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ABSTRACT  

 The GEISA database (Gestion et Etude des Informations Spectroscopiques 

Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) has 

been developed and maintained by the ARA/ABC(t) group at LMD since 1974. GEISA is 

constantly evolving, taking into account the best available spectroscopic data. This paper 

presents the 2015 release of GEISA (GEISA-2015), which updates the last edition of 2011 

and celebrates the 40
th

 anniversary of the database. Significant updates and additions have 

been implemented in the three following independent databases of GEISA. 

The ―line parameters database‖ contains 52 molecular species (113 isotopologues) and 

transitions in the spectral range from 10
-6

 to 35,877.031 cm
-1

, representing 5,059,777 entries, 

against 3,794,297 in GEISA-2011. Among the previously existing molecules, 20 molecular 

species have been updated. A new molecule (SO3) has been added.  HDO, isotopologue of 

H2O, is now identified as an independent molecular species. Six new isotopologues have been 

added to the GEISA-2015 database.   

The ―cross section sub-database‖ has been enriched by the addition of 43 new 

molecular species in its infrared part, 4 molecules (ethane, propane, acetone, acetonitrile) are 

also updated; they represent 3% of the update. A new section is added, in the near-infrared 

spectral region, involving 7 molecular species: CH3CN, CH3I, CH3O2, H2CO, HO2, HONO, 

NH3.  

The ―microphysical and optical properties of atmospheric aerosols sub-database‖ has 

been updated for the first time since 2003. It contains more than 40 species originating from 

NCAR and 20 from the ARIA archive of Oxford University.  

 As for the previous versions, this new release of GEISA and associated management 

software facilities are implemented and freely accessible on the AERIS/ESPRI atmospheric 

chemistry data center website. 

 

Key words: molecular spectroscopic database, line parameters, cross sections, aerosols, earth 

and planetary radiative transfer 

 

http://ara.abct.lmd.polytechnique.fr/
http://www.lmd.jussieu.fr/
http://ara.abct.lmd.polytechnique.fr/index.php?page=geisa-2
http://eodg.atm.ox.ac.uk/ARIA/introduction_nocol.html
http://www.ox.ac.uk/
http://cds-espri.ipsl.fr/etherTypo/?id=950
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1 Introduction1: 
 

At the start of the second half of the 20th century, several technologies matured, 

initiating noTable progress in the development of molecular spectroscopy. The progress in the 

Hamiltonian mechanics led theoreticians to demand more precision and detail spectra, 

obtained from laboratory or planetary observations [1]. From the mid 1960‘s, various 

scientific communities (Astrophysics, Atmospheric Physics, Metrology and soon after, 

Climate and Chemistry) required access to databases detailing the spectral characteristics of 

atmospheric molecular absorption and atmospheric diffusion. As a result, the first 

standardized spectroscopic database, the so-called ―AFGL tape‖, oriented towards the Earth‘s 

atmosphere, was initiated in 1973, at the Air Force Geophysics Laboratory USA (McClatchey 

et al. [2] and Garing and McClatchey [3]). This early contribution was dedicated to a few 

molecules (H2O, CO2, O3, N2O, CO, CH4, and O2) important in the terrestrial atmosphere and 

in the infrared spectral domain. It contained approximately 100,000 transitions. 

For its own applications related to the radiative transfer in the Earth and planetary 

atmospheres, the ARA/ABC(t) group at LMD initiated a similar effort that was to lead in the 

early 1970‘s to the creation of GEISA (Gestion et Etude des Informations Spectroscopiques 

Atmosphériques: Management and Study of Atmospheric Spectroscopic Information), see 

Chédin et al. [4,5], Husson et al. [6,7], Jacquinet-Husson et al. [8,9,10,11]. Pioneering user 

friendly management software was an important part of the first issue of GEISA.  

At that time, the GEISA archive included major atmospheric absorbers (H2O, CO2, O3, 

N2O, CO, CH4, O2) as well as complementary species (e.g.: NH3, PH3, C2H4, GeH4, C3H8, 

C2H2, HC3N, HCOOH, C3H4, NO, SO2, NO2). Some molecules, mainly related to planetary 

atmospheres (especially those found in the giant planets) like GeH4, C3H8, C2N2, C3H4, HNC, 

C6H6, and C2HD were also included. Since then, GEISA has been constantly updated to meet 

the needs of researchers as well as international space agencies, by collecting, archiving and 

distributing the most accurate, validated available spectroscopic information. One of the 

features of GEISA, in comparison with other databases such as HITRAN (the descendent  of 

the ―AFGL tape‖ for atmospheric and planetary remote sensing (Rothman et al. [12,13,14]), 

has been to consider, since its first edition, any isotopologue of a species having symmetry 

                                                      

1  Acronyms used in the text are documented in Appendix A 

http://ara.abct.lmd.polytechnique.fr/
http://ara.abct.lmd.polytechnique.fr/index.php?page=geisa-2
http://www.pole-ether.fr/etherTypo/fileadmin/files/GEISA/JQSRT2011.pdf
https://www.cfa.harvard.edu/hitran/
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properties different from that of the main isotopologue (e. g. CH3D and CH4, C2HD and C2H2) 

as an independent molecular species (considered as isotopologues of CH4 and C2H2 in 

HITRAN, respectively). 

The comprehensive GEISA database can be compared to a number of other 

spectroscopic databases, such as:  

- HITRAN [14] 

- MIPAS specifically tied to satellite experiments in the Earth‘s atmosphere [15]; 

- the JPL Catalog [16,17] of microwave to sub-millimeter transitions which mainly 

contains rotational transitions for a few hundred molecules which can or may be 

observed in the atmospheres of the Earth or other planets, or  in the interstellar- or 

circum-stellar medium. A small, but increasing number of entries contain infrared 

transitions; 

- the CDMS catalog [18,19] which mostly contains rotational transitions of 

molecules, on a similar basis as the JPL catalog,  related to interstellar medium 

studies. Some of the molecules are also of relevance for Earth's atmosphere or that 

of other planets. Furthermore, a number of entries deal with infrared transitions of 

such molecules. 

Certain molecules, mainly related to planetary atmospheres (especially those of the 

giant planets) are specific to GEISA; these include GeH4, C3H8, C2N2, C3H4, HNC, C6H6. 

However, GEISA does not include species like HOBr, O, H2 and CS, which are considered in 

HITRAN. Since the beginning, our focus has been on undertaking evaluations of relevance 

appropriateness and efficiency of introducing or replacing data. The rapidly evolving capacity 

of space-borne, ground-based or laboratory observations to deliver more and more detailed, 

accurate and sTable observed spectra, as well as the constant improvement of radiative 

transfer models, opens the way to reinforced tests for these evaluations. For example, since 

the launch of the high spectral resolution infrared sounders AIRS/Aqua and IASI/Metop, in 

2003 and in 2006 respectively, an efficient approach has been designed for the validation of 

GEISA: this is performed interactively through comparisons  between forward radiative 

transfer simulations (e.g. made by the STRANSAC or the 4A models (Scott [20], Scott and 

Chédin [21]) and observations of spectra made from various sounders collocated over 

thousands of well-characterized atmospheric and surface situations. Averaging the resulting 

‗calculated-observed spectra‘ residuals minimizes the random errors coming from both the 

observations and the imperfect description of the atmospheric state. This efficient approach 

has also proved capability of evaluating spectroscopic parameters: the resulting SPARTE 

https://www.cfa.harvard.edu/hitran/
http://www.ifac.cnr.it/retrieval/database.html
http://spec.jpl.nasa.gov/
http://www.astro.uni-koeln.de/cdms/
http://airs.jpl.nasa.gov/index.html
http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/MetopDesign/IASI/index.html
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(Spectroscopic Parameters And Radiative Transfer Evaluation) chain and related results 

concerning TIR, SWIR and NIR are presented by Armante et al. [22]. Armante et al. use a 

few representative examples to also demonstrate the relevance of the SPARTE approach to 

interactively refining spectroscopic parameters 

Based on the valuable and sustained support of the international community of 

spectroscopists concomitant with this validation strategy, the ARA/ABC(t) group continues to 

extend, maintain and update the GEISA content to incorporate the best available 

spectroscopic data.  Since the launch of Metop-A (24 October 2006), GEISA has been the 

official reference spectroscopic database used by the international working group (ISSWG) in 

charge of IASI. GEISA is also involved in the definition of 3 future space missions such as 

IASI-NG (Crevoisier et al. [23]), MERLIN and MicroCarb. 

GEISA and its associated management software facilities are implemented and 

distributed (in the same way as GEISA-2011) via AERIS/ESPRI atmospheric chemistry data 

center website. It is used on-line by more than 350 laboratories working in domains which 

include atmospheric physics, planetary science, astronomy, astrophysics.  

This paper describes the latest 2015 GEISA release (hereafter referred to as GEISA-

2015) with reference to the GEISA-2011 release and to other similar databases. It provides a 

detailed description of the newly implemented or corrected data, for each of the three distinct, 

however complementary, sub-databases: (i) line parameter in Section 2, (ii) infrared, near-

infrared and ultraviolet absorption cross-sections in Section 3, (iii) microphysical and optical 

properties of atmospheric aerosols in Section 4. 

 

2 GEISA-2015 Line parameters database description 
 

2.1 General Overview 

 

The GEISA-2015 line parameters database contains the spectral properties of 52 molecular 

species (113 isotopologues) corresponding to a total of 5,049,777 entries in the spectral range 

from 10
-6

 to 35,877.031 cm
-1

 (10
10

 to 0.28 µm). The reference temperature is 296 K.  

 The spectroscopic line parameters of 22 of the 50 molecules included in GEISA-2011 

have been updated These updates are summarized in Table 1 which gives (i) the GEISA-2015 

molecule names; (ii) the corresponding GEISA codes; (iii) the name of the main contributors. 

http://ara.abct.lmd.polytechnique.fr/
http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/index.html
https://iasi.cnes.fr/en/IASI/isswg.htm
https://iasi-ng.cnes.fr/en/IASI-NG/index.htm
https://merlin.cnes.fr/en/MERLIN/index.htm
https://microcarb.cnes.fr/en/MICROCARB/GP_satellite.htm
http://cds-espri.ipsl.fr/etherTypo/?id=950
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The parameters of 30 molecules, i.e.: N2O, CO, NO, NO2, PH3, OH, HF, HCl, HBr, 

HI, CLO, OCS, GeH4, C3H8, HC3N, HOCl, N2, H2O2, HCOOH, COF2, SF6, C3H4, HO2, 

ClONO2, CH3OH, NO+, C6H6, C2HD, CF4, CH3CN, are unchanged from GEISA-2011 with 

the exception that certain duplicated entries have been removed following technical 

validations.  

Due to the fact that, for atmospheric applications, H2O and HDO have to be taken into 

account separately in the radiative transfer modeling (different vertical concentration may 

occur), and also considering their different symmetry properties, it has been decided to 

consider HDO as an independent molecular species in GEISA-2015.  This option was already 

our choice for C2HD and CH3D. The new identification code for HDO is ―51‖. 

SO3 is a newly added molecular species. The identification code of SO3 is ―52‖. 

Details of these different updates are given in paragraphs 2.2.1 to 2.2.22. 
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Table 1 

Updated molecular species in the GEISA-2015 edition  

 

Molecular 

Species 
ID Contributors 

H2O 1 

L. Coudert, 

J. Tennyson, 

A. Campargue, S. Mikhailenko, 

O.V. Naumenko, J. Orphal, A. Ruth,  

R.R. Gamache 

CO2 2 V.I. Perevalov, S. Tashkun, R.R. Gamache 

O3 3 A. Barbe, S. Mikhailenko, Vl.G. Tyuterev 

CH4 6 
V. Boudon, L.R. Brown, A.Campargue, 

D.C. Benner 

O2 7 S. Yu, B. Drouin 

SO2 9 D. Jacquemart, H.S.P. Müller 

NH3 11 M. Down, J. Tennyson, L.R. Brown 

HNO3 13 A. Perrin 

H2CO 21 D. Jacquemart, H.S.P. Müller 

C2H6 22 L.R. Brown, K.Y. Sung 

CH3D 23 L.R. Brown, A. Campargue. 

C2H2 24 D. Jacquemart 

C2H4 25 J.-M. Flaud 

HCN 27 J. Tennyson 

C2N2 29 A. Jolly, A. Fayt 

C4H2 30 A. Jolly, A. Fayt 

CH3Cl 34 D. Jacquemart, A. Nikitin, J. Buldyreva, N. Lavrentieva 

H2S 36 O.V. Naumenko, L.R. Brown 

CH3Br 43 D. Jacquemart. 

HNC 46 J. Tennyson 

HDO (NEW) 51 
A. Campargue, S. Mikhailenko, O.V. Naumenko, 

 R.R. Gamache 

SO3 (NEW) 52 J. Tennyson, D.S. Underwood 
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Table 2 summarizes the evolution, since GEISA-2011, of each of the 50 molecular 

species in the GEISA-2015 line parameters database in term of: (i) spectral range (cm
-1

); (ii) 

the number of lines; (iii) the minimum and maximum of the intensities (cm molecule
-1

 at 296 

K), expressed in terms of maximum and minimum values of the intensity exponent. Columns 

3 to 6 correspond to GEISA-2011 and columns 7 to 10 to GEISA-2015. The molecule names 

and identification numbers are in the 2 first columns, and the references of their updates in the 

last column. 

 

Table 2  

Contents of the GEISA-2015 line parameters database. Details per molecule of the evolution 

of GEISA contents since its 2011 edition. Reference temperature is 296 K. 
.  
 GEISA-2011 GEISA-2015 Refs 

Mol.. ID Spectral range 

(cm
-1

) 

# lines Exponent of the 

intensity  

(cm molecule
-1

) 

at 296 K. 

Spectral range  

(cm
-1

) 

# lines Exponent of 

the intensity 

(cm molecule
-1

) 

at 296 K. 

Max. Min. Max. Min. 

H2O 

CO2 

O3 

N2O 

CO 

CH4 

O2 

NO 

SO2 

NO2 

NH3 

PH3 

HNO3 

OH 

HF 

HCl 

HBr 

HI 

ClO 

OCS 

H2CO 

C2H6 

CH3D 

C2H2 

C2H4 

GeH4 

HCN 

C3H8 

C2N2 

C4H2 

HC3N 

HOCl 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

0.007 - 25232.004 

5.891 - 12784.053 

0.026 - 6395.379 

0.838 - 7796.633 

3.414 - 8464.882 

0.001 - 9199.284 

10-6 - 15927.230 

10-6 - 9273.214 

0.017 - 4092.948 

0.498 - 3074.152 

0.058 - 5294.501 

17.805 - 3601.652 

0.012 - 1769.982 

0.005 - 35877.031 

41.111 - 11535.570 

20.240 -13457.841 

16.231 - 9758.564 

12.509 - 8487.305 

0.015 - 1207.639 

0.381 - 4199.671 

3x10-6 - 3099.958 

706.601 -3000.486 

7.7602 - 6510.326 

604.774 -9889.038 

701.203 -3242.172 

1937.371 -224.570 

0.006 - 17581.010 

700.015 - 799.930 

203.955 -2181.690 

191.635 - 730.235 

463.604 - 759.989 

0.0236 - 3799.682 

67789 

413619 

389378 

50633 

13515 

240991 

6428 

105079 

68728 

104223 

29082 

20364 

669988 

42866 

107 

533 

1293 

806 

7230 

33809 

37050 

27644 

49237 

11340 

18378 

824 

82042 

8983 

2577 

119480 

179347 

17862 

-18 

-18 

-20 

-17 

-18 

-19 

-24 

-19 

-20 

-18 

-19 

-18 

-20 

-16 

-16 

-18 

-18 

-19 

-20 

-17 

-20 

-20 

-23 

-18 

-20 

-18 

-19 

-21 

-20 

-19 

-19 

-19 

-33 

-42 

-31 

-25 

-77 

-39 

-51 

-94 

-28 

-27 

-39 

-27 

-28 

-84 

-25 

-25 

-32 

-29 

-29 

-27 

-38 

-29 

-30 

-28 

-37 

-21 

-34 

-23 

-24 

-24 

-23 

-27 

0.052 -25336.949 

5.890 -14075.298 

0.026  - 6996.681 

0.838 - 7796.633 

3.414 - 8464.882 

0.001 -11501.877 

10-6 -15927.804 

10-6 - 9273.214 

0.017  -4092.948 

0.498 - 3074.152 

0.058  -6999.429 

17.805 - 3601.652 

0.012  -1769.982 

0.005 - 35877.031 

41.111 - 11535.570 

20.240 -13457.841 

16.231 - 9758.564 

12.509 - 8487.305 

0.015 - 1207.639 

0.381 - 4199.671 

0.000  -3099.958 

706.601 -3070.971 

7.760 -6510.324 

604.774 -9889.038 

614.740 -3242.172 

1937.371 -224.570 

0.018 -17581.009 

700.015 - 799.930 

200.817 -2181.690 

189.422 -1302.217 

463.604 - 759.989 

0.0236 - 3799.682 

191846 

534227 

405919 

50633 

13515 

421811 

16197 

105079 

83668 

104223 

46414 

20364 

691161 

42866 

107 

533 

1293 

806 

7230 

33809 

44611 

53803 

58763 

12969 

53227 

824 

138103 

8983 

71954 

417540 

179347 

17862 

-18 

-18 

-20 

-17 

-18 

-19 

-24 

-19 

-20 

-18 

-19 

-18 

-20 

-16 

-16 

-18 

-18 

-19 

-20 

-17 

-20 

-20 

-23 

-18 

-20 

-18 

-19 

-21 

-20 

-19 

-19 

-19 

-36 

-30 

-31 

-25 

-77 

-39 

-54 

-94 

-30 

-27 

-39 

-27 

-28 

-84 

-25 

-25 

-32 

-29 

-29 

-27 

-39 

-29 

-30 

-28 

-37 

-21 

-32 

-23 

-24 
-24 

-23 

-27 

[24-83] 

[84-105] 

[106-131] 

No Update 

No Update 

[132-162] 

[163-174] 

No Update 

[175-182] 

No Update 

[183-192] 

No Update 

[193-197] 

No Update 

No Update 

No Update 

No Update 

No Update 

No Update 

No Update 

[198-206] 

[207-218 

[219-223] 

[224-227] 

[228-231] 

No Update 

[232-236] 

No Update 

[237-240] 

[241-247] 

No Update 

No Update 
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 GEISA-2011 GEISA-2015 Refs 

Mol.. ID Spectral range 

(cm
-1

) 

# lines Exponent of the 

intensity  

(cm molecule
-1

) 

at 296 K. 

Spectral range  

(cm
-1

) 

# lines Exponent of 

the intensity 

(cm molecule
-1

) 

at 296 K. 

Max. Min. Max. Min. 

N2 

CH3Cl 

H2O2 

H2S 

HCOOH 

COF2 

SF6 

C3H4 

HO2 

ClONO2 

CH3Br 

CH3OH 

NO+ 

HNC 

C6H6 

C2HD 

CF4 

CH3CN 

HDO 

SO3 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

1992.63 -2625.497 

674.143 -3172.927 

0.043 - 1730.371 

2.985 - 4256.547 

10.018 - 1889.334 

725.005 -2001.348 

588.488 - 975.787 

288.913 - 673.479 

0.173 - 3675.819 

0.636 - 797.741 

794.403 -1705.612 

0.019 - 1407.206 

1634.83 -2530.462 

0.217 - 4814.904 

642.427 - 705.262 

416.785 -34264 

594.581 -1312.647 

890.052 -1650.000 

- 

- 

120 

18344 

126983 

20788 

62684 

70904 

92398 

19001 

38804 

356899 

36911 

19897 

1206 

5619 

9797 

15512 

60033 

17172 

- 

- 

-27 

-20 

-19 

-19 

-19 

-19 

-19 

-19 

-19 

-21 

-21 

-19 

-18 

-18 

-20 

-22 

-19 

-19 

- 

- 

-33 

-32 

-28 

-26 

-25 

-23 

-23 

-23 

-25 

-27 

-27 

-34 

-80 

-25 

-23 

-28 

-23 

-37 

- 

- 

1992.63 -2625.497 

0.872 -3197.961 

0.043 - 1730.371 

1.030  -1329.780 

10.018 - 1889.334 

725.005 -2001.348 

588.488 - 975.787 

288.913 - 673.479 

0.173 - 3675.819 

0.636 - 797.741 

794.403 -1705.612 

0.019 - 1407.206 

1634.83 -2530.462 

0.145 -4692.098 

642.427 - 705.262 

416.785 -3421.864 

594.581 -1312.647 

890.052 -1650.000 

0.007 -17080.098 

0.477 -2824.347 

120 

83043 

126983 

58650 

62684 

70904 

92398 

19001 

38804 

356899 

36911 

19897 

1206 

75554 

9797 

15512 

60033 

17172 

63641 

10881 

-27 

-21 

-19 

-19 

-19 

-19 

-19 

-19 

-19 

-21 

-21 

-19 

-18 

-18 

-20 

-22 

-19 

-19 

-22 

-19 

-33 

-32 

-28 

-30 

-25 

-23 

-23 

-23 

-25 

-27 

-27 

-34 

-80 

-30 

-23 

-28 

-23 

-37 

-33 

-31 

No Update 

[248-264] 

No Update 

[265-278] 

No Update 

No Update 

No Update 

No Update 

No Update 

No Update 

[279] 

No Update 

No Update 

[280-281] 

No Update 

No Update 

No Update 

No Update 

[282-293] 

[294-302] 

Total # lines: 

3,794,297 

Total # lines  

5,049,777 

  

 

Notes: ―No Update‖ in the ―Refs.‖ column indicates that only minor technical corrections were made for 

the given molecule between GEISA-2011 to GEISA-2015. 

 (-) Missing data.  

 

Table 3 summarizes, for each individual molecular species implemented in the GEISA-2015 

line parameters database, information on each of its associated isotopologues. It is organized 

as follows: (i) individual GEISA-2015 molecular species names (―Mol.‖); (ii) molecular 

species corresponding identification codes (―ID‖ codes, defined for the GEISA management 

software), (iii) each molecule ID associated isotopologue identification codes ―Isot ID‖ (See 

Appendix C for corresponding this identifier); (iv) to (viii) the number of lines with 

associated minimum and maximum wave numbers (cm
-1

) and intensities (in cm molecule
-1

 at 

296 K). 
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Table 3 

The GEISA-2015 line parameters database. Spectral and intensity ranges per molecule and 

per isotopologue. The third column ―Isot ID‖ indicates the isotopologue identification. The 

notation used for GEISA in described in the Appendix C 

 
Mol. ID Isot. 

ID. 
 

