
LOBO – Evaluation of Generalization Deficiencies in
Twitter Bot Classifiers*

Juan Echeverrı́a1, Emiliano De Cristofaro1, Nicolas Kourtellis2,
Ilias Leontiadis2, Gianluca Stringhini3, and Shi Zhou1

1University College London 2Telefonica Research 3Boston University

Abstract
Botnets in online social networks are increasingly often affect-
ing the regular flow of discussion, attacking regular users and
their posts, spamming them with irrelevant or offensive con-
tent, and even manipulating the popularity of messages and
accounts. Researchers and cybercriminals are involved in an
arms race, and new and updated botnets designed to defeat
current detection systems are constantly developed, rendering
such detection systems obsolete.

In this paper, we motivate the need for a generalized eval-
uation in Twitter bot detection and propose a methodology to
evaluate bot classifiers by testing them on unseen bot classes.
We show that this methodology is empirically robust, using bot
classes of varying sizes and characteristics and reaching sim-
ilar results, and argue that methods trained and tested on sin-
gle bot classes or datasets might not able to generalize to new
bot classes. We train one such classifier on over 200,000 data
points and show that it achieves over 97% accuracy. The data
used to train and test this classifier includes some of the largest
and most varied collections of bots used in literature. We
then test this theoretically sound classifier using our methodol-
ogy, highlighting that it does not generalize well to unseen bot
classes. Finally, we discuss the implications of our results, and
reasons why some bot classes are easier and faster to detect
than others.

1 Introduction
Automated malicious activity on social networks such as Twit-
ter has been a significant problem for many years now. Fake
accounts controlled by bots are used to perform various types
of abuse, e.g., sending spam [?, ?], participating in reputation-
manipulation schemes [?, ?, ?, ?], spreading malware [?], and
phishing [?]. Large quantities of malicious accounts are often
created and controlled by single miscreants, forming so-called
botnets [?]. To counter this problem, the research community
has developed a number of systems to detect and block bot
accounts on social networks. Such approaches look at either
profile characteristics of fake accounts that distinguish them
from legitimate ones [?, ?], at differences in the social graph
of fake and legitimate accounts [?, ?, ?], at the way in which
they are controlled by their operators [?, ?, ?], or at the content

*Published in the Proceedings of the 2018 Annual Computer Security Ap-
plications Conference (ACSAC 2018).

that they post, looking for signs of maliciousness [?, ?, ?].
Despite the large body of research on detecting bots on Twit-

ter, this is still an open problem. One reason for this is that
bot detection is an inherently adversarial problem, and once
a defense mechanism is known, adversaries can modify their
modus operandi and avoid detection [?]. Another reason, more
fundamental, and often overlooked by the research commu-
nity is that detection systems based on machine learning re-
quire example datasets of bots to be trained on, and these of-
ten contain biases. For example, if a system was trained on
a dataset containing only bot accounts belonging to one bot-
net, it would learn the idiosyncrasies (e.g., the times at which
messages are typically sent or the spam templates used) of that
specific botnet and become very accurate in detecting it. How-
ever, when trying to identify bots belonging to other botnets
it would perform very poorly, because rather than learning the
general characteristics of bots on Twitter, it would overfit on
a single family of bots. Even having multiple families of bots
represented in the training set, there is no guarantee that the
system will be able to identify new bot types or new botnets as
they appear.

In this paper, we set to study this problem in a systematic
way. Firstly we collect a dataset that contains more than 20
different bot classes , most of them used in previous bot de-
tection efforts as ground truth [?, ?, ?, ?, ?]. Secondly, we
propose a methodology to overcome this issue and produce
a generalized bot detection method. This methodology takes
into account multiple types of bots, and leverages state-of-art
machine learning algorithms for detection of different types of
bots. The training and testing we introduce is done using an
effective “Leave-One-Botnet-Out” (LOBO) method, which al-
lows the machine learning algorithms to train on data produced
by many and diverse bots, and test its accuracy on datasets
which include bots with behaviors never seen before by the
classifiers.

In particular, we use this novel methodology on these
classes of Twitter bots testing on over 1.5 million bots. We
show that the typical approach of training a model to detect
bots using single bot dataset is extremely effective, effortlessly
reaching >97% accuracy. However, the way these datasets are
collected prevents them from being representative of all bots
in Twitter. We demonstrate that when we mix bot classes eq-
uitably in a single dataset, the prediction power of the same
classifier drops significantly. More importantly, we demon-
strate that even this bot-detection system that has been trained

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/195307577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with a variety of bots is incapable of detecting new bot fam-
ilies that were never observed before. In fact, some “target”
botnets completely mislead the classifier resulting to less than
1% detection accuracy, meaning 99% of the bots in that class
were classified as users.

This methodology provides a proxy for the real world gen-
eralization performance of the bot classifier being evaluated.
It further aids in identifying how much each target class is re-
lated to the rest of the bot classes without the need of extensive
and costly inspection.

Our results provide important insights to the research com-
munity including a way to compare bot detection algorithms,
beyond their stated accuracy. We further suggest high general-
ization performance does not necessarily follow high accuracy.
We finally show the positive insight that even a small portion
of certain botnets can be enough to fully identify them when
adding it to a common learning algorithm, allowing a classi-
fier to quickly scale, and incrementally consider different and
newly revealed bots. In summary, this paper makes the follow-
ing contributions:

• Shows the need to go beyond common machine learning
metrics like accuracy, precision, recall, etc. for Twitter
bot detection. As even getting near perfect values for all
of them for single bot classes is not necessarily followed
by the ability to detect other botnets.

