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Abstract 11 

Mechanisms leading to variation in diversity over energetic gradients continue to challenge 12 

ecologists. Changes in diversity may reflect the environmental capacity to support species’ 13 

coexistence through increased niche packing or niche space expansion.  Current ecological 14 

theory predicts increases of energy may lead to both scenarios but not their relative strengths.  15 

We use experimental deep-sea, wood-fall communities, where energy supply can be controlled, 16 

to test for the importance of niche expansion and packing in functional space over an energetic 17 

gradient. Invertebrate communities were identified and counted from 16 Acacia sp. logs ranging 18 

in size from 0.6 to 20.6 kg in mass (corresponding to energy availability) deployed at 3203 m in 19 

the Pacific Ocean for 5 years. We use four fundamental energetic species-level functional traits-20 

-food source, trophic category, motility, and tiering--to characterize species niches. Increases in 21 

energy on wood falls lead to increases of species richness.  This higher species richness 22 

resulted from a substantial increase in mean niche overlap, suggesting that increases in energy 23 

may afford reduced competition. 24 

Introduction 25 

Species diversity often increases as more energy becomes available to a community [1-4].  26 

Although the form and strength of this relationship vary, this species and energy relationship 27 

appears to be pervasive among taxa and systems [1-4].  The processes creating this pattern 28 

remain elusive, with numerous hypotheses proposed and supported [1].  Many of these 29 

hypotheses share two common mechanisms; positing greater species diversity is afforded with 30 

increased energy through either greater niche diversity or greater niche packing [1, 5, 6]. With 31 

niche space expansion, increased energy allows for novel, and potentially energetically 32 

expensive, traits to persist [7].  Niche packing occurs if increased energy promotes 33 
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specialization as resources become abundant [6, 8].  Although research into this area has 34 

occurred for several decades under labels of ecological/trait/functional diversity and 35 

morphological disparity [9-13], the development of new functional diversity metrics has sparked 36 

renewed interest [14-16].  Recent studies in diverse systems find that niche space expansion is 37 

not as important as niche packing for increases in diversity in general [17, 18] and over 38 

energetic gradients [19].  39 

Here, we examine the process underlying increases in energy and species richness, by 40 

quantifying niche space expansion and packing, in experimental deep-sea, wood-fall 41 

communities. On the deep seafloor, sunken wood, i.e. wood falls, develop endemic and diverse 42 

communities comprising wood and sulfide obligates, and associated predators [17, 20]. The 43 

endemicity of wood-fall communities reflects an energetic isolation because of their specific 44 

nutritional requirements for wood, produced sulfide and/or methane, or predator specificity for 45 

endemic wood-fall species [17, 20]. Deep-sea wood falls provide a unique opportunity to 46 

examine community assembly and energetic theory because the amount of energy available to 47 

the community can be experimentally controlled (i.e. the size of a single wood fall) [17, 20, 21]. 48 

Further details on the natural history of wood falls is in the Supplemental Information. 49 

Our previous work on wood-falls documented rises in energy and species diversity concordant 50 

with increased packing around an optimal body size, implying energy increases are experienced 51 

only in this size class [21].  Here, we examine four additional functional traits, reflecting how 52 

species contribute to wood-fall functioning and perform themselves, which should track energy 53 

availability.  Three of these traits are based on previous functional trait metrics [22, 23] and 54 

include feeding, motility, and tiering (Supplemental). Feeding type is theoretically and 55 

empirically connected to energy availability, including in marine invertebrates using these 56 

metrics [24].  Likewise, increases in motility are associated with higher metabolic demand [25]. 57 

Increases in energy availability may therefore allow for increased motility types, promoting niche 58 
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space expansion. Additionally, epifaunal species are predicted to have adaptive advantages as 59 

they can better compete for available food, suggesting patterns of tiering (e.g., epifaunal versus 60 

infaunal) likely exist over energy gradients; e.g. deeper infaunal species are associated with 61 

higher energy [26]. We also add energy source, based on published literature for each taxa, as 62 

a metric, to capture whether species rely on xylophagous or sulphur pathways within the wood 63 

fall (Supplemental). Increased energy is hypothesized to either: i) increase abundance of 64 

preferred food resources, leading to specialization and niche packing; or ii) increase novel food 65 

