
 

 Under revision Journal of Hypertension: JH-D-17-01225R1 

 

Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure 

in the spontaneously hypertensive rat 

 

Thiago S. Moreira1,a*,, Vagner R. Antunes1,a, Barbara Falquetto2, Nephtali Marina3,* 
 

1Department of Physiology and Biophysics, Institute of Biomedical Science, University of 

São Paulo, São Paulo, SP, Brazil. 
2Dept. of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 

SP, Brazil. 
3Division of Medicine, University College London, London WC1E 6JF, UK 

Centre for Cardiovascular and Metabolic Neuroscience. University College London, London, 

WC1E 6BT, UK 

 

Running title: vagal preganglionic neurons stimulation in SHR 

Key words: vagus nerve stimulation, hypertension, parasympathetic, pharmacogenetic. 

 

*Corresponding authors:  

Thiago S. Moreira: Department of Physiology and Biophysics, Institute of Biomedical 

Science, University of São Paulo, São Paulo, SP, Brazil: tmoreira@icb.usp.br Tel +55-11-

3091-7961 

 

Nephtali Marina: Department of Clinical Pharmacology and Experimental Therapeutics, 

University College London, London WC1E 6JF, UK. Email: n.marina@ucl.ac.uk Tel +44 (0) 

2076790968 
 

aSharing 1st authorship 

 

Funding 

This work was supported by an UCL Santander Research Catalyst award (NM), the São 

Paulo Research Foundation (FAPESP; grants: 2015/23376-1 and 2016/22069-0 to TSM; 

2016/21991-3 to VRA) and CNPq fellowship (301904/2015-4 to TSM). N.M. was also 

supported by the British Heart Foundation Intermediate Basic Science Research fellowship 

(FS/13/5/29927). 

 

Acknowledgements 

We would like to thank Dr. J. Wess for providing the DREADD-Gs construct. 

 

Authors contribution 

TSM, VRA and NM designed research; TSM, VRA and BF performed research and analyzed 

data; TSM, VRA and NM wrote the paper. TSM, VRA, BF and NM preformed critical 

review of the manuscript. All authors approved the final version. 

   

Summary word count: 246 

Total word count: 4595 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195307838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tmoreira@icb.usp.br
mailto:n.marina@ucl.ac.uk


Abstract 

 

BACKGROUND: Arterial hypertension is associated with autonomic nervous system 

dysfunction. Different interventional strategies have been implemented in recent years for the 

reduction of sympathetic activity in subjects with hypertension. However, the therapeutic 

benefit of increasing vagal tone in hypertensive subjects remains largely unexplored.  

OBJECTIVE: Here we describe the effects of long-term activation of vagal neural pathways 

on arterial pressure (AP), heart rate (HR), AP variability and spontaneous baroreflex 

sensitivity in spontaneously hypertensive rats (SHR) and normotensive Wistar rats.  

METHODS: Brainstem vagal preganglionic neurons residing in the dorsal vagal motor 

nucleus (DVMN) were targeted with a lentiviral vector to induce the expression of an 

artificial G(s) protein-coupled receptor termed Designer Receptors Exclusively Activated by 

Designer Drugs (DREADD-Gs). The transduced neurons were activated daily by systemic 

administration of otherwise inert ligand clozapine-n-oxide (CNO). AP measurements were 

recorded in conscious freely-moving animals after 21 consecutive days of DVMN 

stimulation.  

RESULTS: Resting AP was significantly lower in SHRs expressing DREADD-Gs in the 

DVMN, compared to control SHRs expressing eGFP. No changes in AP were detected in 

Wistar rats expressing DREADD-Gs compared to rats expressing eGFP in the DVMN. 

Pharmacogenetic activation of DREADD-Gs-expressing DVMN neurons in SHRs was 

accompanied with increased baroreflex sensitivity and a paradoxical decrease in cardio-vagal 

components of HR and systolic AP variability in SHRs. 

CONCLUSION: These results suggest that long-term activation of vagal parasympathetic 

pathways is beneficial in restoring autonomic balance in an animal model of neurogenic 

hypertension and might be an effective therapeutic approach for the management of 

hypertension.  