• Addresses that need by providing a framework with
which to evaluate expected generalization of a bot de-
tection algorithm by selectively leaving bot classes and
behaviours out of the training data.

• Collects and combines the biggest and broadest botnet li-
brary to date, which it uses to train a Twitter bot classifier.

• Provides a Twitter bot classification strategy that reaches
accuracy values over 97% with a small number of com-
monly used features, and evaluates its performance using
the generalization test mentioned earlier.

• Introduces a framework to explore the trade-offs between
adding more data from a single bot class and diversifying
the training data with data from a different bot class. Then
analyzes the amount of new samples needed to reach rea-
sonable performance on an target bot class, and discuss
on why differences in this metric happen.

2 Related Work
Bot Detection. Early approaches to detect bots on Twitter
rely on account characteristics that are typical of fake ac-
counts [?, ?]. Yang et al. [?] show that these approaches have
a hard time keeping up with the evolution of bots, and that
they require constant retraining. Another line of work looks
at the way in which bots connect with other accounts, forming
social networks that are very different from the ones built by
legitimate accounts [?, ?, ?]. However, Liu et al [?] show that
these techniques can be gamed by adversaries by exploiting
the temporal dynamics used for detection.

Other approaches leverage bots’ similarity in their opera-
tion, such as synchronization in posting messages [?], accesses
by a common set of IP addresses [?, ?], or similar uses of the
accounts [?]. Additional work focuses on the content posted
by bots. Thomas et al. [?] analyze the content of the Web
pages linked by tweets, learning to identify signs of spam.
Lee et al. [?] look for signs of evasion commonly used by
cybercriminals, e.g., multiple HTTP redirections. More re-
cently, Nilizadeh et al. [?] presented POISED, a system that
detects malicious messages (e.g., spam) by identifying ones
with anomalous spreading patterns across the Twitter graph.

Fake Accounts. Thomas et al. [?] analyze over a million ac-
counts suspended by Twitter and, in follow-up work [?] traf-
ficking of fake Twitter accounts. Yang et al. [?] look at social
relationships between spam accounts on Twitter, while Dave et
al. [?] measure click-spam in ad networks, and Gao et al. [?]
analyze spam campaigns on Facebook. Stringhini et al. [?, ?]
study the market of Twitter followers and proposes strategies
to detect them in the wild. Finally, there have been a few ef-
forts both in and out of academia to identify single botnets
in their entirety. Some of them have obtained large botnets
based on geographic anomalies [?] and temporal anomalies
[?]. There have been also analysis on botnets promoting topics
or products, including diet pills [?] and even political candi-
dates [?].

Our work takes features from these efforts, but changes one
important aspect of them. We explicitly test against unseen
classes to evaluate the performance of a classifier. We cre-
ate a test for this, which is inspired by cross validation and is
thought of as a proxy for generalization of bot classification. It
will be clear that for a bot detection strategy to be deemed as
“generalizable”, the minimum standard that should be passed
is the test designed in this paper.

3 Datasets
Two datasets were compiled for this paper. First, a botnet
dataset that contains the aggregated content generated from
a variety of bot datasets (some previously used in research as
ground truth [?, ?, ?]) and, second, a real-user dataset.

Each dataset includes the information available from the
user’s profile, and all the retrievable tweets at collection time in
accordance to Twitter’s API limitations. This means that each
account in our dataset contains a maximum of 3,200 tweets
authored or retweeted by that account. The way these datasets
were finally constructed is illustrated in Fig. 1.

3.1 Bot Datasets
In this work, we study to which extent various bot types

have different signatures that can potentially lead to detection
failure when they are first discovered (before enough of their
samples are identified and included to the training set). To do
this, we build a dataset of 20 different botnet types, each with
different purpose and characteristics. To our knowledge, this is
the most extensive and diverse collection of Twitter bots used
so far in the literature.

While most of the datasets have high percentage of bot ac-

2

Previous research
datasets

DeBot (from API)

Public Research
Datasets

Journalist attack
Datasets

Real User Dataset
(Through BFS)

Twitter
User IDs

User
Profiles

User
Tweets

Twitter API

Profile
Features

Tweet
Features

General user
features

(30)

Full
Dataset Sub-Sampling

Dataset
C30K

Dataset
C500

Figure 1: Data collection strategy.

counts associated with them, a few might have small amounts
of false positives in them. This is a trade-off that needs to be
made to avoid inducing bias by filtering these datasets before
classification. Do note that we are only reporting the number
of accounts that, at collection time, had not been suspended
by Twitter or marked as private. This is because suspension or
marking an account as private prevents us from collecting any
of its information.

Many of these datasets were obtained from past papers ei-
ther from authors or directly querying each of the user IDs in
them against the Twitter API. Some of them come from an
API themselves, and a couple of extra ones are not related to
research, but the result of botnet attacks on two journalists and
their own listing of the IDs that were involved in those attacks.
A summary of these datasets is presented in Table 1. Overall,
what follows is how we aggregated one of the largest and most
varied bot datasets in research.

The Star Wars Bots. Dataset A consists of bot accounts that
tweet exclusively quotes from Star Wars novels. It was re-
ported by [?]. The Star Wars bots all share characteristics like
a creation period, id range and small numbers of friends and
followers. This dataset consists of over 355,000 accounts.

