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Summary 

One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of 

differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular 

interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination 

[3] and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have 

converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative 

to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, 

it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth 

patterns, or whether it is exceptional [1]. Species’ adherence to a common allometric relationship suggests 

conservation through phenotypic integration, while species’ deviations point towards the occurrence of shifts in 

genetic and/or developmental mechanisms. Here we investigate prefrontal cortex volumetric scaling across anthropoid 

primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of 

cortical organization. This result aligns with evidence for a genetic and developmental heterochronic shift in human 

prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and a shift in the direction 

of cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal 

enlargement is estimated to lie at the root of great apes (~19-15Mya), indicating that selection for changes in executive 

cognitive functions mediated by this cortical region characterized both great ape and human cortical organization.  

Results  

Phylogenetic analysis of covariance [9] reveals that a multi-grade isometric model (dividing humans, great apes and 

other primates) provides a significantly better statistical fit to prefrontal scaling than a one-grade allometric model 

(Figures 2-3, detailed results in SI). This applies to the comparison of prefrontal cortex with several other cortical 

areas that are functionally and neurobiologically linked to prefrontal cortex. Comparing cortical areas that are 

neurobiologically linked ensures that the measure of relative prefrontal size accounts for the hierarchical nature of 

neural information processing (see [10] and SI for more details). We consider only data sets of prefrontal cortex 

volumes in primates that have been collected based on cytoarchitectonic criteria and comprise information for more 

than 5 species [5, 11] (Figure 1; see SI for more details). Phylogenetic ancova was performed by generalizing the 

standard generalized least-squares procedure to including phylogenetic variance-covariance in combination with 

additional indicator variables that describe group membership (even when a group consists of a single species; see [9] 

and SI for a detailed description of this method). Because this implementation of phylogenetic ancova uses standard 

least-squares procedures only, it provides unbiased results irrespective of sample size (see SI for more details). 

Considering that results are significant, and that the observed power of a test is a simple function of the observed P-

value [12], it follows that the tests presented here have high observed power (see SI for more details).  

To elucidate when in evolutionary time episodes of enlargement in prefrontal cortex occurred, we further used three 

different evolutionary modelling approaches. These methods explore differences among groups directly from the data 

(i.e. without a priori group allocation). Results demonstrate that prefrontal cortex exhibits separate instances of 

exceptional expansion in the hominoid (~30-19Mya), hominid (~19-15Mya), human-chimpanzee (-8-6Mya), and 

human (~6-0Mya) ancestral lineages when compared to different brain structure scaling variables. Ancestral state and 



rate estimation results (Figures 2-3) visualize best-estimates of how prefrontal cortex has changed along individual 

lineages of the primate tree, and best-fit regime configurations highlight sets of lineages (‘regimes’) that indicate 

similar trait values for relative prefrontal cortex size in addition to where shifts between regimes occurred in 

phylogenetic space. These results demonstrate that exceptional prefrontal expansion relative to primary visual cortex 

is estimated to have occurred in the ancestral lineages of great apes and humans, expansion of prefrontal cortex relative 

to frontal motor areas is estimated to have occurred in the ancestral ape lineage, and prefrontal expansion relative to 

other heteromodal association areas is estimated to have occurred in the human lineage. The statistical effect size of 

these evolutionary models is high (√𝜂𝜙 ≫ 1,𝛽 √𝛾⁄ ≫ 2), rendering strong support for the occurrence of these 

evolutionary shifts in relative prefrontal enlargement (see more details in SI). Bootstrap analysis further supports this 

conclusion by demonstrating high support for the estimated trait shifts (Figures 2-3, SI Figure 1, see SI for more 

details). High effect size is also supported by the fact that the same result is obtained using four different methods 

(phylogenetic ancova, ancestral estimation, rate estimation, multi-regime OU model fitting) and five different model 

assumptions (see SI for more details).  

Discussion 

Whether or not human prefrontal cortex expansion is predictable from common rules for primate brain allometric 

scaling bears on the fundamental question of the extent to which human cortical organization can be accounted for 

solely by genetic and developmental patterns shared with other primates. Although many biological systems are 

primarily integrated (i.e. different elements of the system change in a coordinated manner), deviations from integration 

are common and are tied to genetic, developmental, and/or functional shifts in a species’ bauplan [e.g. heterochronies 

13]. These genetic and/or developmental shifts shape the direction of trait variation on a macroevolutionary scale [13] 

and are thus fundamental drivers of biological diversity. To understand if an event aligns with or deviates from 

integration, a standard approach has been to investigate allometric conservation of traits [14]. Species’ adherence to 

the allometric relationship hereby suggests conservation through phenotypic integration, while species’ deviations 

from the allometric relationship points towards a genetic or developmental shift.  

