context: 5843-5673 cal 
BC 

pre-dates C0850 1 plant KFO14 

Area G1           
G1-1624 fill Late Neolithic below plough soil, above 

G1-1627 
1 plant KFO6 

G1-1627 destruction layer Late Neolithic pre-dates G1-1624 1 plant KFO7 
G1-2000 fill containing flecks of 

charcoal 
transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 
(see text) 

  9 faunal KOUP-57, KOUP-58, 
KOUP-59, KOUP-60, 
KFO61, KFO62, 
KFO63, KFO64, 
KFO65 

G1-2001 fill containing flecks of 
charcoal (fewer in number 
than G1-2000) 

transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 
(see text) 

likely same horizon as G1-
1666 

11 faunal KOUP-64, KOUP-65, 
KOUP-66, KOUP-67, 
KOUP-68, KOUP69, 
KOUP-70, KOUP-71, 
KFO66, KFO67, 
KFO68 

G1-1666 fill of a cut (likely hearth 
structure) containing charcoal 
and burnt animal bones 

transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 
(see text); AMS date 
of hulled barley grains 
from this context: 
5341-5213 cal BC 

likely same horizon as G1-
2001 excavated in a 
different year 

1 plant KFO22 

G1-2003 mixed dumped deposit 
containing charcoal flecks 
extending over entire G1 
sounding 

transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 
(see text);  AMS date 
of hulled barley grains 
from this context: 
5319-5209 cal BC 

pre-dates G1-2001, G1-
2000 and G1-1666 

1 plant KFO20 
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Area G2           
G2-1103 first artificial spit of fill above 

destruction collapse extending 
over the entire G2 area 

Late Neolithic post-dates G2-1102 2 faunal KOUP-79, KFO69 

G2-1104 second artificial spit of fill 
above destruction collapse 
extending over the whole G2 
area 

Late Neolithic post-dates G2-1102, same 
unit as G2-1103 

2 faunal KFO71, KOUP-81 

G2-1102 collapsed wall from a working 
area 

Late Neolithic pre-dates G2-1103 and 
G2-1104 

1 faunal KOUP-75 

G2-1115 fill below a working area Late Neolithic   2 faunal KOUP-83, KOUP-84 
G2-1132 fill Late Neolithic; AMS 

date of a hulled barley 
grain from this context: 
5325-5207 cal BC 

post-dates G2-1136 4 faunal KFO72, KFO73, 
KFO74, KOUP-88 

G2-1136 context containing no features 
and extending over the whole 
G2 area 

transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 
(see text) 

pre-dates G2-1132 4 faunal KFO75, KFO76, 
KOUP-92, KOUP-93 

G2-1139 fill extending over the whole 
G2 area containing a fair 
amount of charcoal 

transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 
(see text); AMS date 
of peas from this 
context: 5468-5214 cal 
BC 

pre-dates G2-1136 2 faunal KOUP-96, KOUP-97 

Area B           
B0134 oval shaped deposit with 

fragments of mud brick, bone, 
and chipped stone 

Late Neolithic pre-dates a LN horizon 
and post-dates some LN 
contexts 

2 plant KFO1, KFO21 

B0185 clay deposit extending over 
much of the eastern sector of 
Area B 

transitional MN/LN, 
here treated as LN 
due to the appearance 
of Black Ware pottery 

re-dates B0134 1 plant KFO2 
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(see text) 

Area H           
H0709 fill extending over the entire 

trench of Area H, containing 
numerous flecks of charcoal 

Late Neolithic pre-dates a LN horizon 2 plant KFO8, KFO23 
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  %C %N C:N 
Kouphovouno cereals (n=20)       