 

 

 

 

 

 



Introduction 

 Arterial hypertension increases the risk of death from cardiovascular disease in adults 

aged between 40-69 years (1). Arterial hypertension is believed to affect one in four people 

and accounts for approximately one billion cases worldwide (2). Increased arterial blood 

pressure is one of the most crucial cardiovascular risk factors and has a dominant role in the 

pathogenesis of ischemic heart disease, heart failure, stroke, kidney failure and overall 

cardiovascular death. Despite important advances in the diagnosis and treatment of arterial 

hypertension, a significant proportion of patients have insufficient disease management due 

to either resistance to current drug therapy (3) or poor drug compliance. Thus, there is a 

significant unmet clinical need to find alternative strategies to conventional pharmacotherapy. 

 Over the last three decades, a growing body of evidence has unequivocally shown that 

both the development and maintenance of arterial hypertension are intimately linked to 

autonomic dysfunction, characterized by increased sympathetic activity (4; 5) and reduced 

cardio-vagal tone (6). The great majority of pre-clinical and clinical studies have historically 

concentrated on the detrimental effects of sustained sympathetic nervous system (SNS) 

overactivity on arterial blood pressure control (7-12). This has generated considerable interest 

in novel autonomic modulation approaches such as renal nerve ablation (13), deep brain 

stimulation (14) and carotid sinus stimulation (15) which have been shown to lower SNS 

activity, reduce arterial blood pressure levels and prevent end-organ damage, particularly in 

treatment-resistant subjects. However, the pathophysiological role of impaired vagal function 

in arterial hypertension remains largely unexplored and despite considerable evidence 

showing the beneficial effects of vagal nerve modulation on cardiovascular function (16), it 

remains unknown whether direct activation of vagal efferent pathways could attenuate the 

progression of the disease. Here, we employed a pharmacogenetic approach in the 



spontaneously hypertensive rat model to investigate the physiological consequences of long-

term activation of vagal preganglionic neurons on the development of arterial hypertension. 

 

Methods 

Animals 

 All animal experimentations were carried out in accordance with guidelines approved 

by University of São Paulo Institutional Animal Care and Use Committee (CEUA: 118/109-

2). Experiments were performed on male adult hypertensive SHRs (8 weeks of age) and age-

matched normotensive Wistar rats. 

 

Viral vectors  

 Vagal preganglionic neurons of the DVMN, which express the transcriptional factor 

Phox2, were transduced using an artificial Phox2-activated promoter-PRSx8 as described 

previously (17-20). The DVMN neurons were targeted with a lentiviral vector to express an 

artificial G protein-coupled receptor (GPCR) termed Designer Receptors Exclusively 

Activated by Designer Drugs (DREADD). These are mutated muscarinic receptors, which are 

selectively activated by an otherwise biologically inert ligand clozapine-N-oxide (CNO) (21). 

A Gs-coupled version of this system (DREADD-Gs) fused with enhanced green fluorescent 

protein (eGFP) was used to activate neurons in a similar manner to that following activation 

of other Gs-coupled receptors. A lentiviral construct was used to induce the expression of 

DREADD-Gs in DVMN neurons under the control of the PRSX8 promoter (PRSx8-

DREADD-Gs-eGFP-LV). For control experiments, DVMN neurons were transduced with a 

lentiviral vector to express eGFP (PRSx8-eGFP-LV). Vectors were generated in our 

laboratory facilities as described previously using a DREADDs construct kindly provided by 

J. Wess (22, 23). LVV titers were approximately between 1×1012 transducing units ml−1. 



Validation of efficacy of CNO-induced activation of Gs signaling in cells expressing 

DREADD-Gs was described in detail previously (22). 

In vivo gene transfer  

 Rats were anesthetized [ketamine (80 mg kg-1; ip) and xylasine (7 mg kg−1, ip)] and 

placed in a stereotaxic frame (model 900; David Kopf Instruments). Adequate level of 

anesthesia was confirmed by the absence of a withdrawal response to a paw pinch. SHRs and 

Wistar rats were injected in the DVMN with two microinjections per side (0.25 μL each, 0.05 

μL min-1) of a viral suspension containing PRSx8-DREADD-Gs-eGFP-LV (DREADD-Gs; 

n=8 and n=4, respectively) or PRSx8-eGFP-LV (e-GFP, n=7 and n=5, respectively) using the 

following coordinates from calamus scriptorius (i) 0.5 mm rostral, 0.6 mm lateral, 0.8 mm 

ventral and (ii) 1.0 mm rostral, 0.8 mm lateral, 0.6 mm ventral. Anesthesia was reversed with 

atipamezole (1 mg kg-1). All animals recovered normally without complications, received 

daily injections of buprenorphine for post-operative analgesic control (0.05 mg kg-1 

subcutaneously for 5 days) and gained weight as expected for their age and size. 

