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Graphical abstract 

 

 

 

 

Highlights 

 Water washing of air pollution control residues removes 23% of the mass 

 Most Cl and significant proportions of Na, K and Ca are removed  

 Al, Si, Mg, Fe and potential pollutants are concentrated  

 Pb is mainly in glass, with some PbSO4, and small amounts of PbO and PbCl2 

 Pb-glass may partly dissolve and convert to PbO, or leach, in water washing 

 

Abstract 

Changes in elemental and mineralogical composition, and lead speciation, of air 

pollution control residue (APCR) from municipal solid waste incineration, due to treatment 

by water washing, were investigated in this work and are reported in the context of a 

review of the literature. Water washing was shown to substantially modify the nature of 

APCR by: 1) removing 23% dry mass soluble salts to disagglomerate particles and 

significantly reduce concentrations of the associated major elements, and increase 

concentrations of insoluble matrix elements and potential pollutants; and 2) respeciating 

elements to form new phases. X-ray absorption near edge spectroscopy (XANES) 

showed that the 500 mg/kg of Pb in raw and washed APCR were comprised mainly of 

Pb-glass, with some PbSO4, and small amounts of PbO and PbCl2.  Semi-quantitative 

linear combination fitting suggests that the glass in the APCR may be unstable and 

release Pb under the alkaline pH of water washing, to reprecipitate as PbO. Chemical 
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analysis suggests that some Pb may be removed by washing. Scientific understanding of 

the composition of raw and washed APCR, and particularly the speciation of potentially 

toxic metals, such as Zn and Pb, can help in developing effective element recovery and 

residue treatment, utilization or disposal strategies.  

 

Keywords:  municipal waste incinerator ash, energy-from-waste, EfW, waste-to-energy, 

WtE, leaching, extraction 

 

1. Introduction 

The generation of energy from waste (EfW) in highly engineered and controlled 

facilities is an effective way to recover value from municipal solid waste (MSW). Air 

pollution control residues (APCR) are generated in the flue gas cleaning process and 

include fly ash and other solid material captured before the gases are released into the 

atmosphere. Although they represent only 1.5-4% of the total mass of MSW combusted 

in modern facilities, they contain a large proportion of soluble salts, high concentrations 

of heavy metals, and small but measurable concentrations of toxic organic compounds 

(e.g., dioxin and furans) [1-5]. They are therefore considered as hazardous waste under 

European Waste Catalogue code 19 01 07* [6], and their appropriate management is 

necessary to protect the environment and human health. One of the easiest treatments 

for APCR is water washing to remove water-soluble phases, which has been investigated 

as a pre-treatment for other processes such as stabilization, thermal treatment or co-

processing, at laboratory, pilot- and full-scale.   

The authors have conducted previous work to gain a better understanding of the 

composition, mineralogy and nature of the host phases responsible for the leaching 

behaviour of potentially dangerous elements in APCR from UK EfW facilities [5]. The main 

goal of the work presented here was to investigate the effect of water washing on the 

particle size, elemental and mineralogical composition of APCR, with a focus on lead 

speciation. Scientific understanding of the composition of raw and washed APCR, and 

particularly the speciation of potentially toxic metals, such as Zn and Pb, can help in 

developing effective element recovery, and residue treatment, utilization or disposal 

strategies. 
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2. Literature Review 

Water washing of MSW APCR has been previously reviewed [7-10] and 

investigated at laboratory-scale (Table 1), by others, mainly for removal of soluble salts, 

such as NaCl, KCl and CaOHCl, that have the potential to cause salinization of the 

environment, and can cause expansion and corrosion problems in cement-based 

products.  As noted above, APCR includes fly ash, “the particulate matter carried over 

from the combustion chamber and removed from the flue gas stream prior to addition of 

any type of sorbent materials” [1], and other solid reaction products and excess reagents 

(e.g., salts, lime or bicarbonate, carbon, heavy metals, dioxins and furans) captured from 

acid gas treatment units. Investigations conducted before the implementation of 

legislation to prevent emission of acid gases often studied fly ash on its own, whereas 

more recent work tends to be for more complex APCR that include other APCR solids. 