The Bursty Bots. The Bursty Bots is a botnet created on
Twitter with the objective of enticing users into blacklisted
sites [?, ?]. It’s strategy was simple by using a mention and
a shortened or obfuscated URL. They share some character-
istics like having zero friends and followers, and only a few
tweets created immediately after account creation, only to re-
main completely silent afterwards. This dataset B consists of
over 500,000 accounts.

DeBot. Debot is a bot detection service that generates daily
reports of bot activity, and stems from the work of [?][?]. It
comes with an API which we were able to query to obtain
over 700,000 accounts that the service detected as bots. This
dataset C is unique in our list, as it is actually the result of a
detection strategy, and not either ground truth or a single bot-
net. The main feature that DeBot detection exploits is warped
correlation in the tweet timing of different accounts.

Fake Followers. We explore different fake follower datasets
that have been used in various research studies. Dataset D is
used in [?] and is just described as being fake followers. In
contrast, datasets Q-T are described in [?] as being purchased
fake followers from different fake follower services (Q) fast-
followerz, (S) intertwitter, and (T) twittertechnology. All these

datasets are used as ground truth.
Traditional spambots. Datasets H and I are traditional spam
campaigns, pushing links to scam sites. Unfortunately the for-
mer dataset was unavailable for collection, due to all but one
of its accounts being suspended. Datasets K and J are both
groups of accounts spamming job offers. All these datasets
were used in [?], while H was also used in [?].
Social spambots. Social spambots are a relatively new breed
of bots which are better described in [?]. In summary, Social
spambots have evolved to accurately mimic the characteristics
of real users, making them very difficult to identify. Dataset
F are retweeters of an Italian political candidate. Dataset E
consists of spammers of paid apps for mobile devices. Finally,
dataset G is made of spammers of products on sale at Ama-
zon.com.
Honeypot bots. Dataset V consists of bots collected using
honeypot accounts. A honeypot account is a fake account con-
trolled by a researcher. The interactions with the account are
logged, assuming they can only come from malicious accounts
since the honeypot account is fake and generally inactive. This
dataset was made available through the DARPA twitter bot
challenge [?]. It is used as ground truth in that competition.
Journalist attack bots. In August 2017, journalists Brian
Krebs and Ben Nimmo were subject to an attack by twitter
bots. They logged some of the bots and published a dataset 1.
We collected the accounts from these two datasets and added
them to our bot datasets as datasets W (the attack on Brian
Krebs) and X (the attack on Ben Nimmo). These datasets are
not used as ground truth and, to the best of our knowledge,
have not been used in research before.
Human Annotated Bots. Datasets L,M,N and O have been
identified by humans as bots, and were used as ground truth
in [?]. They were divided by the amount of followers that the
bots have. The bands in which they are divided are 900-1100
followers(L), 90k to 110k followers(M), 900k to 1m follow-
ers(N), and over 9m followers(O). Noticeably, the intermedi-
ate groups with different numbers of followers were not avail-
able for collection.

3.2 Aggregated Bot Dataset
Our aggregated bot dataset is over 1.5 million bots with all

their available tweets. To the best of our knowledge, this is by
far the largest bot dataset that has been analyzed in research.
1https://krebsonsecurity.com/tag/twitter-bots/

3

ID Name BTS(%) BTS(Avg) Size
A Star Wars Bots — — 357,000
B Bursty Bots 2.75 0.04 500,000
C DeBot 7.67 0.09 700,000
D Fake followers 96.79 0.90 721
E Social spambots #1 92.35 0.85 551
F Social spambots #2 99.37 0.96 3,320
G Social spambots #3 94.10 0.87 458
H Traditional spambots #1 98.28 0.93 872
I Traditional spambots #2 100.00 0.85 1
J Traditional spambots #3 66.08 0.60 283
K Traditional spambots #4 97.81 0.90 977
L ∼ 1k followers 20.89 0.21 387
M ∼ 100K followers 10.90 0.13 534
N ∼ 1M followers 1.32 0.02 229
O ∼ 10M followers 0.00 0.00 26
Q Fake followers-FSF 100.00 0.96 33
S Fake followers-INT 100.00 0.95 64
T Fake followers-TWT 95.34 0.89 624
V HoneyPot bots (Darpa) 27.69 0.30 2,521
W Attack on Ben Nimmo 59.09 0.54 1,558
X Attack on Brian Krebs 83.05 0.78 728

Table 1: Different bot datasets, their identifiers, botometer metrics,
and number of accounts collected for each of them

It contains bots from several different sources, including con-
tent polluters, fake followers, silent accounts, phishing bots,
and political bots (albeit, in a wide array of quantities for each
class).

3.3 User Dataset
To contrast against the bot datasets, we face the problem

of finding a suitable real-user dataset of similar size. While
we could just randomly sample Twitter to get an equal amount
of users, this methodology might result in including a small
amount of bots in our real-user class. To minimize this issue,
we use crawling techniques that attempt to give us an unbiased
sample of the general real-user population in Twitter. Please
note that this methodology does not guarantee that no bots will
be represented in this dataset: it is just a way of minimizing
their presence.

We begin with a real user as a seed, and follow his outgoing
connections (friends only, not followers). We manually verify
that each of the users in the first level are real users. We use
up to 4 steps and obtain over 1 million English speaking users.
We assume that a real user is unlikely to follow bots. A similar
approach was used in [?]. While there might be a few bots in
this dataset, the vast majority of it must be real users.

