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Abstract:  

 

Biological phenomena arise through interactions between an organism's intrinsic dynamics and 

stochastic forces – random fluctuations due to external inputs, thermal energy, or other 

exogenous influences. Dynamic processes in the brain derive from neurophysiology and 

anatomical connectivity; stochastic effects arise through sensory fluctuations, brainstem 

discharges, and random microscopic states such as thermal noise. The dynamic evolution of 

systems composed of both dynamic and random effects can be studied with stochastic dynamic 

models (SDMs). This paper, Part I of a two-part series, offers a primer of SDMs and their 

application to large-scale neural systems in health and disease. The companion paper, Part II, 

reviews the application of SDMs to brain disorders. SDMs generate a distribution of dynamic 

states, which (we argue) represent ideal candidates for modeling how the brain represents states 

of the world. When augmented with variational methods for model inversion, SDMs represent a 

powerful means of inferring neuronal dynamics from functional neuroimaging data in health and 

disease. Together with deeper theoretical considerations, this work suggests that SDMs will play 

a unique and influential role in computational psychiatry, unifying empirical observations with 

models of perception and behavior. 
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1. Introduction 

 

Biological organisms balance a tendency toward internal order and control against the need to 

pre-empt and adapt to a changing environment (1). Their functioning reflects a dynamic interplay 

of nonlinearity and feedback with stochastic fluctuations: This exchange of order and entropy 

yields complexity in its various guises (2). In the setting of the brain, innate dynamics arise from 

neurophysiological processes such as ion channels and dendritic filtering, while feedback occurs 

through short- and long-range axonal connections (3); stochastic inputs arise through sensory 

fluctuations, brainstem discharges, and thermal energy (random fluctuations at the microscopic 

level, such as the Brownian motion of ions). There is a well-established field devoted to 

modeling this interplay of dynamic processes and stochastic effects through a melding of 

calculus and statistical physics. The field is anchored by dynamic equations that govern the 

temporal (and possibly spatial) behavior of the system’s state variables. These equations are 

derived from the biophysical properties of the system of interest and studied using analysis and 

simulation. Since the actual state variables (such as firing rates) cannot be directly observed in 

non-invasive human studies, measurement functions that map neuronal states onto observables 

(such as scalp electroencephalography (EEG) or the blood-oxygen-level dependent (BOLD) 

signal) are required to enable empirical predictions. Experimental data then allow models to be 

tested, compared, refined, or refuted.  

 

In this paper, we introduce the equations that arise at the intersection of calculus and statistical 

physics, namely stochastic differential equations (SDEs). These lie at the heart of stochastic 

dynamic models of the brain, for which we offer micro- and mesoscopic examples. We also 

showcase the potential of stochastic differential models to unify observations of functional 

neuroimaging data with models of behavior. This forms the background for Part II (4), in which 

we review existing applications of SDEs to clinical disorders in neurology and psychiatry and 

consider future perspectives. 

 

2. Stochastic dynamic models of the brain: A brief primer 

 

2.1 Stochastic differential equations: Fundamentals 
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We first introduce the modeling of neural systems with SDEs. Key to this approach is the notion 

of a system’s state – the core dynamical variables that describe the system at any instant in time, 

such as firing rates, membrane potentials, channel conductances, etc. Models describe how states 

evolve in time – the dynamics. Given the current state and the dynamical rules of a particular 

model, it is possible to project (“integrate”) the state dynamics forward in time (i.e., solve the 

equations). Suppose we model a neuronal system with N state variables. We can represent these 

variables as a vector, x= [x1, x2, … ,xN] where, for example, x1 is the cell membrane potential, x2 

is the firing rate, and x3 is the conductance of a particular class of membrane channels, etc. Then, 

in the absence of any random fluctuations, the dynamic evolution of the state variables obeys a 

set of ordinary differential equations (ODEs), 

 

𝑑𝑥1

𝑑𝑡
= 𝐹1(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑁(𝑡)),     (1) 

𝑑𝑥2

𝑑𝑡
= 𝐹2(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑁(𝑡)),     (1) 

      ⋮        (  1) 