Table 1 and the supplementary material (S1 and S2) differentiate experimental results 

reported for fly ash from those for more complex APCR, because these residues may 

have different characteristics and washing behaviour. For example, APCR from acid gas 

scrubbing with lime contain more Ca, Cl and SO4, and are more alkaline than fly ash 

alone.   

Most previous work conducted with a water leachant at ambient temperature 

(Table 1) focused on optimization of contact time (from 5 min to 24 hours), the number of 

extraction steps (up to 4), and liquid-to-solid (L/S) ratio (from 0.5 to 100 L/kg). Short 

contact times at low L/S, with few steps, were preferred for better commercial viability.  

The various conditions investigated resulted in a final leachate pH of 9.5 to 12.6, 

removal of 10-54% of the total APCR mass in the wash water, and concentration of low 

solubility metal salts in the solid residue. Columns 2 and 10 of Table 2 summarise the 

data from the sources in Table 1 (for comparison with our own work). The water washing 

experiments removed significant proportions of Cl- (30-100%), SO4
2- (0-94%), Na (28-

89%), K (38-100%), Ca (8.0-63%), Mg (0-12%), Cr (1.3-50%) and Pb (0-19%).  

The mineral phases previously identified in washed APCR (in some cases, only fly 

ash, as identified in Table 1) by instrumental methods are summarised in rows 1-11 of 

Table 3, and can be compared with a similar table for raw APCR in previous work [5]. 
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While soluble salts (e.g., NaCl, KCl and CaClOH) generally disappeared after water 

washing, they sometimes remain if washing was incomplete [19,20,25]. New crystalline 

phases (e.g., gypsum, portlandite, and ettringite) were detected in the washed residues. 

Water washing of APCR is already conducted at full scale, e.g., for recovery of 

gypsum in the UK by Future Industrial Services Ltd and in Denmark by Dansk 

Restprodukthåndtering A.m.b.a., for recovery of sodium carbonate in the Solvair process, 

before further treatment of APCR by cement solidification in Switzerland, chemical 

stabilization in Denmark [9], and before co-processing of the washed residue at Liu Li He 

cement plant in China. 

 

3. Materials and Methods 

 

3.1. Air Pollution Control Residue 

A 10 kg composite sample of APCR was obtained at a single sampling time by the 

operator of the full-scale facility that provided samples A3, A8 and A10 used in previous 

work [5]. Representative subsamples of the required size for the analyses were obtained 

by coning and quartering.  

 

3.2. Washed Air Pollution Control Residue 

A washed APCR sample (henceforth denoted as w-APCR) was prepared by 

washing a subsample of APCR in deionised water at a liquid-to-solid ratio of 10 L/kg 

without pH adjustment (0.5 L of water with 50 g of APCR, with a final pH of 11.8). The 

washing conditions were based on preliminary testing, which established that as much 

chloride was removed after 30 minutes water washing, as after 24h, which agrees with 

similar results from [29].  

 

3.3. Air pollution control residue characterisation  

The particle size distributions of APCR and w-APCR were measured by Malvern 

Mastersizer 2000 laser diffraction over the range from 0.02 µm to 2000 µm.  Subsamples 

of the APCR and w-APCR for chemical analysis were micronised using an agate ball mill.   
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Total element compositions of the APCR and w-APCR were determined by three 

methods:  

1) X-ray fluorescence (XRF) spectrometry using the Spectro X-LAB Pro 2000, which is a 

reliable analysis for bulk elements, but less reliable for trace elements; 

2) Inductively coupled plasma optical emission spectroscopy (ICP-OES) for bulk elements 

and ICP-mass spectroscopy (MS) for trace elements, following: 

a) Conventional “total” acid digestion with mixtures of HNO3, H2O2, HClO4, HF and HCl, 

which is used for complete analysis of bulk and trace elements; and 

b) Aqua-regia digestion with 1:3 HNO3:HCl (mol/mol), which is often used to estimate 

the ‘‘environmentally available’’ concentrations of elements in a solid, but does not 

release elements trapped in silicates and aluminosilicates.  

