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Abstract  12 

 13 

The fossil community from the early Miocene Cape Melville Formation (King George Island, 14 

Antarctica) does not show the archaic retrograde nature of modern Antarctic marine 15 

communities, despite evidence, such as the presence of dropstones, diamictites and striated 16 

rocks, that it was deposited in a glacial environment. Unlike modern Antarctic settings, and 17 

the upper units of the Eocene La Meseta Formation on Seymour Island, Antarctica, which are 18 

10 million years older, the Cape Melville Formation community is not dominated by sessile 19 

suspension feeding ophiuroids, crinoids or brachiopods. Instead, it is dominated by infaunal 20 

bivalves, with a significant component of decapods, similar to present day South American 21 
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settings. It is possible that the archaic retrograde structure of the modern community did not 22 

fully evolve until relatively recently, maybe due to factors such as further cooling and 23 

isolation of the continent leading to glaciations, which resulted in a loss of shallow shelf 24 

habitats. 25 
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Introduction  41 

 42 

Modern Antarctic marine benthic communities are dominated by sessile suspension 43 

feeding organisms in many shelf areas (Gili et al. 2006; Clarke et al. 2004; Aronson et al. 44 

2007; Gutt et al. 2013). There are very few crushing predators in Antarctic shallow marine 45 

environments. Sharks and rays and most durophagous reptant decapods, which are important 46 

community structuring predators elsewhere in the shallow oceans, are absent from Antarctic 47 

waters (Hall and Thatje 2011; Griffiths et al. 2013), allowing dominance by groups such as 48 

sponges and ophiuroids. The top predators of the living Antarctic benthos are asteroids, 49 

nemertean worms and other slow moving invertebrates of a Palaeozoic functional grade (for 50 

example pycnogonids and isopods) that are not durophagous (Aronson et al. 2009). Colder 51 

water temperatures in the Antarctic make it difficult to extract calcium ions from sea water, 52 

and this, in addition to a lack of predators; means that recent Antarctic shelled organisms 53 

such as bivalves are very thin shelled (Nicol 1967; Vermeij 1978; 1987; McClintock et al. 54 

2009). Modern communities in regions outside the Antarctic where durophagous decapods 55 

are present, such as the South American Magellan Province, have much higher relative 56 

abundances of infaunal taxa, especially molluscs (Thatje and Mutschke 1999). 57 

The general lack of sharks, rays and durophagous decapods on the high-Antarctic 58 

continental shelves has been given as one of the primary explanations for the retrograde 59 

structure and function of shelf benthos when compared with shallow water communities 60 

elsewhere (Hall and Thatje 2011). However, there are a number of factors that may have 61 

shaped the modern fauna including oceanographic changes, the onset of Cenozoic 62 

glaciations, sea-water cooling, changes in habitat driven by variations in ice extent and 63 

habitat disturbance caused by ice-berg scouring (Clarke et al. 2004). There is little direct 64 
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fossil information about the evolution of Antarctic marine fauna (Barnes and Clarke 2011). 65 

The only known examples of studies on Antarctic Cenozoic marine invertebrate community 66 

structure are from the Eocene of Seymour Island (Aronson and Blake 2001; Aronson et al. 67 

1997; 2009). Some modern Antarctic taxa evolved as early as the late Cretaceous (Beu 2009; 68 

Crame 2013). Studies from Seymour Island, Antarctica, suggest that the modern Antarctic 69 

community structure had its origins in the late Eocene (Aronson and Blake 2001; Aronson et 70 

al. 1997; 2009).   71 

Fossil evidence from Seymour Island shows that shallow, subtidal communities in the 72 

early to middle Eocene contained durophagous taxa such as teleostean fish, decapod 73 

crustaceans and neoselachian sharks and rays typical of other regions at the present day 74 

(Aronson et al. 2009; 2011). Evidence for Antarctic climate at this time suggested seasonality 75 

in temperature and precipitation in a warm, humid, temperate environment (Jacques et al. in 76 

press). Changes in the Seymour Island communities were linked with a cooling trend towards 77 

the end of the Eocene, and this was linked to a fundamental shift in the structure of benthic 78 

communities in Antarctica (Aronson and Blake 2001; Aronson et al. 1997; 2007; 2009; 79 

2011). This resulted in changes in faunal composition and a decrease in taxonomic diversity, 80 

which included the disappearance of durophagous predators such as most reptant decapods, 81 

sharks, and teleost fish (Aronson and Blake 2001; Eastman 2005; Aronson et al. 1997; 2007; 82 

2009; 2011). The reasons for the absence of these groups are complex, but have been linked 83 

to historical biogeography, physiology, and phylogenetic constraint (Aronson et al. 2007; 84 

2011). For example, the absence of certain reptant decapod crustaceans (benthic, walking 85 

decapods, including brachyuran crabs and astacid lobsters) from Antarctic waters today has 86 

been cited as a direct result of their physiological intolerance of cold sea temperatures 87 

(Frederich et al. 2001; Wittmann et al. 2010; Aronson et al. 2011). However, Griffiths et al. 88 
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(2013) show that one group of decapods, lithodids, are found in many areas of Antarctic 89 

waters that are warmer than 0°C, and conditions have been suitable for their colonisation for 90 

at least 9,000 years (Griffiths et al. 2013).  91 

The loss of durophagous predators and the resultant lowered predation pressure led to 92 

stalked crinoids and epifaunal ophiuroids moving to shallower Antarctic waters from deeper 93 

water environments (Aronson et al. 1997; Aronson and Blake 2001). However, Aronson and 94 

Blake (2001) stated that causal connections between global cooling and durophagous 95 

predation must be complex and indirect as durophagous predation remains strong in the 96 

recent Arctic (Dayton 1990). Timing of the post-Eocene Antarctic extinctions of durophagous 97 

predators is uncertain (Aronson et al. 2009). One of the few post-Eocene marine fossil sites in 98 

the Antarctic is the Cape Melville Formation (CMF) on King George Island, West Antarctica.  99 