𝑑𝑥𝑁

𝑑𝑡
= 𝐹𝑁(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑁(𝑡)),     (1) 

       (1) 

where 
𝑑

𝑑𝑡
 is the usual differential operator (with respect to time) and the Fj are functions (possibly 

nonlinear) that embody the properties and interactions of the system. These equations can also be 

represented in a simpler vector form, 

 

𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(x(𝑡)).                               (2) 

 

An example of simple neural dynamics is given by the Morris-Lecar model (5), a two 

dimensional simplification of the Hodgkin-Huxley equations for the excitable membrane 

potential of a neuron. The membrane potential V is determined by the net current through all 

transmembrane ion channels (Na+, K+, Ca2+, and leaky currents). The change in membrane 

potential at the cell soma is given by the sum of all ion channel currents plus any current I 

entering from the dendritic tree. In the full (four-dimensional) Hodgkin-Huxley model, the 
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voltages and temporal behavior of all the major ion channels are modeled explicitly. A reduction 

to the 2-D Morris-Lecar model is achieved by exploiting the fact that calcium and sodium 

channels respond more quickly to changes in membrane voltage than slower potassium channels. 

This means the calcium and sodium channels follow their voltage-dependent conductances 

instantaneously, while the potassium channels ‘relax’ to that value on a slower time scale – 

allowing us to focus on the slower dynamics, which ‘enslave’ faster dynamics. That is, because 

the fast variables reach equilibrium quickly after a perturbation, it is convenient to treat them as 

always being at equilibrium, such that the only remaining dynamics are in the slow variables – 

hence slow variables can be said to enslave fast ones (6). This is a common device in modeling 

dynamical systems known as an adiabatic approximation, which rests on the separation of time 

scales. Although widely used, it is of less value in systems where fast, microscopic fluctuations 

may drive slower, coarser subsystems (e.g. in turbulent fluid dynamics).  

 

The dynamical states for the Morris-Lecar model are {𝑉, 𝑛}, the membrane potential 𝑉 and the 

proportion of open potassium ion channels 𝑛, which is proportional to the membrane 

conductance. The dynamic equations for the Morris-Lecar model are presented in Appendix A  

(Supplemental Material). An example time series is given in Figure 1A, showing the 

characteristic rapid spiking waveform of a supra-threshold cell. Figure 1B shows the 

corresponding limit cycle attractor in the phase space spanned by the dynamical variables 

{𝑉, 𝑛}. The attractor is color coded to show the direction of the (clockwise) flow around the 

smooth limit cycle attractor.  

 

The equations thus far capture the essence of a neuron that is kept spiking by a constant dendritic 

current. However, as discussed above, neural dynamics inevitably occur in the presence of noisy 

fluctuations. In the Morris-Lecar model, such fluctuations reflect stochastic effects at ion 

channels, thermal energy, the uneven distribution of channels in the membrane, and irregularities 

in dendritic currents – sources of so-called neural noise (7). Stochastic effects can be introduced 

by the addition of a random term to the state equation, 

 

𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(x) + 𝜇𝑖𝜂𝑖 ,                               (3) 
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where i represents independent zero-mean, unit-variance Gaussian noise added incrementally at 

each time point (also called a Wiener process), and µi is a coefficient that scales the noise 

appropriately to each of the variables. Note that while it is apparently simple to add noise in this 

way (yielding the Langevin equation), neither classic calculus nor standard numerical integration 

schemes deal with the incorporation of incremental “rough” discontinuities in this way. An 

alternative way of writing Equation (3) is through the use of stochastic differential equations 

(SDEs). This formulation makes it clear that changes in the states xi are governed by 

deterministic contributions to the temporal dynamics F of the system and the random 

fluctuations 𝜇𝑖. For the interested reader, we provide the corresponding SDEs in Appendix B 

(Supplemental Material), together with a more formal treatment of stochastic fluctuations1. 

