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Introduction

Currently, there are few options for in situ non-destruc-
tive monitoring of the stability of modern polymeric
materials within heritage collections. Past research has
focused on exploiting the information contained in vola-
tile organic compounds (VOCs) emitted from an object
to understand decay mechanisms or identify the
polymer composition (Lattuati-Derieux et al. 2013; Hak-
karainen, Albertsson, and Karlsson 1997). The funda-
mental shortcoming of many previous studies utilising
VOC capture is that often they use destructive analysis,
elevated temperatures, artificially aged samples or com-
binations of these during analysis. While these studies
have given us a wealth of information regarding decay
profiles and key VOCs emitted from specific polymers,
they often lack real-world applicability.

Previous work by Curran et al. (2016) has shown that
it is possible to capture relevant VOC data from three-
dimensional polymer objects at room temperature
using solid phase microextraction gas chromato-
graphy/mass spectrometry (SPME-GC-MS). However,
this required pre-concentration of VOCs within Tedlar
sealable bags, which introduces risks to the object
from poor handling during bagging, and severely
limits the size of objects which can be studied. The
novelty of the method described here lies in using
SPME to undertake a systematic and repeated non-
destructive and non-invasive monitoring programme
of multiple points-of-interest (POI) around a naturally
aged three-dimensional polymer object within its
normal storage environment.

The central questions this research aimed to answer
were –

. Can key VOC markers for polymer composition or
decay be efficiently and confidently detected using
SPME-GC-MS in a museum storage environment?

. Can differences between the intensity of key VOC
markers be detected from different POIs around
the object?

. Can insights into object material condition be
detected using SPME-GC-MS?

. What is the potential impact for conservation prac-
tice and VOC monitoring?

Materials and methods

Two experimental campaigns were carried out on the
constructivist sculpture Construction in Space ‘Two
Cones’ (Tate T02143, 1936, this replica 1968) by the
artist Naum Gabo. The work is available for study
because it is deemed too deteriorated for display, and
currently suffers, among other issues, from warping,
crazing, and crystal growth (Figure 1(b)). As such an
authorised replica is being used instead for display
(Lawson and Cane 2016). The sculpture is principally
constructed from cellulose acetate (CA) and is currently
loosely packed within a polymer storage crate lined with
activated charcoal cloth wrapped around Plastazote
foam, a Plastazote base, covered by fabric to prevent
dust accumulation, but not enclosed. During each cam-
paign, POIs around the object (see Figure 1(a,b) for
locations) were examined by placing an exposed 50/
30 μm DVB/CAR/PDMS SPME fibre at each POI. A fifth
SPME fibre was placed within the room housing the
object to measure the background VOCs present. The
two experimental campaigns differed in the length of
time the SPME fibre was exposed to the object. One
campaign was exposed to the object for 24 hours, the
other for 7 days. Three replicate measurements were
made during each campaign, on different dates. Peak
areas were normalised to the peak area of ethylbenzene
from a MISA Group 17 Non-Halogen Organic Mix (Sigma
Aldrich 48133 Supelco) standard.
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Results

The results have shown that an exposure time of 24
hours is adequate for the capture of VOCs relating to
polymer composition and decay markers (Table 1).
VOCs such as acetic acid and phenol, which relate to
decay mechanisms, and the plasticisers diethyl phtha-
late and dimethyl phthalate, were found at each of
the POIs examined, though the concentration levels
varied at each location.

Another significant result was the apparent differ-
ences between POI associated with areas of decay
and those POI slightly further away. At both exposure
times, the concentration of the four key VOCs, men-
tioned above, was significantly higher close to an
area with visible signs of decay as opposed to the
fibres placed inside the storage crate but slightly
away from the object – giving two distinct sets of
results from the four fibres places around the object.