 

Application of CNO 

 Systemic administration of CNO allowed us to activate Gs signaling in DVMN 

neurons expressing DREADDs-Gs. The dose of CNO (0.3 mg/kg in 0.1 ml, subcutaneously) 

was based on the lowest concentration used in a previous study that was found to elicit robust 

activation of targeted neuronal populations and behavioral changes in conscious animals (24, 

25). Animals were allowed to recover from viral gene transfer surgery for 8 days before the 

start of CNO treatment. CNO injections were delivered daily by the same experimenter and at 

the same time every day for 21 consecutive days.  

 

Arterial blood pressure measurements  



 After 19 days of CNO treatment (i.e., at 11 weeks of age), rats were implanted with 

intra-arterial catheters. Animals were anesthetized with halothane (3% in O2) and a 

polyethylene tube (PE-10 connected to PE-50; Clay Adams, Parsippany, NJ, USA) filled with 

sterile saline containing heparin (50 U ml-1) and penicillin G (2000 U ml-1) was inserted into 

the left femoral artery and its tip was placed in the abdominal aorta caudal to the renal 

arteries (26). The opposite end was tunneled subcutaneously and exteriorized through the 

upper back and sealed with a plastic cap. All animals received an intramuscular injection of 

penicillin G (24,000 IU) and streptomycin (10 mg). Catheters were flushed the following day 

with the same solution containing heparin and penicillin. Arterial pressure recordings were 

performed 2 days after arterial catheterization. On the day of the experiments, the catheter 

was connected to a pressure transducer (MLT844, ADInstruments, Sydney, NSW, Australia) 

coupled to a preamplifier (Bridge Amp, ML221, ADInstruments, Sydney, NSW, Australia) 

that was connected to a Powerlab computer data acquisition system (PowerLab 16/30, 

ML880, ADInstruments). Arterial pressure measurements were taken between 8 am and 5 pm 

by an experimenter that was blind to the animal condition. Data was acquired in conscious 

animals for 60 minutes during quiet resting periods.  

 

Power spectral analysis 

 Spectral analysis of the systolic pressure variability was performed off-line to 

estimate the relative level of sympathetic and parasympathetic activity in rats at 11 weeks of 

age. Mean, systolic and diastolic arterial pressures (MAP, SAP, and DAP; mmHg, 

respectively), pulse interval (PI; ms) and heart rate (HR; bpm) were measured from the AP 

recording using LabChart 8.0 (model Powerlab 8SP ADInstruments). Data was acquired after 

a 10 minute period of stabilization. Only data sets containing stable measurements of SAP 

and PI without artifacts or large sudden blood pressure changes were selected for analysis. 



An algorithm was used to detect beat-to-beat inflection points in the PAP signal. SAP and PI 

variability analysis was carried out in time and frequency domains using custom software 

CardioSeries V2.4 (http://www.danielpenteado.com/) as described previously (27). Briefly, 

SAP and PI power spectral density were estimated by Fast Fourier Transform algorithm for 

time series. Using 10 Hz of interpolation rate, beat-by-beat series were divided in half 

overlapping sequential sets with 512 points. The spectra of SAP and PI were integrated into a 

low-frequency band (LF: 0.2-0.75 Hz, indicating mainly sympathetic influences) and a high-

frequency band (HF: 0.75-3 Hz, indicative mainly of cardio-vagal tone). The results were 

expressed in absolute (ms2) and normalized units (nu) obtained by calculating the percentage 

of LF and HF power with regard to the total power of the spectrum minus the very low 

frequency band (VLF: <0.2 Hz) (28). Sympathovagal balance was also calculated by 

assessing the LF/HF ratio of PI variability (27-30). 