 

Figures 1C-D show example dynamics from the Morris-Lecar system with an additive stochastic 

term. Both the time series (Fig. 1C) and the attractor (Fig. 1D) show the impact of the irregular 

roughness of the additive noise term. The roughness is more apparent during the refractory phase 

of the firing cycle, but only because the underlying flow is slower during these periods, allowing 

more time for the noise to accrue. The impact of the noise is a relatively modest degradation in 

the regularity of the periodicity and amplitude of the spikes. 

 

This is a simple example of a stochastic dynamic model with independent dynamic and noise 

terms. The noise acts to perturb the system as it traverses the limit cycle attractor. However, in 

many complex systems, noise does not enter as a simple state-independent (additive) term. An 

example is the well-known coupling between trade volume and volatility in financial markets: as 

the amount of trade increases, so do fluctuations in market value (9). Therefore, in many 

applications, the noise mixes with the states as it enters the system, yielding 

 

𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(x) + 𝐺𝑖(𝐱)𝜂𝑖,                  (4) 

 

                                                      
1 All of the equations in this paper, together with an integration scheme for SDEs (8), can be downloaded in 

MATLAB form from sng.org.au/Downloads. Python code for integrating SDEs is also available. 
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where G is a function that captures the state-dependence of the stochastic influence. Equation (4) 

is a “generalized Langevin equation”. If G is linear in x and each state mixes with only its own 

noise term, we have  

 

𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(x) + 𝜇𝑖𝑥𝑖𝜂𝑖 .                     (5) 

 

That is, the influence of the noise term is not constant, but scales in proportion to the states x. 

Fluctuations at voltage-dependent ion channels are by definition state-dependent. An example of 

Morris-Lecar dynamics with state dependent noise is shown in Figures 1E and F. The stand-out 

feature of these panels is the increase in fluctuations in the sub-threshold regime (<-50 mV) 

compared to the preceding panels, and the contrasting smoother flow in the fast, suprathreshold 

phase (>-20 mV). This noisier subthreshold phase substantially increases the irregularity of inter-

spike intervals.  

 

Fluctuations induced by additive noise [Eq. (3)] accord to normal distributions, whereas those 

arising from state-dependent terms [Eq. (4) and (5)] often display a broad range of non-Gaussian, 

heavy-tailed forms (10). Thin tails are also possible, such as when noise decreases with the state 

values, though this can also counterintuitively yield heavy-tailed noise in other cases (10). It has 

previously been argued that this state-dependent noise equation is a more appropriate framework 

for modeling the brain, capturing the heavy-tailed, bimodal fluctuations in the alpha rhythm (11, 

12). More generally, state-dependent fluctuations may be fundamental to human cognition, 

arising in perception (the “Weber-Fechner law”; (13)), movement (“Fitt’s law”; (14)) and even 

computation (“Hick’s law”; (15)).  

 

Stochastic fluctuations are relevant to both large-scale neural models and microscopic spiking 

neural models, although the sources of fluctuations are different. Whereas noise at the 

microscopic level reflects stochastic effects of ion channels and heat, these may not be relevant 

at coarser scales. Unknown inputs from sensory systems, erratic discharges from brain stem 

nuclei, and inputs from other large-scale neural systems that have not been explicitly modeled 

can all be accommodated as random fluctuations in models of mesoscopic neural dynamics. 

However, systems with heavy-tailed statistics do not accord to the classic central limit theorem: 
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That is, small-scale fluctuations do not decay with increasing system size but persist as high-

amplitude (anomalous) fluctuations (16). Hence state-dependent stochastic systems of the form 

of Eq. (5) can “transport” fluctuations between scales – from microscopic to mesoscopic.  

