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(CNV) of unknown clinical significance. We sought to characterize eight individuals with
overlapping 205 kb to 504 kb 16p13.3 microdeletions that are distinct from previously
published deletion syndromes.
Methods: Clinical information on the patients and bioinformatic scores for the deleted
genes were analyzed.
Results: All individuals in our cohort displayed developmental delay, intellectual
disability and various forms of seizures. Six individuals were microcephalic and two
had strabismus. The deletion was absent in all 13 parents who were available for
testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C
and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 mutations are known to cause
nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness,
onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of
the non-deleted TBC1D24 allele did not yield any additional mutations.
Conclusion: We propose that 16p13.3 microdeletions resulting in simultaneous
haploinsufficiencies of TBC1D24, ATP6V0C and PDPK1 cause a novel rare contiguous
gene deletion syndrome of microcephaly, developmental delay, intellectual disability
and epilepsy.
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Abstract 

 

Purpose: Contiguous gene deletions are known to cause several neurodevelopmental syndromes, 

many of which are caused by recurrent events on chromosome 16. However, chromosomal 

microarray studies (CMA) still yield copy number variants (CNV) of unknown clinical 

significance. We sought to characterize eight individuals with overlapping 205 kb to 504 kb 

16p13.3 microdeletions that are distinct from previously published deletion syndromes.   

Methods: Clinical information on the patients and bioinformatic scores for the deleted genes 

were analyzed. 

Results: All individuals in our cohort displayed developmental delay, intellectual disability and 

various forms of seizures. Six individuals were microcephalic and two had strabismus. The 

deletion was absent in all 13 parents who were available for testing. The area of overlap 

encompasses seven genes including TBC1D24, ATP6V0C and PDPK1 (also known as PDK1). 

Bi-allelic TBC1D24 mutations are known to cause nonsyndromic deafness, epileptic disorders, 

or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). 

Sanger sequencing of the non-deleted TBC1D24 allele did not yield any additional mutations.  

Conclusion: We propose that 16p13.3 microdeletions resulting in simultaneous 

haploinsufficiencies of TBC1D24, ATP6V0C and PDPK1 cause a novel rare contiguous gene 

deletion syndrome of microcephaly, developmental delay, intellectual disability and epilepsy. 
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Introduction 

Chromosomal microarray (CMA) technology has facilitated the discovery of multiple new 

microdeletion syndromes previously invisible on conventional karyotypes. However, 

classification of small deletions as pathogenic can be challenging. Many genes are still poorly 

characterized and functional data are often unavailable. Therefore, collecting a group of 

individuals with phenotypic and cytogenetic data can aid in the interpretation of a copy number 

variant (CNV), especially for very rare variants. 

Autosomal recessive mutations in TBC1D24 (MIM613577) lead to epilepsy (familial infantile 

myoclonic epilepsy (FIME), MIM 605021; early-infantile epileptic encephalopathy 16 (EIEE16), 

MIM 615338), non-syndromic hearing loss (either recessive, DFNB86, MIM 614617, or 

dominant, DFNA65, MIM 616044) or DOORS syndrome (deafness, onychodystrophy, 

osteodystrophy, mental retardation, and seizures, MIM 220500). We noted that carriers of 

TBC1D24 mutations may have a susceptibility to epilepsy notably in the mother of a patient with 

DOORS syndrome who carries a loss-of-function mutation [1], and this was eventually noted in 

other families (detailed in Banuelos et al. [2]). We thus sought to identify the phenotype 

associated with microdeletions of TBC1D24 and surrounding genes. We here report on eight 

individuals with epilepsy and developmental delay who share overlapping microdeletions at 

16p13.3 including TBC1D24, ATP6V0C and PDPK1. 
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Materials and Methods 

 

Cytogenetic laboratories were contacted to identify individuals with microdeletions 

encompassing TBC1D24. Patients were identified in the cytogenetics laboratories of the 

institutions where Dr. Campeau was a faculty member (Baylor College of Medicine) and 

currently is (CHU Sainte-Justine), but also in other centers across the world. Ten individuals had 

eligible microdeletions and treating clinicians were then approached to recruit patients, provide 

clinical details and DNA samples. Eight individuals were enrolled in the study after informed 

consent was obtained (on consent forms approved by the Baylor College of Medicine and the 

CHU Sainte-Justine Internal Review Boards). TBC1D24 Sanger sequencing was performed in all 

individuals except individual 6 (no DNA available) according to published protocols [1]. 

Heterozygous TBC1D24 deletion was confirmed in individual 2 by real-time PCR on genomic 

DNA (data not shown). 

Clinical information was collected with a standardized questionnaire. Given the clinical 

manifestations of DOORS syndrome, specific questions were included on dental anomalies, 

hearing deficits, dysmorphic facial features, and abnormalities of the hands, nails and feet. 

Physicians were asked to provide details on seizure disorders and brain imaging. 

CNVs and deleted genes were visualized using the UCSC genome browser human assembly 

hg19 [3]. Haploinsufficiency scores (%HI) for the deleted genes were obtained from the 

DECIPHER database [4] (Supplementary Material). pLI scores were drawn from the ExAC 

database [5] (Supplementary Material). Modeling the probability of autosomal dominant 

inheritance P(AD) was done with the DOMINO tool [6] (Supplementary Material). PubMed, 

Google Scholar, and OMIM were used for the literature review until February 2018. 
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Clinical data on individuals (see also Supplementary Material) 

Individual 1 was referred at 8 years for seizures, microcephaly and developmental delay. She is 

the only child from a non-consanguineous union. She was born at term after an uneventful 

pregnancy. She attends a mainstream school with one-to-one support. Her major difficulties are 

comprehension and mathematics. At 23 months, she presented with a cluster of generalized tonic 

clonic seizures that were treated with levetiracetam and sodium valproate. She has been seizure 

free on levetiracetam monotherapy for 5 years. At 5 years, an MRI was reported as normal. At 8 

years, her height and weight were at the 9th percentile, while her head circumference (HC) 

measured 1.5 cm below the 0.4th percentile for age. She was not dysmorphic (Fig. 1, A, B). 