3.4 Botometer Scores
Botometer [?] (previously botornot) is a public API that

provides a score based on whether an account is likely to be
a bot or a user. It has been used to verify bot accounts in
other research [?]. For our different bot classes, botometer
does not perform well enough. This can be seen in Table 1,
which shows the average botometer scores for each of the bot
classes. To evaluate whether this tool would be able to predict
the dataset, we provide another metric which is the percentage
of the queried accounts that receive a botometer score over 0.5

User CBot Ci

Train UcTrain Bci Test Bci Test Uc

Randomly split into train/test
(with or without balancing/subsampling)

First Training round

Full ModelLOBO Model

Train UcTrain {Bci - Bct}

Classifier testing on
target class

LOBO Model Full Model

Test CtBot Ct

General dataset consisting of users and
several classes of bots or botnets

Train UcTrain Bci

Figure 2: Abstract representation of the LOBO test. The classifier
gets trained on all bot classes BCi except the target class BCt, and
then tested on the target class to assess how well the classifier gener-
alizes.

. Because of rate limiting, we only collected botometer scores
for up to 1,000 randomly selected accounts belonging to each
of the classes.

We can see that many of these bot classes are overwhelm-
ingly classified as users, for example, only 2.75% of the Bursty
Bots are classified as bots, and less than 10% of DeBot bots
(dataset C) are classified as bots. Both of them with average
botometer scores less than 0.1, indicating that they are “very
likely” to be users.

Different bot classes will achieve reasonable and even per-
fect performance on this bot detection task, but variability be-
tween bot classes is very clear.

4 Methodology - The LOBO test
Evaluating bot classifiers faces an important challenge. For
obvious reasons, we are unable to evaluate the performance on
the bots that we haven’t seen. This is a real problem, as bots
mutate all the time, and botmasters are actively and creatively
trying to get around any form of detection (which sometimes
means suspension from the service).

In this paper we propose a new form of testing accuracy for
generalization of bot detection strategies. We call it the LOBO
test, for Leave One Botnet Out. It derives inspiration from
cross validation where a section of the available data is kept
out, and used for testing on N number of “fold.” Then, the
section of the data used for testing changes on each fold.

The LOBO test was created to assess whether a classifier
can detect a bot class, which we will call the target class,
by training only with other bot classes, explicitly without any
direct knowledge of the target class itself. It was conceived
strictly in the context of a binary classification between bots
and users, to specifically address the variety of bot classes that

4

such a classifier would face.
We assume the LOBO test to be a proxy for generalization.

For example, let us take the Bursty bots as the target class. We
train the classifier with all other datasets except dataset B, then
we test the classifier against dataset B. If the classifier performs
well on the Bursty bots when it hasn’t actually trained on them,
then it has “generalized” from the seen bot classes to this target
class. A flowchart of how the test should be applied can be
seen in Fig 2.

Train-Test split. We now face the need to compare between
a classifier that has been trained with and without the target
class. Addressing this need, we decided to use a 70-30 train-
test split instead of cross validation. Each bot class is randomly
and independently sampled so that 70% of each bot class is in
the training set and 30% in the testing set. This is to ensure that
the smallest classes will still be represented and tested prop-
erly. This strategy allows us to test a single bot class using the
30% test data for that specific class, which has never been seen
by the classifier.

One could argue that comparing accuracy on 30% of the
target class with accuracy tested on 100% of the target class is
misleading. However, this split is not strictly part of the LOBO
test, we find it useful to test on at least 30% of each bot class
to provide context to the performance of the classifier on the
target class when it has already trained on it.

5 Features for Classification
This section describes the features to be used in our classifier.
Most of these features have been used in research before and
are relatively common place. We placed specific importance
on not including graph information. Twitter imposes strong
rate limits on graph information, making it very time consum-
ing to collect the followers of a popular user (e.g., a celebrity
or politician) from Twitter’s API. Additionally, any real time
implementation of this classifier would need to depend on a
few API calls, which does not bode well with the inclusion of
graph information.

Table 2 shows all the features that are used in the classifiers
analysed in this paper. Also, the way the datasets at hand were
finally prepared for feature extraction is illustrated in Fig. 1.
Next, we define some of the features that might not be straight
forward.

5.1 User Features
We include several features obtainable directly from a user

profile. Seconds active and days active is the number of sec-
onds and days between account creation and last obtainable
tweet.

Their maximum value is 1 month and 3 years respectively,
to account for differences in collection dates. While these two
features might seem redundant, seconds active is able to de-
tect bots that tweet immediately after creation date and then
fall silent, which have been detected in large numbers [?, ?].
”Days active” is better suited to address how long a user has
been tweeting. Merging them in a single feature would possi-
bly lose some of the details. Total tweet count is the number of

lifetime tweets the account has created or retweeted, and this
number comes directly from the profile and is not limited to
the 3200 tweets that we get through the API. It includes tweets
that have been deleted. We consider these profile features be-
cause they can be obtained from a single API call to the user
profile (which includes the user’s last tweet).

5.2 Tweet Features
We use the tweets and their text obtained from users to ex-

tract useful features. The most basic ones such as number of
tweets and retweets, average tweet and retweet length, etc., are
considered, and other more elaborate features are computed
and used.

Hashtags. Hashtags are a way of grouping topics within Twit-
ter. We have created features from the number of hashtags in
analyzed tweets and retweets, number of unique hashtags, and
the unique hashtag ratio. Unique hashtags are included to ac-
count for the difference between accounts tweeting many times
using a small set of hashtags against people who are involved
and tweeting over many different hashtags.