 

Mesoscopic neural models – so-called neural mass models – represent local average neural states 

(such as the average firing rates or membrane potentials) of pyramidal and inhibitory neurons 

within a single cortical column (17). The process of averaging over a large number of neurons to 

reduce dimensionality is a mean field approximation. In addition to making the analysis more 

tractable, the mean field reduction allows one to study neuronal dynamics at scales accessible by 

non-invasive means and, arguably, at scales of most relevance to cognition and behavior. Figure 

2 shows an example of a conductance-based neural mass model (the equations are in Appendix 

A, Supplemental Material). This model is basically an extension of the Morris-Lecar model with 

a simple mean field approximation (mean membrane potentials are converted to average firing 

rates through a sigmoid activation function) and incorporation of a simplified inhibitory 

population (which responds to pyramidal cell firing with a slow feedback inhibitory current) 

(18). In this example, the purely deterministic dynamics are smooth, aperiodic chaos (Figure 2A 

and B). The addition of a constant amplitude noise term “roughens” the flow, similar to the 

microscopic system, increasing the temporal and amplitude irregularity of the corresponding 

times series (Figure 2C and D), particularly at times when the underlying dynamics are slow. 

Incorporating a state-dependent noise term (Figure 2E and F) further changes the irregularity of 

the attractor’s slow phase: Although the variance of the fluctuations during the slow phase is 

approximately the same for additive and multiplicative noise (compare panels C and E), the 

dynamics are substantially more irregular in the case of state-dependent noise. 

 

2.2  From stochastic differential equations to stochastic differential models 

 

This concludes our survey of the fundamentals of stochastic neural equations. However, a 

“model” is arguably more than an equation for the hidden states, but should also include a 

framework for explaining empirical observations. 
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2.2.1. Importance of a measurement function. The underlying states of neuronal systems cannot 

usually be directly measured, particularly in non-invasive imaging modalities such as EEG and 

fMRI. To model empirical data, it is thus imperative to introduce a measurement function M that 

maps the states x into a multivariate, observable data set y composed of measurable quantities yj, 

 

𝐲 = 𝑀(x) + 𝝐,                            (6) 

 

where 𝝐 is a random variable [a vector the same length as y] representing observation noise in 

each channel/voxel. While a static measurement function M might be valid for EEG, the 

observation equation for the BOLD signal is in reality also a dynamical system (19, 20), coupled 

passively to the neural state, 

 

d𝐲

𝑑𝑡
= 𝑀(x) + 𝝐.                 (7) 

 

The absence of a y term on the RHS implies that the observables passively reflect the neural 

state, with filtering and superposition plus noise.  

 

This mapping from the unknown (or hidden) states to the noisy observables is crucial for 

inferring the parameters of SDEs from empirical data (21). If Eq. (7) is linear, its solution can be 

expressed in terms of its impulse response function (e.g., the hemodynamic response function, 

HRF), enabling efficient computation of the BOLD in terms of a convolution of the neural signal 

with the HRF. This is a commonly-used method (22), though solving the full nonlinear 

hemodynamic equations allows richer dynamics in general (19, 23). More comprehensive 

models of the fMRI BOLD signal also include spatial terms enabling more realistic treatments of 

spatiotemporal cerebral hemodynamics (20, 24-26). 

 

While in the “classic sense” the measurement function maps neuronal states into functional 

imaging data, it can also be conceptualized as mapping neuronal states into behaviors, such as 

the mapping from neocortical activity to changes in limb (27) or eye (28) movement through 

dendritic filters and musculoskeletal forward models.  
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2.2.2. Attractors, bifurcations and multistability. Figures 1B and 2B show the attractors of the 

spiking neuronal and neural mass model – the long-term solutions, following initial transients. 

As evident in the other panels, attractors continue to play a key organizing role of a system’s 

solutions in the presence of stochastic inputs. An attractor is said to be structurally stable when 

its basic morphology is robust to changes in the underlying parameters (such as increasing or 

decreasing the excitatory self-feedback). If a small change suddenly changes the attractor – for 

example, from a fixed point to a limit cycle – then the attractor is structurally unstable: The 

sudden change in the attractor is called a bifurcation (Fig. 4A,B). While stochastic inputs are 

enslaved to the attractor when it is structurally stable, they grow in variance and correlation 

length close to the point of a bifurcation yielding slow, high amplitude fluctuations known as 

critical slowing (29). These fluctuations occur because the noise is able to drive larger and longer 

excursions from the attractor as it becomes progressively less stable near the bifurcation. These 

large fluctuations lead to long temporal autocorrelations (the reduced damping endows the 

dynamics with a longer "memory"). 