The Cape Melville Formation (Moby Dick Group, King George Island Supergroup) 100 

comprises an approximately 150 m thick exposure on the narrow Melville Peninsula, which 101 

lies at the eastern extremity of King George Island (Troedson and Riding 2002) (Fig. 1). Age 102 

constraints include andesite dykes, which cut through the CMF and thus post date the unit; 103 

these have been radiometrically dated at 20 Ma using K-Ar (Birkenmajer et al. 1985). Fossils 104 

from the unit have early Miocene affinities (Biernat et al. 1985; Bitner and Crame 2002). The 105 

formation has also been dated as 22.6 +/- 0.4 Ma (Early Miocene), based on Sr isotope data 106 

from bivalves (Dingle and Lavelle 1998).  107 

The formation consists of horizontal to sub-horizontally bedded mudstones and silty 108 

mudstones. There is also a diverse assemblage of glacially rafted lithological material in the 109 

unit (Birkenmajer et al. 1983), some of which is facetted and striated (Birkenmajer 1982; 110 

1984; Troedson and Riding 2002). The wide regional source area for this material indicates 111 

the presence of widespread regional ice, calving ice margins, and the presence of large 112 
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icebergs (Troedson and Riding 2002). The unit provides rare evidence of extensive glaciation 113 

in the Antarctic Peninsula region in the earliest Miocene, with regional marine based 114 

grounded ice on the continental shelf (Troedson and Riding 2002).  115 

The formation is separated into four units, which were described and interpreted by 116 

Troedson and Riding (2002). Unit A was interpreted as a proximal glaciomarine facies, 117 

deposited by glaciogenic debris flows, ice rafting and suspension settling. Unit B, also a 118 

proximal glaciomarine facies, was deposited by turbidites, hemipelagic sedimentation and 119 

suspension settling. Unit C, a distal glaciomarine facies, with a minor carbonate ooze 120 

component, was deposited through ice rafting, hemipelagic sedimentation, gravity flows and 121 

biogenic pelagic sedimentation. Unit D, a distal glaciomarine facies, was deposited by ice 122 

rafting and hemipelagic sedimentation. Macrofossils are moderately common in this unit 123 

(Troedson and Riding 2002).  124 

Birkenmajer (1982; 1984; 1987) stated that sedimentological data and the benthic 125 

fauna point to the CMF as being a quiet, low energy environment comparable with a flat or 126 

gently sloping submarine plain of outer shelf or more restricted basin, below wave base.  A 127 

comparatively deep-water, outer shelf environment for the unit was later suggested based on 128 

the composition of the macrobenthic assemblage (Förster et al. 1987; Feldmann and Crame 129 

1998; Hara and Crame 2004). This was supported by evidence from microfaunal and 130 

microfloral data (Dudziak 1984; Birkenmajer and Łuczkowska 1987; Troedson and Riding 131 

2002; Hara and Crame 2004). The presence of infaunal bivalves in life position, horizontal 132 

crab burrows, and the vertical growth position of corals led Roniewicz and Morycowa (1987) 133 

to suggest deposition in low energy water interspersed with chaotic burial.  134 

Previous studies on the CMF focussed on taxonomic descriptions of the different 135 

marine invertebrate groups (Roniewicz and Morycowa 1985; Förster 1985; Förster et al. 136 
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1987; Jesionek-Szymańska 1987; Karczewski 1987; Szaniawski and Wrona 1987; Feldmann 137 

and Crame 1998; Bitner and Crame 2002; Jonkers 2003; Hara and Crame 2004; Anelli et al. 138 

2006; Whittle et al. 2011; 2012; Beu and Taviani 2013), or intra-taxon assemblage 139 

characterisation (Whittle et al. 2012). Microfossils identified from the CMF included 140 

Polychaeta in the form of jaw elements, Foraminifera, Radiolaria, Ophiuroidea elements and 141 

Ostracoda (Birkenmajer and Łuczkowska 1987; Szaniawski and Wrona 1987). Fossils have 142 

been found from 14 different sites along the Cape Melville Peninsula (Fig. 1). 143 

Along with the underlying late Oligocene Destruction Bay Formation (Quaglio et al. 144 

2010), the Cape Melville Formation provides a unique fossil record in the Antarctic Peninsula 145 

region during a latest Oligocene to earliest Miocene interglacial to glacial transition 146 

(Birkenmajer et al. 1983; Dingle and Lavelle 1998; Troedson and Riding 2002). Based on 147 

evidence from Cape Melville fossils we hypothesise that the evolution of modern Antarctic 148 

marine community structure was still incomplete in the early Miocene. 149 

 150 

Materials and Methods  151 

 152 

British Antarctic Survey (BAS) specimens were collected from the CMF by one of us 153 

(JAC) in the 1994/1995 field season using the numbers P. 2701 (75 specimens), P. 2702 154 

(1321 specimens) and P. 2707 (155 specimens). Fossils in the BAS assemblage were studied 155 

using an optical microscope, measured using Vernier callipers, identified to lowest possible 156 

taxonomic level and counted. All specimens were collected from approximately the 157 

uppermost 75 m of Unit D of Troedson and Riding (2002) and can be regarded as one time-158 

averaged assemblage for the purposes of this study (Fig. 1b, c). Infaunal fossils from the 159 
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CMF are relatively well preserved, and can be counted as individual animals. The majority of 160 

the bivalves have both valves, only the very rare epifaunal species are preserved as single 161 

valves. The epifaunal gastropods are not well preserved, but they still occur as complete 162 

specimens. However, nearly all are internal moulds and key features such as ornaments, 163 

apertures, and protoconchs are frequently missing. Most of the decapod specimens are 164 

preserved as articulated specimens, although there are also disarticulated appendages in the 165 

collection. Only decapods that could be identified as belonging to a single specimen were 166 

included in taxon counts, so their contribution to the overall fauna is a minimum estimate.   167 