 

Individual 2 came to the attention of a neurometabolic clinic at the age of 6 years. He was born at 

term to non-consanguineous parents. Early on, he was noted to have feeding difficulties, failure 

to thrive and microcephaly with increased tone. At 13 months, he presented with seizures 

including generalized tonic-clonic and atonic seizures and head drops. His early developmental 

milestones were met normally, but at 6 years, he was not yet toilet trained, his speech was 

limited to single words and he was able to follow simple verbal commands. He attended 

kindergarten in an inclusion classroom and received speech, physical, occupational, and applied 

behavior analysis therapy. His physical exam was remarkable for short stature (<5th percentile) 

and a HC at the 2nd to 5th percentile. There was no dysmorphism.  

 

Individual 3 is the first of three brothers of non-consanguineous parents. He was born at term 

after a normal pregnancy. At birth, length, weight and HC were at the 25th percentile. During 
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early childhood, he was found to have hyperacusis, hypotonia and developmental delays (sitting 

at 9 months, walking after 21 months of age). He attends a specialized classroom. At 30 months, 

he developed myoclonic astatic epilepsy and was subsequently hospitalized for epileptic 

encephalopathy. He was treated with valproic acid and lamotrigine. He has been seizure-free 

since the age of 5 years with normalization of EEG patterns resulting in the discontinuation of 

valproic acid. On physical exam at 8.5 years, he had microcephaly, prognathism, small teeth with 

only two permanent teeth, and tapering fingers. 

 

Individual 4 is a 15-year-old male who was born at term to non-consanguineous parents. He had 

speech delay and significant learning difficulties. At 15 years, IQ testing (score 51-62) confirmed 

mild intellectual disability. He exhibits sexualized behavior and has a diagnosis of autism 

spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). From 15 months, 

he had convulsions consisting of generalized tonic-clonic seizures that were initially associated 

with febrile illnesses. From 2 years, he was treated with valproic acid; later clobazam and 

sulthiame were added. At 5.3 years, his height and weight were above the 90th percentile. He was 

microcephalic with a HC at the 2nd percentile, but otherwise without dysmorphic features. A 

neurological exam was normal, including an EEG and an MRI of the brain.  

 

Individual 5 is a 21-year-old male with intellectual disability. At 13 years, he scored below the 

1st percentile on the Wechsler Intelligence Scale for Children (WISC-IV). At 10 months, he was 

diagnosed with generalized tonic-clonic seizures, later he also had episodes of absence and 

myoclonic or atonic seizures. He has been seizure free for more than one year on a combination 

treatment of levetiracetam, rufinamide, and clonazapam. An MRI at 13 years revealed a small 
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tubular structure in the right frontal lobe that was interpreted as a normal venous variant. His HC 

measured at the 2nd percentile at 14 years, with height and weight at the 3rd percentile at 17 years. 

Mildly dysmorphic features included posteriorly rotated ears and a pointed chin (Fig. 1, C, D). 

 

Individual 6 is a 39-year-old man with intellectual disability and significant emotional behavioral 

concerns with mania and bipolar episodes necessitating multiple psychiatric hospitalizations.  

From age 3 years, he had generalized tonic-clonic seizures that have been well controlled with 

the exception of break-through seizures at 14 and 25 years. He is treated with phenytoin, 

buspirone, lorazepam, clonazepam, lamotrigine, olanzapine, and zonisamide. He had corrective 

surgery for strabismus and multiple dental operations. A brain MRI at 31 years was significant 

for microcephaly with a thickening of the calvarium and minimal vermian atrophy, which may 

be secondary to chronic phenytoin use.  On physical exam, he had normal height and weight, a 

tubular nose, and slightly enlarged testicles (Fig. 1, E, F).   

 

Individual 7 was born after a normal pregnancy to healthy non-consanguineous parents. He was 

diagnosed with hearing loss, strabismus (Fig. 1, G, H), and nystagmus with normal vision at 2 

years. At 5.5 years, his developmental status was estimated at about 2 years; formal testing was 

unsuccessful. He is treated for ADHD. Since the age of 13 months, he suffered from generalized 

tonic-clonic seizures that are moderately controlled with oxcarbazepine, levetiracetam and 

valproic acid. MRIs at 2.5 and 4.5 years demonstrated stable cerebral and cerebellar atrophy. At 

5.5 years, he was of normal height and weight with a HC at the 2nd to 5th percentile. 
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Individual 8 was born at 32 weeks estimated gestational age via Caesarean section for non-

reassuring fetal heart tracing. At birth, her height and weight measured at the 10th percentile, 

whereas head growth was preserved at the 50th percentile. At 6.5 years, she measured at the 10th 

percentile for height and weight with a HC below the 3rd percentile. Gross motor and language 

development is delayed and her IQ was measured at 58 with the Culture Fair Intelligence Test 

(CFT-R). She experienced her first febrile seizure at 18 months, followed by a cluster of febrile 

and afebrile tonic seizures at 20 months and 2.4 years. She experienced two more seizure clusters 

of myoclonic seizures lasting up to seven days requiring polytherapy of valproic acid, clobazam, 

and levetiracetam and has been seizure-free on this combination for 2 years. On physical exam, 

she has a high forehead, a long tubular nose with a broad nasal ridge and epicanthal folds. 
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Results 

Clinical and cytogenetic data were available on eight individuals (Table 1, Supplementary 

Material). All eight suffered from childhood onset epilepsy, mostly generalized tonic-clonic 

seizures (six individuals). All eight individuals also have variable developmental delays ranging 

from mild to moderate and affecting speech, and fine and gross motor skills, with three being 

diagnosed with ADHD and one with ASD. Cranial MRI findings were normal for five 

individuals and non-specific in three. Interestingly, some features observed in this cohort, such as 

microcephaly (six individuals), hypotonia (two individuals), hearing loss (one individual) and 

visual impairment (two individuals), have been previously associated with biallelic TBC1D24 

mutations. Four individuals had mild dysmorphic features (Table 1, Fig. 1). The three Caucasian 

individuals for whom images are available (Fig. 1) share facial similarities such as a sloping 

forehead, a long tubular nose with a prominent columella and a prominent chin.  