 

Spontaneous baroreflex sensitivity (BRS) 

 A beat-by-beat time series of SAP and PI was scanned in a 60-min data set acquired 

during quiet rest, searching for sequences of at least four consecutive beats in which AP 

increases were followed by PI lengthening (up-sequence) and AP decreases were followed by 

PI shortening (down-sequence) with a delay of 0, with no threshold in SAP and PIs and a 

linear correlation of >0.8. The slope of the linear regression lines between systolic SAP and 

PI was taken as a measure of spontaneous BRS. The baroreflex effectiveness index, which 

provides information on baroreflex function that is complementary to spontaneous BRS, was 

also calculated (31). It was defined as the ratio between the number of SAP ramps followed 

by respective reflex changes in PI and the total number of SAP ramps (independent of 

whether accompanied by the corresponding reflex PI ramps) observed over the time window 

studied. 



Immunohistochemistry procedures 

 At the end of the in vivo experiments, the rats transduced to express DREADD-Gs or 

eGFP in the DVMN neurons were deeply anesthetized with sodium pentobarbital (60 mg/kg), 

injected with heparin (500 units, intracardially) and perfused through the ascending aorta 

with 0.9% saline solution followed by 4% phosphate-buffered (0.1 M, pH 7.4) 

paraformaldehyde. After 12 h of post-fixation and subsequent cryoprotection in 30% sucrose, 

40-μm-thick coronal sections were collected along the rostro-caudal extent of the medulla 

oblongata. Sections were processed for the immunohistochemical detection of choline acetyl-

transferase (ChAT). Tissue was incubated in goat anti-ChAT (1:500, Chemicon, raised 

against human placental ChAT) followed by donkey anti-goat Alexa Fluor 594 (Jackson). 

The specificity of the antibodies has been validated previously (32; 33). 

 

Cell mapping, counting and imaging 

 A conventional multifunction microscope [brightfield, darkfield and epifluorescence; 

Zeiss Axioskop 2 microscope (Oberkochen, Germany)] was used for all observations except 

when indicated. ImageJ software (NIH) was used to count the various types of neuronal 

profiles within a defined area. 

 A one-in-six series of 40-µm brain sections was used per rat, for a total distance of 

240 µm of separation between slices. The sections were counted bilaterally, and the numbers 

reported correspond exactly to the counts obtained in one series of sections. Section 

alignment between brains was completed relative to a reference section. Briefly, to align 

sections around the nucleus of the solitary tract (NTS) level, the section containing the mid-

area postrema was identified in each brain and assigned the level 13.8 mm caudal to Bregma 

(Bregma = -13.8 mm). Levels rostral or caudal to this reference section were determined by 



adding a distance corresponding to the interval between sections multiplied by the number of 

intervening sections.  

Photographs were taken with a 12-bit color CCD camera (CoolSnap, Roper Scientific, 

Tuscon, AZ; resolution 1392 X 1042 pixels). The files were exported to the Canvas 9 

software-drawing program for final modifications. The neuroanatomical nomenclature is 

based on Paxinos and Watson Atlas of Neuroanatomy (34). 

 

Data analysis 

Data normality was assessed using the Shapiro-Wilk test, and all the normally-

distributed data were expressed as the mean ± SEM. The data regarding number of neurons 

(ChAT+, ChAT+/eGFP+) and cardiovascular variables (i.e SAP, DAP, MAP, HR) were 

compared between groups and across time points using two-way ANOVA, with repeated 

measures for only the time factor. When applicable, the Student Newman Keuls post hoc test 

was used. Sigma Stat version 3.0 package (Jandel Corporation, Point Richmond, CA, USA) 

was used for all analysis. Significance level used was p<0.05. 

 

Results 

1) Expression of DREADD-Gs-eGFP in DVMN neurons.  

The number and location of neurons expressing DREADD-Gs in the DVMN was 

mapped in each rat by identifying DREADD-Gs-eGFP fluorescence signal in vagal 

preganglionic neurons immunoreactive to ChAT (Figs. 1A-C). On average, DREADD-Gs 

was detected in 220±13 neurons counted in 5 coronal sections (n=7). Of the neurons 

expressing DREADD-Gs in all counted sections, 94±5% had detectable ChAT-

immunoreactivity. Thus, 70±6% of ChAT-immunoreactive neurons in the DVMN were 

found to express the transgene (Fig. 1D).  



2) Effect of long-term activation of DVMN neurons on arterial blood pressure 

 Figure 2 shows arterial blood pressure measurements obtained in SHRs and Wistar 

rats expressing DREADD-Gs or control eGFP after administration of CNO for 21 

consecutive days. Arterial blood pressure levels were significantly lower in SHRs transduced 

to express DREADD-Gs in the DVMN compared to SHRs expressing eGFP (Figs. 2A-B). 