Data for the assemblage reconstruction for the CMF came from this study, and are 168 

based on the relative proportions of taxa found. Community comparisons were undertaken 169 

using assemblage data from several sources. Recent relative abundance data, at order, class, 170 

and phylum level, for the West Antarctic Peninsula region came from the unpublished results 171 

of the BAS expedition JR230 (data held by Dr DKA Barnes of BAS. 172 

http://www.bodc.ac.uk/data/information_and_inventories/cruise_inventory/report/14037/) 173 

from a total of 39 stations at approximately 500 m deep (collected using a 2 m wide Agassiz 174 

trawl with an inner net mesh size of 10 mm). The Recent Beagle Channel (23 stations, 14 – 175 

348 m), South Patagonian Ice-Field (20 stations, 20 – 711 m), and Straits of Magellan (29 176 

stations, 8 – 571 m) data were from Thatje and Mutschke (1999). Only taxa that are likely to 177 

fossilise and were found in the CMF were compared to modern data to account for 178 

taphonomic bias in the fossil record, e.g. taxa such as the holothurians and ascidians were 179 

excluded. The multivariate statistical software PRIMER 6 (Clarke and Warwick 2001) was 180 

used to analyse faunal similarities between communities by implementing the Bray-Curtis 181 

measure performed on relative abundance data. The similarity matrix was then used for a 182 

cluster analysis. 183 
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 184 

Results  185 

 186 

The BAS invertebrate macrofauna collection comprises 1,551 individuals belonging 187 

to seven phyla (Cnidaria, Mollusca, Annelida, Arthropoda, Bryozoa, Brachiopoda, and 188 

Echinodermata), collected from the three localities in the uppermost 75m of the CMF (Fig. 1, 189 

Table 1). Twenty two families, eighteen genera, and fourteen species were identified. All 190 

fossils identified to species level in the collection are endemic to the CMF. Bivalves 191 

dominated the assemblage, making up 57.8% of the total fauna, then gastropods at 20.4%, 192 

and the only other taxa that contributed significantly to the fauna were corals (13.5%) and 193 

decapods (6.1%). A reconstruction of the community, based on the relative abundances of 194 

taxa, is shown in Fig. 2.  195 

The bivalve assemblage included eight bivalve families, Nuculidae (60.5% of the 196 

bivalves), Sareptidae (16.5% of the bivalves), Malletiidae (7.7% of the bivalves), Hiatellidae 197 

(3.5% of the bivalves), Periplomatidae (1.0% of the bivalves), Limopsidae (1.2% of the 198 

bivalves), Limidae (0.1% of the bivalves), and Pectinidae (0.1% of the bivalves), and 10 199 

species have been identified (Jonkers 2003; Anelli et al. 2006; Whittle et al. 2012). It is 200 

dominated by protobranchs (89% of the bivalves), with the Nuculidae forming the most 201 

numerous component (60% of the bivalves) (Whittle et al. 2012). The BAS collection 202 

contained two recently described species (Whittle et al. 2011; 2012) and an as yet 203 

undescribed limid (Quaglio et al. in prep) in addition to those already described from the 204 

CMF (Anelli et al. 2006). 205 
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Six gastropod families were identified in the BAS CMF collection (Volutidae, 206 

Cerithiidae, Epitonidae, Turritellidae, Naticidae, and Buccinidae, s.l.). Most designations 207 

have been made to family level, some of these are tentative identifications, and 42% of the 208 

gastropod fauna is classed as indeterminate. The gastropods are dominated by predatory 209 

naticids (23% of the gastropods). Originally, Karczewski (1987) identified 18 gastropod 210 

families, 26 genera and 30 species based on 63 fossil specimens from 6 localities in the Cape 211 

Melville Formation. Specimens were mostly compared with taxa from North America and 212 

Europe (Karczewski 1987). More conservative identifications for this material were made by 213 

Beu (2009), who placed fossils in five families, with a further two questionable family 214 

assignments. In total nine genera were listed, six of which were of uncertain taxonomic 215 

status, and several gastropods were indeterminate (Beu 2009). Families that were identified 216 

by Beu (2009) that are found in our collection are Turritellidae, Naticidae, and Buccinidae, 217 

s.l.. Families that Beu (2009) identified that are not found in our collection are Aporrhaidae, 218 

?Philinidae, and ?Mathildidae and the superfamily Conoidea, including the former family 219 

Turridae (Bouchet et al. 2011; Engl 2012), whose Antarctic fossil members are of uncertain 220 

taxonomic status at present.  221 

The BAS collection contained 210 specimens of Flabellum corals (13.5% of the 222 

invertebrate fauna), and was the second most abundant group after the Mollusca. Corals were 223 

originally described from Polish CMF material, and were assigned to the species Flabellum 224 

rariseptatum Roniewicz and Morycowa 1985. Corals from other collections were found 225 

either in life position (Birkenmajer et al. 1983; Birkenmajer 1984) (vertically orientated) or 226 

overturned (Roniewicz and Morycowa 1987). All post-larval skeletal stages were represented 227 

(Roniewicz and Morycowa 1987). 228 
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Two decapod taxa were found in the unit, and they accounted for at least 6.1% of the 229 

fauna (Table 1). Prolific remains of Antarctidromia inflata Förster, 1985, (Family 230 