# lines Minimum 

Wave 

number 

(cm
-1

) 

Maximum 

Wave 

number 

(cm
-1

) 

Minimum 

Intensity 

(cm molecule
.-1

) 

at 296 K 

Maximum 

Intensity 

(cm molecule
.-1

) 

at 296 K 

H2O 1 161 119885 0.400560 25336.948790 1.070 x 10-30 2.656 x 10-18 

181 39613 0.052583 19917.617846 8.470 x 10-36 5.270 x 10-21 

171 26215 0.451497 19945.257171 4.857 x 10-35 9.860 x 10-22 

262 5971 5.060500 7979.071900 7.310 x 10-33 1.751 x 10-26 

282 162 6328.068400 6637.658200 1.530 x 10-35 5.640 x 10-34 

CO2 2 626 170846 345.935822 14075.298241 1.000 x 10-30 3.551 x 10-18 

636 70462 408.380298 13734.963032 1.000 x 10-30 3.741 x 10-20 

628 115942 5.890710 12677.181338 1.000 x 10-30 6.800 x 10-21 

627 72120 10.599802 12726.561843 1.000 x 10-30 1.263 x 10-21 

638 40143 461.995234 9212.608647 1.000 x 10-30 7.964 x 10-23 

637 23901 493.881436 8061.740848 1.000 x 10-30 1.388 x 10-23 

828 10593 482.813154 8162.742864 1.000 x 10-30 1.317 x 10-23 

728 15206 498.616897 8193.172140 1.000 x 10-30 2.529 x 10-24 

838 3111 539.626449 6687.643142 1.002 x 10-30 1.413 x 10-25 

727 6623 535.357499 6932.953775 1.001 x 10-30 2.858 x 10-25 

738 3621 555.753837 4915.047803 1.000 x 10-30 2.706 x 10-26 

737 1659 575.852870 4822.770500 1.004 x 10-30 3.014 x 10-27 

O3 3 666 249673 0.026300 6996.680800 3.904 x 10-29 4.060 x 10-20 

668 44302 0.920900 2767.874110 4.692 x 10-28 7.760 x 10-23 

686 24886 1.176800 2739.289270 9.970 x 10-29 7.560 x 10-23 

667 58171 0.289037 820.380127 5.135 x 10-31 5.356 x 10-25 

676 28887 0.212814 822.795105 1.433 x 10-31 5.827 x 10-25 

N2O 4 446 34468 0.838022 7796.633112 4.650 x 10-26 1.003 x 10-18 

456 4466 5.028000 5088.905757 5.220 x 10-26 3.423 x 10-21 

546 4841 4.858000 4992.236153 4.720 x 10-26 3.513 x 10-21 

448 4412 541.341626 4672.579499 1.614 x 10-25 1.930 x 10-21 

447 1778 549.366695 4429.961520 1.614 x 10-25 4.017 x 10-22 

458 105 2121.769638 2203.982901 1.673 x 10-25 6.637 x 10-24 

548 108 2144.997413 2226.290105 1.675 x 10-25 7.631 x 10-24 

556 455 1226.535927 3415.767844 1.642 x 10-25 1.210 x 10-23 

CO 5 26 5908 3.530098 8464.881965 7.880 x 10-78 4.460 x 10-19 

36 4768 3.414267 8180.218750 3.610 x 10-73 4.690 x 10-21 

27 748 3.714216 6338.061200 8.190 x 10-40 1.600 x 10-22 

28 770 3.629408 6266.577400 7.610 x 10-39 8.320 x 10-22 

37 580 1807.870900 6196.551100 1.030 x 10-36 1.680 x 10-24 

38 741 3.462498 6123.294200 2.580 x 10-40 8.700 x 10-24 

CH4 6 211 315765 0.001063 11501.877400 1.030 x 10-39 2.114 x 10-19 

311 106046 0.001063 11318.549800 1.172 x 10-39 2.362 x 10-21 

O2 7 66 1902 0.000001 15927.804099 7.233 x 10-51 8.797 x 10-24 

67 13392 0.000001 14537.832826 1.960 x 10-54 3.437 x 10-27 

68 903 1.572090 15852.677413 1.186 x 10-35 1.675 x 10-26 

NO 8 46 103701 0.000001 9273.214340 1.451 x 10-95 2.322 x 10-20 

48 679 1601.909400 2038.846100 4.190 x 10-28 1.390 x 10-22 

56 699 1609.585400 2060.462500 4.430 x 10-28 2.550 x 10-22 
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Mol. ID Isot. 

ID. 
 

# lines Minimum 

Wave 

number 

(cm
-1

) 

Maximum 

Wave 

number 

(cm
-1

) 

Minimum 

Intensity 

(cm molecule
.-1

) 

at 296 K 

Maximum 

Intensity 

(cm molecule
.-1

) 

at 296 K 

SO2 9 626 72903 0.017394 4092.948220 2.864 x 10-30 4.851 x 10-20 

646 10765 1060.195581 2500.400420 4.980 x 10-24 2.100 x 10-21 

NO2 10 646 104223 0.497999 3074.152650 4.240 x 10-28 1.302 x 10-19 

NH3 11 411 45324 0.058210 6999.428900 2.115 x 10-39 5.493 x 10-19 

511 1090 0.374789 5179.785600 5.460 x 10-29 1.992 x 10-21 

PH3 12 131 20364 8.904310 3601.652010 1.849 x 10-28 2.520 x 10-19 

HNO3 13 146 669988 0.011922 1769.982240 3.590 x 10-28 3.130 x 10-20 

156 21173 830.370600 922.931350 3.000 x 10-25 3.300 x 10-23 

OH 14 61 42711 0.004620 35877.030506 1.500 x 10-85 6.450 x 10-17 

62 90 0.009943 1.824065 2.090 x 10-31 5.780 x 10-29 

81 65 0.052846 6.325014 1.200 x 10-30 1.200 x 10-26 

HF 15 19 107 41.110982 11535.570000 1.110 x 10-26 1.440 x 10-17 

HCl 16 15 284 20.270297 13457.840907 1.090 x 10-26 5.030 x 10-19 

17 249 20.240304 10994.721087 1.010 x 10-26 1.610 x 10-19 

HBr 17 11 642 16.231550 9757.189365 1.528 x 10-32 1.178 x 10-19 

19 651 16.236523 9758.311660 9.450 x 10-33 1.211 x 10-19 

HI 18 17 806 12.509418 8487.304744 1.644 x 10-30 3.423 x 10-20 

ClO 19 56 3599 0.027699 1207.639162 1.520 x 10-29 3.240 x 10-21 

76 3631 0.014605 1199.839726 5.090 x 10-30 1.030 x 10-21 

OCS 20 622 19130 0.405713 4199.671388 4.398 x 10-26 1.220 x 10-18 

624 6665 0.395798 4165.233004 6.400 x 10-27 4.720 x 10-20 

632 3243 0.404408 4055.089955 1.720 x 10-27 1.200 x 10-20 

623 2788 509.006700 4163.068691 4.678 x 10-26 8.430 x 10-21 

822 1626 0.380587 4045.602054 2.620 x 10-28 2.090 x 10-21 

634 357 1972.188480 2032.038820 1.010 x 10-23 5.240 x 10-22 

H2CO 21 126 40680 0.000000 3099.958130 3.955 x 10-39 7.436 x 10-20 

128 1622 0.000016 100.054366 8.054 x 10-36 1.089 x 10-22 

136 2309 0.000019 116.701949 3.566 x 10-35 6.314 x 10-22 

C2H6 22 226 47766 706.601510 3070.971230 4.609 x 10-29 1.873 x 10-20 

236 6037 725.602722 918.717163 1.130 x 10-28 1.515 x 10-23 

CH3D 23 212 54550 7.760179 6510.324200 3.528 x 10-30 5.714 x 10-23 

312 4213 959.393990 1694.123380 2.768 x 10-29 1.398 x 10-25 

C2H2 24 221 12684 604.774170 9889.037680 4.425 x 10-28 1.187 x 10-18 

231 285 613.536460 6588.934700 3.820 x 10-26 1.577 x 10-20 

C2H4 25 211 35132 701.202696 3242.172128 2.764 x 10-37 8.412 x 10-20 

311 18095 614.740436 3180.238042 4.852 x 10-24 5.512 x 10-20 

GeH4 26 411 824 1937.371090 2224.570070 1.960 10-22 3.680 x 10-19 

HCN 27 124 136018 0.018640 17581.009367 1.000 x 10-30 7.038 x 10-19 

125 791 2.870485 3550.842326 5.156 x 10-32 2.468 x 10-21 

134 791 2.879990 3532.251747 1.431 x 10-31 7.568 x 10-21 

224 503 2.415494 2725.191923 1.801 x 10-30 7.317 x 10-23 

C3H8 28 221 8983 700.014648 799.929688 1.583 x 10-24 1.810 x 10-22 

C2N2 29 224 71954 200.817750 2181.689940 1.009 x 10-24 2.478 x 10-20 

C4H2 30 211 417540 189.422800 1302.216600 1.003 x 10-24 1.074 x 10-19 

HC3N 31 124 179347 463.604500 759.988800 1.052 x 10-24 4.041 x 10-20 

HOCl 32 165 9293 0.023599 3799.249000 1.650 x 10-27 3.590 x 10-20 

167 8569 0.349154 3799.681900 7.220 x 10-28 1.140 x 10-20 

N2 33 44 120 1992.627702 2625.497436 1.590 x 10-34 3.548 x 10-28 

CH3Cl 34 215 40941 0.886304 3197.758930 9.051 x 10-32 7.152 x 10-21 

217 42102 0.872753 3197.961060 2.177 x 10-27 2.326 x 10-21 
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Mol. ID Isot. 

ID. 
 

# lines Minimum 

Wave 

number 

(cm
-1

) 

Maximum 

Wave 

number 

(cm
-1

) 

Minimum 

Intensity 

(cm molecule
.-1

) 

at 296 K 

Maximum 

Intensity 

(cm molecule
.-1

) 

at 296 K 

H2O2 35 166 126983 0.043110 1730.370600 5.064 x 10-29 5.582 x 10-20 

H2S 36 121 38139 1.168413 11329.779860 9.823 x 10-30 1.377 x 10-19 

131 12193 1.097191 11226.586550 1.002 x 10-29 1.080 x 10-21 

141 8318 1.030566 11071.420170 1.006 x 10-29 5.990 x 10-21 

HCOOH 37 261 62684 10.018282 1889.333730 3.966 x 10-26 5.068 x 10-20 

COF2 38 269 70904 725.005500 2001.347800 4.740 x 10-24 3.940 x 10-20 

SF6 39 29 92398 588.488352 975.787491 1.001 x 10-24 1.453 x 10-20 

C3H4 40 341 19001 288.912585 673.478839 4.230 x 10-24 1.550 x 10-20 

HO2 41 166 38804 0.172756 3675.818586 1.001 x 10-26 2.744 x 10-20 

ClONO2 42 564 206861 0.635822 797.741040 7.547 x 10-28 3.850 x 10-22 

764 150038 0.928373 790.805380 7.519 x 10-28 1.260 x 10-22 

CH3Br 43 79 18692 794.403140 1705.611680 9.970 x 10-27 2.580 x 10-21 

81 18219 795.083120 1696.895670 1.000 x 10-26 2.530 x 10-21 

CH3OH 44 216 19897 0.019265 1407.205540 8.826 x 10-35 3.771 x 10-20 

NO+ 45 46 1206 1634.831153 2530.462136 6.121 x 10-81 1.186 x 10-19 

HNC 46 142 75554 0.145590 4692.098100 1.000 x 10-30 1.262 x 10-18 

C6H6 47 266 9797 642.427000 705.262000 4.070 x 10-24 9.490 x 10-21 

C2HD 48 122 15512 416.784700 3421.864100 5.195 x 10-29 9.802 x 10-23 

CF4 49 291 60033 594.580718 1312.647564 7.912 x 10-24 4.718 x 10-20 

CH3CN 50 234 17172 890.051655 1650.000000 1.200 x 10-38 3.824 x 10-20 

HDO 51 162 53706 0.007002 17080.098180 1.240 x 10-32 2.700 x 10-22 

172 175 1234.234730 1598.765470 2.033 x 10-27 9.319 x 10-27 

182 9760 0.196882 8748.128100 3.734 x 10-33 5.646 x 10-25 

SO3 52 26 10881 0.477672 2824.347247 1.636 x 10-31 1.266 x 10-19 

 
 

The parameters for each spectral line (or molecular vibrational-rotational transition) of 

GEISA-2015 are stored in ASCII, in the ―standard format‖ as previously defined for GEISA-

2011. Each entry in GEISA describes the 31 spectroscopic line parameters on a 252 character length 

record: a detailed description of these entries (identification, format, record length, etc   is given in 

Appendix B and Table 15 herein). 

Some modifications have been made to the GEISA-2011 format. The standard default values 

for fields «O‘», « T » and « T‘ », (respectively estimated accuracy on the air pressure-shift of the 

line transition, self-pressure-shift of the line transition and estimated accuracy on the self-pressure-

shift of the line transition) have been changed and set to ―zero‖. This modification was made to 

avoid potential misunderstanding and thus improper use of these parameters in some 

applications especially related to forward radiative transfer. 

 

2.2 Description of GEISA-2015 updates per individual molecular species 

 

javascript:OuvrirPage%20('/etherTypo/?id=1072&L=0')
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This description is given below, in sub-sections 2.2.1 to 2.2.22, for each molecular 

species identified by its formula associated with its identification code in GEISA. It should be 

noted that, in the following, wave numbers may be displayed with all their decimal places – as 

in the database itself – or truncated when such a high detailed information is not required. 

 

2.2.1  H2O (molecule 1)      

2.2.1.1  GEISA-2015 H2O update overview 

H2O is significantly updated in this 2015 edition of GEISA, with important additions 

across the whole spectral range (67,789 lines in GEISA-2011 have become 191,846 in 

GEISA-2015). This significant increase of the total number of transitions originates mainly in 

the inclusion of empirical lists in the GEISA-2015. 

The new line lists for H2O in this 2015 edition of GEISA originate from results of 8 

participating institutions (in alphabetic order):  

● V.E. Zuev Institute of Atmospheric Optics, Russian Federation   (IAO) 

● Karlsruhe Institute of Technology, Germany    (KIT) 

● Laboratoire Inter-Universitaire des Systèmes Atmosphériques, France (LISA) 

● Laboratoire Interdisciplinaire de Physique, France    (LIPhy) 

●  Netherlands Institute for Space Research, Netherlands   (SRON) 

● University College Cork, Ireland      (UCC) 

● University College London, UK      (UCL) 

● University of Massachusetts, USA      (UMASS) 

 

Five isotopologues, i.e., H2
16

O, H2
17

O, H2
18

O, D2
16

O, D2
18

O, are updated in the 2015 

release, as summarized in Table 4. This Table lists GEISA-2015 entries that have totally 

replaced entries of GEISA-2011. They represent 172,680 entries. Their names are listed in the 

first column of this Table with associated identification codes (see Appendix C). Each line list 

spectral range, minimum and maximum wave numbers (cm
-1

), the number of transitions, the 

mean (Moy.I) and the maximum (Max.I) of the line intensities (cm molecule
-1 

at 296 K), and 

the origin of the data are given in columns 2 to 7 of this Table, respectively. The process used 

to update each isotopologue is described in the sections below. 
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Table 4 

General overview of the H2O update in GEISA-2015 

 

 
Isot. 
ID 

 
Wavenb. min 

(cm
-1

) 

 
Wavenb. max 

(cm
-1

) 

 
#lines 

 

 
Moy. I 

(cm molecule
.-1

) 
at 296 K 

 
Max. I 

(cm molecule
.-1

) 
at 296 K 

 
Origin 

 

H2
16

O 
161 

10.714930 

5850.059600 

5098.661059 

7920.315400 

12520 

18757 

9.9741x10-30 

1.001x10-29 

2.651x10-18 

1.856x10-20 

LISA, IAO 

LIPhy, IAO 

UMASS 

H2
17

O 
171 

0.451497 

5850.241200 

4174.108380 

19945.257171 

7905.615600 

4299.793100 

27547 

3659 

24 

4.857x10-35 

1.002x10-29 

6.46x10-28 

9.860x10-22 

6.939x10-24 

4.393x10-26 

UCL 

LIPhy, IAO 

SRON, UMASS 

H2
18

O 
181 

893.551335 

0.052583 

4177.931920 

5855.542000 

1996.530386 

19917.617846 

4298.236000 

7919.033200 

974 

39918 

47 

6641 

9.9741x10-30 

8.47x10-36 

2.93x10-26 

1.001x10-29 

2.651x10-18 

5.270x10-21 

2.440x10-25 

3.647x10-23 

LISA 

UCL 

SRON 

LIPhy, IAO 

UMASS 

D2
16

O 

(new) 
262 

6378.9189 

5.060500 

6676.1465 

7979.071900 

225 

5746 

7.31x10-33 

1.76x10-28 

2.640x10-31 

1.75x10-26 

UCC, KIT 

IAO 

UMASS 

D2
18

O 

(new) 
282 

6328.068400 

 

6637.658200 

 

162 

 

9.41x10-35 

 

5.41x10-34 

 

UCC, KIT 

UMASS 

 

2.2.1.2  H2
16

O update process 

 

The revised line list built using contributions from IAO, LISA and LIPhy was 

processed in two steps: first, the H2
16

O entries in GEISA-2011 were updated with the new 

data; then, the resulting line list was evaluated against so called "reference" spectra or 

"empirical" line lists [24] (see below) before implementation in GEISA-2015. In the spectral 

range 10.719-5098.661 cm
-1

, the previous H2
16

O data were replaced by 12520 lines of 

Coudert [25], computed from line position and line intensity analysis of two large data sets 

involving vibrational states up to the second triad. Both analyses were carried out with the 

Bending-Rotation approach [26]. The reader is referred to Ref. [25] for further information.  

For H2
16

O transitions up to the (010) vibrational state, with wavenumbers smaller than 

2000 cm
-1

, a comparison between S, the intensity in the line list built in Ref. [25], and SHitran 

that from HITRAN-2012 [14] is presented on Fig. 1, The figure compares % intensity 

difference (S-SHitran)/S for the 3937 transitions common to both line lists. For a line intensity 

larger than 10
-24

 cm molecule
-1

 both sets of intensities agree to better than 10%. 
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Fig. 1. Comparison (S - SHitran) between S, the intensity in the line list built in Ref. [25] and adopted in 

GEISA-2015, and SHitran from HITRAN-2012 [14]. The intensity difference S - SHitran in % of the 

average intensity (S + SHitran)/2 is plotted as a function of the base 10 logarithm of SHitran in cm 

molecule-1 at 296 K. Plus signs (+) correspond to the 1514 transitions belonging to the ν2 band; full 

circles to the 1623 pure rotational transitions within the ground vibrational state; and full triangles to 

the 800 pure rotational transitions within the (010) vibrational state. ν2 band transitions in HITRAN-

2012 come from Refs. [25,40]. The 5% agreement observed in many cases stems from the fact that the 

results of reference [25] were also used in GEISA-2015. 

 

In the 5850–7920 cm
-1

 region, the GEISA-2015 list for H2
16

O (and for H2
17

O and H2
18

O as 

well, see below) uses the empirical line list described in Mikhaïlenko et al. [27], from a joint 

participation of IAO and LIPhy. This GEISA update list, involving 18757 lines in the spectral 

range 5850.060-7920.315 cm
-1

 was obtained by gathering separate line lists recently obtained 

from spectra recorded using high sensitivity CW-CRDS of natural water [28-32] and is 

completed with literature data obtained by FTS for the strongest lines by Toth [33]. It has to 

be noted that there is a large literature suggesting that the intensities of the strong lines from 

[33] might be seriously in error especially above 8000 cm
-1

 and around 4000 cm
-1

; this is not 

the case in the 5850-8000 cm
-1

 spectral region considered in GEISA-2015. 

The spectral sensitivity of the CW-CRDS recordings (min~ 10
-11

–10
-10

 cm
-1

) allowed 

the detection of lines with intensities down to the 10
-29

 cm molecule
-1

. The list was  made 

mostly complete by including a large number of weak lines with positions calculated using 

experimentally determined energy levels and intensities computed by S.A. Tashkun [34] 

using the results of the variational calculations by Schwenke and Partridge [35]. After this 

first update step, the whole GEISA-2015 H2
16

O line list was processed as follows. 

New experimental results of Regalia et al. [36] (3867 transitions in total) have 

replaced the former GEISA-2011 positions and intensities in the 7924-9393 cm
-1

 region. The 

line positions from [37] between 9500 and 14500 cm
-1

 were recalculated using the calibration 
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factor of 0.99999989 proposed by Tennyson et al. [38]. Then positions and intensities of all 

new and former H2
16

O data were checked against "reference" spectrum or "empirical" line list 

in which the positions are obtained from the energy levels derived by Tennyson et al. [38] 

with the additional inclusion of new experimental data from Refs. [27,30-32,36], and 

intensities available from variational calculations of Barber et al. [39]. As a consequence of 

this validation process, the following replacements or additions were made: 

1. positions and intensities of about 900 incorrectly assigned lines, mostly coming from 

the previous GEISA editions, were corrected; 

2. positions of all lines which deviated from the empirical data by more than 0.01 cm
-1

 

were corrected; 

3. simulated intensities data originating from Toth [40] were replaced by those of Barber 

et al. [39], mostly for the weakest lines. 

Finally all empirical lines [24] with intensities larger than 10
-29

 cm molecule
-1

 at 296 K, 

missing in the initial line list, were added in the spectral region 0-26000 cm
-1

. 

 

The final H2
16

O GEISA-2015 line list has been supplemented by data from the empirical list 

generated by Naumenko [24]. GEISA-2015 contains 119,885 entries for the isotopologue 

H2
16

O compared to 40,920 in GEISA-2011. 

 

A graphical overview of the GEISA-2015 line intensities for H2
16

O is shown on Fig. 2. The 

new intensity values cover the spectral regions: 10-5098 cm
-1

 [25], 5850-7920 cm
-1

 [27], and 

7924-9392 cm
-1 

[38]. Above 9500 cm
-1

 and, partly, between 1200 and 8000 cm
-1

 the line 

intensities from GEISA-2011 were retained, these include data from Refs. [40, 41]. 
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Fig. 2 Log scale graphical display of transition intensities (cm molecule-1 at 296 K) included in 

GEISA-2015 for H2
16O.  

 

2.2.1.3  H2
17

O and H2
18

O update process 

 

New line lists provided by UCL, SRON, LIPhy and IAO, have been included in 

GEISA-2015 update for both H2
17

O and H2
18

O isotopologues. New data from LISA for H2
18

O 

have been included, as well. 

 

Line positions and intensities of H2
17

O and H2
18

O, from UCL, were taken from the line 

lists of Lodi and Tennyson [42], and provided new data in the spectral ranges 0.451-

19945.257 cm
-1

 (22508 lines) and 0.052-19917.618 cm
-1 

(31,926 lines), for H2
17

O and H2
18

O 

respectively. This study is based on two developments: 

 First the work on an IUPAC-TG on water spectroscopy [43] which adopted the 

MARVEL procedure [44,45], to determine precise empirical values for the energy 

levels of H2
17

O and H2
18

O [46]. These energy levels were used to generate a list of 

transition frequencies which encompasses all the measured frequencies validated by 

the IUPAC-TG, and all those other allowed transitions between known energy levels. 
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 Then, line intensities were computed using the high accuracy, ab-initio dipole moment 

function of Lodi et al. [47] and wave functions generated from a spectroscopically-

determined potential energy surface [48]. Lodi and Tennyson developed a procedure 

for determining the uncertainty in these intensities and, for a few cases where the 

calculated intensities were deemed unreliable, the empirical ones were retained. 

It should be noticed that:  

 Regalia et al. [36] performed a comprehensive comparison of water absorption in the 

6450 to 9400 cm
-1

 region based on a new experimental study. While their comparisons 

identified a significant number of issues with the spectroscopic data available in 

current compilations, the agreement with the H2
18

O and H2
17

O line lists of Lodi and 

Tennyson was, in general, excellent;  

 the recent work by Polyansky et al. [49] allows us to significantly increase the number 

of H2
18

O and H2
17

O energy levels known to experimental accuracy by exploiting the 

much more extensive list of known H2
16

O levels. This work will be used to further 

enhance the line lists for the H2
18

O and H2
17

O isotopologues in future editions. 

 

SRON provided updates in the 2.3 µm windows wavelength range which covers the 

windows used for the retrieval of H2O and the ratio HDO/H2O, by the SCIAMACHY 

instrument, on board ENVISAT. However, the spectroscopy of water lines in this region 

remained a large source of uncertainty for these retrievals. Consequently, Scheepmaker et al. 

[50] updated the spectroscopic line parameters of H2
17

O and H2
18

O in the 4175.123-4298.302 

cm
−1

 spectral range, taking the results of Jenouvrier et al. [51] as the a priori input in their 

new line list processing method. These additional data have been retained for implementation 

in GEISA-2015 because they represent an improved spectroscopic dataset which has been 

tested on a series of ground based high resolution FTS spectra as well as on SCIAMACHY 

retrievals of H2O and on the ratio HDO/H2O. This improved spectroscopy has led to lower 

residuals in the FTS spectra compared to alternate available spectroscopic sources and the 

retrievals have become more robust against changes in the retrieval window. As a result, a 

total of 71 lines for isotopologues H2
17

O (24 lines) and H2
18

O (47 lines), were included in 

GEISA-2015, from the supplementary material available in [50]. 