 X-ray powder diffraction (XRD) analysis was used to characterize the crystalline 

phases present in the APCR and w-APCR. Each sample was side-loaded against a 

ground-glass surface into a glass-backed aluminium-framed sample holder. Diffraction 

patterns were measured in Bragg–Brentano reflection geometry using a Bruker D8 

Advance instrument. The diffractometer was equipped with a Cu anode X-ray tube (run 

at 40 kV, 250 mA) and an incident beam monochromator that produces a single CuKa1 

line, leading to very sharp diffraction maxima. All patterns were scanned with step length 

0.02° and scan speed 8°/min. Phase identification was made by matching a minimum of 

3 diffraction lines to relevant diffraction patterns from the International Centre for 

Diffraction Data (ICDD) database using the PANanalytical proprietary software (‘‘X’Pert 

HighScore Plus’’).  

Simultaneous thermal analysis (STA) was used to investigate mass changes, and 

heat absorption or generation in the APCR and w-APCR in response to temperature, 

which are diagnostic for the phase composition. STA was performed using a NETZSCH 

STA 449 C instrument. Runs were conducted using about 20 mg of sample in alumina 

pans with a nitrogen purge gas flow rate of 100 mL/min, equilibration at 40°C for 10 min, 

followed by a heating rate of 5°C/min from 40°C to 200°C, and then a heating rate of 

10°C/min up to 1000°C. An 85 μL alumina crucible and an identical empty reference 

crucible were used for this analysis.  
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The micromorphologies and compositions of the APCR and w-APCR particles, and 

residues remaining after their acid and aqua regia digestions, were investigated by 

scanning electron microscopy (SEM) at different magnifications on a JEOL JSM-6480LV 

high-performance, variable pressure analytical scanning electron microscope with 

secondary electron imaging (SEI) and backscattered electron imaging (BEI) detectors, 

and energy dispersive x-ray spectroscopy (EDS) with an accelerating voltage of 10 keV. 

Individual APCR and w-APCR particles, and compacted and polished samples were 

mounted rigidly on a specimen stub and coated with an ultrathin layer of carbon (graphite). 

More than a hundred spot analyses were performed by EDS. 

Use of high resolution X-ray absorption near-edge structure spectroscopy 

(XANES) can give important information about element speciation for amorphous as well 

as crystalline materials, even if the element of interest is present at relatively low 

concentration. Lead speciation in the raw and washed APCR was investigated by XANES 

at the B18 beam line at the Diamond Light Source (UK). Each sample was ground using 

an agate mortar and pestle, compressed into a 13 mm pellet and sealed with Kapton tape. 

Pb-L III edge XANES spectra were measured with a double crystal Si (111) 

monochromator. The monochromators were calibrated using a Pb foil. The reference 

materials selected for the experiments were: PbCl2, PbO, PbCO3, 2PbCO3·Pb(OH)2, PbS, 

PbSO4, PbSiO3, Pb-glass (Corning Glass B, NMNH 117218-1 from the Smithsonian 

National Museum of Natural History; 0.61% PbO). The reference material spectra were 

recorded in transmission mode using an ionization chamber. The sample spectra and 

Corning glass spectra were recorded in fluorescence mode using a 36-element Ge 

fluorescence detector. All spectra were measured at room temperature, and several 

scans (5 for transmission and 10 for fluorescence) were averaged to improve the signal-

to-noise ratio. The XANES spectral analysis was performed using Athena [30]. Linear 

combination fitting (LCF) of the spectra for Pb in APCR and w-APCR with those of the 

reference materials was performed in derivative space, to identify Pb species that could 

have been present in the investigated samples. Extended X-ray absorption fine structure 

spectroscopy was not performed, because of low Pb concentrations, and because 

preliminary analyses indicated poor crystallinity of Pb species. 
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4. Results and discussion 

 

3.1. Particle size distribution 

The particle size distribution of the APCR became multimodal after washing 

(Figure 1), with an increased proportion of particles with smaller diameters. The 

percentage of particles smaller than 50 μm was 31% for the APCR and increased to 42% 

for the w-APCR.  It appears that APCR particles were dissolved or disagglomerated by 

dissolution of water soluble phases as a result of washing. 