Homolodromiidae) were found in the BAS collection (91 specimens that can be attributed to 231 

single animals and a further 51 disarticulated appendages have been found, which have not 232 

been counted in the overall fauna). Preservation ranged from incomplete carapaces, with or 233 

without some articulated appendages, to individual claws. Crab remains have been found by 234 

other workers; Förster et al. (1987) described the remains of nearly 200 almost complete crab 235 

carapaces, which they suggest to be body fossils as opposed to moults. The crabs were 236 

associated with burrow structures found on the Melville Peninsula, suggesting that they are 237 

the remains of an ancient community (Förster et al. 1987; Uchman and Gaździcki 2010). All 238 

growth stages from juveniles to adults were found, and males were more abundant than 239 

females (Förster et al. 1987). Homolodromiidae is a primitive brachyuran family with a 240 

sparse fossil record in the Mesozoic and Cenozoic (Förster 1985; Schweitzer et al. 2004). 241 

However, two different fossil genera, Antarctidromia and Antarctiprosopon, have been found 242 

in Antarctica (Förster 1985; Feldmann and Wilson 1988; Schweitzer and Feldmann 2011). 243 

These occurred in very different environmental settings, but reasonably close in geographical 244 

terms. In the late Eocene, Antarctiprosopon lived in a shallow water, nearshore environment 245 

(Feldmann and Wilson 1988), but in the early Miocene Antarctidromia inhabited a deeper 246 

water setting in a muddy environment, and had a burrowing mode of life (Förster et al. 1987). 247 

There is little information about the ecology of recent Homolodromiidae. The two modern 248 

genera (Dicranodromia and Homolodromia) are found in water depths ranging from 35 to 249 

1080 m, with the highest number of records at around 700 m in depth (supplementary table 250 

1). The BAS CMF collection also contained 4 specimens of the lobster Hoploparia gazdzickii 251 

originally described by Feldmann and Crame (1998).  252 
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The remaining groups in the CMF BAS collection accounted for just over 2% of the 253 

fauna (Table 1). Scaphopods have been mentioned in several publications but formal 254 

identifications have not been published. BAS specimens belong to Dentalium sp.. The genus 255 

is also known in the Antarctic fossil record from the Oligocene Polonez Cove Formation at 256 

Magda Nunatak on King George Island (Pugaczewska 1984). Bryozoans from the BAS 257 

collection were described by Hara and Crame (2004) in the family Aspidostomatidae and 258 

identified to the species Aspidostoma melvillensis. Brachiopods were identified from the 259 

family Terebratulidae, genus Liothyrella and the family Laqueidae, genus Paraldingia 260 

(Bitner and Crame 2002). Bryozoan fragments were noted by Birkenmajer and Łuczkowska 261 

(1987) in their microfossil collections. Echinoderms from Polish collections were identified 262 

to 3 genera in the families Cidaridae, Echinidae and Schizasteridae (?Notocidaris, 263 

?Sterechinus and ?Schizaster). Assignments were tentative due to the poor preservation of the 264 

material (Jesionek-Szymańska 1987). Echinoids from the BAS collection can be identified to 265 

the family Cidaridae and slightly better material can be placed in ?Notocidaris. Echinoid 266 

spine fragments were also identified from Polish collections (Birkenmajer and Łuczkowska 267 

1987), but were not found in the BAS collection. Serpulid worm tubes are found preserved in 268 

the BAS CMF assemblage in low numbers (Table 1). 269 

 270 

Feeding strategy 271 

 272 

In the CMF assemblage only ten out of the 22 families identified could be classed as 273 

purely suspension feeding (45%); and considering total abundance numbers, only 22% of the 274 

invertebrate fauna could be classed as purely suspension feeding (indeterminate bivalve and 275 
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gastropod taxa, for which feeding strategy could not be determined, were not included in the 276 

total). Overall, it is clear that the CMF is not dominated by sessile suspension feeding 277 

communities of sponges, cnidarians, bryozoans, ascidians, and echinoderms that are seen in 278 

many modern Antarctic communities (Dayton et al. 1986; Gili et al. 2006; Gutt et al. 2013). 279 

Numerically, the majority of Cape Melville invertebrates were deposit feeders (Table 280 

1). Bivalves were the dominant taxa and of the 851 specimens identifiable to family level or 281 

higher (the 45 indeterminate specimens were excluded), 93.8% were deposit feeders and 282 

6.2% were suspension feeders; this is because the bivalve fauna is dominated by deposit 283 

feeding nuculids. These percentages are similar to relative abundances from the modern day 284 

Beagle Channel, Patagonia, where bivalve species are overwhelmingly infaunal (98.12%) 285 

with only 1.88% being epifaunal, and the nuculids account for the largest percentage of the 286 

bivalves (33%) (percentages for the soft bottomed stations, ranging from 25 to 665 m deep, 287 

were taken from Linse and Brandt 1998). 288 

Taxonomically, 3 bivalve genera were deposit feeders and 5 were suspension feeders 289 

in the CMF. It is difficult to assess feeding strategies of gastropods, and some taxa may 290 

exhibit more than one feeding strategy at different stages of development (Allmon 1988). For 291 

example, most Turitellidae species are ciliary suspension feeders, but some or all may be 292 

deposit feeders or grazers for at least part of the time (Allmon 1988); in Table 1 they have 293 

been counted as suspension feeders. However, they were the only suspension feeding 294 

gastropod taxon identified (accounting for 13% of the gastropods). 79.3% of the gastropods 295 

were carnivorous (predatory or a mixture of predatory/scavenging), and some of these taxa 296 

have specialised feeding preferences, such as the Epitoniidae, which feed on sea anemones 297 

and corals (Robertson 1963), and the Conoidea, which mainly feed on polychaetes (Kantor 298 

and Taylor 1991). The remaining taxa were a mixture of deposit feeding and grazing. 299 
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Dentalium is also thought to be a strongly specialised feeder; it was classed as a predator 300 

based on the work of Morton (1959), who observed that they used prehensile tentacles 301 