In the 5850–7920 cm
-1

 spectral region, the GEISA-2015 list for H2
17

O and H2
18

O uses 

the empirical line list, from LIPhy and IAO, described in Mikhaïlenko et al. [27]. Two new 

series of entries, covering respectively, for H2
17

O and H2
18

O, the spectral ranges 5850.241-

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/sciamachy
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat
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7905.616 cm
-1

 (3659 lines) and 5855.542-7919.033 cm
-1

 (6641 lines) have been implemented 

in GEISA-2015. 

In the 20–2000 cm
-1

 spectral range, line parameters of H2
18

O were updated based on 

the line position and line intensity analyses carried out in LISA by Coudert and Chelin [52] 

using the Bending-Rotation approach [26]. In the line position analysis of Ref. [53], using 173 

parameters, the data from Refs [54-60] were fitted up to J=17, Ka=17, and to the first Triad; 

they were reproduced with a dimensionless standard deviation of 1.2. The line parameters of 

H2
18

O were updated fitting the limited line intensity data set of Refs. [60,61] involving the 

ground and (010) states only. 1760 line intensities were reproduced with a unit-less standard 

deviation of 1.5 using 18 parameters and a line list containing pure rotational and ν2 band 

transitions was built. An abundance-weighted intensity cut-off of 10
-27 

cm molecule
-1

 at 296 K 

was used assuming an isotopic abundance of 0.199983 %. Fig. 3 compares the intensities in 

this line list and those in HITRAN-2012 [14] for transitions belonging to the ν2 band of 

H2
18

O. For this band, the intensity values in HITRAN-2012 were set to ab-initio calculated 

values given in Ref. [42]. A negative bias, more pronounced for strong lines, can easily be 

seen (-2.3%). For strong lines with a intensity larger than 10
-23

 cm molecule
-1

, the bias could 

reach -3.4%. The RMS value of the intensity differences is 3.2%. We have retained this line 

list because, as discussed in Ref. [52], this work both reproduces more accurately the 

experimental intensities from Refs. [60,61] than the line list of HITRAN-2012 [14] (example 

of the ν2 band of H2
18

O where the intensity values in HITRAN-2012 were retrieved through 

ab-initio calculations (see Lodi and Tennyson [42]). 

 

 

 

Fig. 3. A comparison between the intensity S of ν2 band transitions comprising the GEISA-2015 

updated H2
18O line list and (SHitran) those from HITRAN-2012 [14] for the 971 transitions in both line 

lists with a wave number smaller than 2000 cm-1. The intensity difference S - SHitran in % of the average 

intensity (S + SHitran)/2 is plotted as a function of the base 10 logarithm of SHitran in cm molecule-1. 

 



 

21 

 

Finally, most of the previous data on H2
16

O, H2
17

O, H2
18

O, in the 5850 - 7920 cm
-1

 

spectral region, were replaced by the new line list (more than 29000 vibration-rotation 

transitions) of Mikhaïlenko et al. [27]. The advantages of this list, which incorporates all 

available experimental information, are discussed in [27]. An illustration of this new data set 

is given, in Fig. 4, by the base 10 logarithm graphical display of intensities (cm molecule
-1

) 

for H2
16

O, H2
17

O, H2
18

O (Y-Axis) in the spectral range 5850-7920 cm
-1

 (X-abscissa).  

 

 

 

 

Fig. 4. Overview of  line intensities (at 296 K, in logarithmic scale) in the GEISA-2015 line parameter 

database for water isotopologues, H2
16O, H2

17O, H2
18O, between 5850 and 7920 cm-1. The contribution 

of the different isotopologues is highlighted: H2
16O -black, H2

17O -blue, H2
18O -red). 

 

 

2.2.1.4 Implementation of two new isotopologues:  D2
16

O and D2
18

O in GEISA-2015 

 

The data for D2
16

O and D2
18

O were originally based on a high resolution (0.02 cm
-1

) 

absorption spectrum recorded by Orphal and Ruth [53] for a mixture of D2
16

O and H2
18

O 

gases and designed to maximise the presence of HD
18

O. Significant quantities of the 

isotopologues H2
18

O (~29%), HD
16

O (~22.5%), H2
16

O (~14.5%), D2
18

O (~9.3%) andD2
16

O 

(~6.3%) were observed [52] and are at the origin of line lists of two new isotopologues, D2
16

O 

and D2
18

O, implemented in GEISA-2015.  

However several (some unpublished), variational line lists and experimental lower level data 

exist for D2
16

O [63-67] and D2
18

O [63],[68],[69]. The IUPAC group have recently completed 

their analysis of D2O isotopologues [70] and these data will be used in a future update. 
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2.2.1.4.1 D2
16

O: 

 

The new D2
16

O transitions have been implemented in GEISA-2015 in two spectral 

regions: 

- The region 6378.92–6676.15 cm
-1

 where all observed D2
16

O transitions agree with 

assignments by Ormsby et al. [64]. 295 lines were included in the analysis, of which 265 were 

assigned directly to observations including 40 blended lines. Most of the lines belong to the 

ν1+ ν2+ ν3 combination band and calculations agreed with observation within the spectral 

resolution of 0.02 cm
-1

. The experimental spectral resolution does not limit the precision of 

line positions except in the case of blended lines. Hence, for the current GEISA-2015 edition, 

all blended lines have been deleted from the datasets. 

- The region between 5 and 7980 cm
-1

 contains a list of empirical line positions completed by 

variational line intensities. The line positions were calculated using the empirical energy 

levels recommended by an IUPAC task group [70]. Calculated line intensities, available at 

http://spectra.iao.ru/1366x647/en/mol/survey/1/ and based on the results of Partridge and 

Schwenke [71]. 

The list includes 5746 transitions of 18 vibration-rotation bands with maximum values of 

rotational numbers J and Ka equal to 24 and 14, respectively. This list corresponds to a cut-off 

of 1×10
-30

 cm/molecule at 296K taking into account a natural abundance of 2.4197×10
-8

 for 

D2
16

O.  

2.2.1.4.2 D2
18

O: 

 

The D2
18

O transitions between 6328 and 6638 cm
-1

 were recorded and identified in 

Down et al. [62] based on variational line list. A set of lower energy levels from Ni et al. [69] 

was used to determine the upper energy levels. The accuracy of line positions is estimated to 

be of 0.002-0.004 cm-1. About 150 D2
18

O transitions from [62] approved by the IUPAC 

analysis [70] are implemented in GEISA-2015. These transitions belong, mostly, to (111)-

(000) and (210)-(000) vibrational bands.  

 

2.2.1.5  Line shape parameters 

 

http://spectra.iao.ru/1366x647/en/mol/survey/1/
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Line shape parameters for water vapor; the air-broadened half-widths, γair, its 

temperature dependence, nair, the air-induced line shifts, δair, and the self-broadened half-

widths, γself, are added to the GEISA-2015 database from a number of sources. 

 For the three most abundant isotopologues of water, H2
16

O, H2
18

O, and H2
17

O, the air-

broadened half-widths, line shifts and self-broadened half-widths were added using a 

sophisticated scheme explained by Gordon et al. [72]  that determines and eliminates the 

experimental outliers and then either uses their averages, if they exist, or the experimental 

values, or theoretical values calculated using the CRB method (see for instance Refs. 

[73],[74]), or if no experimental or theoretical value exists, semi-empirical values from 

Jacquemart et al. [75]. When none of the above data are available, the half-width data are 

obtained from J-dependent polynomials [76]. The temperature dependence of the half-width is 

taken from measured values, if no data exist the data are obtained from a polynomial in J‖ that 

was developed by Gamache [77] using the data of Birk and Wagner [78]  smoothened and 

extrapolated to J‖=50.  Note, when there are no data available for H2
18

O or H2
17

O, the 

corresponding data for H2
16

O are used (if they exist). 

For the air-D2O collision system, measured half-widths and line shifts are available 

[79-82] for a small number of transitions in the ν2, 2ν2- ν2, and ν3 bands. From these data a set 

of air-broadened half-widths as a function of rotational quantum numbers was made and these 

data were added to the database neglecting vibrational dependence. To augment the 

measurement database, the half-width data were taken and the average half-width as a 

function of J‖ determined. These data were extrapolated to J‖=50 and fit to a polynomial. 

These data were used for lines for which there are no measured data or rotational transition 

data.  The error in the averaged data was taken to be 50% of the averaged value. There are no 

measured data on the temperature dependence of the half-width or on coefficient n. The 

HITRAN H2
16

O-air n values were used for D2
16

O-air with the error set to 50%. 

For the D2O-D2O collision system, the half-width, its temperature dependence, and the 

line shift (rotation band only) data are from the MCRB calculations of Gamache et al. [83].  

Again vibrational dependence is assumed negligible for the half-width and its temperature 

dependence.  For transitions for which MCRB calculations are not available, the MCRB data 

were averaged as a function of J‖ and extrapolated to J‖=50. The average values were then 

used for transitions for which there were no half-width data. The error in the averaged half-

widths was set to 50%. 
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2.2.2   CO2 (molecule 2)      

 

2.2.2.1 Line list update description 

 

The GEISA-2011 carbon dioxide line list is replaced by the current version of CDSD-

296 databank [84] which forms the new GEISA-2015 CO2 line list.  The CDSD-296 databank 

contains calculated line parameters (positions, intensities, air- and self-broadened half-widths, 

coefficients of temperature dependence of air-broadened half-widths and air pressure-induced 

line shifts) for twelve sTable isotopic species of CO2
 
(See Table

 
 5 below). This databank was 

generated for a reference temperature 296 K and an intensity cut-off of 10
-30

 cm molecule
-1

.  It 

contains 534,227 lines covering the 6-14,075 cm
-1

 spectral range.  The line positions and 

intensities were calculated using the method of effective operators and are based on global 

weighted fits of the effective Hamiltonian and effective dipole moment parameters to the 

observed data collected from the literature. The fitted sets of the effective Hamiltonian 

parameters on average reproduce the observed line positions with the residuals about twice 

the experimental uncertainties. The fitted sets of effective dipole moment parameters 

reproduce most of the observed line intensities within their experimental uncertainties. Each 

isotopologue has been considered separately. The sets of the effective dipole moment 

parameters of the principal isotopologue were used to calculate the line intensities of the 

minor isotopologues. The isotopologue composition of the current version of CDSD-296, and 

consequently in GEISA-2015, is presented in Table 5. The isotopologue Identification Codes 

(ID), respectively in CDSD, HITRAN-2012 and GEISA-2015, are listed in columns 1 to 3; 

column 4 and 5 detail the chemical formula and the natural abundance corresponding to each 

isotopologue; the number of lines reported for each species is in column 6. Compared to 

GEISA-2011, the current version GEISA-2015 includes the spectral line parameters for three 

additional isotopologues: 
17

O
12

C
17

O, 
17

O
13

C
18

O and 
17

O
13

C
17

O. The line parameters for other 

minor isotopologues are considerably improved and the spectral ranges extended. These 

improvements are possible due to the extensive measurements of line parameters of the minor 

isotopologues performed in Paris [85], Grenoble [89-91], Hefei [86,92-94] and Brussels [95]. 

The stated errors for the line positions and intensities rely on the measurement errors and on 

the rough estimates performed for the extrapolated values.   

Very recently Polyansky et al. computed an ab-initio dipole moment surface which 

has been used for the prediction of CO2 intensities below 8000 cm
-1

 with very high accuracy 
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[96]. This has been combined with energy levels from CDSD-296 to give a new line list for 

CO2 [97] which will be considered as part of a future update. 
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Table 5 

CO2 isotopologues in GEISA-2015 (from Tashkun et al.  [84]) 

 

CDSD ID HITRAN-2012 

ID 

GEISA-2015 

ID 

Molecular 

species 
Abundance #lines 

1 1 626 
12

C
16

O2 0.9842 170846 

2 2 636 
13

C
16

O2 1.106 x 10-2 70462 

3 3 628 
16

O
12

C
18

O 3.947 x 10-3 115942 

4 4 627 
16

O
12

C
17

O 7.339 x 10-4 72120 

5 5 638 
16

O
13

C
18

O 4.434 x 10-5 40143 

6 6 637 
16

O
13

C
17

O 8.246 x 10-6 23901 

7 7 828 
18

O
12

C
18

O 3.957 x 10-6 10593 

8 8 728 
17

O
12

C
18

O 1.472 x 10-6 15206 

9 9 727  (New) 
17

O
12

C
17

O 1.430 x 10-7 6623 

10 0 838 
18

O
13

C
18

O 4.446 x 10-8 3111 

11 Abs 738 (New) 
17

O
13

C
18

O 1.654 x 10-8 3621 

12 Abs 737 (New) 
13

C
17

O2 1.55 x 10-9
 1659 

 

2.2.2.2 Line shape parameters: 

 

 The algorithm to add CO2 line shape parameters to the GEISA-2015  line list uses data 

from the measurement database [98]. The database values were filtered and outliers removed.  

However, most of the data in the algorithm rely on recent CRB calculations of the line shape 

parameters for CO2 broadened by N2, O2, air, and CO2 [99-101].  These calculations show 

excellent agreement with measurement; average differences of a fraction of a percent and 

standard deviations of 1-3 %. The CRB calculations allowed the study of the dependence of 

the line shape parameters on J‖ values, temperatures, and vibrational bands that are yet to be 

measured. A study of the vibrational dependence of the half-width and line shift, and the 

temperature dependence of these parameters was recently completed by Gamache and 

Lamouroux [102]. From this study they developed an algorithm based on a generalization of 

the method of Gamache and Hartmann [103] that can predict the line shape parameters for 

CO2 in collision with N2, O2, air, and CO2 [104]. CRB calculations were used to produce data 

up to J‖=160 and these data were extrapolated to J‖=200. The prediction algorithm determines 

the half-width and the line shift for any vibrational transition with J‖≤200 for temperatures in 

the range 150-2000 K.  The accuracy of the algorithm is discussed in Ref. [104]. 
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 The prediction algorithm uses the rotational and vibrational quantum numbers and 

temperature as inputs and returns the half-width and line shift for the particular transition at 

the specified temperature.  Given the line shape data at a number of temperatures, the 

temperature dependence of these parameters can be determined using the power law model

    .        (1) 

It is known that the temperature exponent, n, is strongly dependent on the temperature range 

chosen [101]. Here the temperature dependence of the air- and self-broadened half-width were 

determined using the prediction algorithm data for the temperature range 200-350 K (Earth). 

For applications to other atmospheres, different values should be used.  For example the 

NASA Ames CO2 database [105] contains temperature exponents for 4 temperature ranges 

corresponding to applications to Mars (150-296 K), Earth (200-350 K), Venus (296-700 K), 

and high temperature applications (700-2000 K). 

 Using the algorithm, the half-width, its temperature dependence, and the line shift for 

both air- and self-broadening of CO2, and the corresponding errors in these parameters were 

added to the GEISA-2015 CO2 transitions.  
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2.2.3 O3 (molecule 3)  

 

Forty-six bands of the main ozone isotopologue, 
16

O3, in the 3266-6997 cm
-1

 spectral region 

are newly included in the GEISA-2015 database, as summarized in Table 6. A graphical intensity 

overview of the new data is shown on Fig. 5.  

 

Table 6  

Ozone bands newly included or updated in GEISA-2015 line parameter database.  Upper and lower 

state vibrational band identifiers (vi (i=1,2,3)) are given in column 1, with associated number of 

archived lines, spectral region in cm
-1

, total intensity in cm molecule
-1

 at 296 K, and source 

references, in columns 2 to 5, respectively. 

 

Band  # lines Spectral region  

(cm
-1

) 

SV  

(cm molecule 
-1

  

at 296 K) 

Refs. 

022 – 000 2616a 3266.51 – 3488.18 1.111 X 10-22 [106] 

121 – 000 2210a 3373.90 – 3487.30 6.329 X 10-22 [106] 

220 – 000   684
a
 3488.15 – 3627.87 2.500 X 10

-23
 [106] 

311 – 100   729 3739.97 – 3826.22 2.398 X 10-23 [107] 

005 – 100   508 3742.91 – 3726.13 1.660 X 10-23 [107] 

104 – 100     51 3752.69 – 3863.55 8.192 X 10-25 [107] 

005 – 001   278 3807.31 – 3917.54 9.849 X 10-24 [107] 

311 – 001   436 3810.30 – 3946.73 9.846 X 10-24 [107] 

104 – 001   950 3820.17 – 3894.94 2.218 X 10-22 [107] 

123 – 010   783 4531.73 – 4599.39 6.534 X 10-23 [108] 

330 – 010     47 4554.65 – 4601.97 1.830 X 10-24 [108] 

104 – 000 1093 4802.98 – 4978.61 7.789 X 10-23 [107] 

005 – 000 1514 4806.33 – 4938.21 5.300 X 10-22 [107] 

311 – 000 1053 4827.65 – 4928.49 3.450 X 10-22 [107] 

203 – 000 1086 4997.30 – 5085.47 1.263 X 10-22 [109] 

132 – 000     27 5028.06 – 5085.33 1.396 X 10-24 [109] 

123 – 000   784 5216.76 – 5300.21 5.902 X 10-23 [108] 

401 – 000   896 5244.80 – 5319.26 8.153 X 10-23 [108] 

330 – 000     43 5252.48 – 4302.26 1.514 X 10-24 [108] 

024 – 000       2 5271.73 – 5316.28 6.791 X 10-26 [108] 

015 – 000   622 5625.97 – 5704.62 3.465 X 10-23 [108] 

420 – 000     10 5663.20 – 5706.33 3.065 X 10-25 [108] 

105_1 – 000 c   730 5708.95 – 5790.90 4.943 X 10-23 [111] 

312 – 000     14 5753.33 – 5786.12 4.336 X 10-25 [111] 

421 – 010   303 5815.58 – 5873.74 3.570 X 10-25 [114] 

133 – 000   702 5852.44 – 5931.22 4.718 X 10-24 [114] 

411 – 000   444 5895.17 – 5956.76 1.379 X 10-24 [114] 

233_1 – 000 c   528 5941.73 – 6021.44 7.950 X 10-25 [115] 

034 – 000   264 5956.88 – 6078.00 8.529 X 10-25 [112] 

105_2 – 000 c   678 5983.44 – 6071.43 2.097 X 10-24 [112] 

124_1 – 000 c   999 6019.98 – 6201.30 2.934 X 10-24 [112] 

223_1 – 000 c   954 6031.75 – 6130.78 1.179 X 10-23 [112] 

510 – 000     39 6067.96 – 6136.40 1.275 X 10-25 [112] 

331 – 000   168 6163.49 – 6207.75 1.371 X 10-25 [112] 

025 – 000 1003 6225.12 – 6311.46 7.702 X 10-24 [113] 
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Band  # lines Spectral region  

(cm
-1

) 

SV  

(cm molecule 
-1

  

at 296 K) 

Refs. 

124_2 – 000 c     78 6246.40 – 6363.42 3.445 X 10-25 [113] 

430 – 000   111 6284.63 – 6395.38 3.115 X 10-25 [113] 

501 – 000   749 6301.80 – 6365.48 6.370 X 10-24 [113] 

223_2 – 000 c   777 6318.03 – 6393.74 6.790 X 10-24 [113] 

421 – 000   409 6503.67 – 6574.40 8.695 X 10-25 [114] 

205_1 – 000 c   570 6525.82 – 6593.61 1.966 X 10-24 [114] 

242 – 000   457 6665.49 – 6822.32 2.914 X 10-25 [115] 

233_1 – 000 c   754 6641.08 – 6722.18 1.583 X 10-24 [115] 

520 – 000     33 6677.10 – 6771.82 2.158 X 10-26 [115] 

511 – 000   317b 6945.09 – 6989.76 2.423 X 10-25 [114] 

233_2 – 000 c   417 6950.18 – 6996.68 4.506 X 10-25 [114] 

 

Notes:  a,b) The number of transitions is not the same as that given in the S&MPO databank [116] due to use 

of a  cut-off of respectively 3×10-27 instead of  2×10-26 and 1×10-28 instead of  2×10-28
 (in cm molecule-1). 

c) For these bands the additional ranking number is given to distinguish the upper states which could have the 

same principal normal mode contributions as discussed in [118]; SV is the integrated band intensity computed 

as a sum of vibration-rotation line intensities with the  Imin and Jmax cut-off specified for each band in original 

publications cited in the last column. 

 

 

 

 

 

 

Fig. 5. Overview of line intensities of the supplementary ozone data included in GEISA-2015 in the 3266-

6997 cm-1 spectral region. The intensity cut-off is much lower above 5800 cm-1 because the laser CRDS 

measurements in this range were more sensitive resulting in the detection and assignments of much weaker 

lines [113-115]. 

 

The twenty-four bands up to 5800 cm
-1

 were obtained from the analysis of FTS recorded in 

GSMA laboratory of Reims University [106-111,116], while the twenty two other bands were 

recorded by CW-CRDS in LIPhy laboratory of Grenoble University [112-115]. This new dataset, 

beginning at 3266 cm
-1

, was based on results of previous work by Mikhailenko et al. [117] included 

in GEISA-2011 which covered the spectral range below 3000 cm
-1

. All these data are implemented 

http://www.univ-reims.eu/
http://www.univ-grenoble-alpes.fr/en/
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in the S&MPO databank (Babikov et al. [116]), jointly developed and maintained by the Institute of 

Atmospheric Optics (Tomsk) and Reims University. Relevant details about experimental accuracies 

for each of the analyzed bands, theoretical models and rovibrational assignments can be found in 

Refs. [106,111-118]. 

In GEISA-2011, the highest included ozone bands corresponded to FTS data in the 4400-

4800 cm
-1

 wavenumber range analyzed in Refs. [119,121] and to CRDS data up to 6394 cm
-1

 

[112,113]. In GEISA-2015 the ozone line list is considerably extended and is now almost complete 

up to nearly 7000 cm
-1

. The higher-frequency CRDS measurement have been described by 

Campargue et al. [114,115], while the assignment and analyses of both FTS and CRDS spectra have 

been reviewed by Barbe et al. [118]. 

In particular, the previously missing spectral interval between 4850 and 5800 cm
-1

 is now 

covered. For the 53, 1+43 and 31+2+3 bands (4800-4930 cm
-1

), results of a recent unpublished 

analysis [107] have been included improving the results of Ref. [121]. The motivation for including 

new data sets is twofold. On one hand, knowledge of highly excited vibration-rotation ozone states 

and transition probabilities is important for the modeling of molecular fragmentation and 

recombination processes. It has been recently shown that this information is important for the 

understanding of the properties of the ozone transition state towards the dissociation [122]. On the 

other hand, radiative processes involving high-energy ro-vibrational states of ozone are also 

required for a detailed description of non-LTE processes in the upper atmosphere [123,124] and in 

turn for better interpretation of ozone emission in satellite measurements [125]. 

The multiple vibrational labels appearing in Table 6 for high energy bands deserve a comment. The 

vibrational assignments rely on normal mode decomposition of effective wave functions following 

the method described in [126]. The assignments of highly excited vibrations become ambiguous for 

some states [117] because of the absence of a dominant normal mode contribution in the vibrational 

eigen-functions. This occurs when the normal modes are strongly mixed due to anharmonic 

resonance interactions including inter-polyad couplings. For this reason the vibrational labelling 

could change with an improved potential function. At present we apply the vibrational assignment 

deduced from recent accurate ab-initio potential energy surface of Tyuterev et al. [127] that was 

used for spectral analyses in the high energy range approaching the dissociation threshold [122]. 

The vibrational assignment of some bands in Table 6 has evolved since the earlier publications (see 

the review [118] for more details): the 21+2+33 band of Ref. [110] is now labeled as 2+53 and 

the 1+53 band of Ref. [111] is labeled as 1+53_1. In the latter case, as is also for some bands in 

Table 6, an additional ranking number is given to distinguish the upper states which could have the 

same principal normal mode contributions as discussed in [118]. 

http://www.iao.ru/
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The accuracy of line lists depends strongly on the wavenumber range. In the range of 

fundamental, low overtones and combination bands, the accuracy on line positions reaches ~ 10
-4

 

cm
-1

 with relative precision on experimental intensity determination of ~ 2-3 % for strong isolated 

lines [118]. With increasing upper state energies the spectra are more and more crowded, and 

become dominated by numerous overlapping weak bands making the retrieval of line parameters 

using line profile fit [128] less accurate. Moreover, the data reduction using effective Hamiltonians 

and effective transition moment operators introduces a supplementary uncertainty due to multiple 

resonance interactions and ―dark‖ state perturbations: in the range of bands with five or six 

vibrational quanta (V=5 or V=6), the root mean square fit error reaches value of the order of 

0.002-0.004 cm
-1

 [106]. An accurate description of B-type bands represents a particular challenge 

for the analysis. While in the FTS range below 5800 cm
-1

, the line positions were calculated using 

respective effective Hamiltonian models [106-110, 111], in the CRDS range above 5800 cm
-1

, 

empirical corrections in calculated line positions have been introduced as described in Refs. [112-

115, 118] to reduce the error to experimental accuracy, which is of the order of 0.0015 cm
-1

. 