KFO2 KFO ft wheat 48.6 3.1 18.3 
KFO3 KFO ft wheat 46.9 2.8 19.6 
KFO5 KFO ft wheat 48.1 3.2 17.5 
KFO6 KFO ft wheat 56.1 3.1 21.1 
KFO7 KFO ft wheat 50.6 2.8 21.3 
KFO9 KFO ft wheat 49.0 3.1 18.3 
KFO10 KFO ft wheat 51.3 2.9 20.6 
KFO11 KFO ft wheat 40.1 3.4 13.6 
KFO12 KFO ft wheat 36.0 2.2 19.5 
KFO13 KFO ft wheat 51.5 2.9 20.4 
KFO16 KFO ft wheat 40.1 2.9 16.2 
KFO18 KFO ft wheat 46.2 2.8 19.2 
KFO19 KFO ft wheat 50.8 3.1 19.0 
KFO1 KFO h barley 43.4 2.0 25.7 
KFO4 KFO h barley 49.8 2.3 25.3 
KFO8 KFO h barley 56.0 1.6 40.3 
KFO14 KFO h barley 54.3 2.3 27.4 
KFO15 KFO h barley 50.2 2.0 29.1 
KFO17 KFO h barley 44.1 2.2 23.1 
KFO20 KFO h barley 45.1 2.0 26.1 

         
   SD (1 σ) of C:N 5.8 
    C:N max 40.3 
    C:N min 13.6 
Kouphovouno pulses (n=7)       

KFO21 KFO pea 46.6 4.3 12.6 
KFO22 KFO pea 54.1 5.3 11.9 
KFO23 KFO pea 39.4 6.8 6.7 
KFO24 KFO pea 48.2 6.0 9.3 
KFO27 KFO pea 50.4 4.4 13.4 
KFO28 KFO pea 38.9 3.6 12.6 
KFO29 KFO pea 45.3 4.5 11.8 

         
   SD (1 σ) of C:N 2.3 
    C:N max 13.4 
    C:N min 6.7 
       
Modern charred cereals (n=18)       
BAD04-18W bread wheat 59.0 1.9 36.2 
BOR07-44W bread wheat 62.3 2.8 26.3 
SUT08-37K einkorn 66.1 3.7 20.8 
SUT08-31K einkorn 63.2 3.8 19.5 

ASK08-513E emmer 62.2 4.1 17.9 
ASK08-524E emmer 60.7 2.9 24.4 
ASK08-526E emmer 62.4 3.4 21.3 
ASK08-532E emmer 62.0 3.2 22.6 
ASK08-544E emmer 63.4 3.7 20.3 
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SUT08-25E emmer 67.1 3.3 24.1 
ASK08-513G naked barley 63.8 3.4 21.8 
ASK08-524G naked barley 64.1 3.9 19.2 
ASK08-526G naked barley 63.6 3.6 20.6 
ASK08-532G naked barley 63.0 3.9 18.8 
ASK08-544G naked barley 64.5 3.2 23.3 
BAD07-6G hulled barley 63.9 2.6 28.2 

BAD07-12G hulled barley 63.3 3.3 22.6 
BAD07-18G hulled barley 63.3 2.9 25.6 

         
   SD (1 σ) of C:N 4.3 
    C:N max 36.2 
    C:N min 17.9 
       
Modern charred pulses (n=15)       

BAD07-6P pea 64.9 7.1 10.7 
BAD08-6P pea 65.0 6.0 12.7 
BAD08-12P pea 65.5 5.8 13.1 
BAD08-18P pea 65.6 6.3 12.2 
BAD07-18P pea 58.1 6.5 10.5 
ICA09-11L lentil 64.5 6.4 11.8 
ICA09-12L lentil 64.1 7.0 10.7 
ICA09-13L lentil 63.1 6.4 11.5 
ICA09-14L lentil 62.7 7.1 10.4 
ICA09-15L lentil 62.2 7.0 10.4 
ICA09-16L lentil 64.1 6.8 11.1 
ICA09-17L lentil 62.1 6.8 10.7 
BAD08-6B broad bean 62.6 8.3 8.8 
BAD07-12B broad bean 62.3 7.5 9.6 
EVV07-25B broad bean 57.2 6.7 10.0 

         
   SD (1 σ) of C:N 1.2 
    C:N max 13.1 
      C:N min 8.8 

 


