
Anomaly-based Exploratory Analysis and Detection of
Exploits in Android Mediaserver

Guillermo Suarez-Tangil13, Santanu Kumar Dash1,
Pedro García-Teodoro2, José Camacho2, Lorenzo Cavallaro3

1University College Lonson (UK), 2University of Granada (Spain)
3Royal Holloway University of London (UK)

ABSTRACT
Smartphone platforms are becoming increasingly complex,
which gives way to software vulnerabilities difficult to iden-
tify and that might allow malware developers to gain unau-
thorized privileges through technical exploitation. How-
ever, we maintain that these type of attacks indirectly ren-
ders a number of unexpected behaviors in the system that
can be profiled. In this work we present CoME, an anomaly-
based methodology aiming at detecting software exploita-
tion in Android systems. CoME models the normal be-
havior of a given software component or service and it
is capable of identifying any unanticipated behavior. To
this end, we first monitor the normal operation of a given
exploitable component through lightweight virtual intro-
spection. Then, we use a multivariate analysis approach
to estimate the normality model and detect anomalies. We
evaluate our system against one of the most critical vul-
nerable and widely exploited services in Android, i.e., the
mediaserver. Results show that our approach can not only
provide a meaningful explanatory of discriminant features
for illegitimate activities, but can also be used to accu-
rately detect malicious software exploitations at runtime.

1. INTRODUCTION
Mobile devices like smartphones and tablets are becom-

ing more and more accepted platforms among users world-
wide. The number of tablets and smartphones is expected
to be about one order of magnitude higher than the num-
ber of PCs and laptops in the next years [1, 2]. The in-
creasing popularity of tablets and smartphones has led to
an exponential growth of the number of risks and vulnera-
bilities in them [3, 4, 5, 6]. Currently, Android is reported
as the mobile operating system (OS) most widely affected
by these threats with around 97% of the present-day mal-
ware designed targeting Android systems.

The primary line of defense in Android is the security ar-
chitecture of the device where an app runs in an isolated
environment with a permission system restricting apps priv-
ileges. However, this isolation does not prevent apps from
exploiting system or kernel vulnerabilities to bypass plat-
forms protection. This is evidenced by a large number of
critical vulnerabilities reported over the last years1 [7]. Al-
though some works and proposals have been developed in
the literature to fight against vulnerabilities and exploits,

1www.cvedetails.com/product/19997/Google-Android.html

the topic still remains highly challenging [8, 9].
As malware becomes sophisticated, it makes use of eva-

sive techniques to hide its actions. A well established ap-
proach to evading detection mechanisms is to make ac-
tions contingent on a rare context. For example, malware
which rely on time bombs starts actions only at a specific
point in time, while malware that rely on logic bombs re-
main dormant until the condition guarding the malicious
action comes true [10]. In such a setting it is infeasible to
eke out the malicious action from the app in a controlled
setting. Thus, the best option is to resort to an online mon-
itor that keeps continuously checking for anomalous ac-
tions that are indicative of malice [11]. System calls are
a widely used feature for this [12, 13]. Anomaly detection
systems are highly interesting in this context, specially to
fight against zero-day attacks and vulnerability exploita-
tion [14].

The difficulty in designing any anomaly detection system
is coming up with a model of normality. This becomes even
more challenging while considering systems when there
are multitude of actions such as system calls, file I/O ac-
tions, network transactions, etc. that may happen in a
very short interval. Consequently, the best way to perform
anomaly detection with little to no domain knowledge is to
monitor all possible events of interests and let the anomaly
detector figure out relevance of those events. Unfortu-
nately, as has been observed in [15], this does not scale
as the number of features is increased. Therefore, there
is a need for an anomaly detection system that scales with
the number of features introduced while still being able to
pick up the most relevant events of interest correspond-
ing to an anomalous behavior. Additionally, most anomaly
detection techniques yield black box models with an unin-
terpretable linkage between input and output data.

In this paper, we introduce a novel anomaly-based ap-
proach aimed at detecting malicious activities intended to
cause some harm to the target system. We advocate the
use of Multivariate Statistical Network Monitoring (MSNM)
to address aforementioned problems with anomaly detec-
tion. MSNM was originally proposed by Camacho et al.
in [15] for anomaly detection in network environments. In
this work, we apply it to detecting anomalous actions on
Android systems that are indicative of malice. To this end,
we show how the proposed anomaly detector effortlessly
extracts events and features of interest by using the well-
known Principal Component Analysis (PCA) as a building

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/195307509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


block. We also show that MSNM not only provides a means
to easily process a multitude of features but also provides
an easily interpretable model of normality and anomaly.
When using MSNM, we do not need to perform a feature
selection on first place, avoiding the risk of discarding use-
ful information for anomaly detection. In particular, we
focus our attention on Android platforms, our main contri-
butions being as follows:

• The proposed anomaly-based methodology relies on
the estimation of a normality model for a given An-
droid service. For that, the normal expected opera-
tion of a given service is first estimated by collecting
system information at multiple levels of granularity.
CopperDroid [16] will be used as the monitoring sys-
tem to collect such information.

• The multivariate statistical approach proposed in [15]
(MSNM) supports the overall anomaly detection pro-
cess. Despite the inherent capabilities of such tech-
niques to handle a number of features of diverse na-
ture and origin, they are not commonly used for mal-
ware detection for the time being, which constitutes
a novelty in the field.

• A relevant and well publicised vulnerability in the An-
droid libraries is used to test our proposal: the Stage-
fright bug2. For that, we first estimate the normal op-
erating conditions (NOC) of the system’s mediaserver—
the sub-system responsible for processing media file
in Android. Then, we feed the mediaserver with both
legitimate and crafted files aimed at exposing the vul-
nerability. By analyzing the associated behavior in all
the cases, we shall show the capacity of MSNM in de-
tecting the malicious ones.

The rest of the paper is organised as follows. Section 2
introduces our anomaly detection system, named CoME
and designed to identify behaviors that are anomalous to
normal operating conditions. Section 3 is afterwards de-
voted to evaluate our proposal. For that, in this section,
Android mediaserver is first described as our case study,
and then the detection experimental results obtained are
provided and properly discussed. Section 4 presents some
principal works in the field of malware detection in An-
droid, with especial emphasis in vulnerabilities exploita-
tion. Finally, Section 5 summarizes the contributions of
the work.

2. CoME: ANOMALY DETECTION IN AN-
DROID

In this section, we present a novel proposal aimed at
detecting anomalies in Android platforms. For that, a usual
methodology is followed [17] (Fig. 1):

• Monitoring: The target system is monitored in order
to collect information regarding the overall activity
taking place on it. This information is parameterized
to represent (usually in terms of a feature vector) the

2http://www.androidcentral.com/stagefright

Figure 1: Functional architecture for anomaly detection.

