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Recent experimental studies suggest that, in cortical microcircuits
of the mammalian brain, the majority of neuron-to-neuron con-
nections are realized by multiple synapses. However, it is not
known whether such redundant synaptic connections provide any
functional benefit. Here, we show that redundant synaptic connec-
tions enable near-optimal learning in cooperation with synaptic
rewiring. By constructing a simple dendritic neuron model, we
demonstrate that with multisynaptic connections, synaptic plas-
ticity approximates a sample-based Bayesian filtering algorithm
known as particle filtering, and wiring plasticity implements its
resampling process. Extending the proposed framework to a de-
tailed single neuron model of perceptual learning in the primary vi-
sual cortex, we show that the model accounts for many experimen-
tal observations. In particular, the proposed model reproduces the
dendritic position dependence of spike-timing-dependent plastic-
ity, and the functional synaptic organization on the dendritic tree
based on the stimulus selectivity of presynaptic neurons. Our study
provides a novel conceptual framework for synaptic plasticity and
rewiring.

synaptic plasticity | connectomics | synaptogenesis | dendritic compu-
tation

Introduction
Synaptic connection between neurons is the fundamental sub-
strate for learning and computation in neural circuits. Previous
morphological studies suggest that in cortical microcircuits, often
several synaptic connections are found between the presynaptic
axons and the postsynaptic dendrites of two connected neurons
(1,2,3). Recent connectomics studies confirmed these observa-
tions in somatosensory (4), visual (5), and entorhinal (6) cortex,
and also in hippocampus (7). In particular, in barrel cortex, the
average number of synapses per connection is estimated to be
around 10 (8). However, the functional importance of multisy-
naptic connections remains unknown. Especially, from a compu-
tational perspective, such redundancy in connection structure is
potentially harmful for learning due to degeneracy (9,10). In this
work, we study how neurons perform learning with multisynaptic
connections and whether redundancy provides any benefit, from
a Bayesian perspective.

Bayesian framework has been established as a candidate
principle of information processing in the brain (11,12). Many
results further suggest that not only computation, but learning
process is also near optimal in terms of Bayesian for given stream
of information (13,14,15), yet its underlying plasticity mechanism
remains largely elusive. Previous theoretical studies revealed that
Hebbian-type plasticity rules eventually enable neural circuits to
perform optimal computation under appropriate normalization
(16,17). However, these rules are not optimal in terms of learn-
ing, so that the learning rates are typically too slow to perform
learning from a limited number of observations. Recently, some
learning rules are proposed for rapid learning (18,19), yet their
biological plausibility are still debatable. Here, we propose a
novel framework of non-parametric near-optimal learning using
multisynaptic connections. We show that neurons can exploit
the variability among synapses in a multisynaptic connection to

accurately estimate the causal relationship between pre- and
postsynaptic activity. The learning rule is first derived for a simple
neuron model, and then implemented in a detailed single neuron
model. The derived rule is consistent withmany known properties
of dendritic plasticity and synaptic organization. In particular,
the model explains a potential developmental origin of stimulus-
dependent dendritic synaptic organization recently observed in
layer 2/3 (L2/3) pyramidal neurons of rodent visual cortex, where
presynaptic neurons having a similar receptive field to that of the
postsynaptic neuron tend to have synaptic contacts at proximal
dendrites (20). Furthermore, the model reveals potential func-
tional roles of anti-Hebbian synaptic plasticity observed in distal
dendrites (21,22).

Results
A conceptual model of learning with multisynaptic connections

Let us first consider a model of two neurons connected with
K numbers of synapses (Fig. 1A) to illustrate the concept of the
proposed framework. In themodel, synaptic connections from the
presynaptic neuron are distributed on the dendritic tree of the
postsynaptic neuron as observed in experiments (2,3). Although
a cortical neuron receives synaptic inputs from several thousands
of presynaptic neurons in reality, here we consider the simplified
model to illustrate the conceptual novelty of the proposed frame-
work. More realistic models will be studied in following sections.

The synapses generate different amplitudes of excitatory
postsynaptic potentials at the soma mainly through two mecha-
nisms. First, the amplitude of dendritic attenuation varies from
synapse to synapse, because the distances from the soma are

Significance

Human and animals are capable of rapid learning from a small
dataset, which is still difficult for artificial neural networks.
Recent studies further suggest that our learning speed is
nearly optimal given stream of information, but its underlying
mechanism remains elusive. Here, we hypothesized that the
elaborate connection structure between presynaptic axons
and postsynaptic dendrites is the key element for this near-
optimal learning, and derived a data-efficient rule for dendritic
synaptic plasticity and rewiring from Bayesian theory. We
implemented this rule in a detailed neuron model of visual
perceptual learning, and found that the model well reproduces
various known properties of dendritic plasticity and synaptic
organization in cortical neurons.
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Fig. 1. A conceptual model of multisynaptic learningA) Schematic figure of the model consist of two neurons connected with K synapses. Curves on the left
represent unit EPSP vk (top) and the weighted EPSP wk=gkvk (bottom) of each synaptic connection. Note that synapses are consistently colored throughout
Figure 1 and 2. B) Schematics of non-parametric representation of the probability distribution by multisynaptic connections. In both graphs, x-axes are unit
EPSP, and the left (right) side corresponds to distal (proximal) dendrite. The mean over the true distribution p(vc |x1:n,y1:n) can be approximately calculated
by taking samples (i.e. synapses) from the unit EPSP distribution qv(v) (top), and then taking a weighted sum over the spine size factor gk representing the
ratio p(vk |x1:n,y1:n)/qv(vk) (bottom). C) Illustration of synaptic weight updating. When the distribution p(vc |x1:n+1,y1:n+1) comes to the right side of the original
distribution p(vc |x1:n,y1:n), a spine size factor gk