In GEISA-2015, along with other data, the bands with V=5 to V=8 (Table 6, figure 5) are 

included; these give rise to congested ozone spectra involving numerous superimposed weak lines. 

In these circumstances only a selected set of unblended, relatively isolated lines (with best strengths 

measurements accurate to ~5-10 %) could be involved in the determination of the band transition 

moment parameters, which have then been used for the generation of line lists. At high 

wavenumber ranges the corresponding synthetic spectra result in a qualitative description [109-118] 

of ozone absorption except for some extremely weak or yet unassigned transitions. Because of 

remaining inconsistencies between IR and UV intensity measurements which only agree within 

about 4% as discussed in [118,129,130], it has to be noted that in general the question of absolute 

accuracy of ozone line strengths is a controversial issue which requires further investigation.  

 

Fig. 6 exhibits the difference of ozone absorption between 3397.3 and 3404.7 cm
-1

 using 

GEISA-2011 (upper panel A) and GEISA-2015 (lower panel B). On each panel, the upper part 

displays the experimental (in blue) and simulated (in olive) transmission spectra in %. The lower 

part displays the difference (in %) between the experimental (―OBS‖) and simulated   transmission 

based on GEISA-2011 (panel A) and GEISA-2015 (panel B). The sum of the squares of differences 

between observed and simulated spectra ( 2

1

( )
n

Obs Simul

i i

i

Diff T T


  , n – number of spectrum points, 

T- transmission) are 0.560 and 0.064 for GEISA-2011 and GEISA-2015 respectively. The strongest 

lines correspond to the RP and RR branches of the 22+23 band of ozone. Blue solid line 

corresponds to experimental absorption (room temperature, absorption path 3616 cm, total pressure 
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53.9 torr (O3 – 79.404%, O2 – 20.408%, CO2 – 0.091%, H2O – 0.083%, CO – 0.01%, N2O – 

0.004%)). The olive (panel A) and red (panel (B) lines correspond to calculated transmission. The 

new line list (GEISA-2015) was generated using results reported by Barbe et al.[106].  
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Fig.6. Differences between ozone absorption simulations using GEISA-2011 (upper panel A) and GEISA-

2015 (lower panel B) for the ν1+2ν2+ ν3 and 2ν2+2ν3 bands near 3400 cm-1.  

 

 

The user accuracy requirements for ozone data also depend on wavenumber range and vary 

according to specific applications. In the high energy range, knowledge of the most important 
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absorption features and their trend with upper state energy are essential for non-LTE modeling or 

for global understanding of ozone spectroscopic properties and dynamics,. The present release 

includes a significant portion of the relevant data, up to ~82% of the dissociation threshold 

(estimated as D0 ~8500 cm
-1

 [131]), which corresponds to recent progress in ozone spectral 

assignments [109-118]. These data could also be useful for validation of ab-initio calculations in 

this high energy range. 

 

2.2.4 CH4 (molecule 6) 

Part of the GEISA-2015 methane update is based on the latest global fits of line-by-line 

assignments (for both line positions and line intensities). The global analysis up to the Tetradecad 

region [132] was used for 
12

CH4, while a global fit up to the Octad region [133] was used for 
13

CH4. 

The line list was generated by computing semi-empirical upper state energy levels. These levels are 

calculated from averages over several transitions sharing the same upper state; all line positions are 

then recomputed using these upper states. This method is the same as the one used for the 

HITRAN-2012 methane update described in Ref. [134]. Since this last paper, some problems, 

however, have been detected especially concerning some hot band lines like those of the Octad–

Dyad and Octad–Pentad regions. As a consequence, in the case of 
12

CH4, the calculated lines of 

Octad–Dyad resulting from these global fits are discarded in the present GEISA update, while 

Octad–Pentad lines are included with an intensity cut-off limited to 10
-26

 cm
-1

/molecule cm
-2

. 

Moreover, after a careful validation process based on a method described in Armante et al. [22] 

(this issue), it appeared that the new spectroscopic parameters of the Octad–GS lines for 
12

CH4 and 

13
CH4, and the Dyad–GS lines for 

13
CH4, were less precise than the previous ones in GEISA-2011 

[11]; these have, consequently, been retained in GEISA-2015. 

The present calculated data were recently used to estimate the spectroscopic uncertainties for 

methane retrievals associated with the set-up and instrumentation of the future Earth-observing 

satellite Sentinel-5 [135]. 

It should also be mentioned that the problems concerning hot bands in the global fits, 

discussed above have very recently been solved. A new 
12

CH4 study using high-temperature 

emission data which includes highly excited rovibrational levels (up to J=30 in some regions) 

between 1000 and 1500 cm
-1 

has been performed and included in a global fit of the 0 to 6300 cm
-1

 

range [136]. Many new hot band lines could be assigned and their intensity is now reliably 

modeled. These new data are not included in GEISA-2015, but will be used in a future update, in 

conjunction with other ongoing studies. Finally, two new line-broadening studies in the Tetradecad 

region will also be included in the database in the near future [137,138]. 

https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-5
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-5
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The near infrared line list for methane above 5850 cm
-1

 has been considerably updated on the 

basis of new measurements. While methane molecular line parameters are mostly calculated values 

below 5000 cm
-1

, above this value, line positions and line intensities take empirical values directly 

retrieved from experimental spectra recorded at room temperature. In particular, the GEISA-2011 

list above 4900 cm
-1

 relied almost exclusively on empirical spectroscopic parameters obtained by 

Brown using an FTS with path lengths up to 433 meters [139]. The overwhelming majority of the 

absorption lines were included without rovibrational assignment and with a lower state energy 

default value of 999.9900 cm
-1

 as recommended by the author of the data [140]. In the recent years, 

considerable progress has been achieved using new measurements with increased sensitivity and 

extended spectral coverage. The major changes are summarized below and illustrated in the 

overview comparison of the GEISA-2011 and GEISA-2015 line lists presented in Fig.7. 

The methane list in the 5850-7918.9 cm
-1

 region is essentially the room temperature WKLMC  

empirical list [141] constructed in Grenoble from natural methane spectra recorded by differential 

DAS laser and high sensitivity CRDS. The positions and intensities were retrieved from spectra 

recorded at room temperature and at 80 K by DAS in the strong absorption regions in the 2ν3 region 

of the Tetradecad [142-145] and in the Icosad [146-148], and CRDS in the 1.58 µm [149-151] and 

1.28 µm transparency windows [152]. Two WKLMC empirical lists for methane in ―natural‖ 

abundance were constructed as described in Refs. [134,141]. The GEISA-2015 list reproduces the 

WKLMC list at 296 K while the WKLMC list at 80 K has fulfilled important needs for the analysis 

of the near infrared spectra of various planetary objects [153-155], in particular Titan [149,156]. 

Transitions of the 
13

CH4 and CH3D isotopologues present in ―natural‖ methane were identified by 

comparison with DAS spectra of ―pure‖ 
13

CH4 and CH3D recorded at 80 K and 296 K. The 

combined 80 K and room temperature intensities facilitated the application of the so-called ―two 

Temperature-method‖ which allows the empirical lower state energy level, Eemp, of a given 

transition to be determined from the ratio of the intensities of the corresponding line measured at 

two temperatures [157,158]. In this way, although most of the lines lack full rovibrational 

assignments, the derived Eemp values allow the temperature dependence of most of the absorption in 

the region to be accounted for satisfactorily. When available and validated using the Eemp values, the 

rovibrational assignments were attached to the WKLMC line parameters and included in the 

GEISA-2015 list. Rovibrational assignments were transferred from three sources: (i) the GOSAT 

empirical list [159] provided ~ 2000 rovibrational assignments in the 5855-6204.6 cm
-1

, region, (ii) 

the 6350-6500 cm
 -1

, interval corresponding to the 5ν4 and ν2+4ν4 bands in the Icosad system which 

were assigned by Nikitin et al. [150], (iii) about 70 lines of the ν2+2ν3 band near 7510 cm
-1

 are 

assigned. In figure 7, the WKLMC lines with full rovibrational assignments or Eemp values have 

been highlighted.  

http://global.jaxa.jp/projects/sat/gosat/
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Fig. 7. Line intensity overview comparison of the GEISA list of 12CH4 in the 2011 and 2015 editions of 

GEISA above 5850 cm-1. In this region, line parameters all are of  empirical origin: the WKLMC list up to 

7920 cm-1 [141], CRDS between 7920 and 8345 cm-1 
[160], FTS by Brown in the 8345-9028 cm-1 interval 

[139] and by Béguier et al. in the 9028-10923 cm-1 interval [161], and ICLAS between 11000 and 11500 cm-1 

[162]. The different polyad and corresponding numbers, P, are indicated. (The polyad number P is equal to 

2(V1+V3)+V2+V4, where Vi are the normal mode vibrational quantum numbers). The WKLMC lines with full 

rovibrational assignments or Eemp values have been highlighted with red and blue symbols, respectively. 

 

2.2.5  O2 (molecule 7)  

 

Our update has started from the O2 line list as given in HITRAN-2012 [14], which 

represents a substantial extension to previous versions of GEISA and HITRAN, with updates 

largely based on Gordon et al. [163,164], Leshchishina et al. [165,166] and Long et al. [167-169]. 

The line positions and lower states energies were updated with the results from an updated 

isotopically invariant Dunham fit published by Yu et al. in 2014 [170]. The other line parameters, 

such as line intensities and broadening, remain unchanged, and finally the number of lines also 

stays the same. The updated isotopically invariant Dunham fit [170] was obtained by adding new 

measurements in the microwave [171] and in the infrared [172] to the first global analysis of O2 by 

Yu et al. in 2012 [173] that simultaneously fits spectra involving the  ,  and  states 

of all six O2 isotopologues. The new microwave work [171] measured 324 rotational transitions in 
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the  v = 0 and 1 states of the six O2 isotopologues with experimental accuracy of 50-200 kHz, 

which helped determine two more hyperfine parameters, the electric quadrupole interaction eQq 

and the nuclear spin-rotation interaction CI. The new infrared work [172] reported 1644 transition 

frequencies in the  system of six O2 isotopologues and the experimental accuracy 

ranged from 0.0004 to 0.006 cm
-1

. The new infrared study [172] revealed a 0.2 cm
-1

 calibration 

error in the 
17

O
18

O v'-v''= 1-0 Raman data of Edwards et al. [174], resolved discrepancies in the 

Raman data for 
16

O
17

O, 
17

O
17

O, and 
17

O
18

O, and improved the vibrational parameterization of the 

ground electronic state. 

Note that the absolute zero energy of each isotopologue is set to the allowed lowest 

rotational level in  of that isotopologue, i.e., the absolute zero energy is set to the level of N=1 

and J=0 for 
16

O
16

O, to the level of N=0 and J=1 for 
16

O
18

O and to the level of N=0, J=1 and F=3.5 

for 
16

O
17

O. For 
16

O
17

O, the microwave transitions have nuclear hyperfine structures while the 

 and  electronic transitions have no nuclear hyperfine structures. The 

16
O

17
O microwave transitions were directly updated using the results of the updated Dunham fit 

while its electronic transitions were updated with ―hyperfine-free‖ energies calculated with the 

nuclear hyperfine parameters set to zero. In this case, the absolute zero energy is set to the level of 

N=0 and J=1 for 
16

O
17

O.  

When compared to HITRAN-2012, line positions differences up to 0.015 cm
-1

 were found 

for the 
16

O
16

O a – X system, up to 0.05 cm-1 for 
16

O
16

O b – X, up to 0.05 cm
-1

 for 
16

O
17

O a – X, up 

to 0.025 cm
-1

 for 
16

O
17

O b – X, up to 0.003 cm
-1

 for 
16

O
18

O a – X system, and up to 0.09 cm
-1

 for 

16
O

18
O b – X. Fig. 8 presents a comparison of the 

16
O

17
O a – X(v', v'') = (0,0) band position with 

experiment, which indicates a systematic error in the line positions of this band in HITRAN-2012 

which has been corrected in GEISA-2015. 

It was found that in HITRAN-2012, the quantum numbers for the ΔNΔJ= PO branch of the 

16
O

16
O a – X(v', v'') = (0,0) band were incorrectly labeled, i.e., the 7875.6 cm

-1
 transition with a 

lower state energy of 16.4 cm
-1

 was labeled as P1O2. A P1O2 line has N''=1, J''=2, N'=0 and J'=0, 

but the rotational level of N'=0 and J'=0 does not exist in the  state. The correct assignment for 

this line is P3O4. Other lines in the same PO branch were also incorrectly labeled with the same 

shift of two in quantum numbers. This error is corrected in the updated GEISA-2015 line list. 
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Fig. 8. Comparisons of the 16O17O   (v', v'')=(0,0) band positions in HITRAN-2012 (red)  and 

GEISA-2015 (blue) as a function of the intensity. 

 

2.2.6  SO2 (molecule 9)  

 

 As commented in the GEISA-2011 [11] SO2 update description, ―It is worthwhile 

mentioning that the CDMS catalog [18,19] provides an entry for ν2 which is based on extensive 

rotational transitions in its v2=0 and 1 states [175] along with previous IR data‖, this entry has been, 

consequently, taken as the basis for GEISA-2015 update. A total revision of the v2=0 and v2=1 

rotational transitions has been made, using data from the CDMS catalog. The spectroscopic data of 

two (as identified in the CDMS catalog) data files, i.e.: (i) W064502 (transition 000-000), 14754 

entries; version 2; (ii) W064503 (transition 010-010), 9808 entries; version 2, have been 

implemented in GEISA-2015 and used to totally replace previous data, after unit conversion and 

line shape default value addition, i.e.: 

- HWHM (γ air) default value=0.1100 cm
-1

 atm
-1

 

- HWHM self (γ self) default value=0.400 cm
-1

 atm
-1

 

A constant default value of 0.75 has been adopted for the temperature dependence coefficient n of 

the air-broadening half width. The air pressure shift is set at the value 0.0 cm
-1

atm
-1

 at 296 K. 

Besides new or updated transition frequencies from Ref. [175], important data sources in 

this new study on rotational transitions in the ground and v2=1 states are those of Belov et al. [176] 

and Müller et al. [177] for the ground vibrational state as well as those of Mehrotra et al. [178,179], 

Helminger and DeLucia [180], and Alekseev et al. [181] v2=0 and 1. 

In the CDMS catalog documentation, the transitions frequencies were deemed to be reliable 

with respect to the predicted uncertainties up to 3Ka + J < 110 and 100 for v2 = 0 and 1, 
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respectively. Considering that the coverage in Ka is good to reasonable up to 23 and 21, 

respectively, with only slight coverage up to Ka= 8 for v=0, it may be safer to view transition with 

4Ka + J > 110 and 100, respectively, with some caution. The predictions should be accurate enough 

for observational purposes at temperatures up to about 300 K because uncertainties become 

noticeable only for very weak transitions. The data may have to be viewed with some caution at 

temperatures much higher than 300 K. 

Dipole moments were taken from Patel et al. [182]. Rotational corrections to the dipole  

moments are not known. This may lead to non-negligible intensity errors at rather high values of J 

or Ka. The partition function values in the CDMS are fully converged in J and Ka, but are restricted 

to v2=0 and v2=1 only. In the process of converting the intensities from 300 K (default in the 

CDMS) to 296 K (default in GEISA) and of changing intensity units, this small truncation error was 

considered for GEISA. 

 

2.2.7 NH3 (molecule 11)  

 

Down et al. [183] performed a thorough re-analysis of the available experimental data for 

14
NH3. They generated a set of empirical energy levels and used the BYTe line list [184] to both 

make new assignments and to correct old ones. At the same time Down et al. [183] proposed a new 

and consistent set of quantum numbers which they applied to their data. Finally they used their 

empirical energy levels and BYTe intensities to generate new line lists for the ν2 + ν4 - ν4, ν4- ν2, ν4 - 

ν4, and 2ν2 - 2ν2 hot bands. These data have been used to update the NH3 GEISA-2015 line list. This 

represents a total of 40,224 entries. 

In the previous editions of GEISA, the NH3 archive ended near 5294 cm
-1

. In 2015, it was 

extended to 7000 cm
-1

 using 5100 entries of the empirical line list from Sung et al. [185]. However, 

no compilations were created for missing ammonia bands between 5300 and 6300 cm
-1

, and no 

improved analyses were made for the existing 
15

NH3 entries. 

For the near-IR (6300 – 7000 cm
-1

), Sung et al. [185] reported an extensive empirical list of 
14

NH3 

lines containing 5078 features (positions, intensities, empirical lower state energies with some 

quantum assignments). This study used FTIR to characterize 99.7% of observed opacity in this 

region; a few line positions from Cacciani et al. [186] were also included.
 
 If the rotational quantum 

numbers J and K were known [185], the air- and self-broadening coefficients, γ, were computed as 

a function of the rotational quantum numbers, J and K,  using empirical expressions from 

Nemtchinov et al. [187], i.e.: 

γ (J, K) = β0 + β1m + β2K + β3m
2 
+ β4K

2
 + β5mK.     (2) 
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Here m = –J, J, J + 1 for P, Q, and R branch, respectively, and βi are the polynomial coefficients of 

Ref. [187] derived from the v2 measurements. Uncertainties for the widths of assigned transitions 

were assumed to be 10% by taking into account their measurement and modeling uncertainties.  For 

unassigned (or partially assigned) transitions, the empirical lower state energy estimates were used 

to infer quantum numbers (i.e., J, K) for eq. (2). However, the uncertainties were assumed to be no 

better than 10%. Finally, air- and self-broadening coefficients were set to 0.065 and 0.45 cm
-1

/atm, 

respectively, for lines whose E" were not obtained.  

Temperature dependence exponents were also adopted from Nemtchinov et al. [187]. Taking their 

temperature dependence exponents for N2 and O2 broadening given at J and K less than 8 in the v2 

band, air-pressure broadening temperature exponents, nair, were computed by  

nair = 0.79 × nN2 + 0.21 × nO2        (3) 

Pressure shifts were estimated (with an uncertainty no better than 0.005 cm
-1

 atm
-1

) using 

δair(J, K) = – 0.1 × γair(J, K)         (4) 

The new consistent set of quantum numbers proposed by Down et al. [183] has been applied to the 

data of Sung et al. [185], as well. Similar description details could be also found in HITRAN-2012 

[14]. 

For the future, several new studies are in progress which will improve the ammonia 

database. Recently Al-Derzi et al. [188] undertook a comprehensive MARVEL analysis of the 

empirical energy levels of ammonia. In the future these will be combined with intensities from 

BYTe and a new, more extensive and more accurate ammonia line list is being computed as part of the 

ExoMol project [189]. In two new studies of the far-IR region using Fourier Transform spectra 

recorded with the Synchrotron SOLEIL, Sung et al. [190] measured positions and intensities for 

more than 2840 
14

NH3 transitions observed from 50–660 cm
-1

 and determined, at the moment, 

quantum assignments of 2053 transitions involving eight bands, while Pearson et al. [191] 

performed a new Hamiltonian analysis to model 159 new transitions measured with microwave 

precision and assigned 1680 new ones. Finally Barton et al.[192] have recently assigned an FTS 

spectrum from the Kitt Peak archive providing assigned data for the first time above 8000 cm
-1

.  

 

2.2.8 HNO3 (molecule 13) 

 

GEISA-2015  includes, for the first time, a line list at 11.2 µm for the second-most abundant 

isotopologue of nitric acid, H
15

NO3 with a 
15

N/
14

N natural isotopic ratio of approximately 

0.00365(7). The ν5 and 2ν9 vibrational bands for this isotopologue were added using a high 

resolution Fourier transform investigation performed at 11 µm by Perrin and Mbiaké [193]. As for 
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H
14

NO3, the theoretical model used to compute the line positions and line intensities accounts for 

the very strong Fermi and C-type Coriolis resonances which couple together the ν5 and energy 

levels.  

Using this model, the ν5 and 2ν9 line intensities for H
15

NO3 were computed satisfactorily using the 

value of the ν5 transition moment operator that was previously obtained during the investigation of 

the intensities for the 11 µm bands for the 
14

N (main) isotopic species [194]. For this computation, 

the total partition sum, Qtotal (296 K) = 141872 was taken from Ref. [193]. 

However since the resonance coupling the ν5 and 2ν9 energy levels is significantly weaker 

for H
15

NO3 than for H
14

NO3,  the intensity transfer from the fundamental (and in principle strong) 

ν5 band to the overtone (and in principle weak) 2ν9 band is significantly weaker for H
15

NO3 than for 

H
14

NO3. Therefore in GEISA-2015 the H
15

NO3 and H
14

NO3 ν5 bands are in an intensity ratio which 

is about ~1.4 larger than the expected value assumed from the 
15

N/
14

N natural isotopic ratio. Finally 

the air- and self-broadened half widths and temperature dependence were adopted from the work of 

Flaud et al. [195]. 

Fig. 9 gives an overview of the ν5 and 2ν9 bands of H
14

NO3 and H
15

NO3. One can see that the 

narrow Q branch structure of the ν5 band of H
15

NO3 is shifted to the low frequency range (at about 

871 cm
-1

) compared to its H
14

NO3 counterpart (at about 879 cm
-1

).  
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Fig. 9. Graphical overview of the ν5 and 2ν9 cold bands for H14NO3 and H15NO3.  

 

Because of the favorable position of the ν5 band of H
15

NO3 (a shift of the band center and 

band intensity) relative to H
14

NO3, it was possible to search for the evidence of the ν5 spectral 

signature of H
15

NO3 in atmospheric limb-emission spectra measured by MIPAS [196]. Later, this 

signature was used to report the first measurement of the isotopic partitioning between stratospheric 

H
14

NO3 and H
15

NO3 [197]. 

Table 7 gives an overview of the GEISA-2015 entry for nitric acid in the 11 µm region, for 

both isotopologues H
14

NO3 (Part A) and
 
H

15
NO3 (part B).  

 

Table7 

Overview of the GEISA-2015 entry for nitric acid in the 11 µm region. The upper and lower 

vibrational identifications of actual transitions are given in columns 1 and 2 respectively; for each 

transition: the total number of lines, the total intensity (in cm molecule
-1

 at 296 K), the minimum 

and maximum wavenumber of the lines, as well as the minimum and maximum intensity (in cm 

molecule
-1

 at 296 K), are in columns 3 to 8, respectively. 

 

A) H
14

NO3 

Vib’ Vib” # lines Total Int.  

(cm molecule
-1

) 

at 296 K 

Wavenumber 

min 

(cm
-1

) 

Wavenumber  

max 

(cm
-1

) 

Int._min. 

(cm molecule
-1

) 

at 296 K 

 

Int._max. 

(cm molecule
-1

) 

at 296 K 

 

ν5 GS 57,108 0.1027 X 10-16 806.207 963.995 0.983 X 10-24 0.660 X 10-20 

2ν9 GS 55,310 0.7503 X 10-17 806.709 963.435 0.983 X 10-24 0.388 X 10-20 

3ν9 ν9 17,720 0.5291 X 10-18 769.687 884.438 0.384 X 10-24 0.672 X 10-21 

ν5+ν6 ν6 57,108 0.6179 X 10-18 796.207 953.995 0.592 X 10-25 0.397 X 10-21 

ν5+ν7 ν7 57108 0.9761 X 10-18 802.807 960.595 0.935 X 10-25 0.627 X 10-21 

ν5+ν9 ν9 14521 0.1068 X 10-17 832.116 942.901 0.987 X 10-24 0.700 X 10-21 

 

 

B) H
15

NO3 

Vib’ Vib” # lines Total Int. 