 

3.2. Elemental composition 

The element concentrations determined for the APCR and w-APCR by XRF 

analysis (39 elements), and by ICP-MS and ICP-OES analysis of extracts from total and 

aqua-regia digestion (49 elements) are given in Table 2 (columns 3-8), in comparison 

with the ranges determined in APCR in the literature on washing (column 2). Major 

elements with >1% dry mass in the raw APCR were Ca, Si, Al, Cl, Na, K, and S, which is 

consistent with the literature and our own previous observations and discussion (Bogush 

et al., 2015). Column 9 of Table 2 shows that removal of 23% dry mass of soluble salts 

by washing, including Cl (94% removal), Br (87%), alkali metals (K 65-72%; Na 54%) and 

alkaline earth metals (Ca 25-35%), increased proportions of the less soluble elements, 

yielding Ca, Si, Al, Mg, Fe, and S as the major elements in the w-APCR.  Proportions of 

potential pollutants (e.g., Zn, Pb, Cr, Cu, Sb) also increased in the w-APCR. Although the 

3-12% (15-60 mg/kg) decrease in Pb in the w-APCR is conceivably in the range of 

analytical error, other authors have also mentioned that a measurable proportion of Pb 

can be leached from APCR by water (column 10 of Table 2; [4,19,24,26]). 

Residues remaining after conventional “total” acid digestion corresponded to 7.8% 

of the mass of the APCR and 9.4% of the mass of the w-APCR, showing that acid 

digestion was not able to destroy the APCR matrix completely, or that new phases may 

have formed during the digestion procedure, or both. SEM-EDS analysis showed that 

these residues were composed of very fine irregular amorphous phases (<5μm) and 

consisted mostly of Ca, Sn, P, Ti, S, and Cl with impurities of Al, Fe, Cr and Sb. 

Comparison of element concentrations measured in the APCR and w-APCR acid digests 
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with results from XRF (Table 2) indicated that approximately 100% of Sn, 95% of Sb, 70% 

of Cr, 65% of Ti and 10-15% of Fe and P remained in the insoluble residue. 70% of Th 

and 98% of U were also not recovered by the acid digestion, but the concentrations of 

these elements were low.   

Residues remaining after aqua regia digestion corresponded to ~29% of the 

masses of both the APCR and w-APCR; given that 23% of the APCR was removed in 

washing, this indicates variability in the analysis or composition of the original samples, 

or both. SEM showed both of these residues to contain aggregates, spherical particles, 

irregular, glassy, and fine phases. Aluminosilicates, including glasses of variable 

composition, calcium silicate, barium sulphate (probably barite), and iron and titanium 

oxides, were identified in both residues by EDS. Comparison of element concentrations 

in the APCR and w-APCR aqua regia digests with XRF results indicate that large 

proportions of Cr, Ti, Th, U and some Ca, Fe and P remained in the insoluble residues 

from aqua regia digestion, as was the case for the acid digestions. This is consistent with 

the minerals identified in the residues, and suggests that the environmental availability of 

these elements is likely to be low. In addition, about 30% of Mg was not recovered by 

aqua regia digestion and was observed in the silicate and aluminosilicates phases of the 

residues by EDS. However, it was found that Sn and Sb were completely recovered by 

aqua regia digestion, suggesting that these elements may be environmentally available 

(though not recovered by conventional “total” acid digestion).  Other potential pollutants, 

As, Cd, Co, Cu, Mo, Ni, Pb and Zn were found to be fully recoverable by both aqua regia 

digestion and conventional acid digestion.  

Element concentrations in the APCR and w-APCR were compared with the 

average upper crustal abundances of these elements [27]; final column of Table 2). The 

concentrations of potential pollutants, especially Zn and Pb, and also As, Cd, Co, Cr, Cu, 

Mo, Ni, Sb, Sn, U were found to be enriched in the APCR and w-APCR. Also, the contents 

of Bi and the precious metals Ag, Pd and Au in the APCR and w-APCR greatly exceed 

their average crustal abundances. Concentrations of rare earth elements, which are less 

volatile, were quite low in comparison with their average crustal abundance (see also [5])., 

2015). 
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3.3. X-ray diffraction 

The crystalline phases identified in the APCR and w-APCR by XRD are shown in 

rows 12 and 13 of Table 3. There was some amorphous material in both residues, as 

indicated by the background around 30-40 of 2θ and a lack of sharp peaks. The main 

mineral compositions of both the APCR and w-APCR generally agree with other results 

(see also review in Table 3 and Figure 1 in [5]).  