items, allowing for niche space expansion. 66 

Methods 67 

The methods of the wood-fall experiments are described in detail in previous work [17, 20, 21] 68 

and Supplemental.  Briefly, 32 Acacia sp. logs were deployed with a remotely operated vehicle 69 

at 3203 m in the Northeast Pacific Ocean. Each wood fall was comprised of a single Acacia log, 70 

ranging in size from 0.6 to 20.6 kg, corresponding to different levels of energy available to the 71 

wood-fall assemblage. Wood falls were dispersed over a ~160m2 area with ~5 meters between 72 

wood falls in 4 rows 10 m apart, with each row including sizes across the range. For each wood 73 

fall, we recorded the initial weight (kg), location, and surface area (m2). We used initial wood fall 74 

weight (kg), a measure of available energy, as the energy metric in all analyses.    75 

Logs were placed into 300 µm mesh bags, the standard mesh size for deep-sea macrofauna 76 

[27], with sealable closing lids during retrieval, ensuring no loss of individuals and/or cross 77 

contamination among samples.  All individuals occurring on the wood-fall exterior and interior 78 

were collected. Species were identified to morphospecies and traits were assigned based on 79 

published natural histories for species [28]. 80 

For each wood fall, we calculated Unique Trait Combinations (UTC), as a metric of niche space 81 

expansion, and functional overlap (raw simple, mean, median, max, and min MVO), as a metric 82 
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of niche packing, using the multirich [16] in the R-package (ver. 3.5.0).  We also calculated, for 83 

each wood fall, functional richness (FRic), functional evenness (FEve), functional divergence 84 

(FDiv), functional dispersion (FDis), and Rao's quadratic entropy (Rao’s Q) using the FD R-85 

package [14, 15]. An overview, including the strengths and weaknesses of the each of these 86 

metrics is provided in the supplemental. 87 

A variety of functional diversity metrics were employed to ensure patterns were ecological, 88 

rather than a result of metric selection.  As opposed to a priori selecting metrics and given the 89 

ease of which these can be calculated, we instead choose to quantify several metrics examining 90 

which quantify unique aspects of functional diversity and implement these in the final analysis.  91 

Several of these functional diversity metrics actually demonstrate high correlations 92 

(Supplemental).  High correlations were found between: Rao’s Q and functional dispersion; 93 

functional richness and unique trait combinations; and between various metrics of functional 94 

overlap (Supplemental Figure 1). Functional evenness and functional divergence poorly 95 

correlated with the other metrics.   Thus for the analyses, we only report those results of 96 

functional dispersion, functional richness, mean functional overlap, functional evenness, and 97 

functional divergence as each quantifies a unique attribute of functional diversity. 98 

Results 99 

With increased wood fall size, only meanMVO, a measure of niche overlap, increased 100 

concordantly (Figure 1, Supplemental Table 1, p-value=0.0037).  Functional evenness 101 

decreased with increasing wood fall size but was not significant (Figure 1, Supplemental Table 102 

1, p-value=0.0720).   A Shapiro-Wilk Normality Test indicates that all variables were not 103 

significantly different from normal distributions (p=0.2436-0.9636).  Likewise, a Shapiro-Wilk 104 

Normality Test on the residuals from the models were not significantly different from normal 105 

distributions (p=0.1634-0.9668). 106 
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With increased species richness, meanMVO also increased (Figure 1, Supplemental Table 2, p-107 

value=0.0002). Functional richness also increased with increasing species richness but was not 108 

significant (Figure 1, Supplemental Table 2, p-value=0.0507).  A Shapiro-Wilk Normality Test 109 

indicates that all variables were not significantly different from normal distributions (p=0.4972-110 

0.9636). A Shapiro-Wilk Normality Test on the residuals from the models were not significantly 111 

different from normal distributions (p=0.0631-0.9427). 112 

A full generalized linear model was constructed with functional dispersion, functional richness, 113 

mean functional overlap, functional evenness, and functional divergence, and log10 wood-fall 114 

mass to explain species richness. The best-fit model to predict changes in species richness 115 

contains mean functional overlap and functional richness only (Full model: AIC= -35.97; 116 

Reduced model: AIC= -37.58, Supplemental Table 3). Together mean functional overlap and 117 

functional richness predict 81% of the variation in species richness.  However, mean functional 118 

overlap explains 63.8% of the variation alone.  Variance inflation factors were low in both the full 119 