n+1 become larger (smaller) than gk
n at proximal (distal) synapses. D) An example of learning dynamics at K=10

and qv(v)=const. Each curve represents the distribution of relative spine sizes {gk}, and the colors represent the growth of trial number. E) Comparison of
performance among the proposed method, the monosynaptic rule, and the exact solution (see A conceptual model of multisynaptic learning in SI Appendix
for details). The monosynaptic learning rule was implemented with learning rate η=0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2 (from gray to black), and the initial
value was taken as . Lines were calculated by taking average over 104 independent simulations.

different (23,24). Let us denote this dendritic position depen-
dence of synapse k as vk, and call it as the unit EPSP, because
vk corresponds to the somatic potential caused by a unit con-
ductance change at the synapse (i.e. somatic EPSP per AMPA
receptor). As depicted in Figure 1A, unit EPSP vk takes a small
(large) value on a synapse at a distal (proximal) position on the
dendrite. The second factor is the amount of AMPA receptors in
the corresponding spine, which is approximately proportional to
its spine size (25). If we denote this spine size factor as gk, the
somatic EPSP caused by a synaptic input through synapse k is
written as wk = gkvk. This means that even if the synaptic contact
is made at a distal dendrite (i.e. even if vk is small), if the spine
size gk is large, a synaptic input through synapse k has a strong
impact at the soma (e.g. red synapse in Fig. 1A) or vice versa (e.g.
cyan synapse in Fig. 1A).

On this model, we consider a simplified classical condition-
ing task as an example, though the framework is applicable for
various inference tasks. Here, the presynaptic neuron activity
represents the conditioned stimulus (CS) such as tone, and the
postsynaptic neuron activity represents the unconditioned stim-
ulus (US) such as shock. CS and US are represented by binary
variables and , where denotes the pres-
ence of the CS (US), and subscript n stands for the trial number
(Fig. 1A). Learning behavior of animals and human in such a

conditioning can be explained by the Bayesian framework (26). In
particular, in order to invoke an appropriate behavioral response,
the brain needs to keep track of the likelihood of US given
CS , presumably by changing the synaptic weight
between corresponding neurons. Thus, we consider supervised
learning of the conditional probability vc bymultisynaptic connec-
tions, from pre- and postsynaptic activities representing CS and
US, respectively. From finite trials up to n, this conditional proba-
bility is estimated as , where x1:n={x1,x2,…,xn}
and y1:n={y1,y2,…,yn} are the histories of input and output ac-
tivities, and is the probability distribution of the
hidden parameter vc after n trials. Importantly, in general, it
is impossible to get the optimal estimation of directly from
, because in order to calculate , one first

needs to calculate the distribution by integrating
the previous distribution and the new observation
at trial n+1: {xn+1, yn+1}. This means that for near-optimal
learning, synaptic connections need to learn and represent the
distribution instead of the point estimation . But,
how can synapses achieve that? The key hypothesis of this paper
is that redundancy in synaptic connections is the substrate for the
non-parametric representation of this probabilistic distribution.
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Submission PDFFig. 2. Synaptic rewiring for efficient learningA) Schematic illustration of
resampling. Dotted cyan circles represent an eliminated synapse, and the
filled cyan circles represent a newly created synapse. B, C) Comparison of
performance with/without synaptic rewiring at various synaptic multiplicity
K (B), and bias in initial-sampling λB (C). For each bias parameter λB, the unit
EPSP distribution {vk}was set as , as depicted in the inset. Lines are the means
over 104 simulations.

Below, we show that dendritic summation overmultisynaptic con-
nections yields the optimal estimation from the given distribution

, and dendritic-position-dependent Hebbian synaptic
plasticity updates this distribution.