It is apparent that the soluble salts, including KCl, NaCl, and CaClOH, dissolved in 

washing, while gypsum, portlandite, gibbsite and ettringite were formed as secondary 

phases in the w-APCR.  

 

3.4. Thermal analysis 

The thermogravimetry (TG), differential thermal gravimetry (DTG), and differential 

scanning calorimetry (DSC) curves of the APCR and w-APCR are given in Figure 2. Main 

mass losses of 21 % for APCR and 24 % for w-APCR may be observed in the interval 

from 30 to 1000°C.  

The first DTG peak at around 100°C, with associated mass losses of 5.8 % for the 

APCR and 2.2 % for the w-APCR, can be observed to be an endothermic process by 

DSC. It is mainly due to the loss of hygroscopic moisture and dehydration of some mineral 

phases (e.g., gypsum, ettringite, etc.).  

The DTG peak for APCR at around 470°C corresponds to decomposition of Ca(OH)2, 

and that at 500°C, with a mass loss of 0.4%, is due to decomposition of CaOHCl [5]. 

Neither peak was observed for the w-APCR, presumably due to dissolution and 

amorphisation of these phases in processing.  

Significant mass losses, associated with another endothermic DSC peak, were 

observed for both the APCR (12%) and w-APCR (15%) in the temperature range from 

600 to 740°C, consistent with the decomposition of CaCO3. This peak was observed at a 

lower temperature for the APCR, probably due to the high content of Cl.  

The APCR shows a broad exothermic peak around 1000°C associated with a mass 

loss of 5.5%; it is postulated that this may be attributable to the melting and evaporation 

of soluble complex Na, K and Ca-containing chloride salts as well as the breakdown of 

ACCEPTED M
ANUSCRIP

T



11 
 

the sulphate phases [5,31,32]; this peak and the associated mass loss are absent for the 

w-APCR sample. 

 

3.5. Microstructure and local chemical composition  

The local micromorphologies and compositions of the investigated samples 

determined by SEM with EDS are quite complex. The APCR and w-APCR both mainly 

contain aggregates, spherical particles, glass, gel and fine phases with a wide range of 

sizes. The main difference between these two samples is that the APCR contains highly 

soluble phases such as KCl, NaCl and CaClOH that were not detected in the w-APCR 

(Fig. 3). 

SEM/EDS analysis indicated the following composition of the observed APCR phases: 

potassium chloride (probably sylvite), calcium chloride hydroxide , barium sulphate 

(probably barite), silicon oxide, different aluminosilicate glasses, calcium silicates, 

aluminium foil, iron and titanium oxides, and Ce, La, Nd, Th phosphates (probably 

monazite). Identification of the latter may seem surprising, in view of the low bulk 

concentrations of the rare earth elements in the APCR, but these elements were 

concentrated to more than 60% in some grains. Similarly, phases enriched by potential 

pollutants (Zn, Pb and Ni) were found in the APCR, e.g., a round particle of Ni oxide with 

impurities of Co (Fig. 4, point 1), with formation of Ni sulphate on its surface (Fig. 4, point 

2). These particles were surrounded by gel phases consisting of calcium chloride 

hydroxide (Fig. 4, point 3), which was previously shown to incorporate Zn, Pb, and Cu, 

and may therefore play a significant role in leaching (Bogush et al., 2015). An irregular 

particle (about 50 μm) appeared to consist mainly of calcium sulphate (Fig. 5, point 1) 

and lead chloride hydroxide (Fig. 5, point 2).  

Cenospheres of different sizes (50-150 μm) were also found in the APCR. The 

cenosphere walls mainly consist of Mg-Ca-Na-K-aluminosilicate glasses (Fig. 6, point 1). 

A mixture of small particles of SiO2 and Ca-aluminosilicate glasses and gel phases of 

calcium chloride hydroxide was found inside the cenosphere (Fig. 6, point 2). Spherical 

particles of inhomogeneous composition with a size of about 10-15 μm were also 

observed in the APCR (Fig. 6, point 3). A bright area observed inside the sphere using 

BEI was identified by EDS as Ca-Zn-silicate with impurities of Al, K and P. A darker area 
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in this sphere was mainly Ca-Zn-silicate with impurities of Al, Cl, S and P and Zn 

concentration (7-8 mass %) lower than in the brighter area (15-20 mass %). The surface 

of the spherical particle was covered by flakes of calcium sulphate (Fig. 6, point 4). 