 

In many complex dynamical systems, the co-existence of two of more attractors is possible. 

When such multistability exists, noise of an appropriate amplitude is able to knock the dynamics 

from one attractor to the other and back, hence yielding itinerant, erratic time series that jump 

between the corresponding (periodic/chaotic) waveforms (Fig. 4C-F). If the noise is 

multiplicative, then the system typically becomes trapped for longer than expected on each of the 

attractors, giving heavy-tailed dwell times: After transition to a low-amplitude attractor, the 

multiplicative noise term shrinks, decreasing the probability of an excursion sufficient to leave 

that attractor. Conversely, after a transition toward a high-amplitude attractor, the multiplicative 

noise becomes large, increasing the likelihood of a large excursion away from the origin. There 

is strong evidence that the dominant rhythm of the human cortex – the alpha rhythm – shows 

heavy-tailed bistability (11, 12).  

 

2.2.3. Probability densities and the Fokker-Planck equation 
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The SDEs describing the temporal behavior of neuronal states yield noisy time series and phase 

space orbits. Visual inspection of lengthy solutions, however, shows that the solutions converge 

toward an underlying distribution (Figure 3A). That is, while the individual solutions are 

stochastic, a large ensemble of such solutions conforms to a fixed, deterministic probability 

density function (PDF) (Figure 3B). The SDE can be recast as a deterministic equation, known 

the Fokker-Planck equation (FPE), whose solution is the PDF of the solutions. Just as an SDE 

consists of deterministic and stochastic terms, the FPE broadly consists of drift (the deterministic 

flow) and diffusion (the dispersion of states) terms. 

 

In principle, FPEs can be derived from SDEs using appropriate mathematical techniques (30). In 

practice, this is a non-trivial exercise unless the system has a slowly moving attractor and simple, 

additive fluctuations (31). Nonetheless, theoretical consideration of a FPE serves two useful 

functions: First, it allows us to distinguish stochastic model inversion schemes that deal directly 

with the noisy time series, such as dynamic expectation maximization (32) and Kalman filters, 

from those that maximize model likelihood using (the sufficient statistics of) stationary 

distributions of the data, like the spectral (33-36), or higher-order data features such as the 

parameters of heavy-tailed PDFs (37-39). Formal model inversion of SDEs is an important but 

complex problem that has been considered in detail elsewhere (21, 40). 

 

Second, knowledge of the FPE representation is crucial for an important insight into stochastic 

neural models: relating ensemble dynamics to neural “coding”. Put simply, the proposal is to 

equate the ensemble mean with the likely value of some perceptual attribute being encoded by a 

population of neurons, while the variance captures the uncertainty of that representation. While 

there are alternative ways of describing how the brain encodes expected states of the world – and 

uncertainty about those states – equating of the distribution of states with the probabilistic 

representation of “belief” allows a bridge between stochastic models of neural dynamics and 

probabilistic neuronal codes in perception and cognition (41, 42). Cognitive processes thus map 

onto stochastic neuronal dynamics: As we review in Part II (4), it is reasonable to conjecture a 

mapping from unstable and noisy stochastic neuronal activity to cognitive disorganization (such 

as in schizophrenia), or conversely between excessively stable and recursive dynamics to 

obsessions and recurrent ruminations. Likewise, the precision of perceptual inference maps onto 
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the inverse variance of population dynamics: Imprecise beliefs reflect highly-variable states in 

the corresponding (coding) population, and sub-optimal belief updating corresponds to non-

adaptive changes in the trial-to-trial expression of neuronal state variability.  

 

Accordingly, SDMs become more than just a mechanistic model of observed data and behavior, 

but may ultimately provide a biophysical grounding for computational accounts of cognitive 

(dys)-function. What scale of description – microscopic spiking or mesoscopic mean field – will 

be the most suitable for this enterprise? Learning paradigms, such as reinforcement learning, 

typically emphasize the importance of spike timing and suggest a privileged role of stochastic 

models of spiking neurons. Probabilistic decision making schemes call upon the mutual shaping 

of ensemble probability distributions in cortical hierarchies and speak to mesoscopic population 

density approaches. We return to these fundamental issues in the Discussion and suggest a 

formal reconciliation. 