Dendritic summation as importance sampling
We first consider how dendritic summation achieves the cal-

culation of the mean conditional probability .
It is generally difficult to evaluate this integral by directly taking
samples from the distribution in a biologically plau-
sible way, because the cumulative distribution changes its shape
at every trial. Nevertheless, we can still estimate the mean value
by using an alternative distribution as the proposal distribution,
and taking weighted samples from it. This method is called im-
portance sampling (27). In particular, here we can use the unit
EPSP distribution qv(v) as the proposal distribution, because unit
EPSPs {vk} of synaptic connections can be interpreted as samples
depicted from the unit EPSP distribution qv (Fig. 1B top). Thus,
the mean is approximately calculated as

[1]

where . Therefore, if spine size gk
n represents

the relative weight of sample vk, then dendritic summation over
postsynaptic potentials naturally represents the desired
value ( ). For instance, if the distribution of synapses is
biased toward proximal side (i.e. if the mean is overestimated
by the distribution of unit EPSPs as in Fig. 1B top), then synapses
at distal dendrites should possess large spine sizes, while the spine
sizes of proximal synapses should be smaller (Fig. 1B bottom).

Synaptic plasticity as particle filtering
In the previous section, we showed that redundant

synaptic connections can represent probabilistic distribution
p(vc=vk|x1:n,y1:n) if spine sizes {gk} coincide with their

importance . But, how can synapses

update their representation of the probabilistic distribution
p(vc=vk|x1:n,y1:n) based on a new observation {xn+1, yn+1}?
Because p(vc=vk|x1:n,y1:n) is mapped onto a set of spine sizes
{gk

n} as in Equation 1, the update of the estimated distribution
can be performed by the update of

spine sizes . By considering particle filtering (28) on
the parameter space (see The learning rule for multisynaptic
connections in SI Appendix for details), we can derive the
learning rule for spine size as

This rule is primary Hebbian, because the weight change depends
on the product of pre- and postsynaptic activity xn+1 and yn+1. In
addition to that, the change also depends on unit EPSP vk. This
dependence on unit EPSP reflects the dendritic position depen-
dence of synaptic plasticity. In particular, for a distal synapse (i.e.
for small vk), the position-dependent term (2vk-1) takes a negative
value (note that 0≤vk<1), thus yielding an anti-Hebbian rule as
observed in neocortical synapses (21,22).

For instance, if the new data {xn+1, yn+1} indicates that the
value of vc is in fact larger then previously estimated, then the
distribution p(vc|x1:n+1,y1:n+1) shifts to the right side (upper panel
of Fig. 1C). This means that the spine size gk

n+1 becomes larger
then gk

n at synapses on the right side (i.e. proximal side), whereas
synapses get smaller on the left side (i.e. distal side; bottom panel
of Fig. 1C). Therefore, pre- and postsynaptic activity causes LTP
at proximal synapses induces LTD at distal synapses as observed
in experiments (21,22). The derived learning rule (Eq. 2) also
depends on the total EPSP amplitude . This
term reflects a normalization factor possibly modulated through
redistribution of synaptic vesicles over the presynaptic axon (29).
A surrogate learning rule without this normalization factor will
be studied in a later section.

We performed simulations by assuming that the two neurons
are connected with ten synapses with the uniform unit-EPSP
distribution (i.e. qv(v) = const.). At an initial phase of learning,
the distribution of spine size {gk

n} has a broad shape (purple lines
in Fig. 1D), and the mean of distribution is far away from the
true value (v=vc). However, the distribution is skewed around the
true value as evidence is accumulated through stochastic pre- and
postsynaptic activities (red lines in Fig. 1D). Indeed, the estima-
tion performance of the proposed method is nearly the same as
that of the exact optimal estimation, and much better than the
standard monosynaptic learning rules (Fig. 1E; see Monosynaptic
learning rule in SI Appendix for details).

Synaptogenesis as resampling
As shown above, weight modification in multisynaptic con-

nections enables a near optimal learning. However, to repre-
sent the distribution accurately, many synaptic connections are
required (gray line in Fig. 2B), while the number of synapses
between an excitatory neuron pair is typically around five in
the cortical microcircuits. Moreover, even if many synapses are
allocated between presynaptic and postsynaptic neurons, if the
unit EPSP distribution is highly biased, the estimation is poorly
performed (gray line in Fig. 2C). We next show that this problem
can be avoided by introducing synaptogenesis (30) into the learn-
ing rule.

In the proposed framework, when synaptic connections are
fixed (i.e. when {vk} are fixed), some synapses quickly become
useless for representing the distribution. For instance, in Fig-
ure 2A, (dotted) cyan synapse is too proximal to contribute
for the representation of p(vc|x,y). Therefore, by removing the
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Fig. 3. A detailed model of multisynaptic learning with multiple presynaptic neuronsA) Morphology of the detailed neuron model. Blue and red points
on the dendritic trees represent excitatory and inhibitory synaptic inputs, respectively. B) Dendritic position dependence of unit EPSP. Each dot represents a
synaptic contact on the dendritic tree. C) An example of the visual selectivity patterns of presynaptic neurons. Position and angle of each bar represent the
receptive field (RF) and the orientation selectivity of each presynaptic neuron, where the RF was defined relative to the RF of the postsynaptic neuron (the
central position). Colors represent the firing rates of presynaptic neurons when a horizontal bar stimulus is presented at the RF of the postsynaptic neuron.
Here, the firing rates were evaluated as the expected number of spikes within 20ms stimulus duration (see Stimulus selectivity in SI Appendix for details). The
black circle shows the selectivity of the representative neuron depicted in G-I. D) Examples of input spike trains generated from the horizontal (target) and
vertical (non-target) stimuli. Presynaptic neurons were sorted by their stimulus preference. Note that in the actual simulations, variables were initialized after
each stimulation trial. See Task configuration in SI Appendix for details of the task. E) Somatic responses before and after learning. Thick lines represent the
average response curves over 100 trials and thin lines are trial-by-trial responses. F) The average learning curves over 50 simulations (black line) and examples
of learning curves (gray lines). G-I) An example of learning dynamics under the multisynaptic rule (see Results for details).

