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ABSTRACT
We perform an analysis of photometric redshifts estimated by using a non-representative
training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the
photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey
(DR12). We show that for the representative case, the results obtained by using both algorithms
have the same quality, using either magnitudes or colours as input. In order to reduce the errors
when estimating the redshifts with a non-representative training set, we perform the training
in colour space. We estimate the quality of our results by using a mock catalogue which is split
samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz
on single point z-phot estimates in the complete training set case, however the photometric
redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper
r-band cuts when estimating the full redshift distribution of the sample in the incomplete
training set case. By using a cumulative distribution function and a Monte Carlo process, we
manage to define a photometric estimator which fits well the spectroscopic distribution of
galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform
an analysis of the impact on the detection of clusters via density of galaxies in a field by using
the photometric redshifts obtained with a non-representative training set.
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1 IN T RO D U C T I O N

The cosmological redshift of a galaxy is arguably one of the most
important directly observable properties and provides a measure of
the recessional velocity of that galaxy, relative to an observer, which
arises due to the expansion of the Universe. In General Relativity,
knowledge of the redshift of an object allows one to connect the
spatial and time-dependent components of the space–time metric.
A cosmological model provides us with a prediction of how to
accurately translate between the redshift of an object and the phys-
ical distance to that object. As such, a precise measurement of this
relation allows us to place tight constraints on cosmological param-
eters (Riess et al. 1998; Perlmutter et al. 1999), and therefore on
our fundamental understanding of cosmology. This is a major goal
of future cosmological missions that aim to make high precision
measurements of various cosmological probes, including measure-
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ments of Baryon Acoustic Oscillations (BAO, Hu & Dodelson 2002;
Eisenstein et al. 2005; Percival et al. 2007; Blake et al. 2011; An-
derson et al. 2014), the weak lensing of galaxies (Bartelmann 2010;
Massey, Kitching & Richard 2010; Kilbinger et al. 2013), and the
number counts of galaxy clusters (Battye & Weller 2003; Mantz
et al. 2008; Rozo et al. 2010; Allen, Evrard & Mantz 2011; Mana
et al. 2013).

The redshift of a galaxy can be measured in two ways: either
spectroscopically or photometrically. Spectroscopic determination
of redshift involves measuring the Doppler shift of known features
in the spectrum of a galaxy, typically absorption or emission lines.
Photometric determination of redshift is based upon the assumption
that the colours of a population of galaxies of the same type and
redshift (i.e. with very similar spectra) will be clustered in a par-
ticular region of the colour space. One can therefore estimate the
photometric redshift of a galaxy by using multiband photometry to
compare the broad-band colours of that galaxy with the colours of
set of galaxies for which redshifts are already known (see Benitez
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2000; Collister & Lahav 2004; Ilbert et al. 2006; Almosallam et al.
2016b; Sadeh et al. 2016). Since the measurement of the spectrum
of a galaxy is much more costly, photometric redshifts provide a
cheaper and rapid alternative though are less accurate than spectro-
scopic redshift determination. Therefore, photometric redshifts are
a viable and efficient option to be used in cosmological surveys that
plan to observe several billion galaxies, including the Dark Energy
Survey,1 the Large Synoptic Survey Telescope,2 the Euclid,3 and
the Wide Field Infrared Survey Telescope (WFIRST).4 Note that
the Euclid and WFIRST missions will additionally measure spec-
troscopic redshifts for a sub-set of galaxies. The major challenge
that these surveys face is the problem that photometric redshifts
are much less precise than spectroscopic redshifts and will need
considerable calibration.

We can split the photometric techniques into two approaches: ma-
chine learning and template fitting. Machine learning involves using
machine learning methods (MLMs) to establish the relationship be-
tween the photometric observables (e.g. colours or magnitudes)
and the redshift of a galaxy. This is usually done by training these
methods on a data set of galaxies with known redshifts. Among
these methods we have the artificial neural networks (ANNs; Firth
et al. 2003; Vanzella et al. 2004), which include the codes ANNz
(Collister & Lahav 2004) and ANNz2 (Sadeh et al. 2016); nearest-
neighbour techniques (Ball et al. 2008); random forest techniques,
including TPZ (Carrasco Kind & Brunner 2013); and Gaussian
processes (GPs; Way et al. 2009; Bonfield et al. 2010; Almosallam
et al. 2016a) such as the GPz (Almosallam et al. 2016b) code. The
effectiveness of these methods depends on whether the training set
is a representative sample of the photometric data set. Moreover, the
MLMs are only reliable over the redshift range of the training data
set that is used. Therefore, in principle, those methods cannot be
employed to estimate high redshifts for which no spectroscopic data
are available. Template methods are based on fitting empirical or
synthetic galaxy spectra with the photometric information available
(i.e. colours or magnitudes). Specifically, they use the broad-band
photometry to estimate an approximate galaxy spectral energy dis-
tribution (SED), which they then fit against a library of SEDs with
known redshifts. Those methods require astrophysical effects, e.g.
the dust extinction in the observed galaxy or in our galaxy to be
corrected for. A non-exhaustive list of codes known for template
fitting methods consists of HYPERZ (Bolzonella et al. 2000), ZE-
BRA (Feldmann et al. 2006), EAZY (Brammer et al. 2008), and LE
PHARE (Arnouts et al. 1999; Ilbert et al. 2006). Both techniques
to estimate photometric redshifts have advantages and limitations
depending on the spectroscopic data available and the photometric
data set to being evaluated. Abdalla et al. (2008), Hildebrandt et al.
(2010), Abdalla et al. (2011), and Sánchez et al. (2014) have com-
pared different photometric redshift techniques and their efficiency
in ground and space data.

The lack of the large sets of spectroscopic data to train and vali-
date the photometric surveys of galaxies is a critical problem nowa-
days. Beck et al. (2017) performed a quantitative analysis of the
problem described above by using machine learning and template
fitting approaches in real data. They performed several tests in order
to assess the reliability of the used methods to estimate photomet-
ric redshift in the cases with representative and unrepresentative

1http://www.darkenergysurvey.org
2http://www.lsst.org
3http://sci.esa.int/euclid/
4https://wfirst.gsfc.nasa.gov

spectroscopic data set used for training the validation/testing set
as well as the effects because of the photometric error. Cavuoti
et al. (2017) tackled the accuracy problem for estimated photomet-
ric redshifts by using SED fitting and MLMs on The Kilo Degree
Survey (KiDS) photometric galaxy data (de Jong et al. 2015). They
showed that in the representative regions of the input parameters
for the training set, the empirical method provides better results.
None the less, the theoretical method provides information about
the galaxy spectral type. Concluding in this way that the hybrid
technique combining template fitting and MLM might improve the
z-phot prediction accuracy. Unlike that of Beck et al. (2017) and
Cavuoti et al. (2017), our main aim is to set the fainter flux limit
for galaxies in which we achieve to estimate reliable photometric
redshifts on a realistic mock catalogue of the Sloan Digital Sky
Survey Data Release 12 (SDSS DR12) survey (Alam et al. 2015),
when the training data set is non-representative of the testing data
set in the magnitude space. In particular, we examine the degrada-
tion in the redshifts obtained when the testing data set extends to
limiting magnitudes significantly fainter than the training data set.
We first examine the degradation, using a mock catalogue, before
performing a comparable analysis using real data. Here we use the
ANNz2 and GPz algorithms, which belong to a group of machine
learning techniques. We also compare the single value estimators
obtained from the calculated PDF photometric redshift, the classical
mean value, and another based on a Monte Carlo sampling from
the cumulative function. We show that the latter one is the best to
represent the estimated redshift distribution in agreement with the
true redshift on the mock catalogue. On the other hand, we perform
an analysis on the impact in the detection of galaxy clusters via den-
sity methods, such as Voronoi Tessellation (VT) or kernel density
(Gal et al. 2000; Lopes et al. 2004; Soares-Santos et al. 2011), by
using photometric redshifts estimated by these non-representatives
training sets.