 

 

3. Discussion 

 

In sum, the fusion of dynamical systems theory with statistical physics provides a powerful and 

unifying framework for modeling the dynamics of neuronal systems across spatial and temporal 

scales. Noise interacts with the underlying dynamic flow to yield a variety of neural behaviors, 

which include slow and fast fluctuations, multistable switching, and simple attracting dynamics. 

Subtle disturbances in the balance of noise and order yield maladaptive dynamics, such as 

trapping, unstable fluctuations, and the erratic appearance of abnormal waveforms. While 

stochastic dynamical systems are clearly apt for describing neuronal processes, they may also 

have something profound to say about computational architectures and the neuronal code: 

 

3.1. Integrating stochastic models of neuronal activity and cognition – the neural code 

 

The nature of the neuronal code remains a fundamental issue in computational neuroscience. If 

the brain furnishes representations, expectations, predictions and beliefs, it has to perform some 

form of Bayesian inference (41), or more generally probabilistic encoding (42, 43). In other 
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words, neuronal activity must encode probability distributions (44, 45); though see (46). The two 

schools of thought on probabilistic coding can be broadly divided into sampling schemes and 

sufficient statistics. In sampling schemes, a probability distribution is encoded directly by the 

sample distribution over ensembles of neuronal activities, such that the most likely value of a 

belief is encoded in the ensemble mean and the precision or confidence associated with that 

belief is encoded by the dispersion of population activity. In machine learning, these approaches 

include importance sampling and particle filtering (47). Alternatively, encoding may be achieved 

with the moments of a probability distribution; for example, the mean and precision. Generally, 

this form of encoding considers a small number of sufficient statistics and an assumed form for 

the probability distribution (e.g., Gaussian) (48). In machine learning, this leads to approximate 

Bayesian inference and variational schemes such as Kalman filtering, predictive coding, and free 

energy minimization (49). 

  

At first glance, these two encoding strategies appear fundamentally different: probabilistic 

sampling codes require large numbers of neurons but can encode probability distributions with 

arbitrary functional forms. In contrast, variational schemes call upon considerably fewer neurons 

(or populations) to approximate probabilistic beliefs but require a fixed form. But are they really 

so different? It can be shown that the variational schemes (and associated neuronal codes) are 

just a mean field description of underlying population dynamics (50). In other words, one can 

treat encoding in terms of sufficient statistics as a mean field description of a sampling scheme – 

such that both essentially describe the same thing. For example, the mean of a large neuronal 

population can be taken to encode the expectation of a probabilistic belief. 

 

However, things get more interesting when we consider higher order moments: Are the second 

order moments of beliefs (i.e., inverse variance or precision) simply encoded by the 

corresponding dispersion of neuronal population activity, or by some other biophysical quantity 

that is updated in an approximately Bayes-optimal fashion? At first glance, one might argue that 

there is a fundamental difference between encoding uncertainty in terms of the variance of 

stochastic fluctuations in neuronal activity – as opposed to another neuronal state; e.g., activity in 

the classical neuromodulator systems (dopamine, acetylcholine, and serotonin) – or via synaptic 

gain. 
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In variational schemes such as predictive coding, precision is normally associated with the gain 

or postsynaptic excitability of units encoding prediction errors. This allows precise predictions to 

have more influence on other neuronal populations encoding expectations (that generate 

predictions). Precision is then tuned according to the influence of neuromodulatory inputs on 

local gain control (51). It might therefore appear that there is an irreconcilable difference 

between representing confidence in terms of synaptic gain, as opposed to the sample precision of 

a neuronal ensemble. However, a key insight here is that in the mean field reduction underlying 

neural mass models, the dispersion of the neuronal ensemble determines the gain of sigmoid 

activation functions relating neuronal firing to depolarization (52). In other words, if we consider 

the population density dynamics (i.e., the Fokker-Planck formulation) of neuronal message 

passing, where individual neurons have threshold on-off activation functions, then the 

population's activation function is the cumulative sample distribution of the population. This 

means that the dispersion of neuronal activity corresponds to the inverse postsynaptic gain at the 

population level. 