cyan synapse and creating a new synapse at a random site, on
average, the representation becomes more effective (Fig. 2A).
Importantly, in our framework, spine size factor gk is proportional
to the informatic importance of the synapse by definition, thus
optimal rewiring is achievable simply by removing the synapse
with the smallest spine size. Ideally, the new synapse should be
sampled from the underlying distribution of {gk} for an efficient
rewiring (31), yet it is not clear if such a sampling is biologically
plausible; hence below we consider a uniform sampling from
the parameter space. Although here we assumed simultaneous
elimination and creation of synaptic contacts for simplicity, the
strict balance between elimination and creation is not necessary,
as will be shown later in the detailed neuron model.

By introducing this resampling process, the model is able to
achieve high performance robustly. With rewiring, a small error
is achieved even when the total number of synaptic connections
is just around three (black line in Fig. 2B). In contrast, more
than 10 synapses are required for achieving the same performance
without rewiring (gray line in Fig. 2B). Similarly, even if the initial
distribution of {vk} is poorly taken, with rewiring the neuron
can achieve a robust learning (black line in Fig. 2C), whereas
the performance highly depends on the initial distribution of the
synapses in the absence of rewiring (gray line in Fig. 2C).

Recent experimental results suggest that the creation of new
synapses is clustered at active dendritic branches (32). Corre-
spondingly, by sampling new synapses near large synapses, per-
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Fig. 4. Synaptic organization on the dendrite by the multisynaptic learning ruleA) Survival ratio of spines with different receptive field (RF) distances from
the postsynaptic neuron. B) Fraction of spines having various orientation selectivity before and after learning. C, D) Fraction of spines survived after learning,
calculated for different orientation selectivity at co-axial/orthogonal RFs (C), and at nearby/faraway RFs (D). We defined the RF of presynaptic neuron j being
orthogonal if , and co-axial otherwise. The RF of neuron j was defined as nearby if rj<0.5, but faraway if rj>1.0 (see Stimulus selectivity in SI Appendix). E)
Relationship between the dendritic distance and the relative weight at the dendrite gk and the soma gkvk/vmax. F) Relationship between the dendritic distance
of a spine from the soma and its RF distance in the visual space. G) The same as F, but calculated for the dendritic branch order, not the dendritic distance.
H) Dependence of normalized RF difference (red), and normalized orientation difference (black) on the between-spine distance were calculated for two
synapses projected from different neurons. We used the Euclidean distance in the visual field for RF distance between presynaptic neurons i and j, and the
normalization was taken over all synapse pairs. I) Distributions of dendritic distance between synapses projected from the same presynaptic neuron before
and after learning. J) Relative spine size difference between spines projected from the same presynaptic neuron or different neurons calculated for pairs with
different spine distance. The relative size difference between spine i and j was defined as |log(gi/gj)|. K) Standard deviation (SD) of spine size distribution at
various orientation selectivity for synapses from presynaptic neurons with nearby RFs (rj<0.5). The distributions for short and long training were taken after
learning from 10 and 1000 samples, respectively. All panels were calculated by taking averages over 500 independently simulated neurons, and the learning
was performed from 1000 training samples.

formance becomes better given a large number of samples (SI
Appendix, Fig. S1A; see Uniform and multinomial sampling in
SI Appendix), though this difference almost disappears under an
explicit normalization (SI Appendix, Fig. S1B).

Detailed single neuron model of learning from many presynaptic
neurons

In the previous sections, we found that synaptic plasticity
in multisynaptic connections can achieve non-parametric near-
optimal learning in a simple model with one presynaptic neu-
ron. To investigate its biological plausibility, we next extend the
proposed framework to a detailed single neuron model receiving
inputs from many presynaptic neurons. To this end, we con-
structed an active dendritic model using NEURON simulator
(33) based on a previous model of L2/3 pyramidal neurons of
the primary visual cortex (34). We randomly distributed 1000
excitatory synaptic inputs from 200 presynaptic neurons on the
dendritic tree of the postsynaptic neuron, while fixing synaptic
connections per presynaptic neuron at K=5 (Fig. 3A; see Mor-
phology in SI Appendix for the details of the model). We assumed
that all excitatory inputs are made on spines, and each spine is
projected from only one bouton for simplicity. In addition, 200
inhibitory synaptic inputs were added on the dendrite to keep the
excitatory/inhibitory (E/I) balance (35). We first assigned a small

constant conductance for each synapse, and then measured the
somatic potential change, which corresponds to the unit EPSP in
the model. As observed in cortical neurons (23), input at a more
distal dendrite showed larger attenuation at the soma, though
variability was quite high across branches (Fig. 3B).