We organize the paper as follows. In Section 2, we present the
mock catalogue and the observational data sets (including the train-
ing set) which are used in this analysis. In Section 3, we describe
the ANNz2 and GPz algorithms used in this work and introduce
the metrics used to assess the quality of the derived photometric
redshifts. Both of these algorithms output for each galaxy a single
redshift estimate as well as a redshift probability distribution func-
tion (PDF). As such we also introduce two estimators to additionally
compute the photometric redshifts using the full PDF information.
In Section 4, we compare, for both the mock catalogue and observed
data sets, the quality of the derived photometric redshifts obtained
using the ANNz2 and GPz algorithms and examine the impact of
building our training set using either magnitude-space or colour-
space selection criteria. We then apply sequentially deeper r-band
magnitude cuts to the mock catalogue in order to analyse the degra-
dation in the quality and completeness of the derived photometric
redshifts when the testing set extends to r-band magnitudes signif-
icantly deeper than the training set. In Section 5, we discuss the
impactions that this has on the detection of galaxy clusters. Finally,
in Section 6 we summarize our conclusions.

2 DATA

In order to assess the robustness of our results, we use consider
first a simulated data set, before analysing a real, observed data
set. Simulated galaxies are taken from a lightcone mock catalogue
constructed from a galaxy formation model. The advantage of first
using a mock data set is that we can measure the precision and
accuracy of the estimated photometric redshifts for a population of
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galaxies for which the true redshifts are already known. We then
apply our methods to observed galaxy data sets extracted from the
SDSS DR12. In this instance, a training data set with known spec-
troscopic redshifts is taken from the Galaxy And Mass Assembly
(GAMA) survey. For consistency, we construct the photometric
SDSS testing set by applying the GAMA selection criteria to the
SDSS DR12 galaxies. Here we describe the mock and real data sets
in more detail.

2.1 Mock galaxy catalogue

The mock catalogue5 used in this work was constructed using the
lightcone construction method presented in Merson et al. (2013). In
brief, this method involves populating the dark matter halo merger
trees extracted from a cosmological N-body simulation with galax-
ies generated from a semi-analytical galaxy formation model. In this
case, the merger trees were taken from the Millennium Simulation
(Springel et al. 2005) and populated using the Lagos et al. (2012)
version of the GALFORM model, which was originally developed by
Cole et al. (2000). A lightcone catalogue is then constructed by
interpolating the galaxy positions between the simulation redshift
snapshots to determine when each galaxy crosses the past lightcone
of the observer. For further details, we refer the reader to Merson
et al. (2013). The cosmology used in the Millennium Simulation is
a � cold dark matter model (�m, ��, �b, h = 0.25, 0.75, 0.045,
0.73), with parameters consistent with the first-year results from the
Wilkinson Microwave Anisotropy Probe (Spergel et al. 2003).

The lightcone catalogue spans the redshift range z = 0.0 to z = 3.0
and has a sky footprint of approximately 500 deg2, centred on po-
sition (RA, DEC) � (303.29 deg, −14.48 deg). An SDSS r-band
selection (r ≤ 24) was applied to the lightcone, yielding a total
of 15 823 757 galaxies. The (u, g, r, i, z) magnitudes of galax-
ies reported in the lightcone are AB apparent magnitudes. For each
photometric band, X, the magnitudes are perturbed to introduce pho-
tometric noise by randomly sampling from a Gaussian with a mean,
mX, equal the AB apparent magnitude of the galaxy in that band,
and with a standard deviation, σ X(mX), which is defined following
the approach described in Jouvel et al. (2009) as

σX =
{

100.4(γo+1)(mX−m�
X), if mX < m�

X,
σ�

2.72 exp
(

10γs(mX−m�
X)
)

, otherwise,
(1)

where m�
X is a characteristic magnitude, σ � is a normalization coef-

ficient, and γ o and γ s are power-law slopes. The values adopted for
these parameters are shown in Table 1. The power law used in the
case mX < m�

X corresponds to brighter fluxes, dominated by object
noise, while the exponential law in the case mX � m�

X corresponds
to fainter fluxes dominated by sky background noise. For further
details, see Jouvel et al. (2009). In order to obtain a sample similar
to our GAMA/SDSS data set, we apply a further i-band magnitude
cut i < 21, which leaves a total of 1 876 505 galaxies, with a mean
redshift of zmean ∼ 0.35.

2.2 GAMA survey

The GAMA survey6 consists of optical spectroscopy data for the
low-redshift galaxy population. The survey was designed to inves-
tigate galaxy formation and evolution processes, occurring within

5We use the SDSS 500 photoz catalogue available from http://astro.dur.ac
.uk/∼d40qra/lightcones/SDSS/
6http://www.gama-survey.org/

Table 1. Values for the characteristic magnitude (m�
X), the normalization

coefficient (σ�), the bright magnitude slope (γ o), and faint magnitude slope
(γ s) used to compute photometric noise in each photometric band (X) in the
SDSS mock data. See the text in Section 2.1 for details. The magnitude limit
for the u band is from Zou et al. (2015) and the magnitude limits for the g
band, r band, i band, and z band are from Raichoor et al. (2016).

X m�
X σ� γ o γ s

u 22.03 0.2 −0.1 0.25
g 23.10 0.2 −0.1 0.25
r 22.70 0.2 −0.1 0.25
i 22.20 0.2 −0.1 0.25
z 20.70 0.2 −0.1 0.25

the galaxy distribution on scales of 1 kpc to 1 Mpc (Driver et al.
2009; Baldry et al. 2010). Observations were performed with the
AAOmega spectrograph on the Anglo-Australian Telescope, cover-
ing a sky area of ∼286 deg2 split into five survey regions on the sky,
with a total of 238 000 objects. The regions observed were split into
three equatorial regions (G09, G12, and G15) and two southern sky
regions (G02 and G23) (Driver et al. 2011; Liske et al. 2015).

The survey consisted of two phases, each with slightly different
target selection criteria. GAMA I refers to data collected during the
first 3 yr, while GAMA II refers to the full survey, including all of
GAMA I. The first phase extended over the three equatorial regions
down to (extinction-corrected) Petrosian magnitude of rpetro < 19.4
in G09 and G15, and rpetro < 19.8 in G12. Magnitude cuts and
target selection were based on photometry from SDSS and addi-
tional infrared bands from the UKIRT (United Kingdom InfraRed
Telescope) Infrared Deep Sky Survey (UKIDSS), which were intro-
duced to help improve star–galaxy separation. In the second phase,
the three existing equatorial survey regions were enlarged and the
two southern regions, G02 and G23, were added. The r-band Pet-
rosian magnitude limit was pushed to rpetro < 19.8 in all survey
regions.