  

This insight essentially dissolves the distinction between codes based on sampling schemes and 

sufficient statistics (at the level of density dynamics). This enables one to either study stochastic 

activity in neuronal populations, or describe their density dynamics deterministically, internally 

consistent with variational approaches (i.e., neuronal codes based upon sufficient statistics like 

predictive coding). Such considerations form a crucial bridge between stochastic models of 

neuronal dynamics and phenomenological models of uncertainty in cognition and behavior. They 

may also help reconcile computational accounts of how neuromodulatory systems adapt decision 

making according to perceived uncertainty with biophysical models of population activity that 

incorporate – for example – dopaminergic neurons (53) or neuromodulatory gain control (54). As 

a corollary, aberrant encoding of precision – as in schizophrenia – could be accounted for by 

SDMs (55, 56). More generally, if SDM provides a principled formalism for describing the 

neuronal encoding of beliefs, it may also provide a formal description of abnormal beliefs (i.e., 

false inference) in psychiatry. This concludes our primer on the theory of SDMs. In Part II (4), 

we review applications of SDMs to large-scale neural systems in health and disease. 
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Figure captions 

 

 

Figure 1: Example dynamics from the Morris-Lecar model. Left column: Time series for the 

membrane potential V. Right column: phase portraits in the (n,V) plane. A,B: Deterministic case 

(no noise). C,D: Additive noise. E,F: Multiplicative noise. 

 

 

Figure 2: Example dynamics from a neural mass model. Left column: Time series for the 

membrane potential v. Right column: phase portraits in the (V,W,Z) state space (see Appendix A, 

Supplemental Material). A,B: Deterministic case (no noise). C,D: Additive noise. E,F: 

Multiplicative noise. 

 

 

Figure 3: Density of trajectories from the Morris-Lecar model with multiplicative noise. A: 

Phase portrait; same as Fig. 1F but for a long (7000 ms) run. B: Probability density function for 

the trajectory in panel A, warm colors denote higher densities. Note the relatively smooth nature 

of the resulting stationary distribution, despite the randomness of the trajectories. 

 

 

Figure 4: Noise-induced transitions in a simple bistable model (the Hopf-bifurcation model used 

in Ref. (38); similar ideas have been explored in biophysical seizure models (57-59)). See 

Appendix A for further details of the model and definitions of technical terms. A: Bifurcation 

diagram for a supercritical Hopf bifurcation. For 𝛽 < 0, the only attractor is a stable fixed point 

(𝑟 = 0, black solid line). For 𝛽 > 0, the fixed point is unstable (black dotted line), and a stable 

limit cycle (green) emerges with radius 𝑟 > 0. The green line depicts the radius of the limit cycle 

for the corresponding value of 𝛽. B: Bifurcation diagram for a subcritical Hopf bifurcation and 

bistability. The 𝑟 = 0 fixed point behaves the same as in panel A. The difference here is that the 

limit cycle that emerges at 𝛽 = 0 exists for 𝛽 < 0 and is unstable (red). This unstable limit cycle 

then meets a stable limit cycle (green) at a “saddle-node” bifurcation of periodic orbits. There is 

thus a region of bistability where the fixed point (black) and the upper limit cycle (green) are 
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both stable, separated by an unstable limit cycle (red). C-F: Left column: time series for one of 

the two Cartesian coordinates in the phase space. Right column: trajectories in phase space (blue) 

with stable attractor (green) and unstable "separatrix" (red) that demarcates the boundary across 

which a sudden transition (e.g., seizure onset) occurs. The polar radial coordinate r in panels A 

and B is given by 𝑟2 = 𝑥2 + 𝑦2. C,D: The low-amplitude case: the trajectory remains well 

within the transition boundary, exhibiting only low-amplitude fluctuations (e.g., healthy non-

seizure dynamics). E,F: The high-amplitude case: random fluctuations cross the boundary 

triggering high-amplitude oscillations (e.g., a seizure). 

 

 