(captacula) to actively search out and locate Foraminifera.  302 

 303 

Assemblage structure 304 

 305 

The overall composition of the CMF assemblage showed a much more marked 306 

similarity to the Recent Beagle Chanel (>85% similarity) and Straits of Magellan (~74% 307 

similarity)  community structures than it did to the modern West Antarctic Peninsula (<35% 308 

similarity), when the relative abundances of preservable taxonomic groups were compared 309 

(Fig. 3).  310 

 At the taxonomic levels shown in figure 3, the only obvious difference between the 311 

CMF assemblage composition and that of the Beagle Channel is the relative abundance of 312 

Cnidaria (13% and <0.5% relative abundance respectively). Figure 3 shows that when 313 

durophagous decapods are present in modern settings (such as the Beagle Channel, South 314 

America), bivalves and gastropods dominate the assemblage (>90% of collected preservable 315 

samples), and the proportions of many groups such as scaphopods (<1%), brachiopods 316 

(<0.5%), and bryozoans (<0.5%) are lower (Fig. 3). Durophagous decapods are absent from 317 

the fauna in the Western Antarctic Peninsula, here groups that are minor elements in the 318 

Beagle Channel, such as bryozoans (~14%) and echinoids (25%) are much more prevalent 319 

(Fig. 3). 320 

Species level data from mollusc collections from Beagle Channel (Linse and Brandt 321 

1998) show large percentages of infaunal molluscs, which is similar to the CMF assemblage. 322 
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33% of the bivalves in the Beagle Channel are nuculids (Linse and Brandt 1998); in the CMF 323 

60.5% of the bivalves are nuculids. Other dominant bivalve families identified from the 324 

Beagle Channel include Lasaeidae (an infaunal family accounting for 29% of the bivalves), 325 

Malletidae (16% of the bivalves), and Nuculanidae (9% the bivalves). In the CMF the other 326 

dominant bivalve families are Sareptidae (16.5% of the bivalves), Malletiidae (7.7% of the 327 

bivalves), and Hiatellidae (3.5% of the bivalves).  328 

 329 

Discussion 330 

Outcrops of fossiliferous rocks are comparatively rare in Antarctica and, obviously, 331 

trends cannot be inferred for the whole of Antarctica based on evidence from a single locality 332 

as depositional settings vary between fossil sites. Also, variations in physical setting and 333 

differential preservation of taxa make it difficult to make firm conclusions based on 334 

comparisons of fossil occurrence data with modern data. However, the CMF preserves 335 

interesting evidence of a glacial fossil assemblage that has no direct parallels in Antarctica at 336 

the present day, but has a greater similarity to the modern day Beagle Channel community 337 

structure. There are many explanations why the CMF invertebrate community structure does 338 

not resemble that of modern day Antarctica and many of these explanations may be 339 

interlinked. Variations in the preservation potential of aspects of the CMF fauna, the presence 340 

or absence of community structuring organisms, the amount of terrigenous sediment input, 341 

cooling climate, a loss of shelf habitats, lateral heterogeneity, changes in seasonal variations 342 

of annual food supply and environmental setting may have all contributed to the differences 343 

between communities.  344 

 345 



16 

 

Taphonomy creates a biased record of the living community, as larger organisms with 346 

hard parts are preferentially preserved (Staff et al. 1986). Looking at the CMF fauna, there 347 

are generally well-preserved infaunal elements, but the epifaunal component is less 348 

represented and less well-preserved. Gili et al. (2006) noted 10 major groups of epifaunal 349 

sessile suspension feeders in the modern Antarctic fauna (Porifera, Gorgonaria, Pennatularia, 350 

Alcyonaria, Stolonifera, Hydrozoa, Actiniaria, Bryozoa, Brachiopoda, and Ascidiacea), most 351 

of these have a very low fossilisation potential, so it is possible that these elements were 352 

present but not preserved. Conversely, the epifaunal suspension feeding component may not 353 

have been as numerous or taphonomic processes, like destruction by iceberg scouring, 354 

destroyed evidence of them. There are other factors that may have affected the community 355 

structure, for example if active iceberg scouring had occurred then the fauna may have 356 

developed predominantly infaunally in response to this. This is seen in some modern 357 

Antarctic assemblages, which are seemingly well adapted to rapid recovery following 358 

disturbance events by having a simple infaunal structure (Smale et al. 2008). Given these 359 

limitations the reconstruction of the Cape Melville Formation fossil assemblage (Fig. 2) was 360 

made to the best of our knowledge using only the data we have available.    361 

Aronson et al. (2009) suggested that the evolution of the modern Antarctic 362 

community structure initiated towards the end of the Eocene, with the start of a major decline 363 

in global temperatures, based on evidence from the late Eocene of Seymour Island (Aronson 364 

et al. 1997). This cooling was thought to have led to a reduction in activity and eventual loss 365 

of durophagous predators such as decapods, sharks, and many teleosts, resulting in 366 

communities with an archaic state, low in predators and high in epibenthic sessile suspension 367 

feeding groups such as ophiuroids and crinoids. This structure is seen in modern Antarctic 368 

environments (Aronson et al. 2009). Evidence from the CMF assemblage does not fit with the 369 

modern Antarctic community structure, or that of the late Eocene of Seymour Island. The 370 
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dominance of communities composed of suspension feeders and associated fauna in 371 

Antarctica today has been confirmed by Gutt et al. (2013). However, this study also shows 372 

that there is heterogeneity in Antarctic macrobenthic communities. A reason that the CMF 373 

community structure could have differed from that of the late Eocene of Seymour Island is 374 

that the community structure could have varied around the continent in the past, as it does 375 

today (Gutt et al. 2013). Alternatively deeper water settings (Cape Melville Formation) could 376 

have developed a retrograde structure at a different time to shallower water settings (La 377 