‘state’ or ‘behavior’ of the system at a given instant.
This way, a sequence of observations are disposed as
the system operates and evolves over time.

• Training: Provided a set of observations correspond-
ing to the ‘normal/legitimate’ operation of the sys-
tem, a ‘normality’ model is first estimated by consid-
ering some mathematical theory (e.g., Markov mod-
els, fuzzy theory, neural networks, etc.).

• Detection: Further observations gathered from the
monitored system are subsequently evaluated by us-
ing the ‘normality’ model in order to estimate a devi-
ation score. From that, we conclude that an anomaly
is occurring if the deviation score obtained surpasses
a given threshold. Otherwise, the observation (or se-
quence or observations) analyzed is classified as ‘nor-
mal’.

Our anomaly detection proposal is named CoME, as it
is based on the combined use of two well-known tools:
CopperDroid and MEDA/MSNM. The first one is used as
a monitoring tool for Android devices [16]. The second
one, MSNM, is part of the functionality programmed in
the Multivariate Exploratory Data Analysis (MEDA) tool-
box [18] as a detection approach proposed and success-
fully applied to detect anomalies in network environments.
In its current version, CoME is an offline tool where each
of the two component modules (CopperDroid for monitor-
ing; and MEDA/MSNM, for data analysis) is independent
of the other.

In what follows, CopperDroid and MSNM are briefly de-
scribed.

2.1 Android Monitoring with CopperDroid
CoME makes use of CopperDroid [16] as its dynamic

analysis component, which runs the Android OS in a sand-
box, records system calls and their arguments, and recon-
struct high-level behaviors. These reconstructed behav-
iors have already been shown to be effective in malware
classification as they can point out which Android services
and state-modifying actions were carried out by the mal-
ware [19]. The classes of high-level behaviors include net-
work accesses, file accesses, Binder methods, and file ex-
ecution as described in Table 1. CopperDroid provides full
access to the arguments of all transactions going through
the Binder mechanism for inter-process and inter-component
communication [20].



(a) Code from service initialisation (b) Behavior observed by CopperDroid

Figure 2: Sample trace logged by CopperDroid. Figure 2a shows code from the init process which starts services and
assigns permissions to the spawned process in Android, while Figure 2b shows the corresponding low-level system calls
captured by CopperDroid.

Feature Set Contained Details
Network Access IP, port, and network traffic size
File Access File name/type, name classes
Binder Methods Method name and parameters
Execute File File name/type, user permissions
Systemcalls Low-level syste calls

Table 1: Behavioral classes and details extracted by Cop-
perDroid. A subset
of this information is used as features by MSNM.

CopperDroid relies on Virtual Machine Introspection (VMI) [21]
to perform out-of-the-box behavioral analysis. The intro-
spection is lightweight, however, and designed to be di-
rectly applicable to all Android OS versions without re-
quiring any modifications to the Android system. A sam-
ple trace captured by CopperDroid is shown in Figure 2.
The code snippet shown in Figure 2a is an excerpt from
the init process. In Figure 2a, the init process is shown
to be setting the process group identifier (ll. 1), effective
group identifier of the calling process (ll. 5) and the sup-
plementary group identifiers for the calling process (ll. 15).
The corresponding system calls observed for these actions
can be seen in Figure 2b as setpgid (ll. 9), setgid32 (ll. 14)
and setgroups32 (ll. 19), respectively.

2.2 MSNM Detection Methodology
The MSNM acronym stands for Multivariate Statistical

Network Monitoring, and is related to a novel PCA-based
multivariate detection approach proposed by Camacho et
al. in [15] for anomaly detection in network environments.
MSNM is supported on the MEDA toolbox [18] and is a
reformulation of the approach by Lakhina et al. in [22] fol-
lowing state-of-the-art procedures in PCA-based Multivari-
ate Statistical Process Control (MSPC) [23] in the process

industry.
In what follows, the basics of MSNM methodology are

introduced.

2.2.1 Principal Component Analysis
PCA is intended to linearly transform a given original

set ofM variables into a new and reduced set ofA uncorre-
lated variables, the so-called principal components or PCs.
This way, if X is a data matrix with M variables associ-
ated with a given phenomenon and J observations of each
variable, PCA reduces its dimension from M variables to
A PCs by finding the A-dimensional latent subspace of the
most variability. The PCs are the eigenvectors of XT · X
for mean centered X and sometimes after some form of
scaling.

PCA follows the next equation:

X = TA ·PT
A +EA (1)

where TA is the J × A score matrix, PA is the M × A
loading matrix, and EA is the J ×M residual matrix. The
maximum variance directions are obtained from the eigen-
vectors of XT ·X, and they are ordered as the columns of
PA by explained variance. The rows of TA are the projec-
tions of the original J observations in the new latent sub-
space. EA is the matrix that contains the residual error,
which plays a crucial role in anomaly detection, as shown
afterwards. The projection (score) on the PCA subspace of
a new observation is obtained as follows:

tnew = xnew ·PA (2)

where xnew is a 1 ×M vector representing a new object
and tnew is a 1 × A vector representing its projection to
the latent subspace, while



enew = xnew − tnew ·PT
A (3)

corresponds to the associated residuals.

2.2.2 Detecting Anomalies with MSNM
In PCA-based MSPC, it is usual to monitor a pair of

statistics, the D-statistic and the Q-statistic, in a pair of
monitoring charts. On the one hand, the D-statistic or
Hotelling’s T2 statistic, is computed from the projections
(scores) of the original observations. On the other hand,
the Q-statistic or SPE, represents the compression of the
residuals (the quantity remaining from the projections).
Although it is widely accepted that the SPE provides of
higher detection capability than the D-statistic, both statis-
tics are complementary. The D-statistic and the Q-statistic
for observation n can be computed from the following equa-
tions:

Dn =

A∑
a=1

(
tan − µta
σta

)
(4)

Qn =

M∑
m=1

e2nm (5)

where tan represents the score of the observation in the a-
th component, µta and σta stand for the mean and the stan-
dard deviation of the scores of that component in the cali-
bration data, respectively, and enm represents the residual
value corresponding to the m-th variable.

The analysis is performed in two successive stages or
phases:

1. Calibration. According to the Statistical Process Con-
trol theory, calibration data needs to be inspected so
that only common causes of variation remain. Typi-
cally, this is carried out by removing outliers. After
outliers removal, available data are used for the cali-
bration of the system, i.e., matrices TA, PA and EA
are obtained for ‘normal’ traffic. From these, the D
and Q statistics for normal traffic can be computed,
and upper control limits (UCLs) at a certain confi-
dence level α can be established for the monitoring
charts:

UCLDα =
A · (N2 − 1)

N · (N −A) F(A,(N−A)),α (6)

UCLQα = θ1 ·

[
zα
√

2θ2h2
0

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

] 1
h0

(7)

where F(A,(N−A)),α is the F distribution with A and

N−A degrees of freedom, θn =
∑rank(X)
a=A+1 (λa)

n, rank(X)
is the rank of the matrix of data X and λa the eigen-
values of the matrix 1

N−1
· ETA · EA, h0 = 1 − 2θ1θ3

3θ22
,

and zα is the 100 · (1−α)% standardized normal per-
centile.