CMA identified overlapping microdeletions on the short arm of chromosome 16 (16p13.3; Fig. 

2). There is no overlap with the 16p13.3[7 8] and 16p11.2 [9 10] deletion syndromes. The 

smallest deletion (individual 8) contains 13 genes and the largest (individual 3) 25 genes 

(Supplementary Table 1). Parental testing in six families determined the deletion to be a de novo 

event. For individual 1, her tested mother is not a carrier. In individual 3, the deletion was 

present in 83% of cells, suggesting a post-zygotic event. The deletions do not share a common 

break point and range in size from 205 kb to 504 kb with a minimally overlapping region (MOR) 

of 112 kb that includes seven genes (UCSC genome browser hg19) TBC1D24 (MIM 613577), 

ATP6V0C (MIM 108745), AMDHD2 (amidohydrolase domain containing 2), CEMP1 

(Cementum protein 1, MIM 611113), MIR3168 (microRNA 3168), PDPK1 (or PDK1, 3-

phosphoinositide dependent protein kinase-1, MIM 605213), and DQ577714 (piRNA38825). 
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We next looked at bioinformatic prediction scores. A %HI score of less than 10% is predictive of 

haploinsufficiency of a heterozygously deleted gene. A pLI score of ≥0.9 is indicative of 

intolerance to loss-of-function mutations and haploinsufficiency. A P(AD) of ≥0.95 is highly 

associated with autosomal dominant inheritance through haploinsufficiency, gain-of-function or 

dominant-negative effects. Of the genes within the MOR, PDPK1 reaches the lowest %HI at 

27% and the highest pLI score at 0.95. DOMINO predicts PDPK1 to “very likely” cause 

autosomal dominant conditions with a P(DA) of 0.986. However, none of the genes in the MOR 

reach significant %HI scores of less than 10% (Table 2). Complete Sanger sequencing of the 

non-deleted TBC1D24 allele did not detect any pathogenic mutations and therefore excludes an 

AR epilepsy phenotype in this cohort (data not shown).
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Discussion  

Several factors favor a causative link between microdeletions at 16p13.3 and the clinical 

manifestations in this group. The phenotype is very homogeneous with all individuals suffering 

from epilepsy and variable degrees of developmental delay. In addition, the majority is 

microcephalic and none have additional malformations or major medical problems. In all six for 

whom this data were available, the deletion occurred de novo. Furthermore, CNVs containing the 

MOR have not been identified in normal controls in several large-scale studies [11-13]. Only one 

additional case with a comparable deletion was found in a cohort of 29,085 cases with 

intellectual disability, developmental delay and/or ASD, but clinical information is not available 

(see supplemental table 7 in [12]). The microdeletion was absent in two additional cohorts, one 

of 5,531 cases that were sent to a diagnostic laboratory for clinical testing [14] and one including 

1,133 children with severe developmental disorders [15].  

Our results suggest that 16p13.3 microdeletions encompassing TBC1D24, ATP6V0C and PRPK1 

genes represent a novel contiguous gene deletion epileptic syndrome. TBC1D24, a known 

epilepsy gene, encodes a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-

specific GTPase-activating proteins. Analysis of the crystal structure of the drosophila 

orthologue Skywalker (Sky) identified a cationic pocket that is preserved in human TBC1D24. 

This pocket is necessary for binding to the lipid membrane via phosphoinositides phosphorylated 

at the 4 and 5 positions. Abrogation of the cationic pocket by introduction of two human 

TBC1D24 pathogenic variants found in DOORS syndrome led to impaired synaptic vesicle 

trafficking and seizures in drosophila [16]. TBC1D24 is the only gene in the MOR that is 

associated with autosomal dominant and recessive human disease phenotypes.  
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ATP6V0C (ATPase, H+ transporting, lysosomal 16kDa, V0 subunit C) is a component of 

vacuolar ATPase (V-ATPase), a multi-subunit enzyme that mediates acidification of eukaryotic 

intracellular organelles. It is present in endosomes, lysosomes, clathrin-coated vesicles and the 

Golgi complex, where it is essential to acidification and maintenance of endocytic and exocytic 

pathways [17]. Experiments in zebrafish embryos suggest a neuron-specific expression of the 

zebrafish ortholog atp6v0c2 where it is associated with presynaptic vesicles and involved in 

neurotransmitter storage [18]. 

PDPK1 (also known as PDK1) is a highly conserved protein kinase that is involved in many 

different signalling pathways (reviewed in [19]). Similar to TBC1D24, it is able to bind to 

phosphatidylinositol 3,4,5-trisphosphate or phosphatidylinositol 3,4-bisphosphate produced at 

the plasma membrane where it fulfills an important function in cell migration [20]. While 

homozygous Pdpk1 knockout mice die on embryonic day E9.5 [21], mice with residual PDK1 

activity (10-30%) are viable and fertile, albeit of a smaller size [22]. The reduced interaction of 

PDPK1 with phosphoisonitides leads to a decrease in PKB/mTORC1/BRSK signaling, decreased 

neuronal cell size in vivo and shorter cortical neuron length in vitro [23]. To date, evidence on 

direct interactions between the three main genes of interest has not been published. 

Other genes in the MOR are less likely to play a causative role in the pathogenesis of this 

recurrent deletion.  The enzyme AMDHD2 is involved in a degradation pathway that tightly 

regulates N-glycolylneuraminic acid (Neu5Gc) [24], a protein that is incorporated at low levels 

into the surface glycoproteins of several human tissues [25]. However, loss-of-function 

mutations of metabolic disorders are usually well tolerated in the carrier state.  Cementum 

protein 1 (CEMP1) is a marker of cementoblast-related cells and plays a role in cementoblast 

differentiation in periodontal ligament. It is not expressed in brain [26]. Expression studies in 
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hepatocellular carcinoma (HCC) suggest a role of MIR-3178 as a tumor suppressor by inhibiting 

cell proliferation, angiogenesis, invasion, and migration of HCC tumor endothelial cells [27]. 

The potential role of MIR-3178 in other organ systems and during development has not yet been 

studied. For  DQ577714, to date, no investigations detailing the function of its gene product have 

been published. 