(1.25-2.60) and reduced models (1.01).   A Shapiro-Wilk Normality Test on the residuals from 120 

both models were not significantly different from normal distributions (p= 0.6389 and 0.8049). 121 

Discussion 122 

In investigating the relative influences of niche space expansion and niche packing on diversity 123 

in experimental deep-sea, wood-fall communities, we find that chemical energy availability is 124 

concordant with increases in functional overlap and niche packing. With increased chemical 125 

energy available for experimental wood fall-communities, species richness also increases 126 

(rho=0.75) [20].  However, when changes in niche packing are accounted for, wood-fall size is 127 

no longer a significant predictor of richness (Supplemental Table 3).  This pattern corresponds 128 

with the observed pattern of increased niche packing of optimal size bins [1] with increasing 129 

wood-fall size [17].  130 
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Only weak evidence of niche space expansion exists. Most functional traits present on large 131 

sized wood-falls are also present on smaller wood-falls.  This suggests that functional diversity 132 

of either the regional pool or the total range ecologies supported at the local wood fall is limited, 133 

regardless of total energy availability.  Functional richness (Figure 1) appears to reach an 134 

asymptote, implying the regional pool contains functionally redundant species. This pattern may 135 

be expected in wood-fall ecosystems, as species must be specialized to colonize and persist on 136 

these unique habitats. However, the relationship between functional volume space and species 137 

richness may be a spurious statistical relationship based on sampling number [29]. 138 

Current and previous results [17] suggest that energy may not be distributed equitably across 139 

traits. Certain traits show increased abundance on larger wood-falls (Figure 2). This could occur 140 

because increases in energy allow for greater coexistence of species with certain functional 141 

traits [24, 30-32].  For example, increased energy allows for greater dominance of more mobile 142 

fauna. Alternatively, species with certain functional traits may have more resource available to 143 

them [24].  Here, larger wood-falls allow for increased wood degradation and production of 144 

sulfur niches increasing the availability of diverse energy resources (Figure 2).  At small-wood 145 

fall sizes, these resources may be too rare to support a wealth of species similar, i.e. resource 146 

concertation mechanism of [33, 34].  Conversely, species with certain functional traits might be 147 

able to monopolize a greater proportion of total available energy.  Both certain tiering and 148 

feeding traits may provide a greater spatial access to the bacterial mats or wood itself (Figure 149 

2).  Distinguishing between these, while difficult, provides fertile ground for future investigation.  150 

 151 

Figure 1: Metrics of functional diversity with log10 wood-fall mass and species richness. 152 

Regression lines are provided for p-values <0.05 (Supplemental Table 1 and Supplemental 153 

Table 2). 154 
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Figure 2: Dominance, as determined by abundance, of ecological traits over wood-fall size. 155 

Width of grey violin plot reflects numerical dominance of the trait at that wood-fall size. 156 
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Table 1: Linear fit models between various functional diversity metrics with wood-fall size (log10 mass)

Dependent variable:

meanmvo FDis FRic FEve FDiv

(1) (2) (3) (4) (5)

log10mass 0.813∗∗∗ −0.151 2.804 −0.140∗ 0.029
(0.233) (0.167) (2.582) (0.072) (0.045)

Constant 0.240 1.774∗∗∗ 5.393∗∗ 0.402∗∗∗ 0.747∗∗∗

(0.181) (0.130) (2.002) (0.056) (0.035)

Observations 16 16 16 16 16
R2 0.464 0.055 0.078 0.213 0.029
Adjusted R2 0.426 −0.012 0.012 0.157 −0.040
Residual Std. Error (df = 14) 0.375 0.268 4.145 0.115 0.072
F Statistic (df = 1; 14) 12.118∗∗∗ 0.819 1.179 3.789∗ 0.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

1



Table 2: Linear fit models between various functional diversity metrics with wood-fall species richness

Dependent variable:

meanmvo FDis FRic FEve FDiv

(1) (2) (3) (4) (5)

log10(richness) 2.213∗∗∗ −0.391 14.335∗∗ −0.220 0.082
(0.473) (0.395) (5.107) (0.183) (0.105)

Constant −1.560∗∗∗ 2.087∗∗∗ −7.902 0.542∗∗ 0.679∗∗∗

(0.507) (0.423) (5.468) (0.196) (0.113)