The SAP was 159.8±2 in SHRs expressing DREADD-Gs, vs. 177.6±3 mmHg in SHRs 

expressing eGFP [F(3,31) = 183,89; p<0.001]; DAP was 114.3±1.8 in SHRs expressing 

DREADD-Gs, vs. 124±2.7 mmHg in SHRs expressing eGFP [F(3,31) = 40,55; p<0.01]; MAP 

was 129.5±1.5 in SHRs expressing DREADD-Gs, vs. 142±1.2 mmHg in SHRs expressing 

eGFP [F(3,31) = 165,73; p<0.001] (Figs. 2A-C). HR was also found to be lower in SHRs 

expressing DREADD-Gs in the DVMN (302±5 bpm) compared to SHRs expressing eGFP 

(370±6 bpm, [F(3,31) = 68,08; p<0.01]; Fig. 2D). Resting SAP, DAP, MAP and HR were 

significantly higher in SHRs expressing DREADD-Gs compared to Wistar rats expressing 

either DREADD-Gs or eGFP (p = 0.021) (Figs. 2A-D). Cardiovascular parameters were not 

different between control Wistar rats expressing DREADD-Gs or eGFP in the DVMN (Figs. 

2A-D). 

 

3. Repetitive activation of DVMN neurons increases spontaneous baroreflex sensitivity 

 Figures 3A and B show the spontaneous baroreflex sensitivity gain and baroreflex 

effectiveness index in SHRs and Wistar rats transduced to express DREADD-Gs or eGFP in 

the DVMN. The results showed that rats from both groups expressing DREADD-Gs in the 

DVMN had higher spontaneous baroreflex sensitivity (7.7±0.7 in SHRs expressing 

DREADD-Gs, vs. 4.7±0.6 in SHRs expressing eGFP, p = 0.024 and 7.3±0.5 in Wistars 

expressing DREADD-Gs vs. 5.1±0.7 in Wistars expressing eGFP, p = 0.03) and baroreflex 

effectiveness index (0.15±0.025 in SHRs expressing DREADD-Gs vs.  0.073±0.03 in SHRs 



expressing eGFP, p = 0.035 and 0.13±0.01 in Wistars expressing DREADD-Gs vs. 0.08±0.02 

in Wistars expressing eGFP, p = 0.038) (Figs. 3A-B). 

 

2.3) Heart rate and systolic arterial pressure and variability 

 The results of SAP and HR (PI) variability in the time and frequency domains from 

Wistar (controls: DREADD-Gs or eGFP) and SHRs (DREADD-Gs or eGFP) are showed in 

Figs. 3C-D and 4A-D. SAP variance and SAP LF were found to be lower in SHRs expressing 

DREADD-Gs as compared to SHRs expressing eGFP (p = 0.043) (Figs. 3C-D). The analysis 

of systolic AP variability showed no differences in PI variance. However, the SHRs 

expressing DREADD-Gs exhibited lower total power LF, and HF compared with SHR 

expressing e-GFP (p = 0.034) (Figs. 4B-C). Moreover, sympathovagal balance assessed by 

the LF/HF ratio, was shown to be lower in SHRs expressing DREADD-Gs compared to 

SHRs expressing eGFP (p = 0.032, Fig. 4D), suggesting a dominance of parasympathetic 

influences.  

Discussion 

 In this study, we have shown that using a pharmacogenetic approach for repetitive 

stimulation of DVMN neurons for 21 days produced significant cardiovascular benefits in 

SHRs, including decreased arterial blood pressure and improved spontaneous baroreflex 

sensitivity. These data are consistent with previous studies showing improved cardiac and 

vascular function by either direct [electrical vagal stimulation, acetylcholine (Ach) 

administration and ACh receptor activation] or indirect vagal modulation (adenosine, 

cholinesterase inhibitors, statins and exercise training) (see 16 for review). In recent years, 

vagal modulation techniques such as baroreflex activation therapy and direct vagal nerve 

stimulation have been proposed as adjuvant therapies for the treatment of arterial 

hypertension (35). However, to our best knowledge this is the first study where a well-



defined population of vagal preganglionic neurons has been selectively targeted for repetitive 

activation of central parasympathetic pathways in an animal model of arterial hypertension. 