When enough calibration data is available, it is usual
to replace eqs. (6) and (7) with the UCLs computed to
be above 100·(1−α)% of the calibration observations.
Thus, UCLs are set to values so that only 100 · α% of
the calibration observations surpass the associated
values. A typical choice is α = 0.01, so that only 1%
of the calibration observations surpass the UCL.

2. Detection. Afterwards, subsequent new data are mon-
itored and analyzed using these control limits. Thus,
anomalies are detected when the limits are signifi-
cantly or consistently exceeded. That is, when either
a few observations surpass significantly the limits or
a set of consecutive observations surpass them.

2.2.3 Diagnosing anomalies
Additionally to the detection, the contribution of the

variables (or information gain) can also be abstracted to
understand the root-causes of an anomaly. This can be
done with oMEDA plots [24].

The oMEDA algorithm was designed to identify the vari-
ables related to specific artefacts, like clusters, trends or
outliers, found in the projection of the data in a given sub-
space. This subspace could be determined by PCA or other
related methods. In particular, anomalies in the D-st or
Q-st are outliers in the PCA subspace and in the residual
subspace, respectively.

The oMEDA technique is applied with a dummy variable
d designed to cover the observations of interest. Let us as-
sume the following example: a number of subsets of obser-
vations form different clusters of anomalies {C1, · · · , CN}.
If we are interested in identifying, for instance, the vari-
ables related to the deviation of Ci from Cj without con-
sidering the rest of clusters, a dummy variable d is created
so that observations in Ci are set to 1, observations in Cj
are set to -1, while the remaining observations are left to
0. Similarly, Ci can be compared to the center of coordi-
nates (the data average) by setting d so that observations
in Ci are set to 1 and the remaining to 0. Doing this with
a cluster of one single observation is similar to issuing a
contribution plot of that observation. Finally, values other
than 1 and -1 can be included in the dummy variable if de-
sired, which is useful for diagnosing trends in the scores.
oMEDA is then performed using this dummy variable as
follows:

d2
A,(i) = 2 · (xt(i) − xtA,(i)) ·D · xA,(i) (8)

and

D =
d · (d)t

‖d‖2 . (9)

where x(i) and xA,(i) contain the elements for variable i in
X and its projection XA in the PCA subspace. If oMEDA
is used to compute the contribution of a single observation
x, then x(i) and xA,(i) are scalars.

The strength of MSNM is that it provides of a proce-
dure to detect and diagnose anomalies in data sets with
almost unlimited numbers of features. This comes from: i)
the ability of PCA to combine and compress a large set



of variables into a reduced number of principal compo-
nents; ii) the sensitivity of D-statistic and Q-statistic to
identify anomalies in both model and residuals, i.e. to de-
tect changes of behavior in comparison to the calibration
data; and iii) the capability of oMEDA to point out the fea-
tures in which the anomalous behavior is apparent. The
outstanding capability of the MSNM approach to scale to
very large numbers of features is the result of PCA being
the simplest multivariate model, in the sense that it con-
siders a linear relationship among the features.

3. EXPERIMENTAL EVALUATION
In this section, we first describe the case study used to

evaluate CoME. Then, we present the experimental results
and the use of our anomaly detector. A discussion is finally
performed.

3.1 Case Study: Media Server
The Android mediaserver is one of the most critical and

widely exploited services in Android. Although in this work
we focus on this service, we emphasize that our framework
is designed to monitor and analyze any given service or
app running on the device.

3.1.1 Monitoring Important Features
The mediaserver in Android is typically invoked from

the system media player or any app that uses the system
media player.

Android provides a native-level framework called Stage-
fright for playing media files. Stagefright comes packaged
with popular media codecs necessary to play audio and
video files. It achieves this through two modules known
as audioflinger and surfaceflinger. An app which uses
the media player typically invokes the mediaserver through
Android’s bespoke inter-process communication scheme:
the Binder protocol. Our dynamic analysis platform Cop-
perDroid offers the unique advantage of logging these binder
transactions, which enables deeper visibility into how the
mediaserver is invoked.

For our experiments on anomaly detection, we invoke
the mediaserver with both benign and crafted media files.
For opening the files and playing the media, we used An-
droid’s stock media player. If the file is a crafted one, the
mediaserver is known to crash and is restarted by the
init process. A restarted mediaserver points towards a
crafted or corrupt media file opened by the mediaserver.
While opening a corrupt file does not necessarily amount
to malicious activity, our anomaly detector errs on the side
of caution and flags these as potentially dangerous.

The stock player is identified by the com.android.music
process and is used to communicate with the mediaserver
process, which further invokes the surfaceflinger pro-
cess which is responsible for low-level actions to dis-
play or play media content. For monitoring events that
point to anomalous behaviour, we shortlist three processes
directly responsible for media playback: mediaserver,
android.process.media and surfaceflinger. In addi-
tion to these processes, we also monitor the debuggerd—
the debugger daemon on Android—and the init process,
which is the parent of the mediaserver. The actions of

Type of media Size range
ISO Media, MPEG v4 system, 3GPP

1KB - 10MB

ISO Media, MPEG v4 system, iTunes AVC-LC
ISO Media, MPEG v4 system, version 1
ISO Media, MPEG v4 system, version 2
ISO Media, Apple QuickTime movie
Ogg data, Theora video

Table 2: Type of files and size range for goodware used in
our study.

these two processes are crucial for two reasons: firstly,
debuggerd is responsible for logging mediaserver crashes
and init is reponsible for restarting the mediaserver, as
already mentioned.

3.1.2 Dataset used for Evaluation
As pointed out in [7], a number of critical vulnerabil-

ities have been reported for Android platforms3. Partic-
ularly, the Android mediaserver has been repeatedly tar-
geted recently through the Stagefright media playback en-
gine. These flaws can be exploited remotely with the aid
of maliciously crafted multimedia files, so that the device
is compromised without requiring the action of the victim.

The mediaserver is an important system service which
is used to play media files on Android platforms. Given
its central role in mobile and handheld devices as well as
the seriousness of the vulnerabilities reported for it, we
focus our attention on this service as a case study to de-
ploy and test the detection capabilities of CoME. Recent
vulnerabilities for Android mediaserver are grouped into
four main categories: Denial of Service (DoS), code execu-
tion, overflow and memory corruption. In fact, these four
groups together constitute more than 75% of the total vul-
nerabilities for Android, and they all can be exploited by
using some of a well-know set of techniques: stack over-
flow, heap corruption, format string and race condition.