Possibly the most significant insight was the clear
difference between the two areas of decay examined,
suggesting different decay mechanisms present on a
single object. The area where fibre two was placed
had a significantly higher ratio of phenol to acetic

acid than where fibre four was placed (Figure 2). This
feature was present for both 24 hours and 7 days
exposure times, though the ratio was less at 7 days
(Table 1). Despite this difference in ratio, the overall
concentration of acetic acid was higher at fibre four
than at fibre two. Visually, the area centred around
fibre two appeared to be more heavily decayed and
contained more crystal growth on the polymer
surface than fibre four, which had virtually no crystal
growth. FTIR analysis was performed on a crystal
which had formed on the SPME fibre housing,
however, definitive identification was not possible.
Results suggested some form of phenyl phosphate
plasticiser (tri- or diphenyl phosphate could not be dis-
tinguished). These results are also backed up by pre-
vious analysis on the object (Townsend, Angelova,
and Ormsby 2016) which did show the presence of tri-
phenyl phosphate (TPP). The high levels of phenol
could be explained by the work by Shinagawa, Mur-
ayama, and Sakaino (1992) who proposed that the
decay of TPP, via hydrolysis, led to diphenyl phosphate
and phenol. Our results are also in keeping with those
of Tsang et al. (2009) who noticed that CA plasticised

Fibre 5

Fibre 3

Fibre 4
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Figure 1. (a) Shows the POIs where the four fibres were placed around the object. (b) Shows a close-up of the location of fibre two
and the condition of the polymer surrounding it. Photos: Mark Kearney. Artwork © Nina and Graham Williams, DACS and Tate 2018.

Table 1. Normalised peak area results from 24-hour exposure.
Normalised peak area’s of 4 Key VOCs from 1-Day campaign

Acetic acid Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5 Phenol Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5

Set 1 0.29 0.07 0.01 0.27 0.16 Set 1 0.83 2.81 0.09 0.13 0.14
Set 2 0.43 1.26 0.17 3.38 0.39 Set 2 1.60 6.77 0.32 1.31 0.49
Set 3 0.24 0.83 0.26 2.07 0.32 Set 3 1.21 4.61 0.44 1.21 0.48

Dimethyl Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5 Diethyl Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5

Set 1 n/d 12.56 0.36 0.78 0.43 Set 1 0.20 5.90 0.23 0.24 0.23
Set 2 n/d 16.58 0.94 14.06 2.01 Set 2 0.42 11.25 0.41 3.10 0.76
Set 3 n/d 20.01 1.77 14.20 2.41 Set 3 0.42 9.48 0.72 3.70 0.85

Normalised peak area’s of 4 Key VOCs from 7-Day campaign

Acetic acid Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5 Phenol Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5

Set 1 0.04 0.15 0.05 0.28 0.09 Set 1 1.05 3.53 0.59 3.31 1.46
Set 2 0.08 0.16 0.08 0.21 0.06 Set 2 1.79 3.53 1.10 2.38 1.00
Set 3 2.75 1.59 1.49 3.06 2.17 Set 3 10.98 10.44 6.09 7.30 6.75

Dimethyl Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5 Diethyl Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 5

Set 1 0.16 19.23 1.88 15.44 4.28 Set 1 0.60 13.69 0.78 7.24 1.38
Set 2 0.24 19.60 3.10 13.03 3.25 Set 2 0.80 13.99 1.00 6.14 1.01
Set 3 4.33 101.21 58.74 205.94 49.49 Set 3 20.44 126.94 21.76 104.83 17.56

S370 M. KEARNEY ET AL.



with TPP appeared to decay at a faster rate than CA
without. Our results, therefore, heavily suggest that
we are detecting two distinct decay mechanisms
from the two different areas. The higher levels of
acetic acid seen at fibre four are generated by the dea-
cetylation of CA, while hydrolysis of TPP leads to higher
levels of phenol.

Taken together, these results suggest that SPME is
an efficient methodology for monitoring polymer
object decay. Our research also provides evidence
that monitoring of VOCs emitted from polymer
objects either needs to be targeted at specific POIs
close to the object, or else generally, with the under-
standing that VOC ‘hot spots’ may be missed.

Our work highlights the capabilities of SPME-GC-MS
to detect potential differences in decay mechanisms
from a single object. Our work also adds further evi-
dence to the theory that CA plasticisers with TPP
decay at a faster rate than other forms of the material.

There is also a potential impact for collection care, as
our research suggests that current storage practices,
such as open storage and charcoal inhibitors for
highly decayed polymer objects are insufficient for
eliminating VOC build-up in certain areas. Our research
points towards the need for better control of the ven-
tilation of troublesome polymer objects kept at room
temperature – this would likely take the form of an
invasive procedure such as a continuous air flow over
the object or periodic flushing of the atmosphere
around the object.
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Figure 2. Ratios of phenol to acetic acid for the two exposures. Not the consistent high levels of phenol recorded by fibre two (in
black) compared to fibre four (in grey). This suggests that there is something additional driving the emission of phenol in the area
covered by fibre two.
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