Our results showed that arterial blood pressure was significantly reduced in SHRs 

transduced to express DREADD-Gs in the DVMN compared to SHRs expressing control 

eGFP, whilst Wistar rats showed no changes in cardiovascular parameters. This suggests that 

DVMN efferents might play an important role in the control of arterial blood pressure, 

however, the mechanisms are unclear. Ach is a powerful vasorelaxant that decreases blood 

vessel resistance by inducing phosphorylation of the rate-limiting enzyme involved in the 

biosynthesis of nitric oxide (NO), endothelial nitric oxide synthase (eNOS). Endothelium-

derived NO-induced synthesis decreases the availability of intracellular calcium, resulting in 

a decrease in myosin phosphorylation and vasorelaxation that would ultimately lead to 

decreased arterial blood pressure. However, the arterioles in skeletal muscle that determine 

peripheral resistance are paradoxically devoid of cholinergic innervation and therefore, 

changes in afterload are highly unlikely to be produced by direct stimulation of  

parasympathetic efferent pathways from the DVMN. Thus, the arterial blood pressure-

lowering effect of DVMN stimulation might be exerted elsewhere, probably at the level of 

the heart. Recent studies have shown that DVMN neurons provide a tonic inhibitory 

muscarinic influence on left ventricular contractility. Pharmacological activation of cardiac 

preganglionic vagal neurons that reside in the left caudal DVMN in the rat trigger profound 

reductions in left ventricular dp/dtmax (19). This suggests that reductions in arterial blood 

pressure in rats expressing DREADDS-Gs in the DVMN may have been the consequence of 

changes in cardiac output at the expense of reduced stroke volume and left ventricular 

inotropy. Long-term measurements of cardiac inotropy is needed to validate these claims. 

Stimulation of DVMN neurons was also associated with significant increases in 

baroreflex gain and effectiveness, both in SHRs as well as in Wistar rats. This suggests that 



DVMN stimulation might have improved baroreflex function, perhaps by inducing protective 

effects in baroreceptor function at the level of the great vessels. In recent years, several 

reports indicate that mechanical insults that increase arterial stiffening contribute directly to 

the development of arterial hypertension. Arterial stiffness is caused by disruption of elastin 

integrity in the aortic wall in particular with ageing, diabetes and chronic kidney disease. 

Stiffening at the level of the aortic root, impairs the Windkessel mechanism at this important 

interface, thereby reducing wave reflection and leading to increased central pulsatile pressure 

and transmission of excessive pulsatile energy that is known to promote end-organ damage. 

More importantly, reduced arterial compliance at higher pressures are believed to hamper 

baroreceptor activation thus causing a dysfunction in baroreflex control of heart rate and 

peripheral resistance. Studies performed in mouse models of impaired elastin expression have 

shown that stiffening of the aorta precedes the development of hypertension and subsequent 

increments in systolic pressure were inversely proportional to elastin content in the aorta (36). 

Interestingly, bilateral vagotomy in rats has been shown to induce similar structural 

remodeling changes leading to increased stiffening of the aorta (37). Even though arterial 

blood pressure was not reported in this study, this evidence suggests that the vagus nerve may 

prevent age-related structural changes in the great vessels that may contribute to the 

development of arterial hypertension. Future studies should endeavour to investigate whether 

long-term stimulation of DVMN efferent pathways induce protective metabolic and structural 

mechanisms that help to preserve and/or restore arterial wall compliance and thus facilitate 

arterial baroreceptor signaling. 

Our findings further suggest that the development of hypertension might be associated 

with impaired DVMN functionality in the SHR and conversely, increasing neuronal activity 

by pharmacogenetic methods might have helped to attenuate disease progression. 

Histological analysis of ChAT immunofluorescence revealed that SHRs and Wistar rats have 



similar neuronal numbers in the DVMN. However, the number of DVMN neurons 

retrogradely labeled from the heart was previously found to be significantly reduced in adult 

SHRs compared to young SHRs and adult Wistar Kyoto rats (38). This discrepancy suggests 

that the number of cardiovagal neurons that project to the heart is probably too small as to 

make a significant contribution to the overall population of vagal neurons residing in the 

DVMN and thus, a loss of cardiovagal neurons in adult SHRs may not have a major impact 

on the total number of DVMN neurons. However, age-related reduction in the population of 