Here we use the public Data Release 2 (DR2), which includes
the galaxies from GAMA I of survey region G15 (rpetro < 19.4) and
a subset of G09 and G12 survey regions (rpetro < 19.0) with a total
area of ∼144 deg2 for a total of 70 726 targets with secure redshifts
download from the GAMA data base. For more details, see Baldry
et al. (2010) and Liske et al. (2015). To match to the selection criteria
of our photometric sample, we then use the SDSS DR12 CasJobs
server7 to cross-match the GAMA data to a clean (i.e. CLEAN=1)
sub-sample of SDSS DR12 galaxies with additional ’GAMA-like’
cuts. Our final spectroscopic sample contains 63 226 objects with
rpetro < 19.4.

2.3 SDSS DR12 sample

Our photometric data set is obtained from a parent sample down-
loaded from the SDSS DR12 data base (Alam et al. 2015). Since we
consider the GAMA survey as the spectroscopic training sample,
the choice of photometric data is performed by using the GAMA
target selection cuts in the SDSS DR12, according to Christodoulou
et al. (2012). Here we consider two cases for our analysis.

In the first case we use the magnitude and colour cuts such that
the training set is a fully representative in the magnitude space. We
shall refer to this sample as GAMA MAIN. In the second case we
relax the magnitude limit but keep the sample fully representative

7https://skyserver.sdss.org/CasJobs/
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Table 2. The used values for the parameters of the ANNz2 (left) and GPz (right) codes.

Code Parameter Definition Value Code Parameter Definition Value

ANNz2 nMLMs Number of
MLMs

100 GPz method GP method VC

minValZ Min. value for
redshift

0.0 m Number of BFM 25

maxValZ Max. value for
redshift

1.0
heteroscedastic

Heteroscedastic
noise

True

nErrKNN Near-neighbours
for error

90 csl method Cost-sensitive Normal

rndOptTypes MLM types ANN BDT maxIter Max. of iterations 500
nPDFbins Number of PDF

bins
200 maxAttempts Max. iterations to

attempt
50

in colour space. For this sample, the training is performed with
four colours instead of 5 magnitudes. We shall refer to this second
sample as GAMA DEEP.

The rationale for the choice of four colours is as follows: training
with ugriz magnitudes occurs in a 5-dimensional data space. This
would be equivalent to a 5-dimensional training with four colours
and 1 magnitude – it is, in fact, a linear transformation from the
space of 5 magnitudes. By restricting ourselves to an arbitrary set
of four colours, we are excluding the dimension where our sample
is not representative, with the expectation that redshifts are mostly
correlated with colours. This assumption is not completely accurate
and will depend on how far we push the magnitude limit fainter
than the spectroscopic sample. In short, this new training criterion
is chosen so as to ignore the non-representativeness of the train-
ing in magnitude space. In Appendix A we show the SQL query
used to obtain GAMA MAIN and GAMA DEEP samples from the
SDSS DR12 data base. Indeed, a recent paper by Moraes et al. (in
preparation) shows an additional description of these samples.

3 ESTIMATING PHOTO METRIC REDSHIFTS

In order to estimate the photometric redshifts for galaxies in the
GAMA and SDSS surveys and the mock catalogues, we use the
ANNz2 (Sadeh et al. 2016) and GPz (Almosallam et al. 2016b)
public photometric redshift algorithms. These codes apply a set of
MLMs, using a set of training redshifts to estimate the value of
redshift for galaxies without spectroscopic information from their
photometry. We briefly describe the ANNz2 and GPz codes.

3.1 ANNz2

ANNz28 (Sadeh et al. 2016) is a updated version of the original
ANNz package developed by Collister & Lahav (2004), which used
ANNs to estimate the photometric redshifts of galaxies. Given a
training set of galaxies, ANNz2 combines different machine learn-
ing techniques (i.e. ANNs, boosted decision/regression trees, among
others) to compute a photometric redshift PDF for each galaxy in
the testing set. The MLMs employed are implemented in the TMVA

package (Hoecker et al. 2007).
Like all MLMs, the ANNz2 code requires training and valida-

tion samples from a spectroscopic redshift survey. During each
step of the training, the validation sample is used to estimate the
convergence of the solution. Once the mapping is established, an
independent testing set (i.e. an independent subsample from the

8https://github.com/IftachSadeh/ANNZ

spectroscopic redshift survey with photometric information) is used
to evaluate the performance of the trained MLM. The methods im-
plemented in this code allow us to optimize the photometric red-
shift reconstruction, and to estimate their associated uncertainties,
which helps mitigate possible problems of non-representativeness.
To correct for inaccuracies due to unrepresentative training sets, the
ANNz2 algorithm can use training weights. This method aims to
match the distribution of the inputs from the training sample with
the testing data following the approach presented in Lima et al.
(2008). If the training data set is incomplete (i.e. there are some
regions of the input phase-space where the evaluated sample has
no corresponding objects for training), this code provides a quality
flag, which indicates when unrepresented data are being evaluated.

In order to estimate the photometric redshift PDFs for galax-
ies, the ANNz2 algorithm follows an approach called randomized
regression, which ranks the different solutions according to their
performance based upon the values of various metrics (i.e. bias,
scatter, level of outliers). The entire set of solutions is used to con-
struct the photometric redshift PDF. Initially, each solution is folded
with a distribution of uncertainty values computed via the K-nearest
neighbours (KNN) method (see Oyaizu et al. 2008). The values that
we specified for the input parameters to ANNz2 are provided in
Table 2.

3.2 GPz

GPz9 (Almosallam et al. 2016b) is a machine learning approach
which uses sparse GPs to estimate a photometric redshift and its
variance. The GPs are probabilistic models for regression. The as-
sumption underlying the GP approach is that there exists a function,
f, to map a set of target inputs X (i.e. the galaxy photometry) on
to a set of target outputs Y (i.e. the galaxy redshifts), such that
Y = f (X) + ε, where ε is an additive noise that is assumed to be
Gaussian. GPs are probabilistic models for regression with which
we can construct a probability distribution for the possible forms
of the function f. The computational cost for training these meth-
ods can be very high, towards impractical in certain instances. The
problem is that the training depends on the cost required to invert an
n × n covariance matrix for a training sample with n components.
Different authors have proposed several techniques in order to re-
duce this problem. For example, Zhang et al. (2005) showed that in
some cases the covariance matrix could have a Toeplitz structure,
which would relieve the cost in the inversion. Tsiligkaridis & Hero
(2013) simplify the computation of the inversion by decomposing

9https://github.com/OxfordML/GPz/blob/master/python/demo photoz.py
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the covariance matrix into a sum of Kronecker products. However,
such techniques cannot always be applied.

Another approach to relieve the computational cost is to reduce
the size of the covariance matrix by using sparse approximations,
such that the covariance matrix is obtained using a set of m � n
samples (see Candela & Rasmussen 2005). In GPz these sparse
GPs are described using basis function models (BFMs), with the
function f assumed to be a linear combination of these m � n basis
functions. In this method the variance is taken as an input-dependent
function that is composed of two terms for different sources of
uncertainty: the intrinsic uncertainty about the mean function due
to data density and the uncertainty due to the intrinsic noise or the
lack of precision in the training set. Specifying the variance in this
way is very useful to help identify regions of the input space where
additional data are required, or where further precision is required,
or both. With such information it is possible to develop strategies
to increase the photometric accuracy, either by obtaining data in
additional photometric bands or by improving the quality of input
data in one particular photometric band or colour.