(cm molecule
-1

) 

at 296 K 

Wavenumber 

min 

(cm
-1

) 

Wavenumber 

max 

(cm
-1

) 

Int._min. 

(cm molecule
-1

) 

at 296 K 

 

Int_max 

(cm molecule
-1

) 

at 296 K 

 

ν5 GS 12883 0.5023 X 10-19 830.371 919.725 0.300 X 10-24 0.330 X 10-22 

2ν9 GS 8290 0.9917 X 10-20 838.223 922.931 0.300 X 10-24 0.625 X 10-23 

 

 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/mipas
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2.2.9 H2CO (molecule 21) 

 

Formaldehyde has been completely revised in the microwave and far infrared using the line list of 

positions and intensities from the CDMS database [18, 19] for the three isotopologues present in 

GEISA, namely H2
12

C
16

O, H2
12

C
18

O, and H2
13

C
16

O. Whereas GEISA-2011 had 1541 lines for these 

isotopologues ranging from 0 to 100 cm
-1

, 9102 transitions are now present in GEISA-2015, 

between 0 and 508 cm
-1

.  

Three H2CO isotopologue data implemented in GEISA-2015, i.e. (as identified in the CDMS 

catalog) is: 

30501.cat (H2CO-16)  5171 entries (H2
12

C
16

O)  

32503.cat (H2CO-18)  1622 entries (H2
12

C
18

O)  

31503.cat (H2C-13-O) 2309 entries (H2
13

C
16

O) 

These new data totally replace the previous entries. 

The self-widths, air-widths and temperature dependence of the air-widths have been updated 

using the calculated values of Jacquemart et al. [198] for the whole three isotopologue line lists. The 

self- and air-broadening coefficients correspond to empirical calculations that reproduced 

measurements in the 3.5 and 5.7 µm spectral regions whereas the temperature dependence comes 

from theoretical calculation using the CRB formalism.  

The evaluation of transition frequencies and their uncertainties is based on Brünken et al. 

[199], Müller et al. [200], and Müller et al. [201] for H2
12

C
16

O, H2
12

C
18

O, and H2
13

C
16

O, 

respectively. Besides new or improved data from these publications, each data set includes 

transition frequencies from Cornet and Winnewisser [202] with some lower frequency data from 

earlier publications. An additional important source of H2
12

C
16

O transition frequencies is Bocquet et 

al. [203]. Furthermore, IR ground state combination differences used in Müller et al. [204] were 

also employed in Brünken et al. [199]. The strong R-branch transitions (with Ka=0) should be 

predicted reasonably well up to ~100 cm
−1

 and Ka ≤ 15 for H2
12

C
16

O, up to ~80 cm
−1

 and Ka ≤ 14 

for H2
13

C
16

O, and up to ~50 cm
−1

 and Ka ≤ 13 for H2
12

C
18

O. The weak R-branch transitions with 

Ka = 2 should be predicted reasonably well up to J of at least 30 and Ka up to 10 or even 12 in the 

case of H2
12

C
16

O. Uncertainty estimates are more difficult for Q- or P-branch transitions or for the 

other two isotopologues. The predictions should be accurate enough for observational purposes at 

temperatures up to about 300 K because uncertainties become noticeable only for very weak 

transitions. The data should be viewed with some caution at temperatures much higher than 300 K. 



 

43 

 

Dipole moments for H2
12

C
16

O and H2
13

C
16

O were taken from Fabricant et al. [205], that of 

H2
12

C
18

O was assumed to take the H2
12

C
16

O value. Rotational corrections to the dipole moments are 

not known from experiment. The partition function values in the CDMS are fully converged in J 

and Ka, but are restricted to the ground vibrational state only. It has to be noted that a fully 

converged partition function is available from Refaie et al. [206].  

In the process of converting the intensities at 300 K (default in the CDMS) to 296 K (default 

in GEISA) and different intensity units, this small truncation error was considered for GEISA. 

 

2.2.10   C2H6 (molecule 22)   

 

Remote sensing of the Earth, outer planets, Titan and its satellites, and comets, as well, 

requires extensive knowledge of ethane spectroscopy covering both far and near-infrared 

wavelengths. In GEISA-2015, 
12

C2H6 line parameters are available for three wavelengths: 12 µm, 7 

µm and 3.3 µm, [13,207,208], and the ν12 band of 
12

CH3
13

CH3 at 12 µm [209]. For astronomical 

applications future updates will consider recent studies of far-IR 
12

C2H6 at 35 µm [210], 

112
CH3

13
CH3 at 7 µm [211],[212] and C2H5D [213] at 13 µm.   

At 12 µm, previous calculated line parameters for the v9 fundamental, the 3v4 overtone and 

two hot bands were retained with adjustments to specific line parameters. New line shape 

measurements by Devi et al. [207,208] permitted derived empirical  expressions for self- and N2-

broadened line shapes and their temperature dependence to be applied assuming γair = 0.9 × γN2; the 

calculated line intensities [14] were reduced by 15% as well. Recent measurements of the isotopic 

band [209] will be included in the next GEISA edition. 

At 7 µm, the ethane spectrum is dominated by the v6 and v8 fundamental bands, and these 

have proved useful for the analyses of the Titan atmosphere. Line parameters for 
12

C2H6 were added 

[210] and those for 
12

CH3
13

CH3 [211] are being considered. It has to be noted that the 2015 study of 

the 
12

C2H6 torsional fundamental at 289 cm
-1 

[210] provides far-IR line parameters for remote 

sensing of the deeper portion of Titan‘s atmosphere but are not yet included. 

At 3.3 µm, the highest ethane fundamental band v7 is overlapped by numerous overtone and 

combination states, making it difficult to provide reliable ethane spectroscopy for remote sensing. 

Studies involving the earth‘s atmosphere have long used measurements of several prominent Q 

branches belonging to the v7 fundamental (Pine and Rinsland [214] and Refs. therein). More 

recently, direct measurement of absorption cross sections at different temperatures have been 

reported by Harrison et al. [215], and Hargreaves et al. [216]. A few calculations also provide 

approximate line positions, intensities and lower state energies using the quantum mechanical 

models of Villanueva et al. [217] and Lattanzi et al. [218]. For GEISA-2015 the work of Lattanzi et 
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al. [218] was used because it provides the most extensive modeling of direct measurements for this 

region.  

  

2.2.11  CH3D (molecule 23)  

 

The GEISA-2015 CH3D database been updated in 2 spectral regions: 

 - In the spectral region between 4000 cm
-1

 and 4550 cm
-1

, over 4000 lines of 
12

CH3D were 

included for the first time [219]. Measured line positions and intensities for nine new bands of the 

Enneadecad polyad were obtained using high resolution FTIR spectra recorded using enriched gas 

samples (98% D) at room and cold (80 K) temperatures. To construct a new line list, many lower 

state energies were determined from quantum assignments, and confirmed by effective Hamiltonian 

and dipole moment expansion models. For pressure broadening coefficients, empirical expressions 

based on measurements of CH3D bands near 7 µm [220, 221] and the references therein were 

applied as a function of known quantum numbers to approximately represent the air- and self-

broadened half widths and pressure-induced shifts. Additional details are given in Ref. [222]. 

 -In the 6204.025190-6510.324200 cm
-1

 region, the position and intensity values of 5692 

newly-included lines are taken from the supplementary material of Lu et al. [223]. 

 

2.2.12   C2H2 (molecule 24)  

 

Acetylene has been identified in some of the giant planets and Titan since the mid-1940s, and 

recently has been quantified by the Galileo and Cassini-Huygens missions.  

In the 7.7 µm region, acetylene absorbs mainly at room temperature via the strong cold band 

 for which spectroscopic parameters [224] were previously available in databases [12, 9]. 

This spectral region was used in 2006 [225] to observe acetylene signatures in carbon-rich 

asymptotic giant branch stars but the lack of spectroscopic data in this region did not allow the 

observation to be correctly reproduced. The temperature of interest for applications being around 

500 K [225], the spectroscopic information for hot bands is also important. In the recent work from 

Gomez et al. [226,227], a complete line list of 2 cold bands (including the band ) and 15 

hot bands has been generated and has been used to update the 7.7µm region of GEISA-2015. This 

line list of 1629 transitions between 1142 and 1451 cm
-1

 is replacing the previous 71 transitions of 

the  band between 1248 and 1415 cm
-1

.  

 

http://nssdc.gsfc.nasa.gov/planetary/galileo.html
https://cassini-huygens.cnes.fr/
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2.2.13   C2H4 (molecule 25)   

 

New spectroscopic line parameters for ethylene included in GEISA-2015 concern both the main 

isotopologue, 
12

C
12

CH4 and the less abundant 
12

C
13

CH4 isotopologue. More precisely the new line 

list contains 9 bands: ν8+ν10, ν7+ ν8, ν4+ ν8, ν8+ ν12, ν6+ ν10, ν6+ ν7, ν4+ ν6, ν3+ν10, ν3+ν7 of the main 

isotopologue 
12

C
12

CH4 covering the spectral region 1656-2487 cm
-1 

[228, 229] and 5 bands: ν10, ν8, 

ν7, ν4, ν6  for 
12

C
13

CH4 covering the spectral region 615-1339 cm
-1

 [230, 231]. These data, which 

were derived from high resolution Fourier transform spectra, are rather accurate: for the main 

isotopologue, the uncertainties can be estimated to be ~10
-3

 cm
-1 

for the positions [228] and ~5% for 

the intensities [229]; for 
12

C
13

CH4 they can be estimated to be ~0.6x10
-3

 cm
-1

 for the positions [230] 

and ~4% for the intensities [231]. 

In the absence of measurements or calculations for the line-shape parameters, default values 

were chosen, i.e.: 

HWHM   γair = 0.0870 cm
-1

atm
-1

 at 296 K 

HWHMself   γself =  0.1245 cm
-1

atm
-1

 at 296 K 

Temperature-dependence coefficient n of the air broadening half width nair =0.82 

We note that: 

-the default values for γair and nair are identical with those having similar quantum identification in 

GEISA-2011, without considering the isotopic composition;  

-the selected value 0.1245 cm
-1

atm
-1

 at 296 K, attributed to the self-broadening pressure half width, 

γself, corresponds to the mean of the values of γself, for the ν7 band of the isotopologue 
13

C2H4 (J-M 

Flaud, private communication); 

-the GEISA standard default value, δair = 0.000000 cm
-1

atm
-1

 at 296 K, is used for the air pressure 

induced shift of the line transition.  

The GEISA-2015 C2H4 updated file contains 53,227 entries (18,378 in GEISA-2011), 

corresponding to a total of 26 vibrational bands (12 in GEISA-2011). 

 

2.2.14    HCN (molecule 27)   

 

GEISA-2011 provided an HCN line list which relied extensively on the computed line lists 

of Harris et al. [232, 233]. Over the last few years Mellau [234,235] has performed emission 

experiments on hot HCN. Using Mellau's energy levels and the ab-initio line intensities computed 

by Harris et al.[232], Barber et al.[236] built up an extensive database of experimental HCN energy 

levels. This line list was designed for studies of hot astronomical problems and contains hundreds 
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of millions of lines. For present purposes a 296 K H
12

C
14

N line list was generated and only the 

131,139 lines stronger than 10
-31

 were retained to form the input for GEISA-2015. In the spectral 

range 9933.825951-17581.009367 cm
-1

, 4871 lines from Harris have been kept from GEISA-2011 

[11]; 2085 experimentally-measured lines from Maki [11], in the region 2.415494-3550.842326 cm
-

1
, have been kept from GEISA-2011, alongside data for the 3 other isotopologues: H

13
C

15
N, 

H
13

C
14

N, D
12

C
14

N.  

 The update file provided by UCL contained no line shape parameters. The missing 

parameters were therefore created using the GEISA-2011 HCN ones for lines with a similar 

quantum identification. For the other lines, the default values were attributed as follows: 

HWHM   γair = 0.1011 cm
-1

atm
-1

 at 296 K 

HWHMself   γself =  0.1245 cm
-1

atm
-1

 at 296 K 

Temperature-dependence coefficient n of the air broadening half width  nair =0.70 

The GEISA standard default value, δair = 0.000000 cm
-1

atm
-1

 at 296 K, was used for the air pressure 

induced shift of the line transition.  

The GEISA-2015 HCN line list contains a total of 138,103 entries (81,889 in GEISA-2011). 

 

2.2.15    C2N2 (molecule 29)  

 

The 
12

C2
14

N2 (cyanogen) line list in GEISA-2011 included 2577 entries mainly belonging to 

the ν5 bending system centered at 234 cm
-1

 and also lines from the weak stretching ν2 mode around 

2150 cm
-1

. In GEISA-2015, all the entries belonging to ν5 have been replaced by a new line list 

based on experimental and theoretical work by Fayt et al. [237]. This new study includes a 

recording of the high resolution spectrum and the first ro-vibrational global analysis for this 

molecule. The positions of about 13000 peaks were obtained experimentally and analyzed to 

determine very accurate molecular parameters. Transitions with upper states as high as 2100 cm
-1

 

could be assigned. On the basis of the molecular parameters determined by the global analysis, a 

line list was generated with all lines with intensity above a cut-off chosen to ensure that 99.5 % of 

the total band intensity is taken into account at room temperature (maximum intensity value: 

2.478x10
-20

 cm molecule
-1

 at 296 K). Note that the number of lines can be greatly diminished if 

used for cold environments such as Titan‘s atmosphere, which is the only object where cyanogen 

has been detected so far (Teanby et al. [238]). 

 Spectra of C2N2 at low resolution were also recorded (Fayt et al. [237]) in order to determine 

the band system intensity. The measured intensities were found to be in very good agreement with 
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earlier band intensity measurements by Kim et al. [239] and also with line intensities measured by 

Grecu et al. [240], and thus adopted in GEISA-2015. 

 The updated GEISA-2015 
12

C2
14

N2 line list involves a total of 71,774 entries (only 181 kept 

from the former editions).  

 

2.2.16    C4H2 (molecule 30)  

 

The line list of C4H2 in GEISA-2011 (119,480 entries) was based on preliminary results from the 

global ro-vibrational analysis of both bending modes ν8 (628.0 cm
-1

) and ν9 (220.1 cm
-1

) described 

in Jolly et al. [241]. GEISA-2015 includes the final version of this line list. The number of lines 

(417,540) is much larger than in GEISA-2011 because the calculation includes the contribution of 

hot bands, up to the polyad containing 9ν9←8ν9, corresponding to a maximum vibrational energy 

level of the lower state E‖=1700 cm
-1

. The intensity of all the transitions belonging to the analyzed 

polyads are calculated and included in the line list if the intensity at room temperature is stronger 

than a cut-off value of about 10
-7

 times the band intensity. This ensures that the sum of the 

intensities of all the lines is equal to the measured band intensity, except for the contribution of the 

isotopologues. This method has been recently illustrated, for C4N2, by Jolly et al. [242] where their 

Fig. 4 concerns the C4N2 ν9 band and shows for two different temperatures the individual intensities 

of the successive hot band systems as well as the progressively increasing overall band intensity. It 

demonstrates how the intensities of higher polyads eventually become negligible. 

 In addition to the lines from the two bending modes already present in GEISA-2011, new 

lines from the strong combination band ν6+ ν8 at 1240.7 cm
-1

 have been included in GEISA-2015. 

The line list of ν6+ν8 was calculated based on the very accurate results of a global analysis which 

enables parameters for vibrational levels with high energies including combination levels to be 

determined. This band has already been detected astrophysically: first by Cernicharo et al. [243] in 

the proto planetary nebula CRL 618 and very recently in Titan‘s atmosphere thanks to the infrared 

spectrometer CIRS of the CASSINI spacecraft (Vinatier et al. [244]).  

One major update in GEISA-2015 concerns the intensities of the ν8 and ν9 bands. While the band 

intensities in GEISA-2011 relied on measurements madeby Koops et al. [245], the new version 

relies on recent measurements by Jolly et al. [246], who find large differences compared to Koop et 

al.‘s values, in particular for the ν9 band. Both bands, measured separately with different apparatus 

by Koops et al. [245], were found to have an intensity ratio as high as 28. Jolly et al. [246] were 

able to measure both bending modes in a single spectrum covering the region between 40 and 670 

cm
-1

 and found the weak ν9 band to be 2.4 times stronger. Conversely, the strong ν8 band was found 

http://cirs.gsfc.nasa.gov/
https://www.nasa.gov/mission_pages/cassini/main/index.html
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to be 20% weaker resulting in a band intensity ratio close to 9. For the intensity of the ν6+ ν8 

combination band, the result obtained by Jolly et al. [246] confirmed the previous measurement by 

Khlifi et al. [247]. 

 

2.2.17    CH3Cl (molecule 34)  

 

The methyl chloride line list is completely updated in GEISA-2015 on the basis of various 

works, depending on the spectral regions and on the line parameters. 

Line positions and intensities from JPL catalog [16,17] are used between 0.8 and 71 cm
-1

 

(12,824 pure rotational transitions). Since the vibrational notation of this molecule is explicit, the 

vibrational notation in GEISA-2015 is identified as ―GROUND‖ for the upper and lower states. All 

these pure rotational transitions have hyperfine structure, so that the quantum number F is used in 

the rotational fields corresponding to the upper and lower states. 

Between 644 and 2625 cm
-1

, a calculation by Nikitin based on effective Hamiltonian has been 

used for positions [248,249]. As this calculation provides absolute line positions but only 

approximate relative line intensities [249], a calibration based on measurements has been performed 

to retrieve absolute intensity values, as explained below. Comparisons of calculations with 

measurements from the literature concern only the fundamental bands lying in the spectral region 

studied theoretically: the ν3 band around 750 cm
-1

, the ν6 band around 1000 cm
-1

 as well as the ν2 

and ν5 band around 1450 cm
-1

. The following studies were used: 

- For the ν3 band, Bouanich et al. [250] for the CH3
35

Cl isotopologue (29 transitions), Blanquet et al. 

[251] for the CH3
37

Cl isotopologue (50 transitions). 

- For the ν6 band: Blanquet et al. [252,253] for 96 and 58 transitions of CH3
35

Cl and CH3
37

Cl, 

respectively.  

- For the ν2 and ν5 bands, the recent measurements of Barbouchi et al. [254] show good consistency 

with the values of Chackerian et al. [255] (around 1%) but present discrepancies (up to 15–20%) 

when compared to the results of Cappeliani et al. [256]. Consequently, for comparison with 

Nikitin‘s calculations for the ν2 and ν5 bands, we only used the results from Barbouchi et al. [254] 

(1073/115 transitions of CH3
35

Cl and 135/28 transitions of CH3
37

Cl for the ν2/ν5 band). 

As an illustration, comparisons of intensities for the ν2 and ν5 bands are plotted in Fig. 10-a 

and Fig 10-b, respectively. As can be seen, the ratio Calc/Obs depends strongly on the band but also 

on the wavenumbers. To stay close to the measurements, a fitted wavenumber-dependent 

calibration factor has been applied to obtain absolute theoretical line intensities from the 
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calculations [248]. No measurements are available for all the other hot, harmonic or combination 

bands from Nikitin‘s calculation, so that no accurate absolute theoretical intensities can be 

retrieved. Consequently, we chose not to put these weak bands in GEISA until absolute calibration 

can be performed. When comparing the measured line positions [249-254] to the calculated values 

of Nikitin [248], the averaged discrepancy between measurements and calculations does not exceed 

0.001 cm
-1

. Therefore, 46,406 transitions calculated from Ref. [248] and belonging to the 

fundamental bands ν3, ν6, ν2 and ν5 are introduced in GEISA-2015. 

Between 2920 and 3198 cm
-1

, line positions and intensities of 22,963 transitions in the 3 μm 

region from Bray el al. [257] are used. These transitions mainly concern the strong fundamental 

band ν1, but some of them refer to the weaker ν4 band or other harmonic or combination bands. 

Concerning the self- and air-broadened CH3Cl line widths, recent measurements on the ν5 

[254,258,259], ν1 [260,261] and pure rotation [262,261] bands do not show any significant 

vibrational dependence for these parameters. Therefore, the semi-empirical calculations by 

Dudaryonok et al. [263] for the CH3
35

Cl self-broadening case and the semi-classical calculations of 

Buldyreva [264] for the CH3
35

Cl and CH3
37

Cl air-broadening case, providing the broadening 

coefficients for the reference temperature 296 K and the associated temperature exponents, are used 

for all transitions listed in the database. 

 

   

   10-a       10-b 

Fig. 10 Ratio of Calculated/Observed (Calc/Obs) for the ν2 band (figure 10-a) and for the ν5 band (figure 10-

b) of CH3Cl. Calc comes from a calculation from Nikitin. Obs are Fourier transform measurements of 

Barbouchi et al. [254]. 

 

2.2.18    H2S (molecule 36)  
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Better spectroscopic knowledge and extended database archive of H2S are needed for two 

reasons:  

- Hydrogen sulfide is a well-documented but little understood hazard because of its atmospheric 

release, for example, by the geothermal energy industry. This represents a very significant public 

health concern for air-quality and also because it is known to migrate into surface soils and 

groundwater [265]. 

- Hydrogen sulfide is also produced by organisms living in harsh environments; if a similar 

metabolism has evolved on an extra solar planet, the detection of sulfurous molecules in those 

atmospheres could reveal the presence of alien life [266]. 

 A very significant update of the H2S data is implemented in GEISA‒ 2015 to provide 58,650 

transitions of the three isotopic species, H2
32

S, H2
33

S, H2
34

S. This represents an increase of 37,862 

lines compared to GEISA-2011 [11] (20,788 lines). The new or updated transitions fall within four 

spectral ranges: 1.0‒ 615 cm
-1

, 994‒ 1574 cm-1, 2143‒ 4257 cm-1, and 4472‒ 113201 cm-1. 

Pure rotational transitions of hydrogen sulfide in its ground and first excited vibrational 

states between 1.03056‒ 614.89397 cm
-1

 were recorded at room temperature by Azzam et al. [267]. 

The line positions given in their Supplementary data have been applied to 8430 transitions, formerly 

represented by 3396 lines in GEISA-2011. 

Updated positions for the v2 region (994.1296‒ 1573.8098 cm
-1

): for the 010‒ 000 band, line 

positions of 653 transitions from GEISA-2011 were improved [268] using experimental upper 

energy levels for H2
32

S, H2
33

S, and H2
34

S isotopologues reported by Ulenikov et al. [269]; the lower 

energy levels were calculated using the rotational constants of Flaud et al. [270]. 

Fig. 11 shows that, in GEISA-2015, the v2 band positions are clearly shifted by ~ 0.002 cm
-1

, with a 

maximum difference reaching to 0.055 cm
-1

, compared to HITRAN-2012 [14]. The precision 

obtained is estimated to be about 0.0002 cm
-1

. These corrections were not reported in HITRAN-

2012. The calculated transition intensities are the same as in GEISA-2011 and HITRAN-2012.  
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Fig. 11. Comparison of the 010-000 band updated lines in GEISA-2015 with those of HITRAN-2012. [14] 

illustrating differences in wavenumber (WN) positions (WNHITRAN-WNGEISA (cm-1)).   

 

Updates in the 2142.83505‒ 4256.54681 cm
-1

 spectral region cover bands of the first and second 

triads. The data included in GEISA-2011 [11] showed errors in line positions and intensities, 

compared to their original source [271]. O. Naumenko generated a corrected file [268] including 

16,731 entries which have replaced, in GEISA-2015, the former GEISA-2011 data. New parameters 

were added in the spectral region 4471.7721‒ 11329.7799 cm
-1

, this spectral region covers the
 
first 

and second hexads along part of the first decade of H2S. It is included for the first time in GEISA 

using 28,972 transitions of H2
32

S, H2
33

S, and H2
34

S from Ref. [268]. The line positions and 

intensities are taken from both experimental and calculated data. Line positions are constructed 

from the experimental upper energy levels and calculated lower energies based on parameters 

provided in [270]. Line intensities are predicted using the transition moment parameters retrieved 

from the fitting to measured intensities, using an effective Hamiltonian approach.  A detailed review 

of all published experimental rotation-vibration transitions and retrieved energy levels for the 

hydrogen sulfide can be found in Polotseva et al. [272]. 