DVMN neurons in the SHRs might also be accompanied with abnormalities in DVMN 

neuronal excitability. Previous studies have shown that parasympathetic neuronal dysfunction 

is a common feature in animal models of cardiovascular disease such as heart failure and 

chronic intermittent hypoxia in which increased GABAergic/glycinergic neurotransmission 

and decreased excitatory neurotransmission in the DVMN and nucleus ambiguous result in 

reduced neuronal excitability and lower parasympathetic tone (39, 40). Similar mechanisms 

are likely to operate in the SHR and should be further investigated in future studies to help 

determine whether DVMN synaptic dysfunction, a selective loss of parasympathetic 

preganglionic neurons supplying the heart or a remodelling of their cardiac projections, might 

promote abnormal changes in left ventricular inotropy and/or loss of structural integrity in the 

aortic wall which might contribute to the development of arterial hypertension.  

Our data showed that long-term activation of vagal preganglionic neurons within the 

DVMN resulted in a reduction in heart rate and systolic blood pressure variance exclusively 

in SHRs. This bradycardic effect in SHRs might have been caused by indirect reductions in 

sympathetic nerve trafficking in SHRs rather than by increased vagal influence on cardiac 

chronotopy since cardiac vagal preganglionic neurons that control the activity of the sino-

atrial node are generally believed to be located in the ventrolateral aspect of the nucleus 

ambiguous (NA) (41, 42) whilst DVMN neurons that were targeted in this study have 



virtually no influence on the control of heart rate (43). This is supported by PI variability 

analysis, showing significant reductions in the LF component, consistent with decreased 

sympathetic tone. Thus, a reduced heart rate in SHRs might have further contributed to lower 

cardiac output and produce concomitant reductions in arterial blood pressure in the SHRs 

expressing DREADD-Gs. This effect was only evident in SHRs and not in Wistar rats 

because SHRs have augmented sympathetic activity and would therefore be more sensitive to 

decreased sympathetic activity. Reference from Jim? 

Our results are consistent with recent studies showing that pharmacological activation 

of parasympathetic signaling elicits beneficial effects in the circulatory system. Transdermal 

application of scopolamine has been shown to decrease arterial blood pressure, increase 

baroreflex sensitivity and accentuate vagal-cardiac modulation of sinus node in patients with 

mild hypertension (44), supporting the hypothesis that increasing cardiovascular 

parasympathetic activity might have beneficial effects in subjects with arterial hypertension. 

More recently, systemic administration of choline was shown to restore the impaired cardiac 

function in SHRs, as evidenced by decreases in heart rate, systolic blood pressure, left 

ventricular systolic pressure, dp/dtmax and increases in ejection fraction and fractional 

shortening (45). This effect was accompanied by restored baroreflex sensitivity in SHRs and 

profound anti-inflammatory effects, including downregulation of interleukin (IL)-6 and 

tumour necrosis factor-α (TNF-α) and increased expression of IL-10 in the mesenteric 

arteries of SHRs, thus indicating that choline improved vagal activity (45). Similarly, chronic 

increase of acetylcholine availability induced by administration of anti-acetylcholinesterase 

agents with central and/or peripheral action, attenuated the development of hypertension, 

increased cardiac vagal tone, improved arterial pressure and pulse interval variability and 

reduced plasma levels of TNF-α, IL- 6, and interferon γ (46). Together, these 

pharmacological studies suggest that acetylcholine might attenuate the harmful 



cardiovascular effects of systemic low-grade inflammation, including endothelial 

dysfunction, oxidative stress and autonomic dysfunction. However, the effect of DVMN 

neuronal activation on the expression of pro-inflammatory mediators and signalling 

mechanisms requires further investigation. Control of low-grade signalling inflammation by 

stimulation of DVMN circuits may have a significant impact on the control of autonomic 

balance and cardiovascular homeostasis and ultimately contribute to the reduction in arterial 

blood pressure levels in the SHR. 

Our study has some limitations. We employed adult SHRs with fully-established 

arterial hypertension and 21 days of DVMN stimulation with CNO was relatively short. 