While individuals with recessive TBC1D24 mutations have more severe phenotypes than our 

cohort, in some families with recessive epilepsy or DOORS syndrome, carriers or obligate 

carriers also suffered from a milder form of childhood epilepsy [1 2 28 29]. In the ExAC 

database, the number of expected loss-of-function (LoF) variants (n=10.7) corresponds to the 

number of observed LoF variants (n=10) for TBC1D24, which seems to contradict our 

suggestion that haploinsufficiency for TBC1D24 may predispose to epilepsy. However, it is 

important to note that the incidence of epilepsy is relatively high in the general population (7 per 

1000 [30]) and the ExAC dataset only excludes severe childhood-onset disorders. It is therefore 

possible that some TBC1D24 heterozygous LoF or deleterious missense variants may lower the 

threshold for the development of mild forms of epilepsy in some families. In animal studies, 

Tbc1d24 has been shown to be important for neuronal migration and cortical maturation by 

facilitating the transition of migrating neurons into a bipolar shape [31]. PDPK1 is also involved 

in neuronal differentiation in mice [23]. The third candidate gene within the MOR, ATP6V0C, 

like TBC1D24, can regulate vesicular trafficking. While heterozygous Atp6v0c knockout mice 

are phenotypically normal [32], homozygous embryos develop only to the blastocyst stage and 

die shortly after implantation [33]. 

In recent years, several exome sequencing studies have been conducted in patient cohorts with 

severe epilepsy, developmental delays or both who often remained undiagnosed after a standard 
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genetic evaluation with CMA and targeted gene sequencing [15 34-39]. Different de novo 

frameshift variants in ATP6V0C were found in one individual in a study performing exome 

sequencing of 80 patients with Dravet syndrome [34] and in one individual from a cohort of 

4,293 families undergoing exome sequencing for severe developmental delay [39]. Details on 

their phenotypes were not provided and the variants were not validated by functional assays. In 

the Dravet syndrome study, the authors conducted targeted sequencing of ATP6V0C in 67 

additional families and did not identify other mutations. One proband in a cohort of 1,133 

children with severe developmental delay was found to have a de novo missense variant in 

PDPK1 by exome sequencing, but no phenotype information was provided (Table S2 in [15]). 

De novo variants in either gene were absent from other studies with cohort sizes ranging from 50 

to 293 trios [35 37 38] and none of the above cited studies listed de novo variants in TBC1D24. 

Neither of the three genes emerged as a strong individual candidate gene for either severe 

epilepsy or developmental delay in these studies, however further large-scale cohort studies or 

functional assays are needed to explore the possible contribution of PDPK1 and ATP6V0C LoF 

variants to developmental delay and epilepsy phenotypes.  

In conclusion, while haploinsufficiency of TBC1D24, ATP6V0C or PDPK1 may be tolerated 

individually (larger cohorts will be useful to provide a definitive answer), our results suggest that 

haploinsufficiency for a combination of these genes leads to developmental delay and epilepsy as 

observed in this cohort. Future studies are needed to further refine the MOR and elucidate the 

individual and cumulative effect of the genes implicated in this phenotype. 
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Figure legends 

 

Table 1 

Clinical information and deletion size on eight individuals with overlapping microdeletions of 

chromosome 16p13.3. ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum 

disorder; DD, developmental delay; FFT, failure to thrive; ID, intellectual disability; Ind., 

individual; kb, kilobases. 

 

Table 2 

Bioinformatic prediction scores for seven genes. See text for explanation; NA, not available. 

 

Fig. 1 

Four individuals with microdeletion 16p13.3 and mild dysmorphic features: Individuals 1 (A, B), 

5 (C, D), 6 (E, F), and 7 (G, H) from left to right; note the shared features in individuals 1, 5 and 

6 as described in the text. 

 

Fig. 2 

Schematic of microdeletions observed in the cohort. The borders of the minimal overlapping 

region (MOR) are demarcated by dotted lines encompassing seven genes. 
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Table 1 

Clinical information and deletion size on eight individuals with overlapping microdeletions of 

chromosome 16p13.3. ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum 

disorder; DD, developmental delay; FTT, failure to thrive; ID, intellectual disability; Ind., 

individual; kb, kilobases. 

 

Table 2 

Bioinformatic prediction scores for seven genes. See text for explanation; NA, not available. 

 

Table



Table 1: Clinical information and deletion size on eight individuals with overlapping 

microdeletions of chromosome 16p13.3 

 

Ind. Gender Age Development 
Seizure 

disorder 

Micro-

cephaly 

Additional 

features 

Brain 

imaging 

Deletion 

size [kb] 

1 Female 13 DD 
Generalized 

tonic-clonic 

Yes, 

< 0.4th 

percentile 

None Normal 259 

2 Male 6 
DD, ADHD, 

insomnia 

Generalized 

tonic-clonic, 

atonic 

No 

FTT, 

hypotonia, 

short stature 

Normal 255 

3 Male 8 DD 
Myoclonic 

astatic 

Yes, 

<3rd 

percentile 

Tapering 

fingers, 

prognathism, 

hypotonia 

Normal 504 

4 Male 15.5 

Mild ID 

(IQ 51-62), 

ADHD, ASD 

Generalized 

tonic-clonic 

Yes, 

2nd 

percentile 

None Normal 345 

5 Male 17 

ID 

(<1st %ile on 

WISC-IV) 

Generalized 

tonic-clonic, 

myoclonic, 

atonic, 

absence 

No 

Pointed chin, 

posteriorly 

rotated ears, 

short stature 

Small stable 

venous 

anomaly 

221 

6 Male 39 
ID, bipolar 

disorder 

Generalized 

tonic clonic 
Yes 

Strabismus, 

vision loss, 

tubular nose 

Thickening 

of calvarium 
376 

7 Male 5.5 DD, ADHD 
Generalized 

tonic-clonic 

Yes, 

2nd - 5th 

percentile 

Hearing loss, 

strabismus, 

nystagmus 

Cerebral & 

cerebellar 

atrophy 

394 

8 Female 6.5 DD (IQ 58) 
Tonic, 

myoclonic 

Yes, 

<3rd 

percentile 

Beaked nose Normal 205 

 
 

 

 

  



Table 2: Bioinformatic prediction scores for seven genes.  