Next, we consider a perceptual learning task in this neuron
model. Each excitatory presynaptic neuron was assumed to be a
local pyramidal neuron, modeled as a simple cell having a small
receptive field (RF) and a preferred orientation in the visual
space (Fig. 3C). Axonal projections from each presynaptic neuron
were made onto five randomly selected dendritic branches of the
postsynaptic neuron regardless of the stimulus selectivity, because
visual cortex of mice has a rather diverse retinotopic structure
(36). In this setting, the post-neuron should be able to infer the
orientation of the stimulus presented at its RF from the presy-
naptic inputs, because cells having similar RFs or orientation
selectivity are often co-activated (37,38). Thus, we consider a
supervised learning task in which the postsynaptic neuron has to
learn to detect a horizontal grading, not a vertical grading, from
stochastic presynaptic spikes depicted in Figure 3D. In reality,
the modulation of lateral connections in L2/3 is arguably guided
by the feedforward inputs from layer 4 (39,40). However, for
simplicity, we instead introduced an explicit supervised signal to
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Submission PDFFig. 5. Dynamics of the multisynaptic learning rule under various conditions A) Learning dynamics under various initial synaptic distributions. The inset
represents the unit EPSP distributions when synaptic connections are biased toward the distal dendrite (black), unbiased (blue), and biased toward the proximal
(light blue). B) Comparison with the monosynaptic learning. We set the learning rate as ηw=0.03, 0.1, 0.3, 1.0, from light gray to black lines. To keep the E/I
balance, the inhibitory weight was set to γI=2.0 for ηw=1.0, and γI=1.25 for the rest. The magenta line is the same as the black line in A. C) Classification
performance after learning with different numbers of synapses per connection with or without rewiring. For the E/I balance, the inhibitory weights were
chosen as γI=2.0, 1.2, 0.75, 0.6, 0.5, 0.4, 0.3, when the number of synapses per connections were K=2, 3, 5, 7, 9, 11, 13, respectively. D) The performance after
learning with various synaptic failure probabilities. Both in panel C and D, the performance was calculated after 1000 trials. E) Learning dynamics under the
surrogate rule. Thin gray lines represent examples. All panels were calculated by taking the means over 50 simulations.

the postsynaptic neuron. In this formulation, we can directly apply
the rule for synaptic plasticity and rewiring introduced in the
previous section (see The learning rule for the detailed model in
SI Appendix). In the rewiring process, a new synaptic contact
was made on one of the branches on which the presynaptic
neuron initially had at least one synaptic contact, to mimic the
axonal spatial constraint. Here, in addition to the rewiring by
the proposed multisynaptic rule, we implemented elimination
of synapses from uncorrelated presynaptic neurons, to better
replicate developmental synaptic dynamics.

Initially, the postsynaptic somatic membrane potential re-
sponded similarly to both horizontal and vertical stimuli, but the
neuron gradually learned to show a selective response to the
horizontal stimulus (Fig. 3E). After 100 trials, the two stimuli
became easily distinguishable by the somatic membrane dynam-
ics (Fig. 3E and F; see Performance evaluation in SI Appendix
for details). Next, we examined how the proposed mechanism
works in detail. To this end, we focused on a presynaptic neuron
circled in Figure 3C, and tracked the changes in its synaptic
projections and spine sizes (Fig. 3G-I). Because the neuron has
a RF near the postsynaptic RF, and its orientation selectivity
is nearly horizontal, the total synaptic weight from this neuron
should be moderately large after learning. Indeed, the Bayesian
optimal weight was estimated to be around 1.5 mV in the model
(vertical dotted line in Fig. 3H), under the assumption of linear
dendritic integration. Overall, the unit EPSPs of the majority
of synapses were initially around 1.0-1.5 mV, while smaller or
larger unit EPSPs were rare due to dendritic morphology (Fig.
3B). To counterbalance this bias toward the center, we initialized
the spine sizes in a U-shape (light gray line in Fig. 3H). In this
way, the prior distribution of the total synaptic weight becomes
roughly uniform (see also Fig. 1B). After a short training, the
most proximal spine (the blue one) was depotentiated, whereas
spines with moderate unit EPSP sizes were potentiated (yellow

and green ones on dark gray line in Fig. 3H). This is because, the
expected distribution of the weight from this presynaptic neuron
shifted to the left side (i.e. to a smaller EPSP) after the training,
and this shift was implemented by reducing the spine size of
the proximal synapse, while increasing the sizes of others (as in
Fig. 1C, but here the change is to the opposite direction). Note
that, the most distal spine (the brown one) was also depressed
here, as the expected distribution got squeezed toward the center.
Finally, after a longer training, the expected distribution became
more squeezed, hence all but the green spine were depotentiated
(black line in Fig. 3H). Moreover, the most distal synapse was
eliminated because its spine size became too small to make any
meaningful contribution to the representation, and a new synapse
was created at a proximal site (open and closed brown circles in
Fig. 3G, respectively) as explained in Figure 2A. This rewiring
achieves amore efficient representation of theweight distribution
on average. Indeed, the new brown synapse was potentiated
subsequently (top panel in Fig. 3I). Note that, in this example,
red and blue synapses were also rewired shortly after this moment
(vertical arrows above red and blue traces in Fig. 3I).