Meseta Formation).  378 

 Purely suspension feeding groups only account for 22% of the CMF assemblage; 379 

they are not a dominant element of the community. In particular, dense assemblages of 380 

suspension feeding crinoids and ophiuroids, such as those seen in late Eocene Seymour Island 381 

assemblages, (Aronson and Blake 2001) were not found in our CMF collection. Also, 382 

brachiopods are not found in abundance in the Cape Melville assemblage, but predatory 383 

decapod groups are found. The absence of ophiuroids and crinoids may well be taphonomic, 384 

however, decapods also have a relatively low preservation potential due to their strong 385 

susceptibility to decay early in the post-mortem history (Stempien 2005; Krause et al. 2011), 386 

and articulated specimens are found in abundance in the formation. Rare ophiuroid fragments 387 

were identified in low numbers (six elements) from Polish Cape Melville collections 388 

(Birkenmajer and Łuczkowska 1987), but ophiuroid elements were not found in our CMF 389 

collection. Either the presence of a high number of predatory decapods restricted suspension 390 

feeding groups like the ophiuroids, or they were not preserved. Ophiuroid ossicle dissolution 391 

is relatively rapid and experimental taphonomy has suggested that the stratigraphic record 392 

does not accurately reflect the presence and abundance of ophiuroids (Walker et al. 2013). 393 

Gilli et al. (2006) stated that durophagous predators do not normally prey on sessile 394 

organisms such as sponges, cnidarians and bryozoans, and therefore the lack of large 395 
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predators is probably not a major factor explaining the make-up of the sessile Antarctic fauna 396 

today (Gili et al. 2006). They suggested that a scarcity of herbivores, a lack of terrigenous 397 

sediment input, and a paucity of bioturbators, in addition to the low number of predators, may 398 

have influenced the modern Antarctic benthos (Gili et al. 2006).  It has also been suggested 399 

that seasonal variations of annual food supply may strongly influence the production and 400 

productivity of Antarctic invertebrates (Arntz et al. 1994; Gorny 1999; Thatje et al. 2003). A 401 

marked seasonality of primary production in the Southern Hemisphere, and the resultant 402 

restriction on food supplies, is thought to select against certain groups of animals. This is 403 

known as Thorson’s rule (Mileikowsky 1971). Groups, which in cold waters have prolonged, 404 

planktotrophic larval development, for example some reptant decapods, will be selected 405 

against at high latitudes (Thorson 1936; Thorson 1950; Thatje et al. 2003). 406 

The abundance of Antarctidromia in the CMF is interesting as the present day 407 

Antarctic decapod fauna is impoverished (Thatje and Arntz 2004; Griffiths et al. 2013). 408 

Lithodid crabs are found in modern Antarctic seas but brachyuran crabs and lobsters are very 409 

rare or even absent from high-Antarctic shelves (Thatje and Arntz 2004; Griffiths et al. 410 

2013). Decapods are also uncommon in the fossil record of Antarctica; the CMF is the second 411 

most abundant locality after Seymour Island, where a late Cretaceous to Eocene fauna is 412 

found (Feldmann and Wilson 1988; Feldmann et al. 2003; Griffiths et al. 2013). Currently, 413 

the exact timing of the extinctions of durophagous predators (such as brachyuran crabs and 414 

lobsters) in the Antarctic region is uncertain, but their decline and disappearance has been 415 

linked to cooling, which began at the end of the Eocene (Aronson and Blake 2001; Eastman 416 

2005; Aronson et al. 1997; 2007; 2009; 2011). However, the presence of decapod crustaceans 417 

in the early Miocene CMF, which is a glacially influenced unit, indicates that the degree of 418 
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temperature decline in the Eocene was not enough to completely eliminate decapods from 419 

Antarctic ecosystems.  420 

There may have been reversals in the trend towards a retrograde community structure 421 

in periods that were warmer than at the time of deposition of the La Meseta Formation in the 422 

Eocene (Aronson et al. 2007). This would have led to incursions of reptant decapods along 423 

the Scotia arc and via the porous Antarctic Circumpolar Current (Aronson et al. 2007). 424 

However, the evidence for glaciation during the deposition of the CMF (diamictites, glacial 425 

scouring and dropstones) indicates that it was deposited in cooler conditions the La Meseta 426 

Formation, which does not preserve any evidence for a glacial depositional environment. 427 

There is a later record of a Pliocene lobster from Marine Plain (East Antarctica) (Feldmann 428 

and Quilty 1997, Griffiths et al. 2013). It is possible that warmer sea temperatures at this time 429 

might have allowed an incursion of decapods (Aronson et al. 2007). However, Marine Plain 430 

is on the  geographically isolated coast of East Antarctica (Feldmann and Quilty 1997); most 431 

recent biogeographic analyses show the strongest affinities between the Antarctic region and 432 

Southern South America, along the Scotia arc (Aronson et al. 2007) with little or no 433 

biogeographic connections between East Antarctica and its neighbouring regions (Griffiths et 434 

al., 2009). Therefore, it is also possible that community structuring durophagous predators 435 

such as lobsters, and possibly some crabs, persisted in Antarctica until the Pliocene, but 436 

conditions for their preservation were not suitable. Another view on the restriction of 437 

brachyuran crabs and lobsters from Antarctic shelves was given by Gorny (1999), who 438 

suggested their absence was due to the elimination of the shallow-water fauna during 439 

glaciations of the southern hemisphere, after noting the South American brachyuran crab 440 

species were restricted to shallower depths, above 200m, on sandy or muddy environments 441 