Observations 16 16 16 16 16
R2 0.610 0.066 0.360 0.094 0.042
Adjusted R2 0.582 −0.001 0.314 0.029 −0.027
Residual Std. Error (df = 14) 0.320 0.267 3.453 0.124 0.071
F Statistic (df = 1; 14) 21.854∗∗∗ 0.982 7.878∗∗ 1.448 0.610

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2



Table 3: Linear fit models between various functional diversity metrics and log10 wood-fall mass with wood-fall species richness

Dependent variable:

log10(richness)

(1) (2)

meanmvo 0.210∗∗∗ 0.256∗∗∗

(0.052) (0.034)

FRic 0.019∗∗∗ 0.022∗∗∗

(0.004) (0.004)

FDis 0.008
(0.079)

FEve 0.040
(0.175)

FDiv −0.181
(0.287)

log10mass 0.112
(0.064)

Constant 0.791∗∗ 0.699∗∗∗

(0.309) (0.041)

Observations 16 16
R2 0.920 0.881
Adjusted R2 0.867 0.863
Residual Std. Error 0.064 (df = 9) 0.065 (df = 13)
F Statistic 17.331∗∗∗ (df = 6; 9) 48.241∗∗∗ (df = 2; 13)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3



Supplemental	Information	

Energetic Increases Increase Richness Through Niche Space Packing in Deep-Sea Wood Falls 

Craig R. McClain, Clifton Nunnally, Abbie S. A. Chapman, James P. Barry 

Ecological	Traits	

Table 1. Basic ecological categories for tiering, motility level, and feeding mechanism from [1, 

2]. Numbers after include the number of bivalve species in the modern range dataset, modern 

point dataset, and the number of bivalve genera in the fossil dataset. 

 
Tiering   
1. Pelagic  Living in the water column, free of the bottom  
2. Erect  Benthic, extending into the water mass  
3. Surficial  Benthic, not extending significantly upwards  
4. Semi-infaunal  Partly infaunal, partly exposed to the water column  
5. Shallow infaunal  Infaunal, living in the top c. 5 cm of the sediment  
6. Deep infaunal  Infaunal, living more than c. 5 cm deep in the sediment  
  
Motility level  

1. Freely, fast  Regularly moving, unencumbered (walking, swimming)  
2. Freely, slow  Regularly moving, intimate contact maintained with substrate  
3. Facultative, 
unattached 

 Moving only when necessary, free-lying  

4. Facultative, attached  Moving only when necessary, attached 
5. Non-motile, 
unattached 

 Not capable of self-propulsion, free-lying  

6. Non-motile, attached  Not capable of self-propulsion, attached  
  
Feeding mechanism  
1. Suspension  Capturing food particles from the water  
2. Surface deposit  Capturing loose particles from a substrate  
3. Mining  Recovering buried food  
4. Grazing  Scraping or nibbling food from a substrate  
5. Predatory  Capturing prey capable of resistance  
6. Other  Varies, includes photo- or chemosymbiosis, parasitism 

 

Natural	History	Information	

 Wood falls on the deep-sea floor are unique and diverse communities consisting of 

xylophages, sulfide obligates, predators of these two groups, and, occasionally, opportunists. 

Xylophages ingest wood and rely on heterotrophic bacteria to aid digestion and assimilation [3]. 

Certain species of wood-fall inhabiting echinoids harbor wood-digesting microbiota in their guts 



[4]. One species of galatheid crab appears to prefer wood falls and is regularly found with wood-

filled guts [5]. Several species of ostracods from the genus Xylocythere are also only known to 

inhabit wood falls [6] and may potentially be wood obligates. The most notable and abundant 

xylophagous species are members of the bivalve subfamily Xylophagainae [7-9]. Sulfide 

obligates rely nutritionally on chemoautotrophic bacteria, e.g. bivalves in genus Idas, which 

colonize wood falls and benefit from chemoautotrophic endosymbionts [10, but see 11]. 

Predators feed on xylophages, sulfide obligates, and opportunists. Certain acotylean polyclad 

flatworms, for example, likely feed on wood-boring bivalves [9]. Opportunists have less 

specialized diets but are numerically rare. Only 4 of 39 wood-associated species, in the wood 

falls here were also found in the background sediment or nearby hard substrates [12-17]. All of 

these generalist habitat species are rare and represented by 1-4 individuals and as such do not 

make up a significant component of the wood-fall community. The remaining wood-fall 

specialists all have abundances that range from ~10-1000 individuals on a single wood fall. 