The model reproduces various properties of synaptic organiza-
tion on the dendrite

While we confirmed that the proposed learning paradigm
works well in a realistic model setting, we further investigated its
consistency with experimental results. We first calculated spine
survival ratio for connections from different presynaptic neurons.
As suggested from experimental studies (20,39), more synapses
survived if the presynaptic neuron had a RF near the postsynaptic
RF after learning (Fig. 4A). Likewise, synapses having similar
orientation selectivity to the postsynaptic neuron showed higher
survival rates (Fig. 4B) as indicated from previous observations
(5,39). However, this orientation dependence was evident only
for projections from neurons with a RF in the direction of the
postsynaptic orientation selectivity (blue line in Fig. 4C), and the
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spines projected from neurons with orthogonal RFs remained
to have uniform selectivity even after learning (green line in
Fig. 4C), as reported in a recent experiment (20). In contrast,
both connections from neurons with nearby and faraway RFs
showed clear orientation dependence, though the dependence
was more evident for the latter in the model (Fig. 4D). The
consistencies with the experimental results (Fig. 4A-D) support
the legitimacy of our model setting, though they were achieved
by the elimination of uncorrelated spines, not by themultisynaptic
learning rule per se.

We next investigated changes in dendritic synaptic organiza-
tion generated by the multisynaptic learning. Overall, the mean
spine size was slightly larger at distal dendrites (red line in Fig.
4E), but this trend was not strong enough to compensate the
dendritic attenuation (black line in Fig. 4E), being consistent
with previous observations in neocortical pyramidal neurons (41).
Importantly, neurons with RFs faraway from the postsynaptic RF
likely formed synaptic projections more on distal dendrites than
on proximal ones (Fig. 4F), and at higher dendritic branch orders
than at lower ones (Fig. 4G), as observed previously (20). This
is because, in the proposed learning rule, if pre- and postsynap-
tic neurons have similar spatial selectivity, synaptic connections
are preferably rewired toward proximal positions (Fig. 3G), and
vice versa (Fig. 2A). Moreover, nearby spines on the dendrite
showed similar RF selectivity even if multisynaptic pairs (i.e.,
synapse pairs projected from the same neuron) were excluded
from the analysis (red line in Fig. 4H), due to the dendritic
position dependence of presynaptic RFs. On the other hand,
similarity between nearby spines was less significant in orientation
selectivity (black line in Fig. 4H), as observed previously in rodent
experiments (20,42). These results suggest a potential importance
of developmental plasticity in somatic-distance dependent synap-
tic organization.

In the model, the position of a newly created synapse was
limited to the branches where the presynaptic neuron initially
had a projection, to roughly reproduce the spatial constraint on
synaptic contacts. As a result, although there are many locations
on the dendrite where the unit EPSP size is optimal for a given
presynaptic neuron, only few of them are accessible from the
neuron, hence synapses from the same presynaptic neuron may
form clusters there. Indeed, by examining changes in multisy-
naptic connection structure, we found that the dendritic distance
between two spines projected from the same presynaptic neuron
became much shorter after learning (Fig. 4I), creating clusters of
synapses from the same axons. This result suggests that clustering
of multisynaptic connections observed in the experiments (6) is
possibly caused by developmental synaptogenesis under a spatial
constraint. Furthermore, as observed in hippocampal neurons
(7), two synapses from the same presynaptic neuron had similar
spine sizes if the connections were spatially close to each other,
but the correlation in spine size disappeared if they were distant
(red line in Fig. 4J). On the other hand, spine sizes of two synapses
fromdifferent neurons were always uncorrelated regardless of the
spine distance (black line in Fig. 4J).

Lastly, we studied the spine size distribution. In the proposed
framework, the mean spine size does not essentially depend on
presynaptic stimulus selectivity due to normalization, but the
variance may change. In particular, the spine size variance is
expected to be small if the presynaptic activity is highly stochastic,
because the distribution of spine sizes stays nearly uniform in
this condition, while the spine size variance should increase upon
accumulation of samples. Indeed, in the initial phase of learning,
the variance of spine size went up for projections from neurons
with horizontal orientation selectivity (gray line Fig. 4K), though
the spine size variance from other presynaptic neurons caught up
eventually (black line Fig. 4K). In this regard, a recent experimen-
tal study found higher variability in postsynaptic density (PSD)

areas for projections fromneurons sharing orientation preference
with the postsynaptic cell, though the data was from adult, not
from juvenile mice (5).