Mentions. Mentions are a way of publicly addressing another
user. They are also commonly abused by spammers to generate
engagement with unsuspecting users. We use the number of
mentions in tweets and in retweets as features. We also include
the number of unique mentions as a feature.

Edit Distance. To account for tweets that are equal or with
small variations, we use the edit distance between tweets and
retweets of a user. The edit distance (or Levenshtein distance)
between two strings is the minimum number of one-character
edits to turn one string into the other. Because of process-
ing time, we only evaluate this feature for the last 200 tweets
and the last 200 retweets of each user; each of these tweets
is compared to the rest, and then the mean of the distances is
computed.

Geolocation. Depending on user preference, each tweet can
have geolocation embedded, consisting of latitude and longi-
tude. We use the number of tweets that are geolocated, as well
as the percentage of the analyzed tweets that have this infor-
mation, as features.

Tweet Sources. When apps are used to publish tweets through
Twitter’s API, an app publisher needs to define the ”source”
of the tweet. We use the number of unique sources used to
publish the tweets as a feature. While some older botnets rely
on using a single source to publish all of their tweets [?, ?],
other botnets may use as many sources as possible to confuse
detection efforts. Regardless of the assumption, we calculate
this feature for each of the users in our dataset.

Favorites. Marking a tweet as a favorite or “liking” it, is an
action a user can take to endorse a specific tweet. We use the
number of tweets a user has liked as a feature. However, we
also include how many of a user’s tweets have been marked as
favorites by other users, and the ratio between liked tweets and
analyzed tweets (or favorites per tweet). This summarizes both
directions of the endorsement: how much the user being ana-
lyzed endorses other users, and how much other users endorse
the user at hand.

5

User Features
User ID # Followers # Friends
Friend To Follower Ratio # User favorites username length
Seconds active Days active Total tweet count
Profile description length

Tweet Features
Geolocated tweets % of Geolocated Tweets # Mentions (Rtw)
Avg. Edit distance (Rtw) # Hashtags # Mentions (Twt)
Avg. Edit distance (Twt) # URLs URLs (per tweet)
Tweets analyzed # Favorites Favorites (per tweet)
APIs used # Unique hashtags Unique hashtag ratio
Unique mentions Avg. tweet length Avg. retweet length
Retweets analyzed

Table 2: Features employed for classification.

6 Experiments
In this section, we describe the experimental setups used, ma-
chine learning classifiers applied and results extracted using
the LOBO test under different scenarios.

6.1 Subsampling
Dataset with class size ≤ 30k In real life, botnets will come
in varying sizes. Furthermore, the amount of data that will be
available for training each bot class will vary even more. As
an easy example, the bot classes analyzed in this paper range
from tens of accounts to hundreds of thousands. To provide
an opportunity for our smallest bot classes, in this experimen-
tal setup we limit the numbers of the three larger bot classes.
With this in mind, we include only 30,000 randomly sampled
bot accounts from each of these datasets (A, B, and C). How-
ever, we include all of the bots in datasets D-X for a total of
∼ 105,000 bots. The reasoning behind this is to not allow our
three large datasets to exceed 100 times the largest of our other,
smaller, datasets.

To contrast these bots against users, we randomly sample
our real user dataset to only include 105,000 accounts. The
aggregation of these 105k users and 105k bots will be referred
to as the dataset with class size ≤ 30k, C30K for short.

Dataset with class size = 500 Dataset C30K is still quite im-
balanced, having classes with 30,000 bots and classes with 26
bots. To measure the effect of bot classes without being biased
by their size, we create another bot dataset. This balanced
sub-sampled bot dataset contains 500 random instances from
each of the bot classes that have over 500 accounts in them.
This means a few of the bot datasets have been excluded, but
choosing 500 as the size still allows us to have 14 bot datasets
to evaluate on. This bot dataset is made of 7,000 bot instances.

To contrast against this bot dataset, we add an equivalent
number of users from our user dataset. The aggregation of both
of these datasets will be referred to as the dataset with class
size = 500, or C500. Please note that this dataset is created on
the fly every time it is needed. Fig. 1 shows the data collection
flow from the bot class identification to our C30K and C500
datasets.

6.2 General Classifiers
We utilize our user dataset against the bot training data. All

the features presented in previous Section have been calcu-

C30K C500
Algorithm Acc. AUC Acc. AUC

LGBM 97.84% 0.98 93.93% 0.94
XGBC 95.91% 0.96 91.24% 0.91
Random Forest 97.02% 0.97 91.54% 0.92
DecissionTree 95.99% 0.96 86.93% 0.87
AdaBoost 94.29% 0.94 88.88% 0.89

Table 3: Classifier performance on C30K and C500 datasets.

True
Negatives

False
Positives

False
Negatives

True
Positives

LGBM 31161 344 1010 30152
XGBC 30767 738 1824 29338
Random Forest 31073 432 1438 29724
DecissionTree 30241 1264 1250 29912
AdaBoost 30002 1503 2078 29084

Table 4: Confusion Matrices for different classifiers trained on
dataset C30K.

lated for every user, making each user representation a 30-
dimension vector. We use some of the most common classi-
fiers (mostly based on trees). The classifiers to test are Gra-
dient Boosted Trees (using Xgboost and LightGBM), Random
Forests, Decision Trees, and AdaBoost.