(Gorny 1999). The few modern day shallow water habitats around Antarctica are 442 
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characterised by strong disturbance from ice, thus restricting shallow water groups (Arntz et 443 

al. 1994; Gorny 1999).  444 

The early Miocene CMF shows a greater similarity in community structure to the 445 

modern day Beagle Channel than to modern Antarctic communities. This similarity may be 446 

due to a similar environmental setting, in an area that experienced seasonal melting and 447 

outflow from glaciers causing terrigenous sediment input (Linse and Brandt 1998). The 448 

modern Antarctic lacks terrigenous sediment input (Gili et al. 2006), which may explain why 449 

the fauna of the early Miocene Antarctic Cape Melville faunal community structure does not 450 

resemble that of Antarctica today.  451 

 452 

Conclusion  453 

 454 

Although it is only one site, evidence from the CMF suggests that the shift to the modern 455 

community structure was not a rapid change coincident with cooling in the Eocene, and that 456 

the modern Antarctic benthic community structure had still not fully formed in the early 457 

Miocene. It is possible that the evolution of the modern community structure occurred more 458 

recently, due to factors such as further cooling and isolation of the continent leading to 459 

widespread glaciation, which resulted in a loss of shallow shelf habitats.  460 
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 745 

Fig. 1 a. Location map of the Melville Peninsula at King George Island, West Antarctica b. 746 

Geological map of Melville Peninsula showing the sites of recorded fossils; sites A-K are the 747 
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locations of fossils from in previous publications. P.2701 is the area of collection for BAS 748 

fossils with this prefix, P.2702 is a line of section along which BAS fossils were collected 749 

and P.2707 is the final BAS fossil locality. c. Fauna recorded from the Cape Melville 750 

Formation, at locations shown in b. Occurrences of all fossils described from Unit D of the 751 

CMF. Data from: Förster et al. (1985; 1987), Jesionek-Szymańska (1987), Karczewski 752 

(1987), Roniewicz and Morycowa (1987), Szaniawski and Wrona (1987), Feldmann and 753 

Crame 1998, Bitner and Crame (2002), Jonkers (2003), Hara and Crame (2004), Anelli et al. 754 

(2006), Whittle et al. (2011), Whittle et al. (2012), Beu and Taviani (2013). 755 

 756 
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 757 

 758 

Fig. 2 Reconstruction of the Cape Melville Formation fossil assemblage based on fossil data 759 

from this paper, all specimens were collected from approximately the uppermost 75 m of 760 

Unit D of Troedson and Riding (2002) and can be regarded as one time-averaged assemblage 761 

for the purposes of this study. 762 

 763 
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 764 

 765 

Fig. 3 Percentage similarity between the relative abundances of preservable higher level taxa 766 

between the fossil assemblage of the Cape Melville Formation and the Recent assemblages of 767 

the West Antarctic Peninsula and Southern South America. Percentage similarity was 768 

calculated using the Bray-Curtis coefficient. 769 

 770 

 771 
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 772 

 773 

 774 

Table 1. Invertebrate fossils collected from the Cape Melville Formation in the 1994/5 field 775 

season by the British Antarctic Survey. Fossils came from Unit D of Troedson and Riding 776 

(2002) and were collected at three different sites, P.2701, P.2702 and P.2707 (localities 777 

shown on Fig. 1b). Habitat abbreviations: SI = Shallow infaunal, I = Infaunal, E = Epifaunal, 778 

DI = Deep Infaunal. Feeding Strategy abbreviations: DF = Deposit feeder, SF = Suspension 779 

feeder, G = Grazer, P = Predatory, SC = Scavenger, O = Omnivorous. Life habits and feeding 780 

strategies from Morton 1959; Robertson 1963; Allmon 1998; Jacob et al. 2003; Kase and 781 

Ishikawa 2003; Gili et al. 2006, Crame 2013, and the Paleobiology Database 782 

(http://paleodb.org/). The worm tubes (Polychaeta) found in the CMF were rare (only 3 783 

specimens), but they appear to be infaunal, a deposit feeding/suspension feeding mode of life 784 

is hypothesised. Numbers in brackets indicate fossils that were not able to be counted as 785 

whole specimens, e.g. disarticulated appendages. These were not included in any of the total 786 

counts of specimens as it cannot be certain that they are from the separate specimens. 787 

 788 

Supplementary Table 1. Records of Recent Homolodromiidae occurrences, with minimum 789 

and maximum water depths.  790 

http://paleodb.org/�


Phylum Class Order Superfamily Family Genus Species H FS  2701 2702 2707 Total 
Mollusca Bivalvia Nuculoida Nuculoidea Nuculidae ? ? SI DF  6  6 

    Leionucula frigida SI DF 16 367 112 495 
    Leionucula melvilleana SI DF  41  41 
 Nuculanoida Nuculanoidea Indeterminate ? ? I DF 1 33 5 39 

   Sareptidae Yoldia peninsularis I DF  148  148 
   Malletiidae Neilo (Neilo) rongelii I DF 2 65 2 69 

 Arcoida Limopsoidea Limopsidae Limopsis ? E SF  4  4 
    Limopsis psimolis E SF  2 1 3 
    Limopsis infericola E SF  3 1 4 
 Pectinoida Pectinoidea Pectinidae Antarcticpecten alanbeui  E SF  1  1 

 Limoida Limoidea Limidae Limatula (Antarctolima) sp. E SF  1  1 

 Myoida Hiatelloidea Hiatellidae ?Panopea ? DI SF 1 13  14 

    Panopea sp. DI SF 1 15 1 17 

 Pholadomyoida Thracioidea Periplomatidae Periploma acuta I SF 1 7 1 9 
 Indeterminate ? ? ? ? ? ?  43 2 45 
 Gastropoda  Neogastropoda Muricoidea ?Volutidae ? ? E P/SC 1 8 1 10 