The multisynaptic rule robustly enables fast learning
The correspondence with experiment observations discussed

in the previous section supports the plausibility of our framework
as a candidate mechanism of synaptic plasticity on the dendrites.
Hence, we further studied the robustness of learning dynamics
under the proposed multisynaptic rule. Below, we turn off the
spine eliminationmechanism that is not compensated by creation,
as this process affects the learning dynamics.

In the proposed model, if the initial synaptic distribution on
the dendrite qv(v) is close to the desired distribution pv(v), spine
size modification is in principle unnecessary. In particular, the
optimal EPSPs of most presynaptic neurons are small in our L2/3
model (Fig. 3C); hence most synaptic contacts should be placed
on distal branches on average. Indeed, when the initial synaptic
distribution was biased toward the distal side, improvement in
classification performance became faster (black vs blue lines in
Fig. 5A). This result suggests that the synaptic distribution on the
postsynaptic dendrite may work as a prior distribution.

We next compared the learning performance with the stan-
dard monosynaptic learning rule in which the learning rate is a
free parameter (see Monosynaptic rule for the detailed model in SI
Appendix). If the learning rate is chosen at a small value, the neu-
ron took a very large number of trials to learn the classification
task (light gray line in Fig. 5B). On the other hand, if the learning
rate is too large, the learning dynamics became unstable and the
performance dropped off after a dozen trials (black line in Fig.
5B). Therefore, the learning performance was comparable with
the multisynaptic rule only in a small parameter region (ηw∼0.1).
By contrast, in the multisynaptic rule, stable fast learning was
achievable without any fine-tuning (magenta line in Fig. 5B).

As expected from Figure 2, the proposed learningmechanism
worked well even if the number of synapses per connection
was small (Fig. 5C). Without rewiring, the classification task
required seven synapses per connection for an 80% success rate,
but three was enough with rewiring (Fig. 5C). Moreover, the
learning performance was robust against synaptic failure (Fig.
5D). Although local excitatory inputs to L2/3 pyramidal cells
have a relatively high release probability (43), the stochasticity
of synaptic transmission at each synapse may affect learning
and classification. We found that even if the half of presynap-
tic spikes were omitted at each synapse (see Task configuration
in SI Appendix for details), the classification performance was
still significantly above the chance level (Fig. 5D). Does the
presynaptic stochasticity only add up noise? This was likely the
case when the release probability was kept constant because the
variability in the somatic EPSP height grows with the variance
of {gk} in this scenario (SI Appendix, Fig. S2A; see Presynaptic
stochasticity in SI Appendix for details). On the other hand, if
matching exists between presynaptic release probability and the
postsynaptic spine size as often observed in experiments (44,45),
the Fano factor of the somatic EPSP height decreased as the
performance went up (SI Appendix, Fig. S2B), because gk can
be jointly represented by the pre- and postsynaptic factors. This
result indicates that the variability in somatic EPSP may encode
the uncertainty in the synaptic representation.

In the proposed model, competition was assumed among
synapses projected from the same presynaptic neuron, but it is
unclear if homeostatic plasticity works in such a specific manner.
Thus, we next constructed a surrogate learning rule that only
requires a global homeostatic plasticity. In this rule, the impor-
tance of a synapse was not compared with other synapses from the
same presynaptic neuron, but was compared with a hypothesized
standard synapse (see The surrogate learning rule in SI Appendix).
When the unit EPSP size of the standard synapse was chosen
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appropriately, the surrogate rule indeed enabled neuron to learn
the classification task robustly and quickly (Fig. 5E). Overall,
these results support the robustness and biological plausibility of
the proposed multisynaptic learning rule.

Discussion

In this work, first we have used a simple conceptual model to
show: (i) Multisynaptic connections provide a non-parametric
representation of probabilistic distribution of the hidden param-
eter using redundancy in synaptic connections (Fig. 1AB); (ii)
Updating of probabilistic distribution given new inputs can be
performed by a Hebbian-type synaptic plasticity when the output
activity is supervised (Fig. 1C-E); (iii) Elimination and creation of
spines is crucial for efficient representation and fast learning (Fig.
2A-C). In short, synaptic plasticity and rewiring at multisynap-
tic connections naturally implements an efficient sample-based
Bayesian filtering algorithm. Secondly, we have demonstrated
that the proposed multisynaptic learning rule works well in a
detailed single neuron model receiving stochastic spikes from
many neurons (Fig. 3). Moreover, we found that the model
reproduces the somatic-distance dependent synaptic organization
observed in the L2/3 of rodent visual cortex (Fig. 4F and G).
Furthermore, themodel suggests that the dendritic distribution of
multisynaptic inputs provides a prior distribution of the expected
synaptic weight (Fig. 5A).