The information newly included in GEISA-2015 relates to 30 vibrational bands of H2
32

S and is 

summarized in the 8 columns of Table 8. 

Experimental data from Fourier transform spectra in the range 4471.77211-8039.74431 cm
-1

were 

obtained from the laboratory spectra recorded with the McMath Fourier transform spectrometer 

located at Kitt Peak National Solar Observatory [271,273]. The details of the experimental spectra 

assignment and modeling within the effective Hamiltonian approach can be found in [271,274-276]. 

The accuracy of experimental line positions varies from 0.001 (and better for stronger lines) up to 

0.005 cm
-1 

and worse for blended or weak features. Similar accuracy applies to calculated line 

positions.  
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 Line intensities accurate within 1-7% were measured for about 3000 lines in the 4578-6573 

cm
-1

 spectral region, while the accuracy of the experimental intensities above 7000 cm
-1

 can be 

estimated around 10-15% at best. The experimental intensities were modeled, and the retrieved 

transition moment parameters were used to evaluate the intensities of additional pure calculated 

lines with the estimated accuracy of 10-20% and worse for weakest lines.  

In total, 16284, 4087 and 1666 transitions of isotopologues H2
32

S, H2
34

S, and H2
33

S, respectively, 

have been newly implemented in GEISA-2015 between 4471.772110 and 8039.744310 cm
-1

.  

The line shape parameters are those reported in HITRAN-2012 [14]. 
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Table 8  

New vibrational bands of H2
32S included in GEISA-2015. For each vibrational band: the quantum 

identifications of the upper and lower levels of the transition, in the two first columns; the extension of the 

spectral region from WN min (minimum wave number in cm-1, ) to WN max (maximum wave number in cm-

1 molecule-1), in columns 3 and 4 respectively; the summed transition intensities in cm, in column 5; the 

maximum values of the rotational quantum numbers J and Ka, in columns 7 and 8 respectively; the number 

of transitions is given in the last column. 

  

V1V2V3 

Upper 

V1V2V3 

Lower 

WN_min 

(cm
-1

) 

WN_max 

(cm
-1

) 

∑int 

(cm molecule
.-1

) 

at 296 K 

J_max 

Upper 

Ka_max 

Upper 

# lines 

040 000  4471.7721  5094.0399 7.22 x 10-23 16 8 535 

021 000  4555.7922  5392.1073 2.17 x 10-21 19 12 1169 

101 000  4647.9645  5545.0965 2.59 x 10-20 20 12 1886 

200 000  4676.6355  5548.5630 1.25 x 10-20 19 14 1636 

120 000  4720.3837  5387.7404 7.41 x 10-22 16 12 844 

002 000  4828.3805  5665.5575 2.51 x 10-21 18 13 1220 

111 010  4877.2258  5240.4972 1.16 x 10-22 15 10 403 

210 010  4889.8533  5249.6706 5.03 x 10-23 15 9 326 

050 000  5671.4441  6029.4104 9.91 x 10-24 12 5 203 

130 000  5840.1421  6579.5353 1.38 x 10-22 15 9 566 

031 000  5844.5832  6582.2596 1.30 x 10-22 16 10 541 

111 000  5887.1896  6695.2663 1.13 x 10-20 18 13 1423 

210 000  5984.9635  6693.3914 2.95 x 10-21 18 14 1484 

012 000  5989.3819  6664.1874 5.21 x 10-23 13 9 126 

121 010  6051.8265  6489.7069 6.91 x 10-23 14 8 380 

220 010  6071.8079  6477.5959 2.71 x 10-23 12 7 198 

121 000  7053.2468  7738.0455 1.89 x 10-22 14 8 539 

220 000  7128.4865  7672.2512 1.77 x 10-23 12 7 248 

201 000  7170.3630  7868.6880 7.78 x 10-22 17 10 794 

102 000  7191.1311  7766.3336 2.32 x 10-22 13 10 601 

300 000  7400.1750  8039.7443 2.80 x 10-22 14 9 601 

003 000  7496.6411  8031.1830 1.86 x 10-22 14 9 560 

141 000  9385.1150  9991.9363 7.23 x 10-25 12 8 385 

122 000  9470.6934 10157.4780 2.24 x 10-24 15 8 492 

301 000  9477.0610 10241.6542 3.10 x 10-23 16 11 1074 

221 000  9494.1657 10154.2523 4.97 x 10-24 15 10 656 

202 000  9528.5303 10266.7543 9.98 x 10-24 18 9 840 

212 000 10777.8636 11329.7798 1.49 x 10-23 19 11 996 

311 000 10777.8636 11317.3960 2.26 x 10-23 19 11 902 

330 000 10948.4353 11278.5380 3.82 x 10-25 10 7 232 
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 ICLAS and ICLAS-VECSEL systems were used to probe the weak H2S absorption spectrum 

in the 9385-10200 cm
-1

 [277] and 10780-11330 cm
-1

 [277] spectral regions. Spectra were obtained 

from transitions to the eight highly-excited upper vibrational states listed in Table 8. Line position 

accuracy was estimated to be better than 0.01 and about 0.005 cm
-1

 in the first and second region, 

respectively. Approximate relative intensities values were derived from the peak absorption and 

then scaled to the FTS data of Ref. [273]. The accuracy of measured intensities is estimated to be 

25-30% for stronger lines and up 100% uncertainty for the weakest lines for the ICLAS-VECSEL 

data, and 15-20% and worse for the ICLAS recordings. Similar accuracy can be assumed for the 

calculated intensities based on the transition moment parameters retrieved from the fitting to 

experimental data (see Refs. [277,278] for details of the intensity modeling).The resulting set of the 

H2
32

S, H2
34

S, and H2
33

S transitions consists of 3385 measured and 3551 weaker pure predicted 

absorption lines. 

In total, 5605, 1185 and 146 new transitions of isotopologues H2
32

S, H2
34

S, and H2
33

S, respectively, 

have been included in GEISA-2015 between 9385.115080 and 11329.779860 cm
-1

.  

 

2.2.19    CH3Br (molecule 43)    

 

 The complete line list of CH3Br present in GEISA-2011 has been updated by adding the 

temperature dependence of both self- and N2-broadening coefficients for all transitions. 

Measurements performed for numerous transitions in the strong ν6 band led to a J-dependent model 

of the temperature exponents nself and nN2 [279]. The polynomial expansions of the temperature 

exponents nself and nN2 (see equations [4] and [5] from Ref. [279] respectively) were used to update 

all transitions in GEISA neglecting both the K-rotational dependence and the vibrational 

dependence. The approximation nair ~ nN2 was made for the temperature-dependence coefficient n of 

the air-broadening half-width. 

 

2.2.20    HNC (molecule 46)   

 

Barber et al. [236] actually performed a combined analysis of the HCN/HNC system. For this they 

used Mellau's empirical HNC energy levels [280,281], and the line intensities of Harris et al. [233]. 

The resulting 296 K HNC line list contains 75,554 transitions against 5619 in GEISA-2011. 
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2.2.21    HDO (molecule 51)   

2.2.21.1 HDO update: line list parameters 

 

 As already pointed out, for atmospheric applications, H2O and HDO need to be taken into 

account separately in radiative transfer models (as different vertical concentrations may occur), 

This, combined with their different symmetry properties, led us to decide to consider HDO as an 

independent molecular species in GEISA-2015. The 2015 update of the HDO entries has been very 

significant, giving a total of 63,641 lines, against 12,766 in GEISA-2011. This increase is mainly 

due to the inclusion of empirical line lists in GEISA-2015 HDO update. 

Two isotopologues have been involved in the update: i.e.: HD
16

O and HD
18

O, as 

summarized in Table 9. No update occurred for HD
17

O which retains the 175 entries from GEISA-

2011 The isotopologue formulas are listed in the first column with their associated identification 

codes in the GEISA management software (see Appendix C); for each species are provided, in 

columns 2 to 7 respectively: its line list spectral range minimum and maximum wave number (cm
-

1
), the number of transitions, the mean and the maximum of the line intensities (cm molecule

-1 
at 

296 K), and the origin of the data.  

The new GEISA-2015 HDO line list has been built following the same process as for H2O 

(see above in 2.2.1). 

 

Table 9 

General overview of the HDO update in GEISA-2015  

 

 

Isot. 

ID 

 

Wavenb. min 

(cm
-1

)  

 

Wavenb. max 

(cm
-1

)  

 

#lines 

 

 

Moy. I 

(cm molec
.-1

) 

at 296 K 

 

 

Max. I 

(cm molec
.-1

) 

at 296 K 

 

Origin 

 

 

HD
16

O 

162 

 

0.007002 

 

17080.098180 

 

53706 

 

3.175x10-25 

 

2.700 x10-22 

 

IAO 

LIPhy 

 

HD
17

O 

172 

 

1234.234730 

 

1598.765470 

 

175 

 

4.075x10-27 

 

9.319 x10-27 

 

GEISA-2011 

 

HD
18

O 

182 

 

0.196882 

 

8748.128100 

 

9760 

 

3.694x10-27 

 

5.646 x10-25 

 

IAO 

LIPhy 

 

 

The new HD
16

O set, in GEISA-2015, consists of 53,706 transitions in the 0 - 17104 cm
-1

 

spectral region, compared to 11,932 transitions between 0 and 13900 cm
-1

 in GEISA-2011. The 

difference in contents, between the previous, GEISA-2011, and new enlarged GEISA-2015 HD
16

O 
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line lists, is illustrated on Fig. 12 and Fig. 13. Coincident transitions in GEISA-2011 and GEISA-

2015 are plotted with the same (blue) color on both figures. In the new GEISA-2015 version, the 

previous data, in the 5850-7921 cm
-1

 region, are replaced by those from the exhaustive list of 

Mikhaïlenko et al. [27]. This list includes both observed lines from Refs. [30-32] (2730 lines) and 

6095 empirical lines based on works on potential energy surface and dipole moment surface 

[34,35,71] and on the IUPAC TG energy levels [282].  

 After implementation of the new data, the whole HD
16

O set was checked against the 

empirical list generated in Ref. [283]; the resulting cleaned list was enlarged by inclusion of missing 

empirical lines. The empirical list [283] is based on the improved and enlarged IUPAC TG energy 

level set [282,284] and well known VTT variational list [285], which is recognized to be most 

accurate one available for the HD
16

O molecule. In total, 34181 pure empirical lines [283] are used. 

Inaccurate positions of about 900 lines between 5 and 7916 cm
-1

, from GEISA-2011, were replaced 

with those from the empirical list [283].  

Obviously, the new HD
16

O list is about three times larger than the GEISA-2011 version. In 

particular, the majority of the HD
16

O lines above 7500 cm
-1

 are new. In the near infrared spectral 

region, an advantage of this list is that HD
16

O line parameters are provided in the 1.6 and 1.28 µm 

atmospheric windows where this minor isotopologue in natural abundance has a major contribution. 
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Fig.12. HD16O transitions in the GEISA-2011 database. 

 

 

 

Fig. 13. Composition of the HD16O transition set in GEISA-2015.  
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An important update has also been performed in GEISA-2015 for the HD
18

O 

isotopologue. The HD
18

O linelist includes now 9760 transitions in the 0.196882-8748.128100 

cm
-1

 spectral range (compared to 659 transitions previously). The new HD
18

O line list was 

constructed in the following way: The highly accurate experimental microwave and far 

infrared lines of Refs. [59,286,287], 204 in total, are used in 0-200 cm
-1

 region. Positions of 

other lines are derived from the experimental energy levels obtained in Refs. 

[56,286,288,289], while the intensities represent variational values based on Partridge and 

Schwenke potential and dipole moment surfaces [34,35,290]. HD
18

O line parameters for near 

infrared are included in GEISA region for the first time.  

Fig. 14 presents a comparison between HITRAN-2012 and GEISA-2015, showing the 

importance of the added HDO data in GEISA-2015; HDO strongly impacts the absorption in 

the 1.6 µm and 1.28 µm atmospheric windows. 

 

 

Fig. 14. Illustration of the difference between GEISA-2015 and HITRAN-2012 water vapor archives 

and of the importance of the impact of HDO in the 1.6 and 1.28 µm atmospheric windows. The 

contribution of the different isotopologues is highlighted (H2
16O -black, H2

17O -blue, H2
18O -red, 

HD16O -green, HD18O -pink). 

 

2.2.21.2 HDO update: line shape parameters 
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For the deuterated isotopologues, HD
16

O, HD
18

O, HD
17

O, the line shape parameters 

i.e.: the air-broadened half-widths, γair, its temperature dependence, nair, the air-induced line 

shifts, δair, and the self-broadened half-widths, γself, an algorithm similar to that used for the 

three most abundant water isotopologues, H2
16

O, H2
18

O, H2
17

O was developed using the 

measurement database of Gamache and Hartmann [291]. When measurement data are 

available for HD
16

O they are added as above, or theoretical values of Gamache and Fischer 

[292] are used. Because there are far fewer measurements for HD
16

O the following actions 

were taken to enhance the database. The measurement database was taken and the ratio 

γair(H2
16

O)/ γair(HD
16

O) determined for 992 transitions giving an average value of 0. 9167. 

These data are shown in Fig.15 where the ratio is plotted versus the H2O air-broadened 

half-width. The solid red line in the figure is the average ratio, which is used in the algorithm 

to scale H2
16

O half-widths to HD
16

O half-widths. Scaling was used to generate an additional 

17,812 HDO-air half-widths that were added to the database. A similar scaling of the line 

shifts of H2O and HDO was made. Data were available for 392 transitions. Fig. 16 shows the 

ratios versus the H2O line shift; the solid red line is the average ratio of 0.7772. Note, there 

are not enough data to repeat this procedure for nair, or γself.   

 Roughly 1500 measured HDO-air half-widths were compared with data from the 

semi-empirical γair algorithm data scaled from H2
16

O to HD
16

O and with the smoothened 

HDO-air half-widths of Toth [293]. Overall the data of Toth gave better agreement; an 

average difference of ~20 %.  These data were used, neglecting vibrational dependence, to 

help complete data for transitions for which there were no measurements. Finally if there are 

no air-broadened HDO half-width data from the above procedure, the data are taken from a 

polynomial in J‖ fit to the J‖ averaged data from the database [291] extrapolated to J‖=50. 

 

Fig. 15. Ratio γair(H2O)/ γair(HDO) versus γair(H2O) in cm-1atm-1; solid red line is the average ratio. 
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Fig. 16: Ratio δair(H2O)/ δair(HDO) versus δair(H2O) in cm-1atm-1; solid red line is the average ratio. 

 

2.2.22    SO3 (molecule 52, new in GEISA-2015) 

 

SO3, produced from smoke-stacks and other industrial exhausts, is, in its gaseous form, a 

significant pollutant, and the primary agent in acid rain. It is produced naturally on Earth 

(through volcanic emissions) and is thought to be a significant constituent of the atmosphere 

of Venus. It was absent for previous editions of GEISA in part because there were no absolute 

intensity measurements available for this molecules that placed severe limitations on the use 

of its infrared spectrum for remote sensing applications. However, thanks to the availability of 

a computed, complete, ab-initio, room-temperature line list by Underwood et al. [294], SO3 

has been implemented as a new molecule in GEISA-2015. 

This line list has been used to augment experimentally measured frequencies in two regions, 

i.e.: 0.477672-580.263263 cm
-1

 and 1353.104833-2824.347247 cm
-1

  to provide to GEISA-

2015 the input of 10,881 lines of the main 
32

S
16

O3 isotopologue, in the spectral range  

0.477672-2824.347247 cm
-1

. 

SO3 is a planar, symmetric top and therefore does not possess a permanent dipole moment. 

However, rotationally excited SO3 can distort, creating instantaneous dipoles and as a result 

undergo centrifugally-induced, pure rotational transitions. 25 such lines were observed by 

Meyer et al. [295]; these lines with ab-initio intensities are included in GEISA. 

Maki and co-workers [296-300] performed a series of studies on the infrared spectrum of 

SO3, some of which contained relative but not absolute intensities. 

Underwood et al. calibrated these intensities using their ab-initio calculations and the 10,881 

lines included here have empirical frequencies and ab-initio or ab-initio calibrated intensities.  
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Recently Underwood et al. have undertaken a much more extensive calculations on the 

rotational spectrum of SO3 [301], and its infrared spectrum [302]. These studies will be used 

to provide more extensive line lists for room-temperature SO3 in the future. Ref. [302] also 

provides new measurements of absolute cross sections which suggest that the ab intio dipole 

moment surface of Underwood et al. [294] may lead intensities that are about 20% too strong. 

This problem will also be considered in a future release. 

In the absence of no measurements or calculations for the line-shape parameters, usual 

default were chosen, i.e.: 

HWHM   γair = 0.0700 cm
-1

atm
-1

 at 296 K 

HWHM self       γself =  0.100 cm
-1

atm
-1

 

Temperature-dependence coefficient n of the air broadening half width  nair =0.700 

The GEISA standard default value has been attributed to the air pressure induced shift of the 

line transition: δair = 0.000000 cm
-1

 atm
-1

. 

3 GEISA-2015 Infrared absorption cross-sections sub-database 
 

This sub-database contains infrared absorption cross sections of molecules for which 

spectral line parameters are incomplete or unavailable; generally these are ‗large‘ molecules 

for which the generation of line parameters is very difficult. Thirty-nine molecules were 

represented by cross sections in GEISA-2011. See Table 10 of Rosenkranz et al. [303] and 

Table 10 of Jacquinet-Husson et al. [11]. The GEISA-2015 compilation has been updated 

with additional cross-section datasets, consisting of multiple temperature–pressure 

combinations, for new and existing molecules. 

This database has been significantly extended (more than about 50% increase in 

information volume) with the introduction of some new molecular species originating mainly 

from two sources: 

- a first cross-section set from the University of Oslo (Hodnebrog et al. [304,305]) and 

the University of Castilla-La Mancha [318,319,321]. These compounds (halocarbons, 

bromocarbons, bromofluorocarbons, bromochlorofluorocarbons, halogenated alcohols, 

halogenated, fluorinated ethers and perfluorinated compounds) contribute to the global 

warming; 

- a second cross-sections set from the University of York (Harrison and Bernath 

[306,307]). This set includes molecular species already present in GEISA-2011, i.e.: C2H6, 

http://www.uio.no/english/
https://www.uclm.es/english/
http://www.york.ac.uk/
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C3H8, CH3CN, C3H6O, as well as the new species methanol (CH3OH) which was observed in 

IASI measurements of reactive trace species in biomass burning plumes (Coheur 2009 [308]), 

trifluoromethane (CHF3) and acetaldehyde (CH3CHO). 

 

3.1 Universities of Oslo and Castilla-La Mancha cross sections  

 

The GEISA-2011 IR absorption cross-section sub-database contained data for 35 

molecules in the spectral range from 200 cm
-1

 to 6500 cm
-1

 [303,11]. Most of these species 

are chlorofluorocarbons (CFCs) and their first- and second-generation replacements, i.e. 

hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). HFCs do not have the 

ozone-damaging effects of CFCs and HCFCs, nevertheless they are potent greenhouse gases 

with high global warming potentials (GWPs). For that reason, in many applications (air 

conditioning refrigerants, foam expansion agents, fire protection fluids, etc) low-GWP 

alternatives have been suggested in recent years. Among these low-GWP substitutes, 

perfluorolefins (PFOs), hydrofluoroethers (HFEs), hydrofluoroalcohols (HFAs), and 

perfluoroalcohols (PFAs) are proposed as environmental friendly alternatives to HFCs. 

Recently, Hodnebrog et al. [304] provided a complete new set of calculations of 

GWPs and radiative efficiencies (REs) of halocarbons, such as CF2Cl2 (CFC-12), and related 

compounds. Consequently, the IR absorption cross-sections for CFC-12 and 31 fluorinated 

compounds, included in the recent review of Hodnebrog et al. [304] were added to GEISA-

2015. Among these compounds, hydrofluorinated aldehydes, CF3CHO, CF3CH2CHO and 

CF3(CH2)2CHO, are also included since they are the major products of the atmospheric 

degradation of the corresponding HFA. The newly included molecular species are listed in 

Table 10, which provides for each compounds: its chemical formula, common name, CAS 

RN and spectral information, i.e.: spectral range, gas bath, foreign broadening pressure (Pa), 

and references. 

The IR absorption cross-sections for CFC-12 have been updated using the data 

reported by Myhre et al. [309] for pure CFC-12 and gas mixtures (1 atm of nitrogen) at 

(295±1) K in the spectral region 500–2000 cm
-1

 [309]. For the other fluorinated compound 

the spectral resolution was 1 cm
-1

 and the absorption cross-sections were determined in 

mixtures with non-absorbing molecules, such as N2 or He, or pure gases [310-321]. For RTM, 

the effect of pressure broadening must be considered. At the spectral resolution of the updated 

IR absorption cross sections, the structure is quite broad and the effect of the foreign 
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perturbing gases has only a small effect on the broadening. For CFC-12, the spectral 

resolution of the updated absorption cross-sections is 0.5 and 1 cm
-1

, but the IR absorption 

cross section found by Myhre et al. [309] were in good agreement with the results obtained at 

high spectral resolution. Oyaro et al. [315] did not observe a discernible dependency in the IR 

absorption cross-sections for a series of fluorinated ethers by the addition of N2 to reach 

atmospheric pressure. 

To model correctly in a RTM the correct atmospheric conditions (p, T, amount of 

gases, clouds, etc…), the IR absorption cross-sections should ideally be provided also as a 

function of temperature. However, for most of the larger molecules the temperature variation 

in absorption cross-section is negligible. For the small and important greenhouse gases, 

pressure broadening and temperature variation in the absorption cross sections become an 

issue. As an example, the temperature dependence of the absorption cross-section of the 

important greenhouse gas CFC-12 was reported by McDaniel et al. between 203 and 298 K 

[322]. The authors observed that the peak absorption cross-sections increased by up to 50% at 

the lowest temperature relative to their values at 298 K, but the integrated band intensities 

only changed slightly in this temperature range. 
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Table 10 

Summary of GEISA-2015 infrared absorption cross-sections update. Data from University of Oslo [304, 305] and the University of Castilla-La Mancha 

[318,319,321] at room temperature and spectral resolution of 1 cm-1. 