The GPz code can operate in different modes depending on the
treatment of the covariance matrix for each basis function. These
modes include the following:

(i) GPVC: The covariance matrix is different for each basis func-
tion (i.e. a GP with variable covariance).

(ii) GPGC: The covariance matrix is the same for all basis func-
tions (i.e. a GP with global covariance).

(iii) GPVD: The covariance matrix is diagonal and different for
each basis function (i.e. a GP with variable diagonal covariance).

(iv) GPGD: The covariance matrix is diagonal and the same for
all basis functions (i.e. a GP with global diagonal covariance).

(v) GPVL: The covariance matrix is given by �j = Iγ j, where γ j

is a scalar that is different for each basis function (i.e. a GP with
variable length-scales).

(vi) GPGL: The covariance matrix is given by �j = Iγ j, where
γ j is a scalar that is the same for all basis functions (i.e. a GP with
global length-scale).

In Table 2 we show the parameter values used as input for the
GPz code.

3.3 Metrics

In order to assess the quality of photometric redshifts estimated
in this work, we define the following set of commonly employed
metrics to describe the bias and the scatter of the photometric red-
shifts relative to the spectroscopic redshifts, as well as the fraction
of catastrophic outliers.

The bias measures the deviation of the estimated photometric
redshift from the true value (i.e. the spectroscopic redshift).

Bias =
〈

zphot − zspec

1 + zspec

〉
. (2)

The scatter between the true redshift and the photometric redshift
is denoted as σ and given by

σ =
〈(

zphot − zspec

1 + zspec

)2
〉1/2

. (3)

We define σ 68 as

σ68 = max
i∈U

{∣∣∣∣∣z
i
phot − zi

spec

1 + zi
spec

∣∣∣∣∣
}

, (4)

where U is the set of the 68 per cent of galaxies which have the
smallest value of |zphot − zspec|/(1 + zspec). The catastrophic outlier
rate, which we call FRe, is given by

FRe = 100

n

{
i :

∣∣∣∣∣z
i
phot − zi

spec

1 + zi
spec

∣∣∣∣∣ < e

}
, (5)

where n is the number of galaxies and e is the outlier threshold. This
quantity is equal to the percentage of galaxies in the sample that are
considered to have a good photometric redshift within a tolerance
set using a chosen outlier threshold value. We choose e = 0.15.

In order to compare the estimated photometric redshift distribu-
tion with the spectroscopic redshift distribution, we also define the
chi-square measure Dχ2 as

Dχ2 (P , Q) = 1

2

n∑
i=1

[p(i) − q(i)]2

p(i) + q(i)
, (6)

where P(pi) and Q(qi) are distribution functions and pi and qi are
the variables in the different distributions. Note that if the two
distributions are different, we obtain a high value for the chi-square
measure. Therefore, this metric allows us to quantify how similar
is the distribution of the estimated photometric redshifts to that of
the spectroscopic redshifts.

3.4 Further photometric redshift estimators

The ANNz2 and the GPz codes provide for each galaxy both an
individual redshift estimate and a full PDF. We describe here two
estimators to extract a single redshift estimate based upon the full
PDF information.

By integrating over the full PDF information, we can estimate
the mean photometric redshift, zphot, defined as

zphot =
∫

z PDF(z) dz. (7)

The corresponding uncertainty is assumed to be Gaussian and can
be computed in a similar manner as the square root of the variance.
When we apply this estimator to the PDFs from ANNz2, we shall
denote these mean redshifts estimates by AvgPDF-ANNz2. Note
that the individual redshifts estimated directly from the GPz code
already assume a Gaussian uncertainty, and so are already equivalent
to equation (7). As such we do not need to apply this estimate to the
PDFs from GPz.

Secondly, we derive an estimate for the photometric redshift
for each galaxy by summing the PDF to construct the cumulative
distribution function (CDF), which we can randomly sample in a
Monte Carlo process. This process consists in estimating the zphot

by using the image of a random number between [0, 1) for the
inverse of the CDF in each galaxy. With this method we ensure that
the redshift estimates are representative of the full underlying PDF
information. We expect that the distribution function of the single
number redshift obtained through this method is equivalent to the
stacked PDF of all galaxies in the data set. Moreover, we await to
reduce the systematic errors compared with any other photometric
redshift estimator, according to Wittman (2009).

In summary, we have defined the following two pairs of pho-
tometric redshift estimators for this work: AvgPDF-ANNz2 and
GPz (both assuming a Gaussian uncertainty); and CDF-ANNz2
and CDF-GPz (both estimated using the Monte Carlo method).
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Table 3. Number of galaxies and the threshold r band for every used sub-
sample in the training of the real data and the mock data. We use the same
r-band magnitude range for both data sets. See Section 4.1 for details.

Sample Training Validation Testing r-band range

GAMA 20 864 20 865 21 497 r < 19.4
Mock 20 220 20 222 200 288 r < 19.4

4 R ESULTS

Initially in Section 4.1 we compare the quality of the photometric
redshifts obtained from our mock data and those from our real SDSS
data. We then compare the quality of the photometric redshifts ob-
tained when our real data are trained using a magnitude-selected
training set and when the data are trained using a colour-selected
training set. Magnitude-selected training and colour-selected train-
ing are additionally applied to the mock catalogue. Subsequently,
in Section 4.2, we select sequentially deeper r-band selected sam-
ples from the mock catalogue to analyse the degradation of the
photometric redshifts recovered from each estimator when using a
non-representative magnitude-selected training set.

4.1 Comparison of real data and mock catalogue with a
complete training set

In this section, we apply both ANNz2 and GPz codes to real data
and mock catalogues with two different training choices, using the
5 SDSS magnitude bands in one case and four colours in the other.
Our aim is twofold: first, we want to confirm that our analysis with
mock data is qualitatively consistent with the results we obtain in
real data. Additionally, we wish to compare colour and magnitude
types of training and assess their relative performance.

When considering our real data, the GAMA MAIN data will
be the testing set when training with a magnitude-selected train-
ing set and the GAMA DEEP data will be the testing set when
training with a colour-selected training set. Details of the construc-
tion of the GAMA MAIN and GAMA DEEP samples, which we
shall refer to collectively as the GAMA test data, are given in Sec-
tion 2.3. For the photometric analysis in the GAMA test data, we
take dered modelMag (i.e. SDSS model magnitudes corrected
for extinction) as the galaxy magnitudes and modelMagErr (Er-
ror in modelMag) as the magnitude errors. Since the magnitude
limit in the spectroscopic GAMA data set is rpetro < 19.4, we ap-
ply a similar r-band cut to the mock catalogue, obtaining a mock
training sample of 240 730 galaxies. The GPz code provides us a
function that allows us to split the spectroscopic GAMA sample
and the mock catalogue in three subsamples: a training data set, a
validation data set, and a test data set; the last subsample is used to
test the training in each case. Table 3 shows the number of galaxies
in each subsample for both the real data and the mock data.