All these algorithms are deliberately trained using their most
standard and naive python implementation. Naturally, the per-
formance evaluation is done purely on the test data which was
not “seen” during training.

Performance Evaluation - C30K Table 3 shows the results of
a binary classification attempt using the dataset C30K. All of
the algorithms show clear signs of an easy separation task, with
accuracies over 95% in most cases. This level of accuracy in
bot classification is not unheard of: it has been claimed before
several times (e.g., [?, ?, ?]).

To further reiterate that this is not a fluke, we also check the
area under the ROC curve and the confusion matrix for some
of the results generated (Table 4). As can be seen, almost all
bots are classified as bots, and almost all users are classified as
users, for all the algorithms tested (remember that the testing
set was 30% of the C30K dataset, i.e., ∼63k instances total).
This result was repeated several times just for consistency, all
with random 70-30 training-test splits and showed little vari-
ation. One could argue that our LGBM classifier is compara-
ble to the state of the art in bot detection, having been trained
with over 200,000 data points spanning a wide variety of bot
classes, achieving accuracy of over 97%.

Performance Evaluation - C500 We need to know the per-
formance on a dataset where the bots have the same numbers,
since we cannot always count on having the benefit of large
bot data corpuses like DeBot, Star Wars bots or Bursty bots.

We evaluate performance on dataset C500 with the same
strategy, using the same standard and naive versions of several
popular classification algorithms. The results, while still en-
couraging, show clear deterioration in accuracy. In Table 3,
we see more than 5% loss in accuracy for the best performing
algorithm, and a steeper 8% loss for decision trees.

6

6.3 LOBO Test I - C30K
We run a LOBO test on our C30K bot dataset with class

size ≤ 30k. It follows the steps in Fig. 2. The results are
summarized in Tab. 5, where:

• Target Class is the dataset (Bct) or bot class that is being
target of training

• Full Model Accuracy is the accuracy of the binary model
trained on the training set of all classes (Train Bci +
Train Uc). It is calculated on the test subset of the target
class (Test Ct). It provides the expected performance of
the general (full) model on the target class, this is useful
for context.

• LOBO Model Accuracy is the accuracy of the model
trained on the dataset that excludes the target class
(Train {Bci − Bct} + Train Uc) when tested on the
full target class (Bct) . This measure can be tested against
the complete target class because none of it has been used
for training the model2.

• Acc. gain This is just LOBO Model Accuracy sub-
tracted from Full Model Accuracy. It represents how
much a model’s performance improves when trained on
a the target class, as compared to its performance with-
out training on the target class. It is a subtraction because
differences will be substantial, so a ratio would have been
misleading.

The results speak for themselves. The average expected ac-
curacy on a target bot class that the classifier has not been
trained on is 54.88%. This is almost as bad as random (al-
though we are deliberately excluding the user class from the
testing). As would be expected, there are some exceptions that
perform well like the Bursty bots (B). However, even before
excluding the target class from the training data some of the
classes performed as poorly as 19%.

It is noticeable that some of these classes are actually ”los-
ing” accuracy when being included in the test set, this is most
likely due to the large difference in size between the test set
for the LOBO model (Bct) and the test set for the Full model
(TestCt). We further note that the average accuracy for all
classes is well below the 97% achieved originally, which only
means that we are performing better on the large classes than
the smaller ones.

6.4 LOBO Test II - C500
One could make the argument that the differences in the per-

formance of these classifiers is due to their large imbalance
between their classes. We use dataset C500 to test if this is
true.

For this test, there is an expected level of variability, as se-
lecting just 500 instances of the large bot classes leaves large
percentages of them outside of the training set. In the case of
the Bursty Bots (B) or DeBot bots (C), over 99.9% of the class
is kept out of the training. To mitigate this effect, we do this
2Because we are testing only on the bot class, accuracy and recall are the same
because false positives and true negatives are zero

Target
Class

Full Model
Accuracy

LOBO Model
Accuracy

Accuracy
Gain

A 97.41% 100.00% 60.34%
B 97.43% 99.98% 97.30%
C 98.41% 96.19% 76.85%
D 97.91% 75.11% 68.79%
E 97.83% 92.21% 23.23%
F 97.82% 98.30% 0.36%
G 97.84% 87.59% 11.79%
H 97.97% 73.47% 0.69%
J 97.79% 90.67% 93.29%
K 97.71% 97.92% 2.35%
L 97.76% 87.39% 89.15%
M 97.81% 80.62% 76.59%
N 97.75% 90.54% 71.62%
O 97.82% 100.00% 92.31%
Q 97.76% 80.00% 69.70%
S 97.74% 72.22% 73.44%
T 97.80% 73.45% 69.87%
V 98.24% 72.80% 47.16%
W 97.91% 71.67% 64.83%
X 97.76% 85.71% 79.12%

Table 5: LOBO test on dataset C30K

measurement 100 times for each of the target dataset. Each of
these times we:

• Randomly generate the C500 dataset.

• Randomly split the resulting dataset 70% for training and
30% for testing 3.

• Train a classifier on the training set that has just been cre-
ated (this is referred to as the Full Model)

• Test the Full model on the 30% testing set of the class
that will be evaluated as target. This gives the Full Model
Accuracy.

• Remove all instances of the target bot class from the train-
ing set.

• Train a new “LOBO model” on the new training set that
lacks the target class.