 

Gene %HI 

(DECIPHER) 

pLI score 

(EXAC) 

P(AD) 

(DOMINO) 

TBC1D24 55.45 0 0.337 (likely recessive) 

ATP6V0C 51.76 0.73 0.29 (likely recessive) 

AMDHD2 64.16 0 0.063 (likely recessive) 

CEMP1 99.15 0 0.109 (likely recessive) 

MIR3178 NA NA NA 

PDPK1 27.04 0.95 0.986 (very likely dominant) 

DQ577714 NA NA NA 

 



Supplementary material 

A new microdeletion syndrome involving TBC1D24, ATP6V0C and PDPK1 causes 

epilepsy and developmental delay 

 

Contains: 

1. Methods: Scientific basis for the used bioinformatics tools 

2. Detailed clinical information on individuals 

3. Supplementary table 1: Bioinformatic prediction scores for all deleted genes 

4. Supplementary information on gene function for TBC1D24, ATP6V0C and 

PDPK1 

5. Bibliography for supplementary material 

 

Methods: Scientific basis for the used bioinformatics tools 

The haploinsufficiency score %HI is calculated based on a computational algorithm 

developed by Huang et al. (2010). The group compiled a list of human genes that cause 

disease by haploinsufficiency (HI) and compared them to a group of genes with tolerated 

loss-of-function copy number variants (CNVs) in two or more individuals from a cohort 

of healthy controls (haplosufficient = HS genes). The HI genes were found to differ from 

the HS genes in the degree of conservation between the coding sequence of human and 

macaque genes, the number of promoter variants, the presence of paralogs with lower 

sequence similarity, the length of the spliced transcript and 3’ UTR, the expression 

pattern during early development and in specific tissues, the number of interaction 

partners in both protein-protein interaction networks and gene interaction networks, and 

their interaction with other known HI genes and cancer genes. From these variables, the 

group developed a model using the degree of human-macaque conservation, promoter 

Supplementary  (Appendix, online only material, etc.)



conservation, embryonic expression and interaction with known HI genes to calculate the 

%HI where a low percentage number (e.g. 0-10%) indicates that a gene is more likely to 

exhibit haploinsufficiency, whereas a high value indicates that a gene is more likely to 

tolerate a loss-of-function variant or deletion. In validation sets composed from known 

human and mouse HI genes for which the information used for the algorithm was 

available, calculation of %HI correctly predicted 22.2% (87 of 392) and 24.5% of HI 

genes. In the group of human recessive genes, 39 of 606 genes (~6.4%) were predicted as 

being haploinsufficient. 

The pLI score is based on exome sequencing data of more than 60k individuals generated 

by the Exome Aggregation Consortium (ExAC) (Lek et al., 2016). By comparing the 

expected number of missense and nonsense variants based on a selection neutral, 

sequence-context based mutational model to the observed variants in any given gene, the 

group calculated a Z score named probability of being loss-of-function (LoF) intolerant 

(pLI) score. The pLI score allows classifying genes in one of three groups: if the 

observed number of variants equals the number of expected variants, the pLI score equals 

zero and the gene is likely tolerant to LoF variants. High pLI scores of 0.9 or greater 

indicate intolerance to LoF variants, whereas recessive genes score at 0.5 or lower. When 

analyzing pLI scores of known disease genes, the correlation is highest with HI genes 

causing severe disease phenotypes. 

The DOMINO tool was developed in 2017 to calculate the probability P(AD) that any 

given gene is associated with an autosomal dominant (AD) phenotype irrespective of the 

type of variant found (Quinodoz et al., 2017). A machine learning approach was used to 

develop the algorithm that considers eight weighted measures including the number of 



interactions with known AD genes from different training sets compiled by the group, 

from ExAC, the probability to be intolerant to homozygous loss-of-function variants, the 

missense Z score and the ratio between the number of donor site variants and 

synonymous variants present, the average PhyloP score for mammals across the 

transcriptional start site, and a high mRNA half-life (> 10 hr) in mouse embryonic stem 

cells. The algorithm was then validated on 26 AD genes not included in the training set 

and was found to correctly identify genes with an AD phenotype with 88.5% specificity 

and 78.1% sensitivity. No information was given on the rate of false positive attribution 

of autosomal recessive genes as being associated with an AD phenotype. 

 

Detailed clinical information on individuals 

Individual 1 was referred at the age of 8 years for seizures, microcephaly and 

developmental delay. She is the only child from a non-consanguineous union. She was 

born at term after an uneventful pregnancy. She started walking at 13 months and her 

development was normal until 2 years of age. Her development has not been formally 

evaluated, but she attends a mainstream school with one-to-one support. Her major 

difficulties are comprehension and mathematics and she needs some support with 

activities of daily life. At the age of 23 months, she presented with a cluster of 

generalized tonic clonic seizures that were treated with levetiracetam and sodium 

valproate. She has been seizure free on levetiracetam monotherapy for 5 years.  Suspicion 

of mild hypoplasia of the corpus callosum were raised on an initial MRI scan at age 2 

years. However a repeat scan at age 5 years was reported to be normal. At 8 years of age, 

her height (119.6 cm) and weight (19.9 kg) were at the 9th to 25th percentile, and 2nd to 



9th percentile, respectively, while her head circumference measured 1.5cm <0.4th 

percentile for age (48 cm). She was not dysmorphic (Fig. 1, A, B). 