The photometric analysis of the GAMA sample and mock cata-
logue sample is performed using the magnitudes (u, g, r, i, z) and
colours (u–g, g–r, r–i, i–z). For each colour C(m1, m2) = m2 − m1

the error on the colour are obtained via standard error propagation:

δC(δm1, δm2) =
√

δm2
1 + δm2

2, (8)

where δm1 and δm2 are the errors on the magnitudes m1 and m2.
In the upper grids of panels in Figs 1 and 2 we compare for each

photometric redshift estimator the recovered photometric redshifts
to the spectroscopic redshifts of the galaxies. We show the results
for both a magnitude-selected training and a colour-selected train-

ing of the mock catalogue and GAMA test data. We compare the
corresponding redshift distribution functions. In the lower grid of
panels we compare the metrics for each estimator. We see very little
difference between training with a colour-selected training set and a
magnitude-selected training set. For both the real data and the mock
catalogue, we note that the CDF cases show slightly more scatter
compared to the AvgPDF-ANNz2 and GPz cases. However, when
we examine the metrics we see that for both the mock catalogue
and the GAMA data sets, over the redshift range 0.1 � z � 0.4
each photometric redshift estimator yields a bias and a fraction of
catastrophic outliers that is in excellent agreement with the other
estimators, further there is a good agreement between the mock and
the data.

For the GAMA data sets, we see that compared to the two Gaus-
sian estimators the CDF cases are typically able to estimate photo-
metric redshifts out to higher redshifts beyond zphot ∼ 0.4, though
these photometric redshifts have a larger scatter, a larger bias, and
a greater number of outliers (as indicated by a decreasing value
for FRe = 0.15). In the mock catalogue we observe the similar effect
in the CDF-ANNz2 estimator compared with the AvgPDF-ANNz2
estimator. Moreover, the estimators based on Gaussian GPz are also
able to recover photometric redshifts out beyond zphot ∼ 0.4. The
quantity FRe = 0.15 shows different trends in the data of the mocks,
and it deviates from 1 at z ∼ 0.5 in the mock and at zphot ∼ 0.4
on the data. We also note that for the mocks, the FRe = 0.15 val-
ues for CDF-GPz and GPz estimators remain close to unity out to
zphot ∼ 0.65. Overall, however the agreement is excellent between
the mock catalogue and real data.

We also note some sample variance features in both the mock
and data (e.g. for real data, the estimators based on ANNz2 code
recover the peak in the data stack at z ∼ 0.3, unlike the GPz and CDF-
GPz estimators). These features disappear with some estimations.
The plots of the distribution functions show that those distributions
based in the single value which are obtained through the Monte
Carlo method fits better with the stacking of galaxy PDFs than the
AvgPDF-ANNz2 and GPz estimators. In fact, the previous assertion
is more noticeable in the photometric redshifts estimated by the
ANNz2 code than in the photometric redshifts estimated by the
GPz code. According to the chi-square measure presented in Fig. 3,
for the GAMA case, the CDF-ANNz2 distribution fits better the
spectroscopic redshift distribution than the distributions obtained
through the other estimators. In the case of the mock, the CDF-
ANNz2, GPz, and CDF-GPz estimators have similar chi-square
measures and their distributions fit better the spectroscopic redshift
distribution than the AvgPDF distribution.

In Fig. 3 we show for each photometric redshift estimator the
global metric values (i.e. we compute the metric over all redshift)
for both the GAMA test data and the mock catalogue. The global
values are shown for both the magnitude-selected training and the
colour-selected training. In order to identify the cases and photo-
metric redshift estimator used here, we employ the following no-
tation AvgPDF-ANNz2 (A1), CDF-ANNz2 (A2), GPz (G1), and
CDF-GPz (G2). The final letter indicates whether we compute the
photometric redshift via magnitude-selected training (m) or colour-
selected training (c). Furthermore, the bottom panel shows the chi-
square measure, given by equation (6), in each instance. We observe
that the results obtained by using the magnitude-selected and colour-
selected for the mock catalogue and the GAMA test data are similar.
The scatter and the fraction FRe = 0.15 for the photometric redshifts
in the mock catalogue are overall better than the equivalent metrics
for the GAMA test data. It is clear that the mock catalogue is unable
to properly model an ∼0.5 per cent catastrophic failure rate and have
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4336 J. D. Rivera et al.

Figure 1. Statistical analysis of the photometric redshift computed for the real data set by using magnitudes and colours. Top: The two first columns are the
scatter plots zspec against zphot for each photometric redshift estimator. The last column shows the zspec/zphot distributions. Bottom: Metrics as a function of
photometric redshift for each estimator (left: magnitudes, right: colours).
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Degradation of photometric redshifts with non-representative training sets 4337

Figure 2. Statistical analysis of the photometric redshift computed for the mock catalogue by using magnitudes and colours. Top: The two first columns are
the scatter plots zspec against zphot for each photometric redshift estimator. The last column shows the zspec/zphot distributions. Bottom: Metrics as a function of
photometric redshift for each estimator (left: magnitudes, right: colours).
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Figure 3. Comparison of global metrics for GAMA test data and the mock catalogue for each photometric redshift estimator by using magnitudes and colours.
Here we use the following notation A1: AvgPDF-ANNz2, A2: CDF-ANNz2, G1: GPz, G2: CDF-GPz. The last letter indicates whether we compute the z-phot
via the magnitudes (m) or colours (c). The bottom plot is the chi-square measure (Dχ2 ) which compares the distribution function for every estimator with the
spectroscopic distribution function.

errors that are slightly too optimistic, though the mock catalogue
has managed to simulate the overall qualities of the real data. We
would expect larger photometric errors in the real data due to ad-
ditional sources of error not included in the mock catalogues, such
as the sky background on a given night or the effects of proximity
to bright objects in the sky. This similarity gives us confidence that
these mock catalogues are suitable for examining the degradation
in the next section. The results obtained from the mock catalogue
show the same qualitative trends as the results for the GAMA test
data, and we therefore claim that using the mock catalogue for the
performance degradation analysis of the next section is suitable to
show any degradation trends that would also be observed in real
data.

4.2 Performance degradation

Having established the qualitative equivalence between the ob-
served data and the mock catalogues, we will use the latter to
evaluate the performance of the AvgPDF-ANNz2, CDF-ANNz2,
GPz, and CDF-GPz estimators when the training set is not repre-
sentative in magnitude space. The idea is that we can safely ex-
trapolate a certain amount in the r-band magnitude, given that we
have a representative set in colour space. We construct several test-
ing sets from the mock catalogue, by varying the r-band limiting
magnitude in the range [19.4, 20.8] in steps of 0.2 magnitudes, i.e.
with dmr = 0.2. Table 4 shows the number of objects for each
sample used in this analysis. For each testing set we use same the
training and validation sets that were used to estimate the photo-
metric redshifts for the previous mock catalogue analysis. These
training and validation sets are selected from the mock catalogue
with a magnitude cut of r < 19.4. Since the training set is not rep-
resentative in the magnitude space of the deeper testing sets, we

Table 4. Number of objects for each cut in the r-band magnitude.

Cut of r band Number of objects

r < 19.4 200 288
r < 19.6 258 472
r < 19.8 330 181
r < 20.0 416 572
r < 20.2 521 375
r < 20.4 647 349
r < 20.6 798 152
r < 20.8 978 533

work by using the colour-selected training (i.e. the colour space as
input) to estimate the photometric redshifts. Our goal is to demon-
strate that we can obtain reliable redshift distributions for fainter
objects if we ensure representativeness in colour space. This can
help to mitigate the impact of the non-representativeness problem
in the training set of current large-scale structure surveys, where
the available spectroscopic data sets are usually shallower than the
overlapping photometric surveys.