SEM/EDS analysis of the w-APCR found the composition to be similar to that of 

the APCR, except that chloride-containing phases had substantially dissolved, and 

metallic Ag could also be observed. Some phases enriched by potential pollutants (Zn 

and Pb) were found in the w-APCR. For example, there are many irregular particles of K-

Ca-Na-aluminosilicate glass (e.g., Fig. 7, point 1) with rims of Ca-Zn-aluminosilicate and 

Ca-Zn-silicate (e.g., Fig. 7, points 1 and 2, respectively). The same particles were 

identified in the raw APCR but they are usually covered by fine water-soluble phases 

containing (presumably KCl, NaCl and CaClOH). Also, Ca-Fe-Zn-aluminate, with a Zn 

concentration of up to 11%, was identified in association with irregular aluminium oxide 

particles in the w-APCR (Fig. 8).   

 

3.6. Pb Speciation by X-Ray absorption near edge spectroscopy  

Figure 9 shows the Pb-LIII edge XANES spectra determined for the APCR, w-APCR 

and relevant reference materials. The Pb-LIII edge XANES spectrum of the w-APCR 

shows small differences from the APCR, which suggests that Pb speciation is similar, but 

altered by water-washing of the APCR. 

The results of linear combination fitting of the spectra for Pb in the APCR and w-APCR 

with the spectra for the reference compounds are presented in Table 4. Pb chloride 

hydroxide, which was observed by SEM/EDS in the APCR, could not be included in fitting, 

as a reference sample was not analysed. However, the excellent fit of the reference 

materials included in Table 4, demonstrated by Figure 10, suggests that it (or other Pb 

compounds not examined by XANES) can only be a very minor component.  

Thus, Pb in both the APCR and w-APCR appears to be speciated mainly as Pb-glass, 

with some PbSO4, and small amounts of PbO and PbCl2.  The component proportions 

found by linear combination fitting of the XANES spectra must be considered to be semi-

quantitative, but the difference in proportions of the reference materials in the best fit 

suggest that the highly impure and variable glass in the APCR may be unstable, such 

that Pb is released under the alkaline pH of the washing, to reprecipitate as PbO.  
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Speciation of Zn in APCR has been investigated in detail in previous work [33]. 

  

5. Conclusions 

Raw APCR is a complex material, chemically comprised mainly of Ca, Si, Al, and 

S.  These elements are found in calcite, quartz, melilite and glass, which remain after 

water washing, as well as anhydrite and gypsum, which are transformed to gypsum, 

portlandite and ettringite by washing.  

Percent levels of Na, K and Cl in raw APCR, found in halite, sylvite and calcium 

chloride hydroxide, as well as Ca, are substantially removed by washing. Most other 

elements, including Al, Si, Mg, Fe and potential pollutants (e.g., Zn, As, Cd, Co, Cr, Cu, 

Mo, Sn, U) with complex speciation, are concentrated in the solids by washing, due to 

reduction of the overall mass by dissolution of the soluble salts.  

XANES showed that the 500 mg/kg of Pb in the raw and washed APCR were 

comprised mainly of Pb-glass, with some PbSO4, and small amounts of PbO and PbCl2.  

The analysis is only semi-quantitative, but suggests that the highly impure and variable 

glass in the APCR may be unstable, such that Pb is released under the alkaline pH of the 

washing, to reprecipitate as PbO.  

Precious metals (e.g., Ag, Pd and Au) are enriched in both raw and washed APCR; 

though concentrations are not comparable to ores, their presence suggests the potential 

for their recovery from separated waste streams (e.g., electronics) prior to energy 

recovery, or the possibility of co-extraction with more aggressive APCR processing. Rare 

earth elements do not accumulate in the residues.  
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Figure Captions 

 

Fig. 1. Differential and cumulative particle size distributions for the raw (APCR) and 

washed (w-APCR) air pollution control residue. 