 

Individual 2 came to the attention of a neurometabolic clinic at the age of 6 years. He was 

born at term without complications to non-consanguineous parents as the second of three 

children. Early on, he was noted to have feeding difficulties, failure to thrive and 

microcephaly with increased tone. At 13 months of age, he presented with seizures 

including generalized tonic-clonic and atonic seizures and head drops. His early 

developmental milestones were met normally, but at 6 years, he was not yet toilet trained, 

his speech was limited to single words and he was able to follow simple verbal 

commands. He attended kindergarten in an inclusion classroom and received speech, 

physical, occupational and applied behavior analysis therapy. The formal developmental 

assessment is not available. Clinical evaluation included a muscle biopsy at 3 yrs of age 

that demonstrated no abnormalities.  Electron transport chain analysis showed decreased 

function of Complex I to < 5% of the control sample. mtDNA quantification and 

sequencing was normal. Sequencing of UBE3A, CDKL5 and Complex I nDNA including 

NDUF V1, A7, S3, A1, AF4, AF2, S5, S4, S7, S6, and S8 did not yield any pathogenic 

variants. Urinary amino acids and organic acids, guanidinoacetate, acylcarnitine profile 

and coenzyme Q 10 levels were normal. At 6 yrs, his physical exam was remarkable for 

dysarthria, muscle hypotonia, stereotypic movements (rocking and hand flapping), short 

stature (106 cm, <5th percentile) and a head circumference at the 2nd to 5th percentile 

(47.6 cm). He was exclusively toe walking and had a lordotic stance. There were no 

dysmorphic features.  



 

Individual 3 is the first of three brothers of non-consanguineous parents. He was born at 

term after a normal pregnancy. At birth, length, weight and head circumference were at 

the 25th percentile. During the first few months of life, he cried frequently, particularly in 

response to loud noises. He was found to have hyperacusis, hypotonia and developmental 

delays (sitting at 9 months, walking after 21 months of age). He attends a specialized 

classroom and has poor handwriting. At 30 months of age, he developed myoclonic 

astatic epilepsy and was subsequently hospitalized for epileptic encephalopathy and 

microcephaly. An extensive work-up including an MRI of the brain, ARX and PQBP1 

sequencing, determination of thyroid hormones and a basic metabolic panel yielded 

normal results. He was treated with valproic acid and lamotrigine. He has been seizure-

free since the age of 5 years with normalization of EEG patterns resulting in the 

discontinuation of the valproic acid treatment. On physical exam at the age of 8½ years, 

his height was 126 cm (25th percentile) and his head circumference 48 cm (<3rd 

percentile). He had prognathism, small teeth with only two permanent teeth and tapering 

fingers. 

 

Individual 4 is a 15-year-old individual who was born at term to non-consanguineous 

parents. He walked at 14 months, but had speech delay using complete sentences only at 

the age of 3 years. At school, he experienced significant learning difficulties associated 

with poor concentration qualifying for a diagnosis of ADHD. At 15 years of age, he was 

tested with the Wechsler Intelligence Scale for Children (WISC-V) and found to have a 

mild intellectual disability with an IQ of 51-62 (verbal comprehension index 57-73, 



visual spatial index 59-75, fluid reasoning index 56-71, working memory index 64-78, 

processing speed index 59-78). He attends a special needs class. He exhibits sexualized 

behavior and has a diagnosis of autism spectrum disorder (ASD) based on increased 

sensitivity to sensory stimulation, behavioral rigidity, encyclopedic knowledge of football 

and an inability to read other person’s emotions. From the age of 15 months, he had 

convulsions consisting of generalized tonic-clonic seizures that were initially associated 

with febrile illnesses. From age 2, he was treated with valproic acid; later clobazam and 

sulthiame were added. At 5 years and 4 months his height (125 cm) and weight (24.5 kg) 

were above the 98th percentile and at the 90th percentile respectively. He was 

microcephalic with a head circumference at the 2nd percentile (49 cm), but otherwise 

without dysmorphic features. By age 10 years, growth velocity and weight development 

had diminished and he measured between the 75th and 90th percentile for height (181 cm) 

the 25th to 50th percentile for weight (62.4 kg), and the 2nd percentile for head 

circumference (53 cm) at last follow-up at 16 years of age. A neurological exam was 

normal, including an EEG and an MRI of the brain. A multigene panel for 343 genes 

associated with epilepsy confirmed the heterozygous deletion of TBC1D24 and also 

resulted in two variants of unknown significance, one each in CLCN2 and GRIN1, that 

were both inherited from his unaffected mother. 

 

Individual 5 is a 17-year-old male with intellectual disability. At 13 years of age, he 

scored below the 1st percentile on the WISC-IV. At age 10 months, he was diagnosed 

with generalized tonic-clonic seizures, later he also had episodes of absence and 

myoclonic or atonic seizures. He has been seizure free for more than one year on a 



combination treatment of levetiracetam, rufinamide, and clonazapam. An MRI at 13 

years confirmed a previously identified, stable hypointense tubular structure extending 

from the right frontal cortex to the anterior portion of the body of the right lateral 

ventricle consistent with a developmental venous anomaly. A small area with a cystic 

appearance involving the pineal gland consistent with a small pineal cyst was unchanged 

in size compared to the prior MRI study at 6 years of age. His head circumference (51.5 

cm) measured at the 2nd percentile at 14 years, and his weight (51 kg) at the 3rd percentile 

with a height (159 cm) below the 3rd percentile at 17 years. Mildly dysmorphic features 

included posteriorly rotated ears and a pointed chin (Fig. 1, C, D). 

 

Individual 6 is a 39-year-old man with intellectual disability, history of seizures, and 

significant emotional behavioral concerns with intermittent aggressive behavior, and 

manic and bipolar episodes necessitating multiple psychiatric hospitalizations. He was 

born at term after an uncomplicated pregnancy. His early development was delayed as he 

began crawling at 11 months and walking at 17 months. He started talking late, although 

no details are available. Since the age of 3 years, he had generalized tonic-clonic seizures 

that have been overall well controlled with the exception of break-through seizures at age 

14 and 25. He is treated with phenytoin, buspirone, lorazepam, clonazepam, lamotrigine, 

olanzapine, and zonisamide. He had corrective surgery for strabismus and multiple dental 

operations. He has a non-specified vision loss requiring corrective lenses. A CT of the 

abdomen and pelvis with contrast at the age of 38 years was normal. A brain MRI 

without contrast at the age of 31 years was significant for microcephaly with a thickening 

of the calvarium that was disproportionately greater in the frontal bone near the base of 



the skull. The metopic suture bony margins were still visualized. Minimal vermian 

atrophy was noted. These changes were attributed to chronic phenytoin use and remained 

stable compared to CTs at the ages of 34 and 38 years. Fragile X testing was done for 

slightly enlarged testicles and was normal. On physical exam by B.S., he had normal 

height (171 cm) and weight (66.7 kg), proptotic eyes, a tubular nose, and slightly 

enlarged testicles (Fig. 1, E, F).   