We estimate the photometric redshifts by applying the same four
estimators, as were used in the previous analysis, to the different
r-band selected samples. In Fig. 4 we plot, for each sample, the
recovered photometric redshifts against the corresponding spectro-
scopic redshifts. We note that the scatter in the photometric redshift
recovery increases with increasing magnitude depth for all methods.
Moreover, for fainter flux limits the scatter appears to increase with
spectroscopic redshift. This is expected as fainter galaxies will have
larger photometric errors and hence higher scatter in the photomet-
ric redshift space. On the other hand, we can see that the AvgPDF-
ANNz2 estimator is unable to recover photometric redshifts above
zphot � 0.5, an effect that worsens for fainter magnitude cuts. This
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Degradation of photometric redshifts with non-representative training sets 4339

Figure 4. Scatter plots of z-spec against z-phot for r-band cuts in the range (19.4–20.8) by using the mock catalogue. Here the colours are used as input for the
photometric methods. The training set and validation are obtained for r < 19.4. In the horizontal axis, we indicate the photometric redshift estimator used and
in the vertical axis we indicate the r-band cut performed on mock catalogue. Note that the scatter in the photometric redshift recovery increases with increasing
magnitude depth for all methods. Moreover, for fainter flux limits the scatter increases with spectroscopic redshift.
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is also expected due to the nature of the PDF fitting in ANNz2 and
the lack of training galaxies in the sample (i.e. the limited number
of galaxies with zspec > 0.6). Compared to the other three estima-
tors, the AvgPDF-ANNz2 estimator has a higher precision but low
accuracy as we tend towards fainter magnitudes. Note that the GPz
and CDF-GPz estimators also struggle to recover many redshifts
beyond zphot ∼ 0.6. Indeed for every estimator the one-to-one corre-
spondence between spectroscopic and photometric redshift breaks
down for redshifts above zphot ∼ 0.6. For z � 0.6 there is significant
scatter and bias in the recovered redshifts, particularly in the sam-
ples with fainter magnitude selection. In Fig. 5 we show the redshift
distribution functions, as a function of limiting magnitude, for each
of the photometric redshift estimators that we consider. We note
that for every magnitude limit the CDF-ANNz2 estimator provides
a better fit to the spectroscopic redshift distribution than the other
photometric redshift estimators. The distributions from the two GPz
estimators show good fit with the spectroscopic redshift distribution
for all r-band cuts brighter than r < 20.0. For fainter magnitude cuts,
the distributions of the estimated photometric redshifts have a peak
in zphot ≈ 0.25, which is not present in the spectroscopic redshift dis-
tribution. This peak comes hand in hand with a mismatch at higher
redshift. The effect is more prominent for the two GPz-based pho-
tometric redshift estimators. This peak excess is caused by galaxies
that are identified with deeper magnitude selection and have a large
spectroscopic redshift, but are estimated to have a smaller photomet-
ric redshift. These galaxies can be seen in the lower panels of Fig. 4
as a long tail extending to high spectroscopic redshift. We conclude
that the photometric redshift distributions are very similar for mag-
nitude limits brighter than r < 20.0. Then, by using colour-selected
training set, we manage to recover the true redshift distribution and
estimate reliable photometric redshifts for ∼ 42 per cent of galax-
ies with respect to the deeper r-band cut whereas that testing set
in which the magnitude-selected training set is representative only
constitutes ∼ 20 per cent. In Appendix B we present the metrics as
a function of each photometric redshift estimator for all r-band cuts.
These values allow the reader to have a better understanding of the
discussion presented in this section.

In cosmological measurements with photometric large-scale
structure surveys, much of the information is obtained by split-
ting the galaxy sample in several photometric redshift bins in order
to measure auto- and cross-correlations between the sub-samples
in the different bins. We are therefore interested in assessing the
accuracy of the recovery of the redshift distribution in differential
redshift bins. In Fig. 6 we compare the stacking of the photometric
redshift PDFs estimated through ANNz2 and GPz codes with the
spectroscopic distribution for slices of photometric redshift in all
r-band magnitude cuts. We consider six photometric redshift bins
of width dzphot = 0.1 between 0.0 ≤ zphot ≤ 0.6. The selection
of galaxies in each redshift slice is performed with the AvgPDF-
ANNz2 estimator for the ANNz2 case and with the GPz estimator
for the GPz case. Since the specific choice of galaxies in the slices
is different for each photometric redshift estimator, we compute
the spectroscopic redshift distribution associated with each algo-
rithm. We observe that the stacking of photometric redshift PDFs
computed with the ANNz2 algorithm fits better the spectroscopic
distribution than the GPz case. In the redshift bins within the range
0.1 ≤ zphot ≤ 0.4, there is good agreement between the stacking for
both algorithms and the spectroscopic redshift distribution. How-
ever, for deeper magnitude selection, this agreement worsens for
both cases ANNz2 and GPz. The stacking (GPz) presents the great-
est differences with the spectroscopic redshift distribution in the
redshift slices 0.4 ≤ z ≤ 0.6.

In Fig. 7 we show the global metric values and the chi-square
measure for all redshift range of the samples as function of r-band
cut. The metric values worsen towards deeper magnitude limits,
as we might expect. However, for each of the photometric redshift
estimators the fraction FRe = 0.15 remains above 99.5 per cent until
r ≈ 20.2. The AvgPDF-ANNz2 and CDF-ANNz2 estimators have
the highest scatter and bias, though the CDF-ANNz2 estimator has
the best chi-square measure for all r-band cuts. The GPz and CDF-
GPz estimators present the lowest global scatter and bias, as well as
high values for the global fraction FRe = 0.15. These estimators also
have a low chi-square measure.

In this subsection, the focus has been on comparing the different
redshift runs. But for the science applications of these results, the
important point is that for the best of the estimators (CDF-ANNz2),
we can push the magnitude limit to a deeper range, and the degra-
dation of redshift performance is only gradual. The performed test
in slices of redshift shows us that the ANNz2 code achieves good
results in high redshifts for fainter magnitude cuts unlike GPz code.
Note that the Monte Carlo sampling of the PDF allows us to im-
prove the accuracy of the photometric redshift values if we know
the full photometric redshift PDF for every galaxy in the survey, as
is the case when working with the ANNz2.

5 IM P L I C AT I O N FO R D E T E C T I O N O F
G A L A X Y C L U S T E R S

The reduced cost of measuring photometric redshifts, compared to
spectroscopic redshifts, means that we are able to obtain photomet-
ric redshifts for many more objects more rapidly. As such, we can
have large photometric galaxy surveys, which is statistically benefi-
cial for many cosmological analyses, albeit with a reduced redshift
precision compared to spectroscopic surveys. One such analysis
is galaxy cluster counts. Galaxy clusters are statistically very rare
objects, at the extreme high mass end of the halo mass function,
and so to maximize counts we need to probe large volumes. On the
other hand, for the detection of galaxy clusters we need to ascertain
with as great an accuracy as possible which galaxies are members
of the cluster and which are not. For this we need as accurate and
precise redshift measurements as possible. Furthermore, to measure
the halo mass function we need to estimate the halo mass of clusters.
One way is to estimate the mass dynamically, for which we need
to accurately measure the positions of the cluster members to high
precision (see Borgani & Guzzo 2001; Borgani et al. 2001; Voit
2005; Allen et al. 2011; Kravtsov & Borgani 2012). Therefore it is
very important to estimate the photometric redshifts with accuracy
and precision in order to minimize the impact on the systematic
errors in the estimated number cluster count and subsequent cos-
mological analysis. The main aim here is to examine the impact that
using a non-representative training data set for photometric redshift
estimation has on galaxy cluster detection with methods that are
sensitive to the density of galaxies in a field, such as VT or kernel
density estimation (see Gal et al. 2000; Lopes et al. 2004; Soares-
Santos et al. 2011). We also want to examine the impact of using
each photometric redshift estimators used in this work. We must
remark that this analysis is not appropriate for cluster detection
methods that are based upon dynamical measurements (e.g. Friends
of Friends) or colour selection, which do not make use of density
field information.