• Test the accuracy of the LOBO model on the full target
class (which was recently removed from the training set),
and obtain LOBO Model Accuracy

All of these steps are performed 100 times for each of the
bot classes. What results is the ability to evaluate how a model
trained on balanced bot classes can be expected to perform
against a target bot class which is previously unseen by this
model. Furthermore, it allows performance comparison for
when this model has seen just 500 of the target class against
not seeing any, with some surprising results. Table 6 shows
average results per bot class. In this table we added a new
measure for context: 1-Class Model Acc. This provides the
accuracy when the model is trained and tested on a single bot
class (dividing the data in the same 70/30 split).

3In contrast to LOBO test I, now every bot class gets a similar number of
instances for training and testing

7

Target
Class

1 - Class
Model Acc.

Full Model
Accuracy

LOBO Model
Accuracy

Accuracy
Gain

A 99.80% 93.90% 62.01% 31.89%
B 99.74% 93.92% 98.14% -4.22%
C 96.42% 94.22% 84.81% 9.41%
D 92.37% 94.17% 86.65% 7.52%
E 97.42% 94.11% 49.19% 44.92%
F 99.47% 94.02% 0.71% 93.31%
H 94.56% 94.92% 2.19% 92.73%
K 99.70% 94.05% 1.97% 92.08%
M 98.43% 94.25% 66.02% 28.23%
T 92.79% 94.25% 88.79% 5.46%
U 91.14% 95.16% 39.44% 55.73%
V 92.22% 94.57% 77.86% 16.71%
W 94.53% 94.21% 89.82% 4.39%

Avg. 96.05% 94.29% 57.51% 36.78%

Table 6: Lobo test on dataset C500

Another interesting fact is that in this test the accuracy on
unseen classes is almost the same as shown in 5 but the aver-
age accuracy of the full model is not. In this test, the per class
average accuracy for the full model is very close to the ex-
pected 92.1% shown in Tab. 3. It is likely due to the balancing
of bot classes.

7 Beyond the LOBO test
7.1 Relatively Stable Results

To evaluate whether these results are stable or not, we take
the standard deviation of the LOBO model accuracy from
LOBO test II. This was made on dataset C500 and there are
14 classes to analyze. Almost all of these target classes show
low standard deviation of less than 4%, meaning that regard-
less of the way the dataset is sampled and split, the accuracy
on each target (unseen) class remains stable. This suggests
that the LOBO test will provide consistent results overall. The
only two exceptions with a standard deviation above 4% are
the Star Wars bots at 24% standard deviation, and the Social
Spambots # 1 at 13% .

7.2 Learning Rate
To further analyse the gap of accuracy between the Full

Model and the LOBO model, here we measure how fast the
LOBO model can improve its performance by moving a few
of the target bots, from the test data to the training data. The
learning rate is measured on a single sampled dataset from
LOBO Test II. For example, take the Bursty bots as the tar-
get class. Initially, none of the 500 Bursty bots are included
in the training data, and all the 500 form the whole of the test
data.

Consider X as the step size. At the first step, we randomly
choose X Bursty bots and remove them from the test data, and
then add them to the training data (in addition to the training
data of the other bot classes). We train the classifier and record
the prediction results. In the second step, again, we randomly
choose X Bursty bots from the test data, and move them to
the training data. And so on. The test finishes at the 9th step
when both the test data and the training data contain about 250
Bursty bots. The step sizes are fixed at 0, 2, 4, 8, 16, 32,

0 2 4 8 16 32 64 128 256
Samples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 3: Mean (Blue) and error range (blue shade 95% confidence)
for the classifier accuracy on target classes according to the number
of samples seen from the target class

0 2 4 8 16 32 64 128 256
Samples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

A
C
F
H
V

Figure 4: Error range for mean (blue shade) and classifier accuracy
against number of samples seen (for specific classes)

64, 128, and 256 (basically it is a 2x scale but we traded the
first step for zero bots which matches LOBO test II).Note that,
this being a single C500 dataset, the difference in accuracy
between the 0 bot case and LOBO test II is expected. We also
use the full 500 instances of each of the classes except the
target, instead of limiting to 70%.

We repeat the above process 50 iterations, and then calculate
the average prediction accuracy at each step for the target class.
Repetition is needed because each of the times different bots
from the target class are being sent into the training set, and
it affects the overall accuracy differently. Finally, we run the
learning rate test for each bot class in Table 6 as a target class.
Detailed results are shown in Table 7.

Figure 3 shows the average accuracy after X samples for all
bot classes that have been tested, with the shaded area repre-
senting the 95% confidence interval. The overall trend would
suggest that the classifier has learned to identify most target
classes of bots after a few examples. In contrast, Figure 4
shows that the performance for different classes varies signifi-
cantly. It contains the same shaded area as Figure 3 to show the
stark differences between the average and the widely varying
performance of each target class.

We can further notice bot class V (caught by honeypots)
making no reasonable improvement regardless of how many
instances of it has been shown to the classifier. Finally, we can

8

(a) Star Wars Bots and Bursty Bots (b) HoneyPot Bots

Figure 5: T-SNE plot of all the bot classes against real users.