 Succession at wood-fall communities begins with bacteria degradation of the wood [18, 

19]. Bacterial degradation can generate sulfide within a month and these sulfidic niches 

attracting animals that rely nutritionally on chemolithoautotrophic bacteria [18, 19].  Additionlaly, 

and as early as 3-6 months, Xylophagainae can serve as ecosystem engineers of wood falls; 

their boreholes generate various spaces for inhabitation by other species and they offer 

biomass for predators [20-22].  Successional stage may be driven by the rate at which wood-

boring bivalves make carbon and space available for other species and by the total amount of 

wood available [12].  Once the complete wood-fall community assembles, the complete 

community includes a variety of epifaunal and infaunal species inhabiting the surface and 

interior of the wood fall.   



Functional	Diversity	Metrics	

Table 2. Metrics used to measure functional diversity of wood-fall communities. The calculation of these metrics is described in detail 

in the references cited in the ‘Reference’ column.  Note that this table is split into two, to represent the R packages used to compute 

these indices (UTC and associated metrics are computed using ‘multirich’, while FRic and other indices are calculated using the ‘FD’ 

package).  We selected metrics from both of these ‘groups’, as all can be computed using categorical traits as well as continuous. 

Metric(s) Details Strengths Weaknesses How weaknesses are 
addressed in our study 

Reference 

Unique 
Trait 
Combinatio
ns (UTC); 
scaled UTC 
(sUTC); 
functional 
overlap 

UTC represent the functional 
richness of a community in 
multivariate trait space, by looking at 
the trait combination of each species 
in a community and establishing 
whether it is unique, relative to all 
other species the species is found 
with in a community.  UTC is the total 
number of unique trait combinations 
in a community, whilst sUTC is this 
number, divided by the maximum 
number of combinations that could 
have been possible, given the 
number of species and traits.  
Functional overlap (shown as mean-, 
max-, c-, and med- mvo in Figure 1) 
represents the number of species 
that overlap in trait space by 
identifying duplicate trait 
combinations. 

- Easy to calculate and 
interpret, without need 
for further multivariate 
analyses. 

- Identifies the amount 
of filled and unfilled 
trait space (the 
hypervolume 
containing all possible 
trait combinations), 
which can be 
interpreted as the 
amounts of niche 
space filled and 
unfulfilled. 

- Sensitive to trait 
selection (e.g., level of 
binning, or number of 
trait categories).  For 
example, if many traits 
were used to calculate 
this metric, the 
potential number of 
UTC would be larger.   

- Sensitive to missing 
values. 

- Trait space can be 
increased by 
ecologically-
impossible trait 
combinations.  

- Only include relevant 
traits and the minimal 
number of traits that 
could capture 
important ecological 
processes. 

- Do not have missing 
values in our study).  

- Do not have 
ecologically 
impossible trait 
combinations in our 
trait matrix. 

[23] 

Functional 
richness 
(FRic) 

Functional richness is the amount of 
functional trait space (calculated as 
the minimum convex hull volume) 
that a community fills.  FRic tends to 
increase with the number of species 
in a community (species richness), 
unless there is functional redundancy 

- Higher values equate 
to higher values of this 
component of 
functional diversity 
(easy to interpret). 

- Can be combined 
with species richness 

- Cannot incorporate 
information on the 
relative abundances of 
species and is 
therefore sensitive to 
species with extreme 
trait values (e.g., rare, 

- Used a variety of 
functional diversity 
metrics to capture 
different components 
of diversity. 

- Only include relevant 
traits and the minimal 

[24-26] 



(i.e. a species in the community 
shares the same traits, and the same 
trait space, as another species). 

information to assess 
functional redundancy. 

specialist species). 

- Often correlated with 
species richness. 

- Sensitive to trait 
selection (and scores). 

number of traits that 
could capture 
important ecological 
processes. 

Functional 
evenness 
(FEve) 

Functional evenness captures how 
the abundances of species are 
spread in the convex hull they 
occupy (e.g., where dominant and 
rare species are found, based on 
their relative abundances).  FEve is 1 
when species are equally distributed 
in the convex hull, based on their 
traits and abundances; it is 0 when 
species are clustered in a particular 
area of the convex hull, given their 
traits and abundances. 