 

Individual 7 was born after a normal pregnancy as the third of four sons to healthy non-

consanguineous parents from Ivory Coast. At 5 ½ years of age, his developmental status 

was estimated at about 2 years; formal testing was attempted, but unsuccessful due to 

lack of cooperation. He is treated with amphetamine/dexamphetamine for ADHD. Since 

the age of 13 months, he suffered from generalized tonic-clonic seizures that are 

moderately controlled with oxcarbazepine, levetiracetam and valproic acid. Two MRIs at 

2½ and 4½ years demonstrated stable cerebral and cerebellar atrophy. At age 2 years, he 

was found to have hearing loss and nystagmus with normal vision. On physical exam, he 

was non-dysmorphic (Fig. 1, G, H) with a head circumference (48.9 cm) at the 2nd to 5th 

percentile, height (106 cm) at the 10th percentile and weight (18 kg) at the 25th percentile. 

Plasma amino acids and urine organic acids were normal. 

 

Individual 8 was born at 32 weeks estimated gestational age (EGA) via Caesarean section 

for non-reassuring fetal heart tracing. At birth, her height and weight measured at the 10th 

percentile, whereas head growth was preserved at the 50th percentile. Her height (114 cm) 

and weight (17.5 kg) remained around the 10th percentile until her last follow-up at 6.5 



years. Head growth decelerated with the head circumference below the 3rd percentile (48 

cm) at 6.5 years. Gross motor and language development was delayed. Her IQ was 

measured at 58 with the Culture Fair Intelligence Test (CFT-R), but at 7.5 years, she is 

attending first grade in a regular classroom with one-on-one support. She experienced her 

first febrile seizure at 18 months, followed by a cluster of febrile and afebrile tonic 

seizures at 20 months of age. After a second cluster of mostly myoclonic seizures at age 

2.4 years, valproic acid treatment was initiated and continued for two seizure-free years. 

She experienced two more seizure clusters of myoclonic seizures lasting up to seven days 

requiring polytherapy of valproic acid, clobazam, and levetiracetam and has been seizure-

free on this combination for 2 years. On physical exam, she has a high forehead, a long 

tubular nose with a broad nasal ridge and epicanthal folds. 



Supplementary table 1 

Bioinformatic prediction scores for all deleted genes. Bars under individual’s column 
signifies deletion, significant values (haploinsufficiency score %HI <10%, pLI >0.9, 
P(DA) > 0.95) in bold; genes in the MOR are underlined; NA, not available. 
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 UCSC gene USCS hg19 position 

chr16:2227976-2832412 
%HI 
DECIPHER 

pLI score 
ExAC 

P(DA) 
DOMINO 

          CASKIN1 chr16:2,227,184-2,246,465 69.64 1 0.544 
          MLST8 chr16:2,255,178-2,258,736 28.26 0.63 0.724 
          BRICD5 chr16:2,259,254-2,261,069 86.33 0 0.094 
          PGP chr16:2,261,603-2,264,822 49.01 0.76 0.307 
          E4F1 chr16:2,273,567-2,285,743 42.22 0.43 0.266 
          DNASE1L2 chr16:2,286,424-2,288,712 74.92 0 0.066 
          ECI1 chr16:2,289,873-2,301,602 59.31 0 0.114 
          RNPS1 chr16:2,303,100-2,318,413 16.82 0.95 0.789 
          MIR3677 chr16:2,320,714-2,320,773 NA NA NA 
          MIR940 chr16:2,321,748-2,321,841 NA NA NA 
          MIR4717 chr16:2,324,621-2,324,692 NA NA NA 
            ABCA3 chr16:2,325,879-2,390,747 64.63 0 0.073 
                ABCA17P chr16:2,390,923-2,476,700 NA NA NA 
                CCNF chr16:2,479,395-2,508,859 48.91 0.02 0.313 
                C16orf59 chr16:2,511,122-2,514,293 87.27 0 0.149 
                NTN3 chr16:2,521,703-2,524,106 75.14 0 0.218 
                  TBC1D24 chr16:2,525,147-2,555,734 55.45 0 0.337 
                  ATP6V0C chr16:2,563,871-2,570,224 51.76 0.73 0.29 
                  AMDHD2 chr16:2,570,363-2,580,955 64.16 0 0.063 
                  CEMP1 chr16:2,580,036-2,581,409  99.15 0 0.109 
                  MIR3178 chr16:2,581,923-2,582,006 NA NA NA 
                  PDPK1 chr16:2,587,965-2,653,191 27.04 0.95 0.986 
                  DQ577714 chr16:2,611,468-2,614,643 NA NA NA 
                AX748261 chr16:2,642,515-2,644,557 NA NA NA 
                LOC652276 chr16:2,653,385-2,680,495 NA NA NA 
               AK056253 chr16:2,685,551-2,688,726 NA NA NA 
               FLJ42627 chr16:2,688,983-2,696,130 NA NA NA 
               ERVK13-1 chr16:2,708,390-2,723,440 NA NA NA 
            KCTD5 chr16:2,732,495-2,759,031 57.45 0.54 0.372 
            PRSS27 chr16:2,763,073-2,770,552 72.79 0 0.073 
            SRRM2-AS1 chr16:2,787,077-2,802,601 NA NA NA 
            SRRM2 chr16:2,802,627-2,818,262 19.08 NA 0.948 
            TCEB2 chr16:2,821,415-2,827,297 47.67 0.02 0.209 
          PRSS33 chr16:2,833,954-2,836,708 79.37 0 0.109 
          PRSS41 chr16:2,848,486-2,855,133 NA NA NA 

 



Supplementary information on gene function 

Gene orthologues and phenotype (in brackets) in select species 

Sources: 

FlyBase (FlyBase.org) 
WormBase Version WS262 (http://www.wormbase.org/#012-34-5) 
Mouse Genome Informatics (http://www.informatics.jax.org/) 
The Zebrafish Information Network (ZFIN.org) 
 