   Volutidae ? ? E P/SC 6 8 2 16 

  Buccinoidea Buccinidae, s.l. ?Prosipho ? E P/SC  8 1 9 

   Buccinidae, s.l. ?Penion ? E P/SC 1 5  6 

   ?Buccinidae, s.l. ?  ? E P/SC  1  1 

  Conoidea ? ? ? E P 1 27 2 30 
 Littorinimorpha  Naticoidea Naticidae ? ? SI P 7 56 5 68 
   ?Naticidae ? ? SI P  5  5 

 Caenogastropoda Cerithioidea Cerithiidae ? ? E DF/G 2 7 3 12 

   ?Cerithiidae ? ? E DF/G  2  2 

   Turritellidae ? ? E SF  22 1 23 



   ?Turritellidae ? ? E SF  1  1 

  Epitonioidea Epitoniidae ? ? E P 1   1 

 Indeterminate ? ? ? ? ? ? 7 123 3 133 
 Scaphopoda Dentaliida  Dentaliidae Dentalium ? I P  10  10 

Cnidaria Anthozoa Scleractinia  Flabellidae Flabellum rariseptatum E SF 21 177 12 210 
Arthropoda Malacostraca Decapoda Homolodromioidea Homolodromiidae Antarctidromia inflata E P 4(4) 87(47)  91 

   Nephropoidea Nephropidae Hoploparia gazdzickii E P 1 3  4 
Bryozoa Gymnolaemata Cheilostomatida Microporoidea Aspidostomatidae Aspidostoma melvillensis E SF 1 7  8 

Brachiopoda Rhynconellata Terebratulida Terebratelloidea Laqueidae Paraldingia ? E SF  2  2 
   Terebratuloidea Terebratulidae Liothyrella ? E SF  1  1 
     ?Liothyrella ? E SF  1  1 
 Indeterminate ?  ? ? ? E SF  3  3 

Echinodermata Echinoidea Cidaroida Cidaridea Ctenocidaridae  ?Notocidaris ? E O/SF/G  5  5 
Annelida Polychaeta ?  ? ? ? I? SF/DF?  3  3 

        TOTAL 75 1321 155 1551 
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Supplementary Table 1. Records of Recent Homolodromiidae Occurrences, with minimum 

and maximum water depths.  

 

Name Min depth (m) Max depth (m) Reference 
Dicranodromia felderi 35 35 GBIF 

 346 346 GBIF 
 320 340 GBIF 
 585 585 GBIF 
 585 585 GBIF 
 630 630 GBIF 
 640 640 GBIF 

Dicranodromia doederleini 85 270 Martin (1990) 
 120 220 GBIF 
 180 200 GBIF 
 200 200 GBIF 
 200 250 GBIF 
 200 250 GBIF 
 400 400 GBIF 

Dicranodromia spinosa 156 174 Martin (1994) 
 165 165 Martin (1994) 
 192 201 Martin (1994) 
 201 201 Martin (1994) 
 278 419 Martin (1994) 

Dicranodromia danielae 200 300 Ng and Naruse (2007) 
Dicranodromia nagaii 200 200 GBIF 

Dicranodromia simplicia 229 229 GBIF 
 320 320 GBIF 
 320 320 GBIF 



Dicranodromia ovata 260 260 GBIF 
 329 329 Martin (1990) 
 366 375 GBIF 
 549 549 GBIF 

Dicranodromia chenae 273 356 Ng and Naruse (2007) 
Dicranodromia nagaii 300 300 GBIF 
Dicranodromia baffini 300 300 GBIF 

 461 561 Martin (1990) 
 833 833 Martin (1990) 

Dicranodromia karubar 356 468 M. Tavares (1998) 
 356 356 GBIF 
 393 393 GBIF 
 393 393 GBIF 
 410 410 GBIF 
 434 434 M. Tavares (1998) 
 443 443 GBIF 
 451 451 GBIF 

Dicranodromia martini 437 439 Ng and Naruse (2007) 
 609 673 Ng and Naruse (2007) 
 750 750 GBIF 
 762 786 Ng and Naruse (2007) 
 929 929 GBIF 

Dicranodromia mahieuxii 454 1330 Martin (1990) 
Dicranodromia foersteri 495 495 GBIF 

 650 650 GBIF 
Dicranodromia crosnieri 650 650 GBIF 
Dicranodromia spinulata 675 675 GBIF 

Dicranodromia sp. 590 590 M. Tavares (1998) 
 650 650 M. Tavares (1998) 

Dicranodromia 495 495 GBIF 
Homolodromia kai 277 355 Ng and Naruse (2007) 

 641 641 GBIF 
 650 650 Ng and Naruse (2007) 
 680 680 GBIF 
 688 688 GBIF 
 688 688 GBIF 
 708 708 GBIF 
 709 278 Ng and Naruse (2007) 
 799 799 GBIF 

Homolodromia paradoxa 457 732 GBIF 
 543 783 GBIF 
 549 549 GBIF 
 624 631 GBIF 
 651 651 GBIF 
 658 695 GBIF 
 750 841 GBIF 
 805 841 GBIF 

Homolodromia robertsi 500 1000 Pedro Báez and Martin (1989) 
 800 800 GBIF 

Homolodromia monstrosa 549 604 GBIF 



 585 585 GBIF 
 631 631 GBIF 
 631 631 GBIF 
 640 640 GBIF 
 644 644 GBIF 
 658 695 GBIF 
 732 732 GBIF 

Homolodromia bouvieri 850 960 Martin (1992) 
 863 863 Martin (1992) 

Homolodromia 480 480 GBIF 
Homolodromia 860 860 GBIF 
Homolodromia 886 927 GBIF 
Homolodromia 890 955 GBIF 
Homolodromia 890 1012 GBIF 
Homolodromia 895 895 GBIF 
Homolodromia 900 970 GBIF 
Homolodromia 900 950 GBIF 
Homolodromia 990 1076 GBIF 
Homolodromia 1008 1080 GBIF 
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