- Higher values equate 
to higher values of this 
component of 
functional diversity 
(easy to interpret). 

- Independent of 
species richness and 
functional richness. 

- Does not look at the 
distribution in the 
convex hull with 
respect to its volume. 

- Sensitive to trait 
selection (and scores). 

- Also calculated FDis, 
which can account for 
the convex hull 
volume. 

- Only include relevant 
traits and the minimal 
number of traits that 
could capture 
important ecological 
processes. 

[24, 25] 

Functional 
divergence 
(FDiv) 

Functional divergence is similar to 
functional evenness, but accounts for 
dissimilarities in abundance 
distributions within the convex hull 
volume.  It is calculate relative to the 
centre of trait space. 

- Higher values equate 
to higher values of this 
component of 
functional diversity 
(easy to interpret). 

- Independent of 
species richness and 
functional richness. 

- Does not look at the 
distribution in the 
convex hull with 
respect to its volume. 

- Sensitive to trait 
selection (and scores). 

- Also calculated FDis, 
which can account for 
the convex hull 
volume. 

- Only include relevant 
traits and the minimal 
number of traits that 
could capture 
important ecological 
processes. 

[24, 25] 

Functional 
dispersion 
(FDis) 

This metric measures the mean 
distance of a species to the centroid 
of trait space. The centroid is 
calculated using all species in the 
community. FDis captures the 
dispersion of species within available 
trait space. The centroid and the 
mean distance are both weighted 
using species relative abundances. 

- Independent of 
species richness. 

- Can have more traits 
than species. 

- Can incorporate 
abundance 
information. 

- Not strongly 

- Not constrained 
between 0 and 1. 

- Sensitive to trait 
selection (and scores). 

- Kept this feature of 
this metric 
(unconstrained values) 
in mind during 
interpretation. 

- Only include relevant 
traits and the minimal 
number of traits that 
could capture 
important ecological 

[24] 



influenced by outliers. processes. 

Rao’s 
quadratic 
entropy 
(Rao’s Q) 

Rao’s Q is another measure of 
functional divergence.  It incorporates 
information on the pairwise 
differences between species in terms 
of their traits and relative 
abundances. 

- Independent of 
species richness. 

- Captures dissimilarity 
among species given 
abundance and/or 
traits. 

- Sensitive to trait 
selection (and scores) 
through covariance. 

- Only include relevant 
traits and the minimal 
number of traits that 
could capture 
important ecological 
processes. 

[24, 27, 28] 



Supplemental	Methods	

 In November 2006, 32 Acacia sp. logs were deployed at 3203 m in the Northeast Pacific 

Ocean (Station Deadwood: 36.154098° N, 122.40852° W, Fig. S1). Each wood fall was 

comprised of a single Acacia log. These individual wood falls ranged in size from 0.6 to 20.6 kg 

and correspond to different levels of energy available to the invertebrate communities 

assembling on wood falls, with approximately half of the wood falls being <3 kg and half being 

>3kg to ensure good representation of contrasting energy levels.  Each log was sewn into a 

synthetic fiber mesh bag (5 mm mesh, large mesh size ensured larval settlement was not 

hindered. Mesh bags allowed for collection at the end of the experiment of highly degraded 

wood falls [9]. Sixteen Acacia logs ranging across available sizes were collected in October 

2011 (Set 1, 5 years), and the additional 16 Acacia logs were collected in October 2013 (Set 2, 

7 years; figure S1).  Set 2 demonstrates exhibited evidence of increased connectivity between 

individual wood falls [13, 29] that did not occur in Set 1 [12].  This increased connectivity 

between wood falls removed the relationship between wood-fall diversity and wood-fall size.  

For the study here we only analyze Set 1 where the productivity gradient occurs. 