 

Molecule Common Name 

or Chemical 

Name 

CAS RN a Spectral 

range (cm
-1

) 

Bath 

Gas 

Foreign 

broadening 

pressure (Pa) 

Refs.
c
 

CCl2F2 CFC-12 75-71-8 800–1,300 b N2 101,325.72 [309] 

    Pure – [309] 

CF2=CF2 PFC-1114 116-14-3 100–2,600 Pure  – [310] 

CF3CF=CF2 PFC-1216 116-15-4 100–2,600 Pure  – [310] 

CF2=CFCF=CF2 Perfluorobut-2-ene 685-63-2 100–2,600 Pure  – [310] 

CHF2OCF2OCHF2 HFE-235ca12 78522-47-1 25–3,250 Pure – [311] 

CHF2OCF2CF2OCHF2 HFE-338pcc13 188690-78-

0 

25–3,250 Pure – [311] 

(CF3)2CHOCH2F HFE-347mmz1 

(Sevoflurane) 

28523-86-6 400–4,000 Pure – [312] 

CHF2OCHClCF3 HCFE-235da2 

(Isoflurane) 

26675-46-7 400–4,000 Pure – [312] 

(CF3)2CFC(O)CF2CF3 Perfluoro(2-

methyl-3-

pentanone) 

756-13-8 450–2,000 Pure 

– 

[313] 

CHF2CF2CH2OCH3 HFE-374pcf 60598-17-6 450–3,200 Pure – [314] 

CF3CF2CH2OCH3 HFE-365mcf 378-16-5 450–3,200 Pure – [314] 

CF3CH2OCH2CF3 HFE-356mf-f 333-36-8 450–3,200 Pure – [314 ] 

(CF3)2CHOCH3 356mmzEβγ 13171-18-1 450–3,200 Pure – [314] 

CHF2CHFOCF3 1,1,2-Trifluoro-2-

(trifluoromethoxy)-

ethane 

84011-06-3 440–3,200 Pure – [315] 

CF3CHFOCF3 HFE-227ea 2356-62-9 440–3,200 Pure – [315] 
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Molecule Common Name 

or Chemical 

Name 

CAS RN a Spectral 

range (cm
-1

) 

Bath 

Gas 

Foreign 

broadening 

pressure (Pa) 

Refs.
c
 

CHF2OCHFCF3 HFE-236 

(Desflurane) 

57041-67-5 440–3,200 Pure – [315] 

CF3CHFCF2OCH2CH3 1-Ethoxy-

1,1,2,3,3,3-

hexafluoropropane 

380-34-7 440–3,200 Pure – [315] 

CF3CF2CF2OCHFCF3 1,1,1,2,2,3,3-

Heptafluoro-3-

(1,2,2,2-

tetrafluoroethoxy)-

propane 

3330-15-2 440–3,200 Pure – [315] 

CHF2OCH2CF3 HFE-245fa2 1885-48-9 440–3,200 Pure – [315] 

CF3CH2OCH3 HFE-263fb2 460-43-5 440–3,200 Pure – [315] 

CH2FCH2OH 2-fluoroethanol 371-62-0 80–4,800 Pure – [316] 

CHF2CH2OH 2,2-difluoroethanol 359-13-7 70–4,800 Pure – [316] 

CF3CH2OH 2,2,2-

trifluoroethanol 

75-89-8 70–4,800 Pure – [316] 

CF3CF2CH2OH 2,2,3,3,3-

pentafluoropropan-

1-ol 

422-05-9 400–4,000 Pure – [317] 

   500–4,000 He 666.6-20,797.9 [319] 

   500–4,000 Pure – [319] 

CHF2CF2CH2OH 2,2,3,3-tetrafluoro-

1-propanol 

76-37-9 400–4,000 Pure – [317] 

   500–4,000 He 746.6-12,798.7 [319] 

   500–4,000 Pure – [319] 

CF3CF2CF2CH2OH 2,2,3,3,4,4,4-

Heptafluoro-1-

butanol 

375-01-9 400–4,000 Pure – [317]  
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Molecule Common Name 

or Chemical 

Name 

CAS RN a Spectral 

range (cm
-1

) 

Bath 

Gas 

Foreign 

broadening 

pressure (Pa) 

Refs.
c
 

CF3CHFCF2CH2OH 2,2,3,4,4,4-

Hexafluoro-1-

butanol 

382-31-0 400–4,000 Pure – [317] 

CF3CH2CH2OH 3,3,3-

trifluoropropan-1-

ol 

2240-88-2 400–4,000 Pure – [317] 

   500–4,000 He 666.6-20,797.9 [318] 

CF3(CH2)2CH2OH 4,4,4-trifluoro-1-

butanol 

461-18-7 500–4,000 He 666.6-21,864.5 [318] 

CF3CHO trifluoroethanal 75-90-1 400–2,500 Pure – [318] 

CF3CH2CHO 3,3,3-

trifluoropropanal 

460-40-2 400–3,500 Pure – [320] 

   500–4,000 He 626.6-7,999.2 [321] 

CF3(CH2)2CHO 4,4,4-

trifluorobutanal 

406-87-1 500–4,000 He 493.3-9,065.7 [321] 

 

a 
Abbreviation of Chemical Abstract Service Registry Number; 

b
Also at a spectral resolution of 0.5 cm

-1
;
 c
 Each reference corresponds to a 

single P,T dataset. 
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3.2 University of York cross-sections 

 

 [307]

The cross sections for C2H6, C3H8, (CH3)2 CO, CH3CN already included in GEISA-2011 [303,11] 

are extended. Three new molecular species have been added to GEISA-2015 i.e.: CH3OH, CHF3, 

CH3CHO. 

 

Table 11 

Absorption cross-sections provided by the University of York for GEISA-2015 update. For each molecular 

species listed are given:  the temperature (T) range (K), the pressure (P) range (Torr), the number of P, T 

sets, and the spectral range (cm-1). 

 

 

3.3 Complementary data for species already implemented in GEISA-2011 

 

3.3.1 C2H6) 

 

 v  

band The v  band 

is particularly desirable for remote-sensing of ethane because it occurs in a reasonably uncongested 

Molecule Temperature 

range (K) 

Pressure range 

(Torr) 

Number of P,T 

sets 

Spectral range 

(cm
-1

) 

Ethane (update) 

C2H6 
194-297 49-763 14 2545-3315 

Propane (update) 

CH3CH2CH3 

(C3H8) 

195-296 40-763 12 2540-3300 

Acetone (update) 

(CH3)2 CO 

194-298 50-700 19 830-1950 

195-296 49-759 12 2615-3300 

Acetonitrile 

(update) 

CH3CN 

203-297 50-760 12 880-1700 

208-296 50-760 11 2550-3300 

Methanol 

CH3OH (new) 

204-295 50-761 12 877-1167 

204-296 51-761 12 2600-3250 

Trifluoromethane 

CHF3 (New) 
188-294 23-762 27 950-1500 

Acetaldehyde 

CH3CHO (new) 
200-297 50-762 16 2400-3400 
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spectral region and is associated with a 

over the spectral range 2545–3315 cm
-1

 [323] 

been included in GEISA-2015.  These cross sections provide a higher degree of accuracy for 

tropospheric sounding than can currently be obtained using the line list.  Spectra of ethane / dry 

synthetic air mixtures inside a 26-cm cell were recorded at fourteen pressure–temperature 

combinations using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) at 0.015 cm
-1

 

resolution (using the Bruker definition of 0.9/MOPD).   

Additionally, these cross sections have been used to create a set of ‗pseudo-lines‘, effective 

spectral lines that empirically reproduce the pressure and temperature-dependencies of spectral 

absorption without any recourse to quantum-mechanical assignments.  As the derived absorption 

varies smoothly with temperature and pressure, this pseudo lines list provide a convenient way of 

interpolating (and extrapolating) cross sections. The pseudo-line list may be obtained from 

http://mark4sun.jpl.nasa.gov/pseudo.html. 

 

3.3.2 Propane (CH3CH2CH3 (C3H8)) 

Propane is the second most abundant non-methane hydrocarbon in the atmosphere, however no 

global measurements using IR remote-sensing techniques have yet been undertaken. Absorption 

cross sections over the spectral range 2540–3300 cm
-1

 [324] have been included in GEISA-2015 for 

the first time. They cover the spectral region where propane has its strongest-intensity absorbance 

features (C-H stretch).  Spectra of propane / dry synthetic air mixtures inside a 26-cm cell were 

recorded at twelve pressure–temperature combinations using a high-resolution FTIR spectrometer 

(Bruker IFS 125 HR) at 0.015 cm
-1

 resolution (=0.9/MOPD)

3.3.3 Acetone ((CH3)2O) 

 

830–1950 

2615–3300 

For the new measurements, spectra of 

http://mark4sun.jpl.nasa.gov/pseudo.html
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acetone / dry synthetic air  were 

recorded by a high spectral resolution FTIR spectrometer (Bruker IFS 125 HR) at 0.015 cm
-1

 

3.3.4  Acetonitrile (CH3CN) 

 

ν

pectra of acetonitrile / dry synthetic air 

 were recorded by a high-resolution FTIR spectrometer (Bruker 

IFS 125 HR) at 0.015 cm
-1

 



 

[328]

3.4 Molecular species added to the GEISA-2011 edition 

 

3.4.1  Methanol (CH3OH ) 

877-

1167 2600-3250 Spectra of methanol/dry synthetic air 

 were recorded by a high-resolution FTIR 

spectrometer (Bruker IFS 125 HR) at 0.015 cm
-1

 =
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



ν



877-1167 

2600-3250 

3.4.2 Trifluoromethane (CHF3, HFC-23) 

 

atmospheric lifetime 

of 222 years, and an increasing atmospheric abundance.  Recently the first remote-sensing 

measurements of this molecule were taken by the balloon-borne MkIV interferometer [330] and the 

ACE-FTS [331], using less than ideal spectroscopy.  New infrared absorption cross sections for 

trifluoromethane over the spectral range 950–1500 cm
-1

 [332] have recently been made available; 

these are included in GEISA for the first time. Spectra of trifluoromethane / dry synthetic air 

mixtures inside a 26-cm cell were recorded at twenty-seven pressure–temperature combinations 

using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) at 0.015 cm
-1

 resolution 

(=0.9/MOPD). 

 

3.4.3  Acetaldehyde (CH3CHO) 

Acetaldehyde, a trace molecular species, found in the Earth‘s atmosphere, plays an 

important role as a source of ozone (O3), PAN and HOx radicals.  

Infrared absorption cross-sections have been measured by Tereszchuk et al. [333] in the 3 µm 

region (2400–3400 cm
-1

) from spectra obtained using a FTIR spectrometer at a resolution of 0.005 

cm
-1

. See Ref. [333] for details. 

 

http://mark4sun.jpl.nasa.gov/pseudo.html
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3.4.4 Summary for the infrared cross-sections update 

 

Finally, 43 new molecular species have been added to GEISA-2015 infrared absorption 

cross-sections. On the basis of the description above, the evolution of the GEISA infrared 

absorption cross-sections since the 2011 edition is illustrated in Figs. 17 a), 17 b), and 17 c). 

Fig. 17a) summarizes the evolution of the GEISA IR cross-sections sub-database, giving the 

percentages of new (43 %) and updated data (3%) since GEISA-2011 (on the basis of the number of 

molecules), the remaining datasets represent 54% of the whole contents. 

Fig.17b) illustrates the relative contribution from the University of Oslo and Castilla-La Mancha 

[304,305], and from the University of York [306,307], in terms of percentage (on the basis of the 

number of molecules) of the total, new or updated, data provided for GEISA-2015 edition update.  

Note that there are more cross sections provided by York, in terms of number of P,T sets; 

Fig. 17c) gives graphical display (in %) of the relative contributions of the compounds from 

University of Oslo and Castilla-La Mancha [305] listed in Table 10. 
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Figs. 17 a) b) c). Illustration of the evolution of the GEISA infrared absorption cross-sections archive since 

the GEISA-2011 edition.  
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3.4.5 GEISA-2015 new absorption cross-sections sub-database in the NIR region 

 

The 1-3 µm near-infrared spectral region is of great interest for atmospheric remote-

sensing and planetary science. Many experimental techniques have become available that are 

capable of measuring extremely weak absorptions or small photon numbers with great 

accuracy. This has led, on one hand, to an increasing demand for reference data in this 

spectral region when standard line parameters (such as line centers, intensities, lower state 

energies, etc.), based on line-by-line analysis and theoretical calculation of the spectra, are not 

(yet) available. On the other hand, an increasing amount of accurate experimental data is now 

available that may be used as a reference in the absence of theoretical calculations e.g. for 

modelling or calibration purposes. This situation is very similar to the ultraviolet-visible 

spectral region where most reference data are molecular absorption cross-sections based on 

laboratory measurements.  

The sections below present and document a first set of seven high-resolution absorption cross-

sections as reference data in the near-infrared region, for molecules and bands where no 

theoretical prediction is available. This set of new data has been implemented in GEISA-2015 

as a new section of the absorption cross-sections sub-database for GEISA in the NIR region 

an overview of which is given in Table 12.  

The common names of the molecules and their formula are listed in the two first columns. 

The spectral regions covered (cm
-1

), the spectral resolution (cm
-1

), the maximal uncertainties 

of the spectral position (cm
-1

) and absorption cross-sections (%), are given in columns two to 

five, and references in the final column. Experimental conditions are detailed, below, in sub-

sections 3.4.5.1 to 3.4.5.7. 
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Table 12 

Summary of the molecules whose experimental absorption cross-sections in the NIR are 

newly provided in the GEISA-2015 database.  

 

Molecule 
NIR range 

(cm-1) 

Spectral 

resolution 

(cm-1) 

Uncertainty 

 

Refs. 

position 

(cm-1) 

cross-section 

(%) 

 

Acetonitrile CH3CN 6814 – 7067 0.001 0.01 15 [334] 

Methyl iodide CH3I 7473 – 7497 0.001 0.01 10 [335] 

Methyldioxidany

l 

 

CH3O2 7474 – 7497 0.025 0.01 30 [335] 

Formaldehyde H2CO 6547 – 7051 0.001 0.005 20 [338] 

Hydroperoxy 

radical 
HO2 6604 – 6696 0.003 0.01 15 

[339] 

[340] 

Nitrous acid HONO 6624 – 6645 0.005 0.01 40 [343] 

Ammonia NH3 6880 – 6997 0.001 0.005 20 [344] 

 

3.4.5.1 Acetonitrile (CH3CN) 

 

Absorption cross-sections of Acetonitrile between 6814 and 7067 cm
-1 

were measured, 

by O‘Leary et al. [334], with off-axis CW-CEAS at 5 mbar with a resolution of about 0.001 

cm
-1

. There are about 4630 absorption lines in this spectrum. Absorption features of H2O in 

this region have been removed from the spectrum. Approximately 200 individual overlapping 

spectral segments have been concatenated to cover the entire spectral range. The uncertainty 

inthe absolute line positions was estimated to be between 0.005 cm
-1

 and 0.01 cm
-1

.The 

uncertainty inthe absolute absorption cross-sections is ~15%. For one isolated line at 

7034.171 cm
-1

 a value for the self-broadening coefficient was determined to be (3.30.2) 10
-

3
 cm

-1
 mbar

-1 
in [334].  

 

3.4.5.2 Methyl iodide, also called iodomethane (CH3I) 

 

Measurements, by Farag¢ et al. [335], of methyl iodide were made using CW-CRDS 

in the wavenumber range 7473–7497 cm
-1 

at a total pressure of 50 Torr and a resolution of 

0.001 cm
-1

. CH3I was prepared as a diluted mixture in helium, and its concentration was 

determined from calibrated flowmeters. The spectrum was measured in several small portions 

in order to minimize a shift in the baseline between measurement of the spectrum with and 

without CH3I. There are small gaps in the spectrum at wavelength ranges corresponding to 

absorption lines of water where data have been erased because water was present in the cell. 

Three sharp, characteristic peaks were found in this wavenumber range at 7473.92, 7481.13 
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and 7484.42 cm
-1

 with absorption cross-sections of 7.41, 17.3 and 19.0×10
-22 

cm
2
, 

respectively. The error in these peak absorption cross-sections is estimated to be 10%, mostly 

due to uncertainties in the concentration of CH3I. The error in other regions of the spectrum is 

probably higher, small baseline shifts will lead to larger errors due to weak, overall 

absorption.  

 

3.4.5.3  Methyldioxidanyl (CH3O2) 

 

Measurements, by Farag¢ et al. [335], of methyldioxidanyl were made using CW-

CRDS coupled to laser photolysis. The wavenumber range 7474–7493 cm
-1

 was scanned at a 

resolution of 0.025 cm
-1

. CH3O2 was generated by pulsed photolysis of CH3I in the presence 

of O2. Absolute CH3O2 concentrations have been deduced by measuring the time-resolved 

absorbance following the photolysis pulse and adjusting the decay rate to the well-known rate 

constant of the self-reaction of CH3O2 radicals [335]. Calibration of CH3O2 concentration was 

obtained by measuring the time-resolved evolution of the CH3O2 concentration and fitting the 

kinetic decay traces of CH3O2 to a bimolecular reaction. Using the well-known rate constant 

of the self-reaction allows retrieval of the initial CH3O2 concentrations. A generally broad 

absorption spectrum was obtained containing three striking absorption features located at 

7748.18, 7489.16 and 7493.33 cm
-1

. For these three characteristic lines absolute absorption 

cross-sections of 3.41x10
-20

, 3.40x10
-20 

and 2.11x10
-20 

cm
2
 were established, respectively. The 

remainder of the broad spectrum was scaled according to these cross-sections. Within the 

error limit of the measurement the cross-sections were not affected by changes of the pressure 

between 50 and 100 Torr. The error is estimated to be 30%, mostly due to uncertainty in the 

rate constant for the self-reaction.  

 

3.4.5.4  Formaldehyde (H2CO) 

 

 Absorption cross-sections for formaldehyde were measured, by Staak et al. [336], with 

CW-CEAS at 2 mbar in the range 6547–7051 cm
-1

 with a resolution of about 0.001 cm
-1

. The 

absorption cross-sections were evaluated by comparison with the known measured line-

intensities of CO2 and H2O. H2CO was prepared by pyrolysis of paraformaldehyde under 

vacuum. The gaseous H2CO was first passed through a cooling trap below 200 K to remove 

water vapor and polymerization products of H2CO. The monomeric H2CO was trapped and 

stored at 77 K under vacuum. The sample cavity was evacuated to approximately 10
-6 

mbar, 

ensuring that it was virtually free of gaseous water. H2CO gas was introduced into the cavity 
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by slowly heating the solid H2CO from the cooling trap; the temperature of the system was 

291 ± 2 K. Later, the absorption cross sections of 2 selected lines were measured by Morajkar 

et al. [337]. For determining the H2CO concentration present in the absorption cell, OH 

radicals were generated by laser photolysis in presence of excess H2CO. The well-known rate 

constant of the OH + CH2O reaction was then be used to determine the H2CO concentration 

from the pseudo-first-order decay of OH radicals. It was found that the absorption cross-

sections from Staak et al. [336] were systematically a factor of 2 too large. Several other 

experiments using NIR absorption to quantify H2CO seemed to confirm the result of Morajkar 

et al. [337]; a summary is given in Ruth et al. [338] together with new absorption data on 

H2CO between 6804 and 7051 cm
-1

. GEISA-2015 contains the data from Ruth et al. [338] and 

those of Staak et al. [336] corrected by a factor of 2 in the spectral range 6547–7051 cm
-1

; see 

Table 12.  

 

3.4.5.5  Hydroperoxy radical (HO2) 

 

Measurements of the HO2 radical were made by Thiebaud et al. [339] and Ibrahim et 

al. [340] at a total pressure of 50 Torr. HO2 radicals were generated by reaction of Cl-atoms 

with CH3OH in the presence of O2. Cl-atoms were generated either by photolysis of SOCl2 at 

248 nm or by photolysis of Cl2 at 351 nm. The spectrum was measured in the 6604-6696 cm
-1

 

wavenumber range with a resolution of better than 0.003 cm
-1

. A few selected lines 

werecalibrated by determining the absolute, initial HO2 concentration in the same way as 

CH3O2: time resolved HO2 absorption decays were measured following their pulsed 

photolysis. As the decay is governed by a bimolecular reaction, the initial HO2 radical 

concentration can be deduced from the shape of the decay. The most important absorption 

feature in this wavelength range was found at 6638.20 cm
-1

, exhibiting an absorption cross-

section of s=2.72x10
-19 

cm
2
 in the buffer gas of helium at 50 Torr. The pressure dependence 

of a few lines were obtained in [339-341], more details on the pressure broadening in HO2 can 

be found in [342].  

 

3.4.5.6  Nitrous Acid (HONO) 

 

Measurements of nitrous acid were made, by Jain et al. [343], in the range 6623.6–

6645.6 cm
-1 

with a resolution of 0.005 cm
-1

, using CW-CRDS coupled to laser photolysis. 

HONO was generated in situ by photolysis of H2O2 in the presence of NO. Calibration of the 

HONO concentration (and hence the cross-sections) was achieved through modelling the 
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kinetics of the time resolved concentrations of the OH and HO2 radicals, which are generated 

in the H2O2 photolysis. A very dense HONO spectrum was observed with the strongest line in 

this wavenumber range at 6642.51 cm
-1

 with =(5.8±2.2)10
-21

 cm
2
, the error being mostly 

due to uncertainties in the reaction mechanism used to model the OH and HO2 decays 

necessary to deduce the initial HONO concentration. The pressure broadening of the line at 

6642.51 cm
-1

 was determined in the pressure range 10–74 Torr with He and N2 as bath gas. 

 

3.4.5.7  Ammonia (NH3) 

 

Absorption cross-sections as a function of wavelength for NH3 were measured, by 

O'Leary et al. [344], with off-axis CW-CEAS at 0.2 mbar (6880–6997 cm
-1

) and at 11.5 mbar 

(6850–6997 cm
-1

). A total of 1117 NH3 lines are contained in the spectrum. The 2 rms value 

of the absolute wavenumber calibration was approximately 0.001 cm
-1

. Absorption features 

due to H2O in this region were removed from the spectrum. The uncertainty in the absolute 

absorption cross-sections is less than 20%.  

There are two NH3 spectra recorded at different pressures. In the spectrum measured at 11.5 

mbar cross-sections larger than 4×10
-22

 cm
2
 molecule

-1
 are affected by saturation. All 

corresponding strong lines are unaffected by saturation in the spectrum measured at 0.2 mbar. 

The spectrum at higher pressure is provided to show weak NH3 lines with  less than 4×10
-22

 

cm
2
 molecule

-1
.  

It should be noted that 262 lines of the NH3 line-by-line sub-database are present in 

this cross-sections spectral region (see above in § 2.2.7). Among these lines, only 49 have 

been assigned. We retain the unassigned lines, which are useful for many purposes, and we 

have implemented the cross-sections, in addition, to provide the total absorption in that 

region. 

4 2015 sub-database on microphysical and optical properties of 

atmospheric aerosols 
 

With the importance of the aerosol contribution to the infrared RTM of the earth‘s 

atmosphere, a sub-database, containing microphysical and optical properties of atmospheric 

aerosols, here after GEISA/aerosols, was first added to GEISA in the 2003 edition [9].  

GEISA/aerosols gathers the micro-physical and optical properties of atmospheric aerosols and 

complementary information on other public aerosols dedicated databases. See Ref. [11] for 

detailed information. No updates have occurred since the sub-database creation.  
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For GEISA-2015, a significant update has been made thanks to the implementation of 

complementary data of two origins: from Massie [345,346] at NCAR and from the ARIA 

archive developed at Oxford University. 

 

4.1 The NCAR contribution to GEISA-2015/aerosols 

 

Refractive indices from Massie and Hervig [345,346] as described in Rothman et al. 

[14] are archived in GEISA-2015, corresponding to molecular species already implemented, 

or to new ones for GEISA-2015. The real and imaginary refractive indices of over three dozen 

liquid and solid aerosols present in the Earth‘s atmosphere are specified from the ultraviolet 

through the infrared (and the microwave for water and ice).  

The indices date from and correspond chronologically to a variety of scientific themes 

investigated during the last 100 years. Water and ice indices have a long historical interest due 

to the ubiquitous presence of clouds in the Earth‘s atmosphere.  

Measurements of liquid binary H2SO4/H2O, ternary H2SO4/H2O/HNO3, and solid nitric acid 

trihydrate (NAT) indices, at a variety of concentrations, dates to ongoing interest in studies of 

the interaction between the PSC‘s and ozone hole heterogeneous chemistry. Today, more 

recent additions to the GEISA-2015 database are traced to interest in tropospheric vegetative 

fires, brown carbon aerosols, organic haze particles, particles associated with desert dusts of 

varying iron content, and surface minerals of different compositions. 

 As satellite and other remote sensing measurements become more demanding in terms 

of the accuracy of gas species retrievals, knowledge of the optical properties of aerosols (e.g. 

aerosol extinction and absorption coefficients, single scattering albedo, asymmetry parameter) 

also becomes increasingly important since total optical depths are dependent upon both gases 

and aerosols in a planetary atmosphere. Since these properties are dependent upon 

composition (i.e. the refractive indices), the sensed wavelength(s), and the particle size and 

spatial distributions, Mie [347] and other codes (for non-spherical particles) are used to 

calculate the aerosol optical properties. The codes of Hess et al. [348] and Massie and Hervig 

[346] are convenient to calculate these properties, and can be used to compare in graphical 

form the refractive indices of different materials (and different physical settings). 

Figure 18 shows an illustration of the real and imaginary refractive index differences 

for the two new GEISA-2015 entries: flame soot [349] (pertaining to high temperatures) and 

brown carbon [350] (measured at ambient temperatures). 

https://ncar.ucar.edu/about-ncar
http://eodg.atm.ox.ac.uk/ARIA/introduction_nocol.html
http://eodg.atm.ox.ac.uk/ARIA/introduction_nocol.html
http://www.ox.ac.uk/
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Fig. 18. Illustration of flame soot [349] and brown carbon [350] refractive index differences. The Y-

axis gives the real index (left)) and the imaginary index (right).  