Our results provide strong support for the conclusion that great ape and human prefrontal expansion are evolutionary 

specializations of cortical organization that cannot be explained solely by allometric trends. These results align with 

studies demonstrating that human prefrontal cortex is relatively specialized compared to other primates. Human 

prefrontal neurons are characterized by a higher dendritic branch complexity and synaptic spine density compared to 

other heteromodal association regions and nonhuman primate prefrontal cortex [15], and regions of the human 

prefrontal cortex contain more neuropil space than in other great apes [16]. Such neuroanatomical differences may be 

linked to human-specific increased transcriptional complexity [17] and alterations in the regulation of gene expression 

[18]. These gene regulatory changes have been suggested to have arisen through heterochronic remodeling of the 

developmental patterns that underpin human prefrontal growth [19]. In general, across different biological systems, 

heterochrony [i.e. changes in the timing and/or rate of developmental patterns; 20] has been shown to underlie 

deviations from phenotypic integration by altering genetic, developmental, and/or functional effects and leading to 

changes in the direction of trait variation on a macroevolutionary scale [13]. Indeed, heterochrony has previously been 

suggested to be an important driver of volumetric reorganization in the mammalian brain [21]. In the case of human 

prefrontal cortex, developmental changes in mRNA expression have been characterized as comparatively prolonged, 

or neotenic [8], and shown to have evolved at an accelerated rate relative to chimpanzees, macaques, and human non-

cortical regions [7]. In particular, peak expression for synapse-associated genes is delayed to approximately 5 years 

after birth in humans, compared to a few months after birth in chimpanzees and macaques [22]. Furthermore, cortical 

myelination is completed at the age of sexual maturity for chimpanzees and macaques, while human axonal maturation 

extends well into the third decade of life [23]. Genetic and developmental studies thus provide evidence for a 

heterochronic shift in human prefrontal growth. Our results are consistent with these findings, suggesting that such 

neurodevelopmental changes are associated with volumetric reorganization on a macroevolutionary scale.  

In addition to exceptional prefrontal expansion in humans, we also demonstrate that great apes show a shift in 

prefrontal enlargement that deviates significantly from the expected allometric scaling pattern of cortical integration 

in other primates. This result is congruent with the general consensus from comparative psychology and primatology 

that the level of cognitive abilities in great apes (e.g. higher levels of self-control [24], and cultural traditions [25]) is 

distinct from that in other primates. The shift in the direction of evolutionary change in brain organization in great 



apes relative to other primates provides a possible springboard for future broad comparative genetic and developmental 

investigations into the mechanisms that shape these neurobiological changes over time.  

These results also align with previous suggestions that great ape and human brain expansion is primarily associated 

with enlargement of cortical association areas, whereas koniocortex scale more closely with body size [6, 26]. Previous 

assertions that “the size of human frontal lobes, and of specific frontal regions, is as expected relative to the size of 

other brain structures” [27] do not have support according to our analyses. To further underline this issue, Figure 4 

plots size measurements of prefrontal cortex relative to other brain structures for the Brodmann data set. The isometric 

relationship of prefrontal cortex to primary visual cortex and frontal motor areas is evident in the proportional size 

changes in the non-great ape sample. In the human brain, however, prefrontal cortex expands exponentially, while 

striate cortex and frontal motor areas remain in line.  

Previous conclusions that human prefrontal cortex size or neuron numbers are only as large as predicted for a scaled-

up monkey brain [27, 28] can be explained by three fundamental factors. First, previous studies have not employed 

statistical procedures to check for significant differences in the intercept among subgroups before interpreting 

allometry [9]. Second, previous allometric studies have used data sets that are not adequate for the interpretation of 

comparative differences in prefrontal volumes or neuron numbers. Although cortical areas are defined by functional, 

connectional, and cytoarchitectonic criteria [5], not by gross-anatomical or external morphological characteristics 

[29], previous allometric studies have used data sets that define prefrontal cortex as all cortex anterior to corpus 

callosum [27, 28], likely because it is a proxy that is simple and easily applied. However, human prefrontal cortex 

extends further along the caudal axis of the frontal pole than in chimpanzees [6], making this delineation result in a 

disproportionate underestimation of prefrontal cortex in humans relative to that in non-human primates, thus rendering 

the measure inaccurate for the purposes of volumetric comparison across species. Third, the investigation of putative 

expansion of a cortical area is commonly evaluated relative to the size of the rest of the cerebral cortex or the rest of 

the brain [27]. This approach, however, does not account for the functional and anatomical underpinnings of neural 

information processing [10]. Information ascends initially through primary sensory areas, after which it is integrated 

in supplementary sensory and temporo-parietal association areas to form mental representations [30]. Prefrontal cortex 

subsequently exerts control over the manipulation of, and changes in these mental representations [4]. Here we show 

that an evaluation of prefrontal cortex size that accounts for this hierarchical nature of information processing 

unequivocally indicates the exceptional expansion of prefrontal cortex in great apes and humans (SI Table 2, Figures 