Thus, it remains to be determined whether these effects are similar or perhaps more effective 

when animals receive the treatment at different stages (i.e., prehypertensive stage or further 

down in the presence of end-organ damage) and whether arterial blood pressure-lowering 

effects can be sustained for considerably longer periods (months to years).  From a technical 

point of view, one of the major technical limitations was that blood pressure measurements 

were only acquired until the end of the study and for relatively short periods of time 

(normally 1 hour). Thus, longer data acquisitions were not possible, especially at night, so we 

were not able to assess the time course of the blood pressure-lowering effects of DVMN 

activation and whether blood pressure dipping was restored in SHRs. Finally, we did not 

determine whether the amount of lentiviral particles delivered achieved a maximum infection 

rate which could have affected the magnitude of the arterial blood pressure-lowering effect 

we obtained. However, despite these limitations, our study provides unequivocal evidence 

that shows that activation of DVMN neurons for 3 weeks is enough to substantially lower 

arterial blood pressure levels in adult SHRs and improve autonomic dysfunction. 

In conclusion, using a chemogenetic approach for highly selective recruitment of 

vagal efferent projections in the DVMN, we demonstrate that long-term activation of central 



parasympathetic pathways exerts arterial blood pressure-lowering effects in SHRs. Our data 

suggest that cardiac preganglionic neurones in the DVMN are important targets for increasing 

parasympathetic activity to the heart, and may provide a therapeutic strategy to help  control 

arterial hypertension and prevent its detrimental effects. 
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Figure legends 

Figure 1: Targeting cardiac preganglionic neurons in the dorsal motor nucleus of the 

vagus nerve (DVMN).  

A) Representative image of choline acetyl transferase (ChAT)-immunoreactive neurons (red) 

in the DVMN. B) DVMN neurons expressing DREADD-Gs-eGFP. C) merge of A and B in 

the intermediate aspect of the DVMN (13.8 mm caudal from Bregma). Most of the neurons in 

this image are double-labelled and appear orange. D) average number of counted neurons per 

section from 7 rats. Counts were made from a 1 in 6 series of 40 μm coronal sections. 

Abbreviations: AP, Area Postrema; cc, central canal; XII, hypoglossal motor nucleus. Scale 

bar in C = 500 m. 

 

Figure 2: Long-term activation of DREADD-Gs-expressing neurons in the dorsal motor 

nucleus of the vagus attenuates the hypertension in the spontaneously hypertensive rat 

(SHR).  

Summary data showing that long-term activation of DVMN neurons expressing DREADD-

Gs within the DVMN results in a significant reduction of resting A) mean (MAP), B) systolic 

(SAP), C) diastolic arterial blood pressure (DAP) and D) heart rate (HR) in the SHR. Note 

that activation of DREADD-Gs-expressing neurons in the DVMN did not affect 

physiological variables in Wistar rats. Data are presented as mean±SEM. *p<0.05 or 

***p<0.001, significant difference between SHRs expressing EGFP and SHRs expressing 

DREADD-Gs in the DVMN. N = 4-8/group of rats 

 



Figure 3: Power spectral analysis of the systolic arterial pressure (SAP) and 

spontaneous baroreflex sensitivity (SBR) after long-term activation of DREADD-Gs-

expressing neurons in the dorsal motor nucleus of the vagus in SHR and Wistar rats. 

Summary data showing that long-term activation of DVMN neurons expressing DREADD-

Gs within the DVMN results in significant changes in A) baroreflex gain (ms/mmHg); B) 

baroreflex effectiveness index; C) systolic arterial pressure (SAP) variance; D) Low 

frequency (LF) component of the SAP (mmHg2). Data are presented as mean±SEM. *p<0.05, 

significant difference between SHRs or Wistar rats expressing eGFP and SHRs and Wistar 

rats expressing DREADD-Gs in the DVMN. N = 4-8/group of rats 

  

Figure 4: Power spectral analysis of the pulse interval (PI) variability and spontaneous 

baroreflex sensitivity (SBR) after long-term activation of DREADD-Gs-expressing 

neurons in the dorsal motor nucleus of the vagus in SHR and Wistar rats. 

Summary data showing that long-term activation of DVMN neurons expressing DREADD-

Gs within the DVMN results in significant changes in A) Pulse interval (PI) variability; B) 

LF component of PI (%); C) High frequency (HF) component of PI (%) and D) LF/HF ratio 

in SHR and Wistar rats. Data are presented as mean±SEM. *p<0.05, significant difference 

between SHRs or Wistar rats expressing EGFP and SHRs and Wistar rats expressing 

DREADD-Gs in the DVMN. N = 4-8/group of rats 

 

 

 

 

 

 



 

 

 