In redshift regions with higher density of galaxies we expect
to find more galaxy clusters. Therefore, in order to estimate the
number of galaxy clusters that we can detect with a given redshift
survey, we first compute the number density of galaxies as a function
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Figure 5. z-spec and redshift estimators distributions for r-band cuts in the range [19.4–20.8] by using the mock catalogue. Note that for fainter magnitude cuts
(i.e. the cuts in the region [20.2–20.8]), the distributions of the estimated photometric redshifts have a peak in zphot ≈ 0.25, which is not present in spectroscopic
redshift distribution and a tail mismatch at higher z. The effect is greater for the photometric redshift estimators obtained via the GPz algorithm. In general, the
CDF-ANNz2 distribution fits better the z-spec distribution than the distributions obtained through the other estimators.

of redshift, n(z). This is equal to the number of galaxies, N, per
comoving volume, V, and given by

n(z) = dN

dV
= dN

dz

dz

dV
= dN

dz
fc(z), (9)

where

fc(z) ≡ H (z)

D2
c (z)��

. (10)

Here dN/dz corresponds to the galaxy redshift distribution, �� is
the angular area that the galaxy catalogue covers, H(z) is the Hubble
parameter, and Dc is the comoving distance.

We compare the density of galaxies estimated using the photo-
metric redshift distribution for each photometric redshift estimator
with the density of galaxies estimated using the spectroscopic red-
shift. We make this comparison for each of our r-band magnitude
cuts. To quantify this comparison, we use the function fc(z) times
the relative error between the two number densities, thus we have

fc�n ≡ H

D2
a��

∣∣∣1 − n

n̄

∣∣∣ , (11)

where n is the number density of galaxies from the photometric
redshift estimators and n̄ is the number density of galaxies from
the spectroscopic redshift. This quantity is relevant as we would
like to have a cluster detection method based on density estimation
which is not affected by detection in the n(z) function inferring
incorrectly a different density of galaxies at that redshift. Note that

this calculation is not applicable to colour-based methods to finding
galaxy clusters, because here we are using the spatial information.

In Fig. 8 we show the quantity fc�n, described in equation (11),
where in each of the different panels we have used the photometric
redshifts from the AvgPDF-ANNz2, CDF-ANNz2, GPz, or CDF-
GPz estimator. In each panel darker colours correspond to smaller
values for fc�n, which indicates regions in the magnitude versus red-
shift space where the number densities derived from photometric
redshifts are equal to the number densities from spectroscopic red-
shifts. Therefore in such regions we could robustly detect a galaxy
cluster using both spectroscopic and photometric redshifts. Note
that for the CDF-ANNz2 estimator we see more darker regions at
higher redshifts suggesting that with this estimator we can more
robustly detect galaxy clusters at higher redshift with deeper r-band
selected samples. Hence we would expect that a galaxy cluster cat-
alogue obtained with this photometric redshift estimator would be
purer, out to higher redshift, compared to catalogues built with the
other estimators. In other words, this result suggests that of all of the
photometric redshift estimators considered, the CDF-ANNz2 esti-
mator would provide the most accurate detection of galaxy clusters.
The AvgPDF-ANNz2 estimator has the best results in the region
z ∼ [0.25, 0.50] and deeper r-band magnitude cuts. The GPz esti-
mators have good results for the brighter magnitude cuts. However,
for magnitude cuts fainter than r < 20.0, we observe that in the
redshift range z ∼ [0.2, 0.3], the GPz-based estimators have larger
values for fc�n than the ANNz2-based estimators (i.e. the GPz-
based estimators have fewer darker regions than the ANNz2-based
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Figure 6. Comparison between the spectroscopic distribution and the stacking of photometric redshift PDFs estimated through ANNz2 and GPz algorithms
for slices of photometric redshift in all r-band magnitude cuts. We estimate different spectroscopic redshift distribution for each used algorithm, since that the
population of galaxies in the slices is different for each photometric redshift estimator. Note that the stacking of photometric redshift computed with ANNz2
algorithm fits better the spectroscopic distribution than the GPz case. Here we use black solid line for z-spec (ANNz2), red dashed line for stacking (ANNz2),
blue solid line for z-spec (GPz), and green dashed line for stacking (GPz).
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Figure 7. Global metrics of each photometric redshift estimator as a function of r-band cut. The last figure is the chi-square measure (Dχ2 ) for the zspec

distribution and zphot one. We observe that the CDF-ANNz2 estimator has the best chi-square measure in all r-band cuts. Moreover, we note that the GPz
estimators present the lowest global scatter and bias.

estimators). This is understandable as this within this redshift range
where, in the lower panels of Fig. 5, we saw a spurious peak in
the photometric redshifts from the GPz-based estimators. We con-
clude that the results presented here can be used to guide parameter
optimization of cluster finding algorithms.

6 C O N C L U S I O N S A N D R E M A R K S

Photometric redshifts allow us to probe much larger volumes of the
Universe than it is possible with spectroscopic redshifts, but they
have large measurement uncertainties. MLMs are often used to es-
timate photometric redshifts, but these estimators must be trained
using existing spectroscopically detected data sets, which probe a
limited volume. There is much uncertainty regarding the reliability
of measured photometric redshifts when the spectroscopic training
set is not representative of the photometric data set. In this work
we have investigated the degradation in the accuracy and precision
of the recovered of photometric redshifts when two MLMs, applied
to deep photometric data sets, are trained using much shallower
and brighter spectroscopic samples. We have used the ANNz2 and
GPz machine learning codes for estimating the photometric red-
shifts with four colours instead of all five magnitudes as input,
ensuring representativeness only in this subspace, and evaluated the
consequences on mock catalogues. For this analysis, we also uti-
lize the Monte Carlo random sampling for estimating a photometric
redshift based on the full information in the CDF of the redshift
PDF. Altogether we use four photometric redshift estimators in this
work, AvgPDF-ANNz2, CDF-ANNz2, GPz, and CDF-GPz, which
we define and introduce in Section 3.4. In order to measure the
quality of the estimated photometric redshifts, we use the following
typical metrics: Bias, σ , σ 68, and level of outliers FRe for a outlier
threshold equal to e = 0.15; see Section 3.3.