For our evaluation, we collected a dataset of normal me-
dia files (goodware) and a dataset of crafted media files
(malware). For the goodware, we queried GooglePlay and
retrieved about 15,000 apps from which we extracted all
media files and we randomly selected a total number of
264 MP4 files. Our dataset contains a wide range of differ-
ent MPEG-4 visual and audio encoded files with a variety
of sizes. Table 2 shows an excerpt of the formats and sum-
marizes the range of sizes.

For the malware, we obtained a number of crafted media
files released by Zimperium [25] exploiting recent vulner-
abilities affecting most Android versions before Lollipop
5.1.1. These files were all crafted to expose the Stagefright
media library vulnerabilities. Table 3 describes the type of
vulnerability exploited by each crafted file selected. As
the current version of our emulator is enhanced with the
CopperDroid plugin, which runs Android Kitkat 4.4.2, we
used only those files for which the associated vulnerability
was not patched and which could be used to run remote
code execution attacks with Kitkat 4.4.2. Although the An-
droid version used to extract features is Android 4.4 and
the crafted media files were tailored to exploit Android 5.1

3http://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224



ID CVE Description

SF-01
CVE-2015-1538

ctts
SF-02 stts
SF-03 stss
SF-04 CVE-2015-3827 covr
SF-05 CVE-2015-3824 tx3g
SF-06 CVE-2015-3829 covr

Table 3: Crafted MP4 files, vulnerability identifier and
name of the MP4 atom name that leads to the Stagefright
exploitation. All the files can enable remote code execution
through integer overflow vulnerabilities.

or below, it is worth noting that vulnerabilities based on
the ones tested in this paper have been recently used to
run remote code execution attacks in the Android media
framework against versions up to Oreo (Android 8.04).

3.2 Performance Results
CopperDroid generates a set of features at a constant

sampling rate during the execution of media files. For
the experimentation of this paper, we consider a total of
692 features. These features contained all behaviors re-
ported after monitoring the mediaserver process. We re-
fer the reader to Table 1 for a summary of all behaviors
captured by CopperDroid. Our data consisted of a total of
71,336 time observations of the 692 features derived from
the execution of 298 files (264 goodware and 34 malware
samples). This execution was of variable duration. So,
the number of logged observations per file was also vari-
able. For the 298 files monitored during our evaluation,
we mainly observed: (i) File Access to different libraries
and data files, (ii) low-level System Calls, and (iii) differ-
ent Binder transactions. We also captured an additional
set of features from other related processes such as de-
buggerd or system_server (see Section 3.1.1). We treated
behaviors reported by each process as individual features.
This way, a call to sendto executed by the mediaserver
process constitutes a different feature than a call from the
system_server.

Note that, unlike MSNM, most anomaly detection tech-
niques cannot handle a big number of features [15]. When
using MSNM we do not need to perform a feature selec-
tion on first place, avoiding the risk of discarding useful
information for anomaly detection.

In this section, we illustrate two applications for CoME.
First, an off-line exploratory data analysis on average data
is illustrated. A second application is on-line monitoring.
MSNM can be used to identify anomalies on a timely man-
ner during the file execution, with the goal of swiftly thwart-
ing the execution of the malware, hopefully minimizing the
harm caused.

3.2.1 Off-line analysis
The off-line analysis is useful to gain data understand-

ing. For instance, to identify the features that best dis-
criminate goodware and malware in the problem at hand,
or those features that may lead to undesired properties in
the anomaly detector. To perform this analysis, we average
the observations of a file, so that each file is represented by

4See https://www.cvedetails.com/cve/CVE-2017-0809/

D-st
0 50 100 150 200 250 300 350

Q
-s

t

0

2000

4000

6000

8000

10000

12000

14000

16000

7

49
114 140

195

84

86

90

Calibration
Goodware test
Malware test

Figure 3: MSNM monitoring chart: Q-st vs D-st. Each
point represents a file. Calibration files, test goodware and
test malware are shown as triangles, squares and circles,
respectively. Control limits are estimated from calibration
files.

a single feature vector with 692 values. The total dataset
is a matrix of 298 × 692, from which the last 34 rows cor-
respond to malware samples. We call this an off-line or
forensic analysis because it is performed after the execu-
tion of the media files.

Calibration of the Anomaly Detector.
The MSNM related model is firstly calibrated with ‘nor-

mal’ data corresponding to goodware samples. Afterwards,
this system can be used to identify and diagnose anoma-
lies. We split the total dataset of 298×692 into a calibration
part, of size 200 × 692 and solely composed of goodware,
and a test part with 98 × 692, with 65% of goodware and
35% of malware. The calibration part was used to select
the number of PCs, identify the PCA model, and compute
the monitoring statistics and their corresponding control
limits. All these steps were performed following the rec-
ommendations in [15], which for the sake of brevity are
not repeated here. Then, the test dataset was analyzed by
the MSNM system.

The result obtained is shown in Figure 3. We can see
that the Q-st is highly efficient in discriminating goodware
and malware. Control limits are adjusted at a 99% con-
fidence level, so that 99 out of 100 calibration goodware
files yield statistics below the limits. It can be seen that
this adjustment holds for the tested goodware, since only
one test goodware file out of 64 exceeds the limits, and
they are exceeded by a reduced margin. Although the
results are satisfactory, we may consider that calibration
goodware files number 7 and 49 are outliers and deserve
further study.

Explaining Prominent Features.
The MSNM analysis in Figure 3 shows that there is rep-

resentative information for discrimination in the 692 fea-
tures provided by CopperDroid. We can take advantage
of the multivariate tools in the MSNM approach to inves-
tigate which are the most valuable features for discrimi-



Feature Process Action Details
f49

mediaserver

syscall

mprotect
f508 access
f9 advise
f308 mmap2
f479 close
f72

filesystem
/system/lib/libbinder.so

f108 /system/lib/libaudioutils.so
f1 /system/lib/libcorkscrew.so
f128

debuggerd filesystem
/dev/log/system

f202 /dev/log/main
f194

system_server
syscall

sigprocmask
f199 sendto
f80 binder IPhoneStateListener.onChanged5

f18 com.android.music binder IAudioService.setPlaybackInfoForRcc6

Table 4: Excerpt of characteristic features distinguishing
goodware/malware.

100 200 300 400 500 600

d2 A

×104

-2

0

2

4

6

8

Figure 4: Bar oMEDA plot to determine the relevance of
features to discriminate goodware and malware. Values
of higher magnitude represent relevant features out of the
complete set of 692. The four most relevant features are
highlighted with circles.

nation. Note that there is no actual need in reducing the
number of features in the MSNM module. Rather, the goal
here is to improve our understanding on the data and the
results. With this understanding, we may in turn eluci-
date ways to further improve the anomaly detection and/or
to assess to what extent the achieved detection perfor-
mance can be generalized to new types of malware and
goodware. This is a main advantage of MSNM over other
anomaly detection methods: MSNM not only provides high
performance results but also an interpretable model of the
data. In comparison, most machine learning techniques
yield black box models with an uninterpretable linkage be-
tween input and output data.