Tgt.
Class

Number (X) of samples of target class in training data
0 2 4 8 16 32 64 128 256

A 59.4 71.7 89.4 96.4 98.8 99.9 100 100 100
B 97.4 97.4 97.7 97.4 98.1 98.6 99.0 99.6 99.8
C 86.7 86.5 86.9 87.3 87.5 88.0 88.6 90.9 92.9
D 86.7 86.8 86.7 86.8 87.0 87.6 87.8 89.0 90.6
E 64.9 68.6 72.2 79.8 84.9 89.4 92.8 94.7 95.9
F 0.8 1.7 21.3 72.0 86.8 94.9 96.9 97.6 98.3
H 1.7 2.3 4.3 10.5 25.7 49.4 66.9 76.3 81.6
K 4.0 17.8 51.9 85.3 95.2 96.6 98.5 99.2 99.5
M 64.2 64.8 66.3 67.3 70.1 74.2 80.8 87.5 95.3
T 89.9 89.9 89.6 89.6 89.5 89.7 90.1 90.2 91.0
U 33.7 34.0 34.6 36.9 38.5 43.2 50.0 59.1 69.6
V 80.0 79.7 79.7 79.9 80.0 80.7 81.0 82.2 84.3
W 90.9 91.0 90.9 91.1 91.2 91.5 91.7 92.2 93.0

Table 7: Classifier accuracy (%) - trained C500 excluding all but X
samples of target class.

see some classes that increase dramatically from 50 to 99%
accuracy (bot class A) and from 0-95% accuracy (bot class
F), after only 16 and 32 instances, respectively. This implies
learning to identify the whole class while training only on 6%
of it.

Notably, this section has shown the learning speeds for some
target classes is much higher than others. Improvements of
over 20 accuracy percent points for the addition of 2 single
instances are seen in more than one class. Finally, different
bot classes show various degrees of improvement. Some of
the target classes, worryingly, show almost no improvement at
all.

7.3 TSNE plot
In an effort to further understand why some of these bot

classes seem easier to predict than others, we’ve created a
t-distributed stochastic neighbor embedding (TSNE) plot [?]
with the dataset with class size ≤ 30k. This is a dimension-
ality reduction algorithm that is also helpful to visualize high
dimension datasets in two dimension plots. In Figure 5a it is
clearly shown that there are clusters readily formed by differ-
ent bot classes, where each one is plotted in a different colour,

and users are always in black.
Figure 5a emphasizes the Star Wars bots and the Bursty

bots, which show clear cut groups and clusters that are rarely
mixed with the real users.

In contrast, Figure 5b tells a different tale. We can see the
honeypot bots (dataset B) mostly sharing the same ”strands”
with the real users. These bots are the ones the LOBO test
showed to be difficult to classify, so it is no surprise that they
look similar to our user dataset.

8 Discussion
8.1 Accuracy and Generalization

The average accuracy on target classes was very similar in
LOBO tests I and II. Even after accounting for the fact that the
LOBO test I accuracies on target classes might be affected by
chance (since it was not repeated 100 times) it is interesting
to see that both tests have almost the exact same accuracy on
target bot classes.

8.2 Improvements with small data additions
There is a silver lining that is clearly noticeable in this eval-

uation. Apparently, it does not matter how much data of a bot
class is added in proportion to the dataset size, improvement
in performance follows.

However, there is one more important fact. In the LOBO
test II, we are testing the classifier on the complete target class.
This means, potentially, that adding 500 bots to a simple clas-
sifier allows us to further detect the full botnet (in this case,
357,000 instances) at over 99% accuracy up from 62%. If we
further delve into the details, we can see from the learning
speed test that adding 16 samples gets us to 99% accuracy on
the Star Wars bots.

8.3 Scalability
While re-training a classifier several times can be computa-

tionally expensive, we have empirically shown that using a few
examples on a dataset with balanced bot classes yields similar

9

and stable results. Reducing the size of each bot class from
several thousands to 500 decreases the needed resources sig-
nificantly. Resource-wise, this specific implementation of the
classifiers used a relatively large amount of storage capacity,
mostly because we are analysing all the tweets for each of the
users. This ends up being several terabytes of data. However,
most, if not all, of the methodology can be implemented in par-
allel. Collecting, parsing, sampling, training (each) classifier,
and testing can easily be done in parallel.

The importance of this method goes beyond this, as it can
readily allow multiple bot classes to be plugged in as needed,
provided there are more than a few samples of them.

9 Conclusion
In this paper, we investigated the resilience of bot detec-
tion systems on Twitter. We showed that these systems per-

form very well when trained on homogeneous data, but that
their performance drops dramatically when they are tested on
classes of bots that they have not observed before. We also
proposed a methodology to evaluate how well we can expect
any given classifier to generalize on unseen bot data. It uses
different bot datasets or classes as a proxy for the new and un-
seen classes. These unseen classes may be developed in the
future, but may also be already present but undetected. This
finding has important implications for our research field, since
it shows that detection systems might not generalize very well,
a problem that becomes particularly important in the fast paced
and inherently adversarial world of social network abuse.

Acknowledgments. This project has received funding from
the European Union’s Horizon 2020 Research and Innovation
program under the Marie Skłodowska-Curie ENCASE project
(Grant Agreement No. 691025).

10

	Introduction
	Related Work
	Datasets
	Bot Datasets
	Aggregated Bot Dataset
	User Dataset
	Botometer Scores

	Methodology - The LOBO test
	Features for Classification
	User Features
	Tweet Features

	Experiments
	Subsampling
	General Classifiers
	LOBO Test I - C30K
	LOBO Test II - C500

	Beyond the LOBO test
	Relatively Stable Results
	Learning Rate
	TSNE plot

	Discussion
	Accuracy and Generalization
	Improvements with small data additions
	Scalability

	Conclusion