Fig. 2. Thermogravimetric, differential thermogravimetric, and differential scanning 

calorimetric data for raw (APCR) and washed (w-APCR) air pollution control residue. 

Fig. 3. Scanning electron microscopy images of raw (APCR; a and b) and washed (w-

APCR; c and d) air pollution control residue with energy dispersive x-ray spectroscopy 

analysis. 

Fig. 4. Scanning electron microscopy images with backscattered electron imaging and 

energy dispersive x-ray spectroscopy analysis of the polished raw air pollution control 

residue: (1) Core of the particle with spectrum; (2) Surface area with spectrum; (3) Gel 

phases. 

Fig. 5. Scanning electron microscopy image with backscattered electron imaging and 

energy dispersive x-ray spectroscopy analysis of an unshaped particle from the polished 

raw air pollution control residues showing (1) Ca sulphate; (2) Pb chloride hydroxide. 

Fig. 6. Scanning electron microscopy images with backscattered electron imaging and 

energy dispersive x-ray spectroscopy analysis of the polished raw air pollution control 

residues: (1) Cenosphere shell; (2) Material inside the cenosphere; (3) Spherical particle 

with EDS spectrum; (4) Flakes on the surface. 

Fig. 7. Scanning electron microscopy images with backscattered electron imaging and 

energy dispersive x-ray spectroscopy analysis of the polished water-washed air pollution 

control residue: (1) Irregular particle; (2) and (3) particle rim. 

Fig. 8. Scanning electron microscopy images with backscattered electron imaging and 

energy dispersive x-ray spectroscopy analysis of the polished water-washed air pollution 

control residue: (1) Irregular particle; (2) particle edge. 

Fig. 9.  Pb LIII-edge X-ray absorption near edge spectra for APCR, w-APCR, and 

reference materials.  

Fig. 10.  Derivative Pb LIII-edge X-ray absorption near edge spectra for a) APCR, and b) 

w-APCR, together with relevant reference materials, best fit and residual obtained by 

linear component fitting.
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Table 1.  
Parameters investigated in previous investigations of washing of energy-from-waste fly ash and air pollution control residues  
Source 
number 

Reference     Type (country) Final pH L/S Extraction 
steps 

Contact 
time, h 

Mass 
loss, % 

1 [11] Fly ash (Italy) 10.8-11.4 25 2 0.25 NA 

2 [12] Fly ash from cyclone of a mass-burn 
MSW incinerator (Taiwan, ROC) 

NA 2-100 1 1 NA 

3 [13] Fly ash (Italy) NA 10 1 24 NA 

4 [14] APC residue from fluidised bed 
MSW incinerator (Sweden) 

NA 1-2 1,3 0.083-2 18-54 

5 [15]  Fly ash from electrostatic precipitator 
(Italy) 

11.7-11.9 12.5 4 0.5 23.4 

6 [7] APC residue (Spain) 12.2-12.6 0.5-10 1 1-24 NA 

7 [16] Fly ash from electrostatic precipitator 
(Italy) 

NA 12.5 4 0.5 NA 

8 [4]  APC residue (UK) 12-12.6 10 1 24 NA 

9 [17] APC residue (Germany/Sweden) NA 2, 10 1 24 NA 

10 [18] Fly ash from cyclone of a mass-burn 
MSW incinerator  

(Taiwan, ROC) 

9.5-10.6 2-100 1 0.5-4 NA 

11 [19] APC residue from fabric filter of 
bubbling fluidized bed MSW 
incinerator with dry lime scrubber 
(Sweden)  

12.4 50 1 24 NA 

12 [20] Fly ash from the boiler and gas 
quenching tower of a continuous 
stoker-type MSW incinerator (Japan) 

NA 2-10 

3 

1 

2 

0.083 

0.083, 0.17 

11-15 

13 [21] APC residue (Taiwan) 12.18 10 2 1.5 33 
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14 [22] APC residue (Italy) NA 2-10 1 24 10-13 

15 [23]  APC residue (Taiwan, ROC) NA 5 2 0.083 NA 

16 [24]  APC residue (Portugal) 12.1 10 1 0.17 22.2 

17 [25]  APC residue (Czech Republic) NA 5, 10 1 NA NA 

18 [26] APC residue (China) >11.9 3-50 1 0.033-16 NA 

L/S = liquid-to-solid ratio; NA indicates that a parameter was not available. 
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Table 2.  