Gene Drosophila 

melanogaster 
Danio rerio Caenorhabditis 

elegans 
Mus musculus 

TBC1D24 skywalker 
(see summary) 

tbc1d24 
(no information) 

tbc-7/C31H2.1  
(no information) 

Tbc1d24 
(no information) 

ATP6V0C Vha16-1 
(knockout 
lethal) 

atp6v0ca 
atp6c0cb 
(see summary) 

vha-1 
vha-2/3 
(no information) 

Atp6v0c 
(see summary) 

AMDHD2 Dmel\CG17065 
(knockout viable) 

amdhd2 
(no information) 

F59B2.3 
(no information) 

Amdhd2 
(no information) 

CEMP1 no orthologue identified with protein-protein BLAST 
PDPK1 pdk1 

(see summary) 
pdpk1a 
pdpk1b 
(no information) 

pdk-1 
(see summary) 

Pdpk1 
(see summary) 

 
 

Additional information on the gene function for TBC1D24, ATP6V0C and PDPK1  

TBC1D24 encodes a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-

specific GTPase-activating proteins. It has been shown to negatively regulate small 

GTPases such as ARF6 and RAB35, which orchestrate vesicular trafficking (Falace et 

al., 2010). In rat brain, TBC1D24 was shown to be important for neuronal migration and 

maturation (Falace et al., 2014). Analysis of the crystal structure of the drosophila 

orthologue Skywalker (Sky) identified a cationic pocket that is preserved in human 

TBC1D24. This pocket is necessary for binding to the lipid membrane via 

phosphoinositides phosphorylated at the 4 and 5 positions. Abrogation of the cationic 

pocket by introduction of two human TBC1D24 pathogenic variants, at positions Arg40 



and Arg242, found in DOORS syndrome led to impaired synaptic vesicle trafficking and 

seizures in drosophila (Fischer et al., 2016) whereas homozygous loss-of-function 

variants are embryonic lethal (Uytterhoeven et al., 2011).  

 

ATP6V0C (ATPase, H+ transporting, lysosomal 16kDa, V0 subunit C) is a component of 

vacuolar ATPase (V-ATPase), a multi-subunit enzyme that mediates acidification of 

eukaryotic intracellular organelles. It is present in endosomes, lysosomes, clathrin-coated 

vesicles and the Golgi complex, where it is essential to acidification and maintenance of 

endocytic and exocytic pathways (Mangieri et al., 2014). While heterozygous knockout 

mice are phenotypically normal (Inoue et al., 1999), homozygous embryos develop only 

to the blastocyst stage and die shortly after implantation (Sun-Wada et al., 1999). In 

drosophila larvae, the only ATP6V0C orthologue Vha-1 is upregulated in the sensory 

organ precursor (SOP), which later develops into the mechano-sensory organ, indicating 

that Vha-1 may play a role in proneural patterning (Tognon et al., 2016). Two zebrafish 

orthologues, atp6v0ca and atp6v0cb, share important protein homology to human 

ATP6V0C protein of 90% and 93%, respectively (NCBI, 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). Zebrafish atp6v0ca plays an 

important role during the development of the eye and melanophores (Nuckels et al., 

2009), as well as for the maintenance of the notochord (Ellis et al., 2013). Loss of 

atp6v0ca function leads to embryonal lethality (Nuckels et al., 2009). In contrast, 

atp6v0cb (also known as atp6v0c2) is specifically expressed in mature, post-mitotic 

neurons and associated with presynaptic vesicles. Morpholino knockdown experiments of 

atp6v0cb did not affect neurogenesis, but instead suggested a role in neuronal excitability 



and neurotransmitter storage (Chung et al., 2010).  In humans, recessive mutations in V-

ATPase subunits ATP6V1E1, ATP6V1A, ATP6V0A2 cause cutis laxa, recessive mutations 

in ATP6V1B1 and ATP6V0A4 cause renal tubular acidosis, and recessive mutations in 

ATP6V0A3 cause osteopetrosis (see OMIM for details). X-linked recessive mutations in 

ATP6AP2 cause intellectual disability or parkinsonism, and X-linked recessive mutations 

in the assembly chaperone VMA21 cause a myopathy. Finally, interestingly, dominant 

mutations in ATP6V1B2 or ATP6V1A cause epileptic syndromes. 

 

PDPK1 (also known as PDK1) is a highly conserved protein kinase that serves as a key 

regulator in many signaling pathways that control cell responses to chemotaxis, cell 

migration and invasion (reviewed in Gagliardi et al., 2015). As TBC1D24, PDPK1 is 

able to bind to phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) or 

phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) produced at the plasma membrane 

where it binds and phosphorylates other protein kinases (Gagliardi et al., 2015). The 

down-stream effectors vary depending on the cell type. In endothelial cells for example, 

PDK1 promotes the disassembly of focal adhesions by modulating integrin endocytosis, 

an important function in cell migration (di Blasio et al., 2015). In C. elegans, pdk1 is part 

of the insulin/insulin-like growth factor signaling (IIS) cascade, which is essential for C. 

elegans development, learning and reproduction (reviewed in Murphy and Hu, 2013). 

Pdk1 is widely expressed in head and tail neurons, pharynx and intestinal cells (Paradis et 

al., 1999). Loss-of-function mutant nematodes are viable, and exhibit a dauer constitutive 

phenotype and increased life span (Paradis et al., 1999). Homozygous loss-of-function 

variants of drosophila dPDK-1 lead to larval lethality and an increase in cellular 



apoptosis (Cho et al., 2001) whereas flies with hypomorphic variants are viable, but 

exhibit developmental delay, reduction in body size through a decrease in cell size and 

male infertility (Rintelen et al., 2001). While homozygous Pdpk1 knockout mice die on 

embryonic day E9.5 (Lawlor et al., 2002), mice with residual PDK1 activity (10-30%) 

are viable and fertile, albeit of a smaller size than their unaffected litter mates (Bayascas 

et al., 2008) similar to the findings in drosophila. Their brain is also proportionally 

smaller in size, with decreased neuronal cell size and deficient neuronal differentiation in 

vitro (Zurashvili et al., 2013). 
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