2-3). Nonetheless, when using the phylogenetic statistics and evolutionary modeling methods employed in the current 

study, even the more coarse comparison of prefrontal size to the size of the rest of the cortex (used in previous work 

to argue that human prefrontal cortex size is indeed as expected for a scaled up monkey brain [27, 28]) yields a 

marginally significant result (P=0.06) for gray matter and a significant result for white matter (P<0.05) for the Smaers 

data set (which by design provides an underestimate of human prefrontal expansion, see details in SI), and a strongly 

significant result for the Brodmann data set (P<0.01).  

The functional implications of exceptional human prefrontal expansion has previously been interpreted as a potential 

neural basis for human behavioral and cognitive distinctiveness [31]. One possibility is that extraordinary prefrontal 

enlargement in great apes and humans is due to the evolution of novel cortical areas. Although an impressive body of 

work suggests that the basic prefrontal architectonic plan is largely homologous in Old World monkeys and humans 

[32], some evidence suggests that the human prefrontal cortex may comprise novel areas. Brodmann [5] found no 

nonhuman homologues for areas 45,46, and 47 (but see work by Petrides & Pandya [33]), and recent research indicates 

the possibility of major changes in neurogenesis and neural migration that may underpin changes in the distribution 

of cell types in human prefrontal cortex [34, 35]. More research is needed to provide a definitive answer in this regard. 

It is, however, a distinct possibility that, rather than being characteristic of human prefrontal cortex evolution, the 

addition of novel cortical areas may be more characteristic of early primate evolution. The dorsolateral prefrontal 

cortex, for example, together with a suite of other cortical (superior temporal sulcus, inferior temporal, posterior 

parietal, ventral and dorsal premotor) and thalamic (dorsal pulvinar) areas have been shown to be functionally and 

cytoarchitectonically distinct in primates compared to other mammals [36].  

Another, though not mutually exclusive, possibility is that new specializations of the great ape and human prefrontal 

cortex comprise a shift in their network organization with other regions by means of connectional invasion. This 

evolutionary-developmental process occurs when hypertrophied areas invade targets they do not typically innervate 

in other species, and/or to increase target innervation relative to the ancestral condition [37]. Such new connections 

may displace others causing the hypertrophied areas to exert more influence over information processing. This 



possibility refocuses the characterization of human brain uniqueness towards a distributed neural network in which 

the prefrontal cortex plays a dominant role. A likely candidate for such a distributed network is the prefronto-cerebellar 

system. Prefrontal projecting cerebellar lobules have been shown to demonstrate a hominoid/hominid grade shift [38] 

similar to that observed in the prefrontal cortex, to be the target of increased prefrontal input [39], to have co-evolved 

with the prefrontal cortex in great ape and human lineages [40], and to underlie a range of behaviors often associated 

with human behavioral distinctiveness (e.g., language [41] and executive function [42]). Other distributed networks 

that may be of particular interest in this context are the prefronto-parietal [43] and -temporal [44] pathways. 

Considering the exceptional enlargement of prefrontal cortex in great apes and humans, this would suggest that cortical 

organization in humans and great apes is evolutionary specialized to favor prefrontal cortex function within distributed 

networks.  

We conclude that both human and great ape brain evolution is characterized by non-allometrically derived changes in 

cortical organization comprising the exceptional expansion of prefrontal cortex. This expansion should be 

contextualized as part of the elaboration of a large scale network that involves prefrontal cortex, temporo-parietal 

cortex [6, 10], and cerebellar hemispheres [38]. Considering that this network is unique to primates and thus thought 

to have evolved early in primate evolution [36], great ape and human brains can be considered as extreme (non-

allometrically derived) versions of a primate template of cortical organization. The expansion of human prefrontal 

cortex significantly exceeds the enlargement in other heteromodal association areas suggesting that human evolution 

has been characterized by selection for changes in executive functions meditated by this cortical region. The 

congruence between evidence for heterochronic remodeling of human prefrontal growth with the macroevolutionary 

expansion of human prefrontal cortex further suggests that the same developmental mechanisms that have been shown 

to be fundamental drivers of diversity across different biological systems in mammals (e.g. heterochrony) [13] shape 

primate neurobiological diversity in a similar way. 