Figure 4 shows the oMEDA plot to assess the specifici-
ties of malware according to MSNM. In other words, this
plot shows the features that better help distinguish mal-
ware from goodware, for the malware samples considered.
Although the discrimination fingerprint affects many fea-
tures, we can see that there are four of them that stand
out of the others. These are highlighted with a red circle
in the figure. Figure 5 shows the values of the complete
set of files (calibration and test) for two of the features.
The values for the other two features follow a similar trend
and are shown in Appendix A. Recall these values are av-
eraged along the duration of the files execution. According

50 100 150 200 250

f4
9

0

1

2

3

4

(a) f49

50 100 150 200 250

f1
28

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(b) f128

Figure 5: Scores in the four variables highlighted in Figure
4 for the complete set of files: goodware in dark red color,
malware in light blue color.

to the figures, any of the four features, by itself, could be
used to calibrate an anomaly detection system, since the
values for malware samples (light blue color) exceed those
for goodware samples (dark red color) by a large margin,
at least one order of magnitude. Notice that we only need
a pair of multivariate plots (Figs. 3 and 4) to assess the
discrimination capability for malware detection of a total
of 692 features. Clearly, the exploratory ability of this set
of multivariate tools simplifies the analysis of complex and
highly dimensional datasets. Note that results provided in
Figure 4 claim for a multivariate discrimination between
malware and goodware, i.e., the analyzed malware shows
high values in the four variables at the same time, and also
on many others according to oMEDA. This multivariate dis-
crimination is more robust than its univariate counterpart,
which may lead to a higher number of false positives.

The top features highlighted by oMEDA (including the
4 highlighted in Figure 4), are listed in Table 4. Anoma-
lous behaviors stemming from opening a crafted media file
leads to the mediaserver being restarted. Therefore, it is
unsurprising that the top features for distinguishing be-
nign behavior from potentially dangerous ones are derived
from the Android debugger; both /dev/log/system and /de-
v/log/main are log files that are typically written after a
service has crashed. When the mediaserver restarts, it
loads various libraries and sets the memory segment per-
missions for loaded libraries. Therefore, we observe that
a number of system calls related to memory manipula-
tion such as mprotect, mmap2, advise and access are also
among the distinguishing features. Additionally, it can also
be observed that the access to these libraries—after the
mediaserver is restarted—is observed in the list of features
discriminating benign from dangerous actions.

Understanding Outliers.
The MSNM approach is also powerful to identify and di-

agnose outliers. We will illustrate this with the two out-
liers previously identified in Figure 3: calibration good-
ware files number 7 and 49, with high Q-st and high D-st,
respectively. For diagnosing the special behavior in each
of them, we follow the same approach than with malware,
that is, we use oMEDA plots (not shown). The oMEDA for
file number 7 identified a number of features in which this



D-st
0 50 100 150 200 250 300 350 400 450

Q
-s

t

×104

0

1

2

3

4

5

6

7

22 13851

67

8698

Calibration
Goodware test
Malware test

Figure 6: MSNM monitoring chart after removal of out-
liers 7 and 49: Q-st vs D-st. Each point represents a
file. Calibration files, test goodware and test malware are
shown as triangles, squares and circles, respectively. Con-
trol limits are estimated from calibration files.

50 100 150 200

Q
-s

t

100

105

1010

(a) Q-st

20 40 60 80

M
ax

im
um

 Q
-s

t

104

106

108

(b) Max Q-st

Figure 7: The online monitoring Q-st charts for a goodware
file in the MSNM system is shown in the figure on the left;
and the maximum Q-st value of the MSNM statistics in test
files is shown in the figure on the right. Both figures are
displayed in logarithmic scale.

file obtained very low values. Inspecting those features,
we found that it is the only file in the complete set of files
with 0 value in features f18 and f80 and f199 (see Ta-
ble 4). On the contrary, the oMEDA analysis for file 49
showed that this sample presents a behavior similar to the
one observed in malware (for at least many observed fea-
tures). An example is feature f1.

There are different approaches to handle outliers, de-
pending on the information found in the diagnosis and also
on the context. One typical approach is to discard the out-
liers. The effect of outliers removal is illustrated in Fig-
ure 6, where the MSNM system is re-calibrated after dis-
carding both calibration goodware files number 7 and 49.
In the new system, the D-st is also useful for detection, and
the level of detection in the Q-st is augmented in one order
of magnitude.

3.2.2 On-line analysis
For our experiments on on-line analysis, we considered

the complete set of observations. As already mentioned,

our dataset consists of 71,226 observations of 692 features
(71336×692). The last 8161 observations are derived from
the 34 malware files. This dataset was divided into two
parts: one for calibration and another for testing. The cal-
ibration part consisted of size 47, 818 observations derived
from the first 200 goodware files. The test part with 23, 518
observations derived from the rest of goodware and mal-
ware files.

Figure 7a illustrates the online MSNM system applied
over a goodware file for the Q-st. We refer the reader to
Figure 11a in Appendix B for the D-st charts. As it can be
seen, statistics remain below the control limits. Although
in this illustration the monitoring charts contain the com-
plete evolution of the file execution, in a production mon-
itoring system the statistics computed for a specific sam-
pling time would be shown in the charts as soon as the
information is obtained. That way, the execution can be
stopped right after the control limits are exceeded by a
large margin or on a consistent basis.

Figure 7b and Figure 11b (in Appendix B) show the per-
formance of the online MSNM system. Here, the maxi-
mum value of the statistics computed per file is shown
for test files. Again, we can see that the Q-st makes a
clear discrimination between malware and goodware, ex-
cept for test goodware file number 51. Interestingly, this
false positive was also highlighted in our offline analysis
assessment in Figure 6. Although the D-st has a lower
discrimination capability (see Appendix B), malware files
tend to show higher D-st values than goodware. We can
assess the discrimination quality of the monitoring charts
with ROC curves obtained by varying the α parameter in
the control limits. Results are shown in Figure 8, where
we included the results by a one-class support vector ma-
chine (OCSVM) [26, 27] computed with the LIBSVM li-
brary [28]. The OCSVM is a classification-based network
anomaly detection method [29] reported to provide exce-
lent results [30]. Following [31] we used default values for
the metaparameters. Then, the ROC curve was obtained
by varying the bias term [32]. According to these ROC
curves, the detection performance of the online MSNM
system is impressive. While the D-st is outperformed by
the one class SVM classifier, the Q-st clearly outperforms
the latter.