Experimental predictions
Our study provides several experimentally testable predic-

tions on dendritic synaptic plasticity, and the resultant synap-
tic distribution. First, the model suggests a crucial role of de-
velopmental synaptogenesis in the formulation of presynaptic
selectivity-dependent synaptic organization on the dendritic tree
(Fig. 4F and G), observed in the primary visual cortex (20). More
specifically, we have revealed that theRF-dependence of synaptic
organization is a natural consequence of the Bayesian optimal
learning under the given implementation. Evidently, retinotopic
organization of presynaptic neurons is partially responsible for
this dendritic projection pattern, as a neuron tends to make
a projection onto a dendritic branch near the presynaptic cell
body (8,46). However, a recent experiment reported that RF-
dependent global synaptic organization on the dendrite is absent
in the primary visual cortex of ferrets (47). This result indirectly
supports the non-anatomical origin of the dendritic synaptic orga-
nization, as a similar organization is arguably expected in ferrets
if the synaptic organization is purely anatomical.

Our study also predicts developmental convergence of synap-
tic connections from each presynaptic neuron (Fig. 3G and Fig.
4I). It is indeed known that in adult cortex, synaptic connections
from the same presynaptic neuron are often clustered (4,6). Our
model interprets synaptic clustering as a result of an experience-
dependent resampling process by synaptic rewiring, and predicts
that synaptic connections are less clustered in immature animal.
In particular, our result suggests that synaptic clustering occurs in
a relatively large spatial scale (∼100μm; as shown in Fig 4I), not
in a fine spatial scale (∼10μm). This may explain a recent report
on the lack of fine clustering structure in the rodent visual cortex
(5).

Furthermore, our study provides an insight on the func-
tional role of anti-Hebbian plasticity at distal synapses (21,22).
Even if the presynaptic activity is not tightly correlated with the
postsynaptic activity, that does not mean the presynaptic input
is not important. For instance, in our detailed neuron model,
inputs from neurons having a RF faraway from the postsynaptic
RF still helps the postsynaptic neuron to infer the presented
stimulus (Fig. 3). More generally, long-range inputs are typically
not correlated with the output spike trains, because the inputs
usually carry contextual information (48), or delayed feedback
signals (49), yet play important moduratory roles. Our study

indicates that anti-Hebbian plasticity at distal synapses prevents
these connections from being eliminated, by keeping the synaptic
connection strong. This may explain why modulatory inputs are
often projected to distal dendrites (48,49), though active dendritic
computation shuold also be crucial especially in case of Layer 5
or CA1 pryramidal neurons (24).

Related works
Previous theoretical studies often explain synaptic plastic-

ity as stochastic gradient descent on some objective functions
(17,40,50,51), but thesemodels require fine-tuning of the learning
rate for explaining near-optimal learning performance observed
in humans (13,14) and rats (15), unlike our model. Moreover, in
this study, we proposed synaptic dynamics during learning as a
sample-based inference process, in contrast to previous studies
in which sample-based interpretations were applied for neural
dynamics (52).

The relationship between presynaptic stochasticity and the
achievement level of learning has been studied before, yet the
previous models required an independent tuning of pre- and
postsynaptic factors (53,54). On the other hand, in our frame-
work, the experimentally observed pre-post matching (44,45) is
enough to approximately represent the uncertainty in learning
performance by variability in the somatic membrane dynamics
(SI Appendix, Fig. S2). It is known that presynaptic stochasticity
can self-consistently generate a robust Poisson-like spiking ac-
tivity in a recurrent network of leaky integrate-and-fire neurons
(55). Hence, the uncertainty information reflected in the somatic
membrane dynamics can be transmitted to downstream neurons
via asynchronous spiking activity.

On the anti-Hebbian plasticity at distal synapse, previous
modeling studies have revealed its potential phenomenological
origins (56), but its functional benefits, especially optimality, have
not been well investigated before. Particle filtering is an estab-
lished method in machine learning (28), and has been applied to
artificial neural networks (57), yet its biological correspondence
had been elusive. A previous study proposed importance sam-
pling as a potential implementation of Bayesian computation in
the brain (58). In particular, they found that the oblique effect
in orientation detection is naturally explained by sampling from a
population with biased orientation selectivity. However, sampling
was performed only in neural activity space, not in the synaptic
parameter space unlike our model, and the underlying learning
mechanism was not investigated either.

Previous computational studies on dendritic computation
have been emphasizing the importance of active dendritic process
(24), especially for performing inference from correlated inputs
(59), or for computation at terminal tufts of cortical layer 5
or CA1 neurons (40). Nevertheless, experimental studies sug-
gest the summation of excitatory inputs through dendritic tree
is approximately linear (60,61). Indeed, we have shown that a
linear summation of synaptic inputs is suitable for implementing
importance sampling.Moreover, we have demonstrated that even
in a detailed neuron model with active dendrites, a learning rule
assuming a linear synaptic summation works well.

Material and Methods
In the conceptual model, p(xn=1) was set at 30%, and the

conditional probability vc was randomly chosen from [0,1) at
each simulation (not at each trial). Except for Figure 2B, the
number of connections was kept at K = 10. In the detailed single
neuron model, we constructed a model of L2/3 pyramidal neuron
using NEURON simulator (33), based on a previous model (34).
Further details are given in SI Appendix.

Code availability
The simulation codes for the detailed neuronmodel are avail-

able at ModelDB (http://modeldb.yale.edu/225075 with access
code ”1234”).
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