 

 

  



Materials and methods 

Data 

We consider only the available data sets of prefrontal cortex volumes in primates that have been collected based on 

cytoarchitectonic criteria and comprise information for more than 5 species [5, 11]. These data sets differ in the breadth 

of the comparative sample (19 versus 13 species, respectively), the nature of the measurement (mm3 versus mm2), and 

the cytoarchitectonic criteria that were employed (volumetric bootstrapping along the frontal pole [11] relative to the 

cytoarchitectonic border between areas 3 and 4  versus granular and agranular cortex). These differences are such that 

the Brodmann data provides a more accurate delineation of prefrontal cortex volume but a more modest comparative 

sample size, whereas the Smaers data provides a larger comparative sample but a proxy for prefrontal cortex volume 

that underestimates any putative prefrontal expansion in great apes and humans (see SI for more details). 

Analysis 

Phylogenetic ancova was used to test for differences in intercepts and slopes among subgroups (humans versus great 

apes versus other primates). Such formal tests are required to evaluate whether slopes and intercepts are homogenous 

in all subgroups of the sample before interpreting allometry. We used an implementation of phylogenetic ancova that 

uses standard least-squares procedures only [9], thus ensuring that regression parameters are correctly calculated 

irrespective of sample size. This method further uses the standard approach of degrees of freedom to penalize for 

model parameterization, hereby adequately guarding against overfitting (see SI for more details and additional tests 

that exemplify this feature).  

Best-fit evolutionary scenarios were obtained with least-squares multi-regime Ornstein-Uhlenbeck modelling 

procedures that ensure uniqueness of parameter estimation and adequately guard against overfitting [45, 46]. When 

data indicate a high effect size, this approach has been shown to provide a high power even for samples as low as 10 

[47]. All analyses presented here indeed show high effect size (see Figures 2-3, and SI for detailed information). 

Ancestral estimates and branch-specific rates were obtained using two different multi-rate models of evolution [48, 

49], both of which yielded equivalent results (see SI for more details).  

 

 

 

 

  



Figure 1 

Lateral (a), dorsal (b), and medial (c) view of the human brain illustrating the regions under consideration. Red 

illustrates the primary visual cortex, yellow the frontal motor areas, and blue the prefrontal cortex. The green area 

depicts a margin of uncertainty in the location of the cytoarchitectonic border between frontal motor areas and 

prefrontal cortex when using the prefrontal delineation approach proposed by Smaers et al [11]. This approach 

considers a series of cumulative volumes along the frontal pole as a proxy for prefrontal cortex volume. This 

approach allows for the collection of a valid proxy for prefrontal cortex volume in a wide sample of species, but 

results in an underestimation of putative prefrontal expansion in great apes and humans (see SI for more details). 

The Brodmann data provides a more accurate measure of prefrontal cortex size, but comprises a more limited 

comparative sample. Figure adjusted from Foville [50].  

 

Figure 2 

Phylogenetic regressions of log prefrontal cortex size against log size of other cortical areas. Prefrontal data from 

Smaers et al. [11]. Slopes, confidence intervals (dashed line), and prediction intervals (dotted line) [9] are depicted 

based on the non-great ape sample. Data points with a white background represent human values, those with a gray 

background great ape values. F and P values indicate the significance of a phylogenetic ancova testing for intercept 

differences between humans and other primates (See also Smaers & Rohlf [9], SI for more information, SI Table 2 

for more detailed results). Ancestral state and rate estimation plots visualize lineage-specific phenotypic change 

across time in an ancestral phenogram. Branches are colored according to the extent to which their rate of evolution 

is larger than expected based on a neutral model of evolution (orange = 2-3 times larger; red = more than 3 times 

larger). Best-fit regime configurations highlight branches with a similar trait value as estimated by a least-squares 

lasso procedure using a phylogenetic BIC criterion [45]. Colors differentiate between significantly different regimes 

(‘regime’ is here defined as a cluster of branches with a similar trait value). Bootstrap support is indicated at the 

ancestral branch of each regime. Effect size is indicated using different meaures. Ho & Ané [46] suggest 𝛽 √𝛾⁄ > 2 

as a valid indicator of high effect size, whereas Cressler et al. [47] propose √𝜂𝜙 ≫ 1. According to every proposed 

measure, analyses presented here demonstrate high effect size, and thus high observed power. See SI for more 

details.  

 

Figure 3 

As in Figure 2, data from Brodmann [5].  

 

Figure 4 

Plot of prefrontal size and the size of other brain structures. Species are rank ordered according to the size of the first 

variable in the comparison (highlighted in black). Data from Brodmann [5]. 
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