Figure 9 compares the monitoring charts in logarithmic
scale of the outlier (goodware file number 51) and one mal-
ware file. There is a time interval of maximum activity
around sampling time 30. It is during this interval that the
malware presents much higher activity than the goodware.
Recall that we are using a logarithmic scale to improve vi-
sualization. The outlier goodware presents an anomalous
behavior (one single observations) right at the beginning
of the execution. If future false positives follow the same
pattern, we can always distinguish them from malware for
their temporal specificities.

Detections in both the outlier and the malware can be
diagnosed with oMEDA. This is shown in Figure 9c. We
can see that the outlier can also be discriminated from
malware with the diagnosis, as very different features are
highlighted. This is the case, for instance, of feature f339
detected while running the goodware 51. This feature is



Figure 8: ROC curves for the MSNM statistics in test files.
One-class support vector machine results are presented as
a reference. The ROC curves are obtained by varying the
value of parameter α in the control limits of the MSNM
system and the bias term in the SVM [32].

related to the Android Volume Manager and it is a system
call (openat) triggered by the the vold daemon. This type
of behavior should only be attributed to good behaviors as
diagnosed by oMEDA.

3.3 Discussion
To provide on-line detection of malicious intents on de-

vices, it is essential to understand normal operating con-
ditions (NOC) and identify sequence of actions that de-
viate from the NOC. Many machine learning techniques
that perform malware analysis manage to detect malware.
However, in most cases, this detection is done off-line and
often with a black-box model where it is not possible to
meaningfully explain the linkage between input and out-
put data.

We should also take into account that MSNM is an ano-
maly detector based on a model of normality (NOC), and
malware is detected because it shows a different behavior
to modeled NOCs. Thus, the calibration dataset should
be as representative of NOC as possible. If during the
MSNM operation one goodware file is mistaken by mal-
ware, that is, in the event of a false positive, we should
diagnose with oMEDA the reason for this detection and
update the MSNM system to yield the correct outcome for
this event in the future.

The MSNM methodology provides an interpretable model
of the data which makes explanation of the results easier.
Furthermore, it contributes to the identification of root-
cause problems even when the source of the anomaly can
only be derived after observing multiple variables across
time. For instance, for the case of the Android mediaserver,
we could observe that the NOC of different features such
as mprotect, and access syscalls maintain a very low pro-
file. Contrary, when any of the Integer overflows are trig-
gered, the mediaserver crashes. Only right after being
restarted, the mediaserver repeatedly invokes access and

mprotect to load all the different native components of
the audioflinger and surfaceflinger such as libaudioutils.so
(see Table 4). This usually happens together with the dump
of the crash report to any of the files listed in /dev/log/.
Similarly, we can observed that the absence of number of
features such as those related to the Binder (com.android.-
internal.telephony and android.media actions) only hap-
pen during the NOC. All in all, this means that CoME is
able to list all those features related to the crash of the
mediaserver and correlates them with the absence of sev-
eral binder transactions that should occur during the nor-
mal operation of the service.

One key feature of CoME is that it does not require an
understanding of the domain or prior knowledge about the
monitored component. This makes our approach suitable
for both explaining and detecting unknown malicious ac-
tivities or zero-day exploits. Our evaluation over four dif-
ferent CVE showed that even when confronted with a com-
plex system, CoME is capable of modeling those conditions
needed to detect unexpected behaviors. Contrary to other
anomaly-based systems, CoME is capable of dealing with
systems containing a big number of features.

Most of the existing attacks are tailored at vendor-specific
Android OSes. In our work, we instrument vanilla Android
emulator using CopperDroid. A limitation of our evalua-
tion stems from the lack of exploits targeting, in general,
vanilla Android systems, and in particular CopperDroid.
Although CopperDroid is engineered to automatically gen-
erate system call and inter-component communication in-
trospection stubs, the system has not been evaluated on
vendor-specific Android platforms. For this reason, we
limit the scope of our work to the most prevalent set of vul-
nerabilities affecting all vanilla systems (including stock
hardware smartphones) from Android 4.4.4 to 8.0.

According to Google7, at the time of writing this paper
about 99.70% of the users run an Android device between
Android 4.4 and 8.0. This gives a rough intuition of the
scope of this threat. Novel but less popular exploits are
also relevant to our system. A vendor-specific version of
our monitoring system would grant us access to a larger
set actionable exploits, and would allow us to test novel
exploits.

4. RELATED WORK
The majority of the approaches proposed in the liter-

ature for malware detection focus on general detection
strategies using either anomaly or misuse detection for
both static and dynamic analysis [33]. However, due to
the diversity of malware goals and incentives [34], it is
often desired to narrow down the complexity towards de-
tecting specific classes of malware such as privileged esca-
lation [35], battery-depletion attacks [36], or information
leakage [37]. In this work, we shall focus on a privileged
escalation attack because of its impact.

There are two common types of privilege escalation at-
tacks according to whether the exploitation strategy fo-
cuses on inter-process capability leakage or system vulner-

7https://developer.android.com/about/dashboards/index.
html



50 100 150 200

D
-s

t

10-2

100

102

104

106

Malware 1
Goodware 51

(a) D-st

50 100 150 200

Q
-s

t

100

105

1010

Malware 1
Goodware 51

(b) Q-st

100 200 300 400 500 600

d2 A

×109

0

1

2

3

4
Malware 1
Goodware 51

f611

f563

f339

(c) oMEDA for goodware 51 and malware
1

Figure 9: Online monitoring charts for different files in the MSNM system (in logarithmic scale): a) D-statistic, b) Q-statistic
and c) Diagnosis based on oMEDA, highlighting the relevance of the features in the detected anomalous sampling times.

abilities. Analyzing inter-process capability leakage has
gained a lot of attention over the last years with approaches
such as XManDroid [38], Woodpecker [39], Elish et al. [40]
or CHEX [41]. However, system vulnerabilities pose a
higher risk to users because they can enable full escala-
tion of privileges, simply called root access [42].

There are several recent works aimed at systematically
studying and characterizing root vulnerabilities in Android [43,
44, 45]. Authors in [43] present a static-based framework
to detect apps that could potentially use root exploits. Like-
wise any other static analysis technique, their approach
is vulnerable to code obfuscation and other more sophis-
ticated forms of evasion. In addition to static analysis,
authors in [44] present a system to detect both app-level
and kernel-level vulnerabilities in device firmware images
using dynamic analysis. Contrary to our approach, au-
thors do not explore framework-level vulnerabilities which
constitute a fundamental part of the Android OS. Further-
more, our approach is driven by multivariate statistical
theory supporting anomaly detection. This constitutes a
novel perspective to deal with the problem.