 

Table 13 gives the list of refractive indices [349-376], representing a contribution from 

NCAR of more than 40 aerosol molecular species. They are distributed in ―material classes‖ 

according to the GEISA classification.     
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Table 13 

Refractive indices from NCAR included in GEISA-2015. Data already existing in GEISA are 

indicated by an ‗A‘ in the last column. New data are marked by an ‗*‘. 

______________________________________________________________________ 

Material Class /Material   Measurement Details                     Reference 

________________________________________________________________________ 

 

Acids 

Sulfuric acid (H2SO4/H2O)    215 K, 499–6996 cm
−1

  [357]  

Sulfuric acid (H2SO4/H2O)    200–300 K, 825–4700 cm
−1

  [358] 

Sulfuric acid (H2SO4/H2O)   Room temp, 0.2–40 m   [351]A 

Sulfuric acid (H2SO4/H2O)   Room temp, 25–96% H2SO4  [355]A 

Sulfuric acid (H2SO4/H2O)   Room temp, 75 and 90% H2SO4 [356]A 

Sulfuric acid (H2SO4/H2O)    213–293 K, 432–5028 cm
−1

  [359]A 

Nitric acid (H2SO4/HNO3)   Room temp, 250–2987 cm
−1  

[360] 

Nitric acid (H2SO4/HNO3)    220 K, 754–4700 cm
−1

  [362] 

Nitric acid (H2SO4/HNO3)    213–293 K, 432–5028 cm
−1

  [359]A 

Amorphous nitric acid     153 K, 482–7000 cm
−1

  [362] 

NAM  (nitric acid monohydrate)  179 K, 482–6002 cm
−1

  [362] 

NAD  (nitric acid dihydrate)   184 K, 482–6981 cm
−1

  [362] 

NAD       160–190 K, 700–4700 cm
−1

  [363] 

NAT  (nitric acid trihydrate)   181 K, 482–6989 cm
−1

  [362] 

NAT       196 K, 482–6364 cm
−1

  [362] 

NAT       160 K, 711–4004 cm
−1

  [364] 

Organic acids     0.25 – 1.1 m    [368]* 

oxalic, malonic, succinic, pinonic, 

pyruvic, phthalic 

Organic haze     0.525 nm    [369]* 

SOA (proxy)     0.525 nm    [370]* 

 

Ash/Soot/Carbonaceous 

Burning vegetation     525–5000 cm
−1

   [365] 

Burning vegetation    0.35 – 1.5 m    [366]* 

Carbon flame     0.4 – 0.7 m, 25 – 600 C  [367]* 

Flame soot     0.2 – 38 m    [349]* 

Brown carbon     0.2 – 1.2 m    [350]* 

Carbonaceous aerosol    Room temp, 0.2–40 m   [351]A 

 

Water/Ice 

Water       27
◦
C, 10–5000 cm

−1
   [352] 

Water       0.67–2.5 m    [353] 

Ice       266 K, 0.04 m – 2 m   [354] 

Ice       0.67–2.5 m    [353] 

Water, ice     Room temp, 0.2–40 m   [351]A 

 

 

 

 

 

https://ncar.ucar.edu/about-ncar
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Table 13 (continued) 

______________________________________________________________________ 

Material Class /Material   Measurement Specifics    References  

______________________________________________________________________ 

 

Solids/Salts 

Ammonium sulfate    Room temp, 0.2–40 m             [351]A 

Sodium chloride, sea salt   Room temp, 0.2–40 m             [351]A 

Minerals     2.5 – 200 m              [371]* 

clay, illite, kaolin, montmorillonite 

Minerals     5 – 40 m              [372]* 

granite, montmorillonite 

Saharan dust     0.30 – 0.95 m             [373]* 

Saharan dust     0.35 – 0.65 m             [374]* 

Saharan dust     0.35 – 0.65 m             [375]* 

Volcanic ash     0.45 – 25 m              [376]* 

Volcanic dust     Room temp, 0.2–40 m             [351]A 

Ammonium sulfate    Room temp, 0.2–40 m             [351]A 

Sodium chloride, sea salt   Room temp, 0.2–40 m             [351]A 

Meteoric dust     Room temp, 0.2–40 m             [351]A 

Quartz, hematite, sand   Room temp, 0.2–40 m             [351]A 
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4.2 The Oxford University contribution to GEISA-2015/aerosols 

 

More than 20 molecular species (identified in red), including minerals, dusts, soots, 

water particles, etc…) from the ARIA archive developed at Oxford University  

Table 14 summarizes the total contents of the GEISA-2015 aerosols sub-database; the Table 

reflects the material classes used by the GEISA-2011 and GEISA-2015 distribution web site 

AERIS/ESPRI atmospheric chemistry data center. The NCAR data are identified in blue and 

the ARIA archive ones in red. 

 

 

 

 

  

http://eodg.atm.ox.ac.uk/ARIA/introduction_nocol.html
http://www.ox.ac.uk/
http://cds-espri.ipsl.fr/etherTypo/?id=950
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Table 14 

GEISA-2015 aerosol sub-database contents and classification display. NCAR data identified in blue, 

ARIA data identified in red. 

 

  Minerals Organic acids 

Clay 

Illite 

Kaolin 

Montrillite 

 

Anhydrite 

Dolomite 

Hematite 

Illite 

Kaolinite 

Montmorillonite 

Olivine 

Olivine Fayalite 

Quartz 

Wustite 

Ammonium sulphate     (NH4)2SO4 

Benzoic acid                     C7H6O2 

Glutaric acid             C3H6(COOH)2 

Hydroxymalonic               C3H4O5 

Malonic acid               CH2(COOH)2 

Oxalic acid                          H2C2O4 

Phthalic acid               C6H4(CO2H)2 

Pinonic acid                     C10H16O3 

Pyruvic acid               CH3COCOOH 

Succinic acid                     C4H6O4 

Acids Water ice and sea-salts 

H2SO4 

HNO3 

H2SO4 + HNO3 

Nitric acid dyhydrate (NAD) 

Supercooled 

Water 

Ice Ich 

Water 

Ice 

Water 

Dusts and sands Ashs, soots and burning aerosols 

Saharan dust 

 

Andesite 

Basalt 

Granite 

Limonite 

Obsidian 

Pumice 

Sand 

Flame soot 

Ash volcanic 

Biomass aerosols 

Pyrolytic graphite 

Propane 

Organic-Based 

nonvolatile aerosols  

Diesel 

Volcanic Ash 

 

Carbonaceous Other 

Brown carbon spheres 

Amorphous carbon 

Different HULIS 

Martian Dust 

Organic haze 

https://ncar.ucar.edu/about-ncar
http://eodg.atm.ox.ac.uk/ARIA/introduction_nocol.html
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5 Conclusion 
 

Its 2015 edition implements important updates and additions are in the three sub-databases of 

GEISA: 

 The line parameters sub-database contains 52 molecular species (113 isotopologues) 

with transitions in the spectral range from 10
-6

 to 35,877.031 cm
-1

; 5,059,777 entries are listed 

compared to 3,794,297 in GEISA-2011. This corresponds to an increase of 33%. SO3 appears 

for the first time in GEISA. HDO is now considered as an independent species: as explained 

above, this choice is becauseits symmetry properties differ from H2O and for a more flexibly 

taking it into account in forward radiative transfer modelling. Updates of 20 molecules, 

already included in GEISA-2011, involve species of significant importance in terrestrial or 

planetary atmospheres and for astrophysical research (i.e.: C2H6, C2H2, C4H2, C2H4, H2S, 

HCN, HNC…). With reference to the Earth‘s atmosphere, noticeable effort has been made to 

upgrade entries for H2O, HDO, CH4 and CH3D: the spectroscopic parameters of these 

molecules are updated and validated,  leading to a significant increase in the number of 

entries.    

The cross section sub-database is enriched by 43 new molecular species in its infrared 

part which is also updated for four previously considered molecules (ethane, propane, 

acetone, acetonitrile). 43% of the content is new and 3% of it is updated. A new section has 

been added, covering the near-infrared region, involving 7 molecular species, i.e.: CH3CN, 

CH3I, CH3O2, H2CO, HO2, HONO, NH3. 

 The sub-database on microphysical and optical properties of atmospheric aerosols is 

updated, for the first time since the 2003 edition of GEISA. It contains more than 40 species 

originating from NCAR and 20 species originating from the ARIA archive of Oxford 

University. A specific classification of the species has been adopted, corresponding to 8 

sections associated with their nature, i.e.: Minerals, Organic acids, Acids, Water ice and sea 

salt, Dusts and sands, Ash, soots and burning aerosols, Carbonaceous, Other. 

 This new release of GEISA and associated management software facilities are presently 

being implemented and will be distributed via AERIS/ESPRI atmospheric chemistry data 

center website. As for the previous versions, all the spectroscopic data (spectroscopic 

parameters, cross-sections sub-databases) and related information can be handled through the 

user-friendly associated management software facilities. It is used on-line by more than 350 

laboratories working in various sectors including atmospheric physics, planetary science, 

astronomy, astrophysics. 

http://www.atm.ox.ac.uk/project/RI/index.html
http://www.atm.ox.ac.uk/project/RI/index.html
http://cds-espri.ipsl.fr/etherTypo/?id=950
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 Thanks to its involvement in various space missions, GEISA has been used for more 

than 40 years for forward and, hence, inverse radiative transfer modelling.  It is regularly used 

in the processing of current hyperspectral sounders (AIRS/Aqua, IASI/Metop, etc.), GEISA is 

also important for the preparation of future space missions (IASI-NG, MERLIN or 

MicroCarb). As such, the quality controls must be continuous and strengthened: this requires  

constant effort, as described in Armante et al. ([22], this issue). One of our main aims is to 

make available the results of these quality controls to help to improve the planning, 

acquisition and delivery processes of new, eventually more targeted, spectroscopic data. 

Thanks to the possibility of giving faster feedback to the contributing laboratories on 

the accuracy of the data they provide, we now anticipate that a new release of GEISA will be 

produced annually. 

 

 

 

 

 

 

https://iasi-ng.cnes.fr/en/IASI-NG/index.htm
https://merlin.cnes.fr/en/MERLIN/index.htm
https://microcarb.cnes.fr/en/MICROCARB/GP_satellite.htm
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7 Appendix A. List of acronyms 
 

4A Atlas Automatisé des Absorptions Atmosphériques; 

 Automatized Atmospheric Absorption Atlas 

4A/OP 4A/OPerational release  

ACE Atmospheric Chemistry Experiment 

AERIS Atmosphere and service data pole (CNES, CNRS), France 

AFGL Air Force Geophysics Laboratory 

AIRS Atmospheric Infrared Sounder 

ARIA  Aerosol Refractive Index Archive/University of Oxford (UK)  

ARA/ABC(t)  Atmospheric Radiation Analysis/Atmosphère-Biosphère-Climat                                  

(télédétection) 

BEAMCAT  BErnese Atmospheric Meta Catalog Access Tool 

CAL/VAL  Calibration/Validation 

CAS RN  Chemical Abstract Service Registry Number 

CDMS     Cologne Database for Molecular Spectroscopy 

CDSD Carbon Dioxide Spectroscopic Databank 

CIRS Composite InfraRed Spectrometer 

CNRS Centre National de la Recherche Scientifique (France) 

CNES Centre National d‘Etudes Spatiales (France) 

CRB Complex Robert-Bonamy 

CRDS Cavity ring-down spectroscopy 

DAS Differential laser Absorption Spectroscopy 

DMS Dipole Moment Surface 

CW-CEAS Continuous Wave-Cavity  Absorption Spectroscopy 

CW-CRDS Continuous Wave-Cavity Ring Down Spectroscopy 

ENVISAT ENVIronmental SATellite 

ESPRI   Ensemble de Services pour la Recherche à l'IPSL (Centre for Data and  

Services belonging to IPSL), CNRS, France 

EUMETSAT  European Organisation for the Exploitation of Meteorological 

Satellites 

FTIR Fourier Transformed InfraRed spectroscopy 

FTS Fourier Transform Spectrometer 

GEISA  Gestion et Etude des Informations Spectroscopiques Atmosphériques; 

Management and study of Atmospheric Spectroscopic Information 

GOSAT    Greenhouse Observing SATellite project  

GS     Ground State 

GSMA Groupe de Spectroscopie Moléculaire et Atmosphérique (France) 

GWP  Global Warming Potential 

HITRAN HIgh-resolution TRANsmission molecular absorption database 

HULIS HUmic-LIke Substances  

HWHM Half Width at Half Maximum 

ICLAS Intra Cavity Laser Absorption Spectroscopy 

IASI Infrared Atmospheric Sounder Interferometer 

IASI/NG Infrared Atmospheric Sounder Interferometer/New Generation 

ICB Institut Carnot de Bourgogne 

ID Identification code 

INSU Institut National des Sciences de l‘Univers (France) 

IPSL Institut Pierre Simon Laplace 

IAO Institute of Atmospheric Optics (Russia) 

IR InfraRed 
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ISSWG IASI Sounding Science Working Group 

IUPAC International Union of Pure and Applied Chemistry 

IUPAC TG IUPAC Task Group 

JPL Jet Propulsion Laboratory (USA) 

KIT  Institute for Meteorology and Climate Research Centre Karlsruhe,     

(Germany) 

LIPhy Laboratoire Interdisciplinaire de Physique (France)  

LISA Laboratoire Inter-Universitaire des Systèmes Atmosphériques                              

 (France) 

LMD Laboratoire de Météorologie Dynamique (France) 

Non-LTE non-Local Thermodynamic Equilibrium 

MARVEL Measured Active Rotational-Vibrational  

MCRB Modified Complex Robert-Bonamy 

MERLIN  Methane Remote Sensing Lidar Mission  

MIPAS  Michelson Interferometer for Passive Atmospheric Sounding 

Metop Meteorological operational satellite 

MOPD Maximum Optical Path Difference 

MWIR Mid-wavelength infrared 

NASA National Aeronautics and Space Administration (USA) 

NCAR National Center for Atmospheric research (USA) 

NIR Near-InfraRed 

PAN PeroxyAcetyl Nitrate 

PSC Polar Sratospheric Cloud 

PES Potential Energy Surface 

RTM Radiative Transfer Modeling 

SCIAMACHY  SCanning Imaging Absorption spectroMeter for Atmospheric      

ChartograpHY  

SRON     Netherlands Institute for Space Research, The Netherlands 

S&MPO Spectroscopy & molecular properties of Ozone 

UCC University College Cork, Ireland 

UCL University College, London (UK) 

UV Ultra Violet 

VAMDC Virtual Atomic and Molecular Data Centre 

VECSEL Vertical External Cavity Surface Emitting Laser 

VOC Volatile organic compounds  

VTT Voronin, Tolchenov, Tennyson 

WKLMC Wang, Kassi, Leshchishina, Mondelain, Campargue 

WN Wave Number (cm
-1

) 
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8 Appendix B. Description of the format used for the line parameters 

stored in the 2015 edition of GEISA:   
 

The format of each entry is described in the following Table 15.  

Each entry is a 252 character record to describe the 31 spectroscopic line parameters. 

First line of Table 14: the 31 Spectroscopic line parameters are listed in the 31 columns and their 

description is given below.  

Line 2 and line 3 display the field length and the FORTAN format descriptor, respectively.  

Line 4 displays the standard default values associated to each parameter.  

Line 5 displays a cumulative index indicating the position of the last character of the record 

associated to each of the 31 spectroscopic line parameters.  

The standard default values for fields «O‘», « T » and « T‘ », have been changed and set to ―zero‖. 

This modification was made to avoid potential misunderstanding and thus improper use of these 

parameters in some applications especially related to forward radiative transfer.- Value in field ―M‖ 

is documented in GEISA only if it is directly provided by the author of the spectroscopic line entry. 

 
Table 15 

Format of each entry in GEISA-2015 

 

Parameter A B C D E1 E2 E3 E4 F G I J 

Field length 12 11 6 10 25 25 15 15 4 3 3 3 

Fortran descriptor F12.6 1PD11.4 0PF6.4 F10.4 A25 A25 A15 A15 F4.2 I3 I3 A3 

Undefined values NR -9.9999D-01 -.9999 -0.9999 * * * * -.99 -99 -99 * 

Record counting 12 23 29 39 64 89 104 119 123 126 129 132 

  

K L M N O R A' B' C' F' 

2 1 10 7 9 6 10 11 6 4 

I2 I1 1PE10.3 0PF7.4 F9.6 F6.4 F10.6 1PD11.4 0PF6.4 F4.2 

-9 0 -9.999E-01 -9.9999 0.000000 -.9999 -0.999999 -9.9999D-01 -.9999 -.99 

134 135 145 152 161 167 177 188 194 198 

  

O' R' N' S S' T T' U U' 

9 6 7 4 4 8 8 4 4 

F9.6 F6.4 F7.4 F4.2 F4.2 F8.6 F8.6 F4.2 F4.2 

0.000000 -.9999 -9.9999 -.99 -.99 0.000000 0.000000 -.99 -.99 

207 213 220 224 228 236 244 248 252 

 

A : wave number (cm-1) of the line  

B : intensity of the line in (cm-1/(molecule.cm-2) at 296K  

C : Air broadening pressure halfwidth (HWHM) (cm-1atm-1) at 296K 

D : Energy of the lower transition level (cm-1) 

Ei (i=1,2,3,4) : Transition quantum identifications for the lower and upper state of the transition  

 E1 : upper state vibrational identification E2 : lower state vibrational identification 

 E3 : upper state rotationnal identification   E4 : lower state rotationnal identification 

F : temperature dependence coefficient n of the air broadening halfwidth  
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G : identification code for isotopologue as in GEISA  

I : identification code for molecule as in GEISA  

J : Internal GEISA code for the data identification  

K : Molecule number as in HITRAN  

L : isotopologue number (1=most abundant, 2= second...etc) as in HITRAN  

M : Einstein A-coefficient 

N : self broadening pressure halfwidth (HWHMself) (cm-1atm-1) at 296K 

O : air pressure shift of the line transition (cm-1) at 296K 

R : temperature dependence coefficient of the air pressure shift  

A' : estimated accuracy (cm-1) on the line position 

B' : estimated accuracy on the intensity of the line in (cm-1/(molecule.cm-2) 

C' : estimated accuracy on the air collision halfwidth (HWHM) (cm-1atm-1)  

F' : estimated accuracy on the temperature dependence coefficient of the air broadening halfwidth 

O' : estimated accuracy on the air pressure shift of the line transition (cm-1) at 296K 

R' : estimated accuracy on the temperature dependence coefficient of the air pressure shift 

N' : estimated accuracy on the self broadened (HWHM) (cm-1atm-1) at 296K 

S : temperature dependence coefficient of the self broadening halfwidth  

S' : estimated accuracy on the temperature dependence coefficient of the self broadening halfwidth 

T : self pressure shift of the line transition (cm-1) at 296K 

T' : estimated accuracy on the self pressure shift of the line transition (cm-1) at 296K 

U : temperature dependence coefficient of the self pressure shift 

U' : estimated accuracy on the temperature dependence coefficient of the self pressure shift  

 

As shown in line 4 of Table 15 GEISA undefined values are attributed to the line parameter entries 

when no value is available from the data provider (missing data).  

9 Appendix C. Molecules and isotopologues in GEISA-2015 
 

Description of molecule and isotopologue codes in GEISA-2015 are given in Table 16. The 

molecule names and associated codes are in the two first columns; for each molecule, the 

isotopologue codes and the corresponding detailed formula are in columns 3 and 4 respectively. 

New molecules are in red and new isotopologues are in purple. 

 Table 16 Description of molecule and isotopologue codes in GEISA-2015 

 

Molecule 
Molecule 

Code 

Isotope 

Code 
Formula 

 

 

 

H2O 

 

 

 

1 

161 H16OH 

171 H17OH 

181 H18OH 

262 D2
16

O 

282 D2
18

O 

 

 

 

 

 

 

626 16O12C16O 

636 16O13C16O 

628 16O12C18O 
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Molecule 
Molecule 

Code 

Isotope 

Code 
Formula 

 

 

 

 

CO2 

 

 

 

 

2 

627 16O12C17O 

638 16O13C18O 

637 16O13C17O 

828 18O12C18O 

728 17O12C18O 

727 
17

O
12

C
17

O
 

838 18O13C18O 

738 
17

O
13

C
18

O
 

737 
17

O
 13

C
17

O
 

 

 

 

O3 

 

 

 

3 

666 16O16O16O 

668 16O16O18O 

686 16O18O16O 

667 16O16O17O 

676 16O17O16O 

 

 

 

 

 

N2O 

 

 

 

 

 

4 

446 14N14N16O 

447 14N14N17O 

448 14N14N18O 

456 14N15N16O 

546 15N14N16O 

458 14N14N18O 

548 15N14N18O 

556 15N15N16O 

 

 

 

 

CO 

 

 

 

 

5 

26 12C16O 

27 12C17O 

28 12C18O 

36 13C16O 

37 13C17O 

38 13C18O 

 

CH4 

 

6 

211 12CH4 

311 13CH4 

 

O2 

 

7 

66 16O16O 

67 16O17O 

68 16O18O 

 

NO 

 

8 

46 14N16O 

48 14N18O 

56 15N16O 

 

SO2 

 

9 

626 32S16O2 

646 34S16O2 

NO2 10 646 14N16O2 

NH3 11 411 14NH3 

511 15NH3 

PH3 12 131 31PH3 

  146 H14N16O 
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Molecule 
Molecule 

Code 

Isotope 

Code 
Formula 

HNO3 13 156 H15N16O 

 

OH 

 

14 

61 16OH 

62 16OD 

81 18OH 

HF 15 19 H19F 

 

HCl 

 

16 

15 H35Cl 

17 H37Cl 

HBr 17 11 H81Br 

19 H79Br 

HI 18 17 H127I 

 

ClO 

 

19 

56 35Cl16O 

76 37Cl16O 

 

 

 

OCS 

 

 

 

20 

622 16O12C32S 

623 16O12C33S 

624 16O12C34S 

632 16O13C32S 

634 16O13C34S 

822 18O12C32S 

 

H2CO 

 

21 

126 H2
12C16O 

128 H2
12C18O 

136 H2
13C16O 

 

C2H6 

 

22 

226 12C2H6 

236 12C13CH6 

CH3D 23 212 12CH3D 

312 13CH3D 

 

C2H2 

 

24 

221 12C2H2 

231 12C13CH2 

 

C2H4 

 

25 

211 12C2H4 

311 12C13CH4 

GeH4 26 411 74GeH4 

 

 

HCN 

 

 

27 

124 H12C14N 

125 H13C15N 

134 H13C14N 

224 D12C14N 

C3H8 28 221 12C3H8 

C2N2 29 224 12C2
14N2 

C4H2 30 211 12C4H2  

HC3N 31 124 H12C3
14N 

 

HOCl 

 

32 

165 H16O35Cl 

167 H16O37Cl 

N2 33 44 14N14N 

 

CH3Cl 

 

34 

215 12CH3
35Cl 

217 12CH3
37Cl 
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Molecule 
Molecule 

Code 

Isotope 

Code 
Formula 

H2O2 35 166 H2
16O16O 

 

H2S 

 

36 

121 H2
32S 

131 H2
33S 

141 H2
34S 

HCOOH 37 261 H12C16O16OH 

COF2 38 269 12C16O19F2 

SF6 39 29 32S19F6 

C3H4 40 341 12C3H6 

HO2 41 166 H16O2 

 

ClONO2 

 

42 

564 15Cl16O14N16O2 

764 17Cl16O14N16O2 

 

CH3Br 

 

43 

79 12CH3
79Br 

81 12CH3
81Br 

CH3OH 44 216 12CH3
16OH 

NO+ 45 46 14N16O+ 

HNC 46 142 H14N12C 

C6H6 47 266 12C6H6 

C2HD 48 122 12C2HD 

CF4 49 291 12C15F4 

CH3CN 50 234 12CH3
12C14N 

HDO 51 162 H16OD 

182 H18OD 

SO3 52 26 32S16O3 
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