We start by showing that, for a representative training data set
in the magnitude space, the photometric redshifts obtained using
the ANNz2 and GPz algorithms display similar quality, using either
magnitude-selected or colour-selected training sets as input. We es-
timate the photometric redshift for the samples GAMA DEEP and
GAMA MAIN (subsamples from the SDSS DR12 data with GAMA
selections; see Section 2.3), which are trained by the spectroscopic
GAMA survey. In general, we find that the results in the metrics
obtained for the mock catalogue display similar trends to the re-
sults metrics obtained for the GAMA test data. We observe that the
photometric redshift distribution obtained with the CDF-ANNz2
estimator is the most consistent with the spectroscopic redshift dis-
tribution for the GAMA test data. We note that the distribution of
the photometric redshifts obtained with those estimators that sam-
ple the CDF are a better fit to the photometric redshift PDF stacking
of all galaxies in the data set. None the less, these estimators yield
a greater scatter than the other estimators.

We proceed to analyse samples of the mock catalogue selected
using progressively deeper cuts in the r-band magnitude in order
to study the degradation of the photometric redshifts obtained from
the AvgPDF-ANNz2, CDF-ANNz2, GPz, and CDF-GPz estima-
tors when the training data set is non-representative of a deeper
photometric testing set. In each instance we use the same training
data set selected with r < 19.4. The AvgPDF-ANNz2 estimator
does not recover high redshift and this fact worsens for deeper cuts.
We consider that this result is due to the low density of spectro-
scopic galaxies at high redshift in the training set. Comparatively,
the CDF-ANNz2 estimator shows better performance at higher red-
shifts, albeit with larger scatter. We observe that the CDF-ANNz2
estimator has the best chi-square measure for all r-band selections.
The GPz and CDF-GPz estimators appear to provide more reli-
able results at low redshifts. Nevertheless for deeper cuts, we ob-
serve that these estimators tend to underestimate the redshifts of
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Figure 8. Comparison of the number of galaxies per comoving volume element computed by using each photometric redshift estimator with the spectroscopic
redshift case. We compute the relative error �n times the function fc(z) (this function contains the cosmological information; see equation 10) between density
of galaxies for z-spec and the density of galaxies for each redshift estimator. This process is performed for all r-band cuts. Note that the CDF-ANNz2 estimator
allows us to detect galaxy clusters agreement with the z-spec data for deeper cuts in the r-band magnitude and highest redshifts, hence we expect that the
galaxy cluster catalogue obtained by employing this photometric redshift estimator is purer until high redshifts than in other cases.

high-redshift spectroscopic galaxies leading to an excess of photo-
metric redshifts at the peak of the redshift distribution and a mis-
match in the tail of the distribution. For the scatter plots between
spectroscopic redshifts and photometric redshifts as well as the n(z)
plots up to r < 20.0, we observe very good results in all photomet-
ric redshift estimators. The colour-selected training set allows us
to estimate reliable photometric redshifts for a testing data set two
times as large as testing data set in which the magnitude-selected
training set is representative; see Figs 4 and 5.

The large surveys of photometric redshift offer us an excellent
tool to perform cosmological analysis, in particular, abundance of
galaxy clusters. In the last section, we are informing galaxy clus-
ter searches by highlighting regions where robust cluster detection
is more likely (i.e. denser regions). In order to quantify the im-
pact of the photometric redshifts in the detection of galaxy clus-
ters, we compute the number of galaxies per comoving volume for
each single-value redshift estimator. This quantity provides us in-
formation about clusters detected via methods based on density of
galaxies, such as VT or kernel density estimation. To compute the
number density of galaxies, we use the photometric redshift distri-
bution obtained for each estimator. Note that the depth of the r-band

magnitude cut is directly related with the density of galaxies and
hence the number of galaxy clusters detected. However, we must
recall that the estimated photometric redshifts become poorer qual-
ity for deeper cuts. The density of galaxies given by CDF-ANNz2
estimator has the best agreement with the number density of galax-
ies given by spectroscopic redshift data in deeper cuts and high
redshifts. For lower redshifts and r-band magnitude cuts, the num-
ber density based on the other estimators has better agreement with
the spectroscopic number density, none the less the number density
based on the CDF-ANNz2 estimator also has good agreement (see
Fig. 8). We conclude that the results here can improve detectability
of clusters with density-based detection methods.
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A P P E N D I X A : G A M A MA I N A N D G A M A D E E P
SQL QUERY

In order to build the GAMA MAIN and GAMA DEEP samples
from the SDSS DR12 data base, we used the following SQL query:
SELECT
[a selection of parameters from SDSS ta-

bles]
FROM
PhotoPrimary AS p
JOIN Field AS f ON f.fieldID = p.fieldID
JOIN Run AS r ON f.run = r.run
WHERE
--/ QUALITY FLAGS
((p.calibStatus g & 1) != 0)
AND ((p.calibStatus r & 1) != 0)
AND ((p.calibStatus i & 1) != 0)
AND p.cModelMag i < 21.0
AND ((p.flags g & 0x80000000802) = 0)
AND (((p.flags g & 0x8) = 0)
OR ((p.flags g & 0x40) = 0))
AND ((p.flags r & 0x80000000802) = 0)
AND (((p.flags r & 0x8) = 0)
OR ((p.flags r & 0x40) = 0))
AND ((p.flags i & 0x80000000802) = 0)
AND (((p.flags i & 0x8) = 0)
OR ((p.flags i & 0x40) = 0))
--/ STAR-GALAXY SEPARATION
AND p.type = 3
AND ((p.psfMag r - p.modelMag r) > 0.25)
--/ GAMA CUTS
AND ((p.modelMag u - p.modelMag g) > -2)
AND ((p.modelMag u - p.modelMag g) < 7)
AND ((p.modelMag g - p.modelMag r) > -2)
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AND ((p.modelMag g - p.modelMag r) < 5)
AND ((p.modelMag r - p.modelMag i) > -2)
AND ((p.modelMag r - p.modelMag i) < 5)
AND ((p.modelMag i - p.modelMag z) > -2)
AND ((p.modelMag i - p.modelMag z) < 5)
AND p.petroMag r > 12
AND p.petroMag r < 19.4 --

\ only for GAMA MAIN

APPENDIX B: METRICS D EPENDING ON
REDSHIFT

The scatter plot in Fig. 4 and the distribution function of redshift
in Fig. 5 allow us to describe the accuracy and the precision for
each r-band cut employed in this work. However, to quantify these
propierties, we can compute the metrics described in Section 3.3.
In Fig. 7 we show the global metrics (i.e. the metric value for all

redshift range) for all tests. In this appendix we present the metrics
as a function of photometric redshift estimator for each r-band cut.

In Fig. B1 we show the bias, σ , σ 68, and FRe = 0.15 values in the
range 0 < zphot < 1 for r ∈ [19.4, 20.8] by using the data of the
mock catalogue. We see that the photometric redshift estimators
have good metric values in the range 0 � zphot � 0.4 for all r-band
cuts. In this redshift range the metrics slightly worse for deeper cuts.
On the other hand, we note that the bias and scatter computed for
the estimators based on Gaussian GPz grow faster than the CDF-
ANNz2 estimator in hight redshift and this is more evident for
r > 20.0. The above assertion is in agreement with the discussion
performed in Section 4.2.
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Figure B1. Bias, σ , σ 68, and FRe = 0.15 values in the range 0 < zphot < 1 for r ∈ [19.4, 20.8] by using the data of the mock catalogue. Note that the photometric
redshift estimators have good metric values in the range 0 � zphot � 0.4 for all r-band cuts. In this redshift range the metrics is slightly worse for deeper cuts.
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