Similar to our approach, authors in [45] present a root
exploit containment system for Android called PREC. PREC
is a dynamic-based anomaly detection system that moni-
tors system calls from both benign and malign apps. After
extracting and labeling system calls, they build a learn-
ing scheme based on self-organizing maps (SOM). One key
different with respect to our approach is that PREC only
monitors behaviors produced from the applications being
executed, whereas in our approach we holistically consider
the entire system. Specifically, PREC only monitors system
calls from third party libraries used within the process of
the app. Contrary, we monitor all processes related to a
given exploitable service. Additionally, we not only moni-
tor system calls, but we are also able to extract other high
level behaviors such as Binder transactions in a transpar-
ent fashion. This ultimately allows us to perform more fine-
granular detection and to target a broader type of exploits.
Let’s take for instance a malware manages to run a reverse
shell after exploting an Integer Overflow in the media ser-

vice with a crafted MP4 file. Except for the trigger of an
Intent action asking the Android OS to play the MP4 file,
PREC would miss the actual trace of system calls leading
to the exploitation.

In this context, multivariate techniques have shown to
be promising when dealing with complex observations of
diverse nature and origin [46]. However, to the best of
our knowledge, very few multivariate-based malware de-
tection proposals are deployed in the literature at present.
So far, as a single example of this we can cite [47], which is
poor from the perspective of the actual capabilities argued
for multivariate methodologies.

5. CONCLUSION
In this paper, we have presented a multivariate statis-

tical approach to identify abnormal uses of general com-
ponents in Android. Our approach, called CoME, uses
lightweight introspection to perform transparent behav-
ioral analysis at runtime. As a key novelty of our approach,
we showed how anomaly-based multivariate systems can
effectively be used to identify technical software exploita-
tions based on unknown vulnerabilities. More precisely,
we use CoME to estimate the normal operating conditions
of the Android mediaserver. We have illustrated two ap-
plications: (i) an off-line system capable of aiding security
experts on the identification of relevant discriminant fea-
tures; and (ii) on-line monitoring and analysis system for
accurate detection at runtime.

6. ACKNOWLEDGMENTS
This work is partialy supported by the Spanish Ministry

of Economy and Competitiveness and FEDER funds through
projects TIN2014-60346-R and TIN2017-83494-R, and the
UK EPSRC grant EP/L022710/1.

7. REFERENCES
[1] Worldwide Quarterly Smart Connected Device

Tracker, Tech. rep., International Data Corporation
(2015).



[2] Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2015-2020, Tech. rep.,
Cisco (2015).

[3] G. Suarez-Tangil, G. Stringhini, Eight years of rider
measurement in the android malware ecosystem:
Evolution and lessons learned, arXiv preprint
arXiv:1801.08115.

[4] J. Lyne, Security Threat Trends 2015. Predicting
what Cybsersecurity will Look Like in 2015 and
Beyond, Tech. rep., Sophos (2015).

[5] Kaspersky Security Bulletin 2015. 2016 Predictions,
Tech. rep., Kaspersky (2015).

[6] 2016 Internet Security Threat Report, Tech. rep.,
Symantec (2016).

[7] C. Cao, N. Gao, P. Liu, J. Xiang, Towards Analyzing
the Input Validation Vulnerabilities associated with
Android System Services, in: Proceedings of the 31st
Annual Computer Security Applications Conference
(ACSAC), 2015, pp. 361–370.

[8] M. Jimenez, M. Papadakis, T. F. Bissyandé, J. Klein,
Profiling Android Vulnerabilities, in: Software
Quality, Reliability and Security (QRS), 2016 IEEE
International Conference on, IEEE, 2016, pp.
222–229.

[9] V. van der Veen, Y. Fratantonio, M. Lindorfer,
D. Gruss, C. Maurice, G. Vigna, H. Bos, K. Razavi,
C. Giuffrida, Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, in: 23rd ACM
Conference on Computer and Communications
Security (CCS), 2016.

[10] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda,
C. Kruegel, G. Vigna, TriggerScope: Towards
Detecting Logic Bombs in Android Apps, in:
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), San Jose, CA, 2016.

[11] L. S.-C. A. Ruiz-Heras, P. García-Teodoro, ADroid:
Anomaly-based Detection of Malicious Events in
Android Platforms, International Journal of
Information Security (2016) 1–14.

[12] S. Forrest, S. Hofmeyr, A. Somayaji, The Evolution of
System-call Monitoring, in: Computer Security
Applications Conference, 2008. ACSAC 2008.
Annual, IEEE, 2008, pp. 418–430.

[13] D. Mutz, F. Valeur, G. Vigna, C. Kruegel, Anomalous
System Call Detection, ACM Transactions on
Information and System Security (TISSEC) 9 (1)
(2006) 61–93.

[14] S. F. O. Pieczul, Runtime Detection of Zero-Day
Vulnerability Exploits in Contemporary Software
Systems, in: Data and Applications Security and
Privacy XXX, DBSec 2016, LNCS 9766, 2016, pp.
347–363.

[15] J. Camacho, A. Pérez-Villegas, P. García-Teodoro,
G. Maciá-Fernández, PCA-based Multivariate
Statistical Network Monitoring for Anomaly
Detection, Computers & Security 59 (2016) 118–137.

[16] K. Tam, S. Khan, A. Fattori, L. Cavallaro,
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors, in: NDSS, 2015, pp. 1–15.

[17] P. García-Teodoro, J. Díaz-Verdejo,
G. Maciá-Fernández, E. Vázquez, Anomaly-based
Network Intrusion Detection: Techniques, Systems
and Challenges, Computers & Security 28 (2009)
18–28.

[18] J. Camacho, A. Pérez-Villegas, R. Rodríguez-Gómez,
E. J.-M. nas, Multivariate Exploratory Data Analysis
(MEDA) Toolbox for Matlab, Chemometrics and
Intelligent Laboratory Systems 143 (2015) 49–57.

[19] S. Dash, G. Suárez-Tangil, S. Khan, K. Tam,
M. Ahmadi, J. Kinder, L. Cavallaro, DroidScribe:
Classifying Android Malware Based on Runtime
Behavior, in: Mobile Security Technologies (MoST
2016), 2016, pp. 252–261.

[20] W. Enck, M. Ongtang, P. McDaniel, Understanding
Android Security, IEEE Security & Privacy (1) (2009)
50–57.

[21] T. Garfinkel, M. Rosenblum, et al., A Virtual Machine
Introspection Based Architecture for Intrusion
Detection, in: NDSS, Vol. 3, 2003, pp. 191–206.

[22] A. Lakhina, M. Crovella, C. Diot, Diagnosing
Network-wide Traffic Anomalies, ACM SIGCOMM
Computer Communication Review 34 (4) (2004)
219–230.

[23] T. Kourti, J. F. MacGregor, Multivariate SPC methods
for process and product monitoring, Journal of
Quality Technology 28 (4) (1996) 409–428.

[24] J. Camacho, Observation-based Missing Data
Methods for Exploratory Data Analysis to Unveil the
Connection Between Observations and Variables in
Latent Subspace Models, Journal of Chemometrics
25 (11) (2011) 592–600.