 Wood falls were dispersed over a ~160m2 area with ~5 meters between wood falls in 4 

rows 10 m apart from one another, with each row including wood falls from across the range of 

available sizes.  The distance between rows reflects the distance needed to allow the remotely 

operated vehicle (ROV) to operate without disturbing the next row.  The distance between wood 

falls in the row also allowed for quick deployment and retrieval while keeping ROV transit time 

minimal.  The close proximity of the wood falls also ensured regional pools of larvae were 

similar in taxonomic composition.  Species occurring on the wood falls primarily have larval 

dispersal phases that allow for colonization. Adults, because of their size and/or limited or 

complete lack of motility, complete their lives on individual wood falls.  Thus, the distance 

between individual wood falls here is sufficient to isolate the communities except through larval 

exchange.  As an example, if larger wood falls support higher trophic levels, these predators 

would not be able to move to a smaller nearby wood fall and crop prey. 

 All specimens were picked from wood, preserved in either 95% ethanol or formalin. All of 

the taxa were identified to the species level except Actinaria spp.  Species names were 

assigned to taxa when possible.  All individuals from each wood fall were counted and assigned 

to species.  



Correlations	of	Functional	Metrics	

 

Figure 1: Upper diagonal reports correlations between functional metrics used in this study.  

The lower diagonal displays those correlations as clouds of the data.  Metrics include Unique 

Trait Combinations (UTC and Standardized UTC), as a metric of niche space expansion, and 

functional overlap (MVO including maximum, mean, median, and raw (c) MVO).  We also 

calculated, functional richness (FRic), functional evenness (FEve), functional divergence (FDiv), 

functional dispersion (FDis), and Rao's quadratic entropy (Rao’s Q).   Colors correspond to the 

strength and sign of the correlation with red be negative and blue being positive. 
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Table 3: Linear fit models between various functional diversity metrics with wood-fall size (log10 mass)

Dependent variable:

meanmvo FDis FRic FEve FDiv

(1) (2) (3) (4) (5)

log10mass 0.813⇤⇤⇤ �0.151 2.804 �0.140⇤ 0.029
(0.233) (0.167) (2.582) (0.072) (0.045)

Constant 0.240 1.774⇤⇤⇤ 5.393⇤⇤ 0.402⇤⇤⇤ 0.747⇤⇤⇤

(0.181) (0.130) (2.002) (0.056) (0.035)

Observations 16 16 16 16 16
R2 0.464 0.055 0.078 0.213 0.029
Adjusted R2 0.426 �0.012 0.012 0.157 �0.040
Residual Std. Error (df = 14) 0.375 0.268 4.145 0.115 0.072
F Statistic (df = 1; 14) 12.118⇤⇤⇤ 0.819 1.179 3.789⇤ 0.424

Note:

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

1



Table 4: Linear fit models between various functional diversity metrics with wood-fall species richness

Dependent variable:

meanmvo FDis FRic FEve FDiv

(1) (2) (3) (4) (5)

log10(richness) 2.213⇤⇤⇤ �0.391 14.335⇤⇤ �0.220 0.082
(0.473) (0.395) (5.107) (0.183) (0.105)

Constant �1.560⇤⇤⇤ 2.087⇤⇤⇤ �7.902 0.542⇤⇤ 0.679⇤⇤⇤

(0.507) (0.423) (5.468) (0.196) (0.113)

Observations 16 16 16 16 16
R2 0.610 0.066 0.360 0.094 0.042
Adjusted R2 0.582 �0.001 0.314 0.029 �0.027
Residual Std. Error (df = 14) 0.320 0.267 3.453 0.124 0.071
F Statistic (df = 1; 14) 21.854⇤⇤⇤ 0.982 7.878⇤⇤ 1.448 0.610

Note:

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 5: Linear fit models between various functional diversity metrics and log10 wood-fall mass with wood-fall species richness

Dependent variable:

log10(richness)

(1) (2)

meanmvo 0.210⇤⇤⇤ 0.256⇤⇤⇤

(0.052) (0.034)

FRic 0.019⇤⇤⇤ 0.022⇤⇤⇤

(0.004) (0.004)

FDis 0.008
(0.079)

FEve 0.040
(0.175)

FDiv �0.181
(0.287)

log10mass 0.112
(0.064)

Constant 0.791⇤⇤ 0.699⇤⇤⇤

(0.309) (0.041)

Observations 16 16
R2 0.920 0.881
Adjusted R2 0.867 0.863
Residual Std. Error 0.064 (df = 9) 0.065 (df = 13)
F Statistic 17.331⇤⇤⇤ (df = 6; 9) 48.241⇤⇤⇤ (df = 2; 13)

Note:

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

3
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