[25] Z. Avraham, J. Drake, N. Bassen, Experts Found a
Unicorn in the Heart of Android, Available Online.
https://blog.zimperium.com/
experts-found-a-unicorn-in-the-heart-of-android/
(2015).

[26] B. Scholkopf, A. J. Smola, R. C. Williamson, P. L.
Bartlett, New Support Vector Algorithms, Neural
computation 12 (5) (2000) 1207–1245.
doi:10.1162/089976600300015565.

[27] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
R. C. Williamson, Estimating the Support of a
High-Dimensional Distribution, Neural Computation
13 (7) (2001) 1443–1471.
doi:10.1162/089976601750264965.
URL http://www.mitpressjournals.org/doi/abs/10.
1162/089976601750264965

[28] C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support
Vector Machines, ACM Transactions on Intelligent
Systems and Technology 2 (2011) 27:1–27:27,
software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[29] M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita,
Network Anomaly Detection: Methods, Systems and
Tools, IEEE Communications Surveys & Tutorials
16 (1) (2014) 303–336.
doi:10.1109/SURV.2013.052213.00046.
URL http://ieeexplore.ieee.org/lpdocs/epic03/



wrapper.htm?arnumber=6524462

[30] L. M. Manevitz, One-Class SVMs for Document
Classification 2 (2001) 139–154.

[31] J. A. Quinn, M. Sugiyama, A Least-Squares Approach
to Anomaly Detection in Static and Sequential Data,
Pattern Recognition Letters 40 (1) (2014) 36–40.
doi:10.1016/j.patrec.2013.12.016.
URL http://dx.doi.org/10.1016/j.patrec.2013.12.016

[32] K. Heller, K. Svore, A. D. Keromytis, S. Stolfo, One
Class Support Vector Machines for Detecting
Anomalous Windows Registry Accesses, Workshop
on Data Mining for Computer Security (DMSEC),
Melbourne, FL, November 19, 2003.
URL http://sneakers.cs.columbia.edu/ids/
publications/ocsvm.pdf

[33] H. Chuang, S. Wang, Machine Learning based
Hybrid Behavior Models for Android Malware
Analysis, in: IEEE International Conference on
Software Quality, Reliability and Security, 2015, pp.
201–216.

[34] G. Suárez-Tangil, J. Tapiador, P. Peris, A. Ribagorda,
Evolution, Detection and Analysis of Malware for
Smart Devices, IEEE Communications Surveys &
Tutorials 16 (2) (2014) 961–987.

[35] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, M. Winandy, Return-Oriented
Programming without Returns, in: A. Keromytis,
V. Shmatikov (Eds.), Proceedings of CCS 2010, 2010,
pp. 559–72.

[36] H. Kim, J. Smith, K. Shin, Detecting Energy-greedy
Anomalies and Mobile Malware Variants, in:
Proceedings of the 6th international conference on
Mobile systems, applications, and services, 2008, pp.
239–252.

[37] S. Rosen, Z. Qian, Z. Mao, AppProfiler: A Flexible
Method of Exposing Privacy-related Behavior in
Android Applications to End Users, in: Proceedings
of the third ACM conference on Data and application
security and privacy, 2013, pp. 221–232.

[38] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer,
A. Sadeghi, XManDroid: A New Android Evolution to
Mitigate Privilege Escalation Attacks, Tech. rep.,
Technische Universitat Darmstadt (2011).

[39] M. Grace, Y. Zhou, Z. Wang, X. Jiang, Systematic
Detection of Capability Leaks in Stock Android
Smartphones, in: Proceedings of the 19th Annual
Symposium on Network and Distributed System
Security, 2012.

[40] K. Elish, D. Yao, Ryder, G. Barbara, X. Jiang, A Static
Assurance Analysis of Android Applications, Tech.
rep., Virginia Polytechnic Institute and State
University (2013).

[41] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, CHEX: Statically
Vetting Android Apps for Component Hijacking
Vulnerabilities, in: Proceedings of the 2012 ACM
conference on Computer and communications
security, 2012, pp. 229–240.

[42] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang,
RiskRanker: Scalable and Accurate Zero-day

Android Malware Detection, in: Proceedings of the
10th international conference on Mobile systems,
applications, and services, 2012, pp. 281–294.

[43] H. Hao, Z. Li, Y. He, J. Ma, Characterization of
Android Applications with Root Exploit by Using
Static Feature Analysis, in: Algorithms and
Architectures for Parallel Processing, Springer,
2015, pp. 153–165.

[44] L. Wu, Vulnerability Detection and Mitigation in
Commodity Android Devices, Ph.D. thesis, North
Carolina State University (2015).

[45] T. Ho, D. Dean, X. Gu, W. Enck, PREC: Practical Root
Xxploit Containment for Android Devices, in:
Proceedings of the 4th ACM conference on Data and
application security and privacy, 2014, pp. 187–198.

[46] J. Camacho, R. Magán-Carrión, P. García-Teodoro,
J. Treinen, Networkmetrics: Multivariate Big Data
Analysis in the Context of the Internet, In press in
Journal of Chemometrics (Wiley) (2016) 1–45.

[47] K. Kim, M. Choi, Android Malware Detection Using
Multivariate Time-Series Technique, in: Network
Operations and Management Symposium
(APNOMS), 2015 17th Asia-Pacific, 2015, pp.
198–202.

APPENDIX
A. EXPLANATION OF F508 AND F202

As mentioned before in Section 3.2, the most relevant
features highlighted by oMEDA are listed in Table 4. Out
of all features, in this paper we have highlighted four of
them: two system calls and two file system access (FS),
which are as shown in Figure 4. In this subsection, we
show further details on f508 and f202, corresponding to a
syscall and a FS, respectively.

Figure 10 shows the values of the complete set of files
(calibration and test) for these two features. Similar to
what we observed with the other top features, we can see
that f508 and f202 can clearly tell apart benign behaviors
from the malicious ones.

B. ONLINE ANALYSIS
This section reports additional details of the online anal-

ysis presented in Section 3.2.2. In particular, we illustrate
the online MSNM system applied over a goodware file for
the D-st test as illustrated in Figure 11. As shown with the
Q-st test, statistics for this test remain below the control
limits.



50 100 150 200 250

f5
08

0

0.02

0.04

0.06

0.08

0.1

(a) f508

50 100 150 200 250

f2
02

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(b) f202

Figure 10: Scores in the remaining two variables high-
lighted in Figure 4 for the complete set of files: goodware
in dark red color, malware in light blue color.

50 100 150 200

D
-s

t

0

200

400

600

800

1000

(a) D-st

20 40 60 80

M
ax

im
um

 D
-s

t

102

104

(b) Max D-st

Figure 11: The online monitoring D-st charts for a good-
ware file in the MSNM system is shown in the figure on the
left; and the maximum D-st value of the MSNM statistics
in test files is shown in the figure on the right. Both figures
are displayed in logarithmic scale.