Compositions of the raw (APCR) and washed (w-APCR) air pollution control residues, with calculated element removals 

by washing, including comparison with the literature (more detail in S1 and S2) 

 

Element 

 

APCR 

(mg/kg dry mass) 

w-APCR 

(mg/kg dry mass) Removed by washing (%) 

Average 

crustal 

abundance [27]  

Literaturea XRF TAD AR XRF TAD AR This workb Literaturea  

Al, % 0.32-6.4 1,2,5-18 2.2 2.5 2.2 2.7 3.4 3.3 0-5.5 <0.01-17 2,8,11,12 8.04 

Ag NA  13 12 10 14 11 12 17-29 
NA 

 0.05 

As <0.05-210 1,6,8,9,14,18 5.5 12 8.2 11 15 15 0-3.8 <0.01-8.0 8,14,18 1.5 

Au NA  NA <0.01 2.1 NA 0.5 1.1 NA 
NA 

 0.0018 

Ba 70-660 6,8,14,18 450 680 560 830 890 270 0 0.1-20 8,18 550 

Be 317 17 
NA 0.42 0.45 NA 0.7 0.48 0 

NA 
 3.0 

Bi 14 6 
16 13 13 18 17 19 0-13 

NA 
 0.127 

Br 230-1100 4,12 
530 NA NA 90 NA NA 87 

NA 
 NA 

Ca, % 10-36 1,2,4-18 35 34 30 33 28 27 25-36 8-63 2,4,8,11,12,16 3.0 

Cd 6-680 1-3,5-10,13,14,16-18 30 31 31 44 36 41 0-11 <0.01-6 1,2,5,8-10,14,16,18 0.098 

Ce 13 6 
11 19 15 13 23 22 6.8-9.0 

NA 
 64 

Cl, % 5.4-27 1,2,4-10,12-14,17,18 7.2 NA NA 0.51 NA NA 94 30-100 1-6,8,9,12-14,17,18 NA 

Co 7-12 6,18 16 24 27 44 38 41 0 4-12 18 10 

Cr 26-500 1-3,5-10,13,14,16-18 370 120 120 450 150 160 3.8-6.4 1.3-50 1,2,5,8,10,14,16,18 35 

Cs NA  NA 1.9 1.2 NA 0.8 0.8 68 
NA 

 3.7 
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Table 2.  

Compositions of the raw (APCR) and washed (w-APCR) air pollution control residues, with calculated element removals 

by washing, including comparison with the literature (more detail in S1 and S2) 

 

Element 

 

APCR 

(mg/kg dry mass) 

w-APCR 

(mg/kg dry mass) Removed by washing (%) 

Average 

crustal 

abundance [27]  

Literaturea XRF TAD AR XRF TAD AR This workb Literaturea  

Cu 210-6200 1-3,5-14,16-18 260 230 340 390 310 420 0 <0.01-0.5 2,8-11,14,16,18 25 

Dy NA  NA 0.9 0.9 NA 1.0 1.2 14 
NA 

 3.5 

Er NA  NA 0.47 0.44 NA 0.59 0.70 3.3 
NA 

 2.3 

Eu NA  NA 1.1 0.49 NA 0.58 0.68 59 
NA 

 0.88 

Fe, % 0.24-2.3 1,2,5-18 0.76 0.69 0.52 1.2 1.0 0.78 0 <0.01-11 2,8,11,18 3.5 

Ga 4.7 6 
NA 5.7 5.2 NA 7.8 7.2 0 

NA 
 17 

Gd NA  NA 1.1 1.2 NA 1.7 1.7 0 
NA 

 3.8 

Ge NA  <0.8 1.1 <0.03 2.2 1.4 <0.02 2.0 
NA 

 1.6 

Hf NA  8.8 NA NA 15 NA NA 0 
NA 

 5.8 

Hg <0.03-110 1,3 
3.2 NA NA 1.8 NA NA 57 

NA 
 NA 

Ho NA  NA 0.18 0.18 NA 0.22 0.24 5.9 
NA 

 0.8 

I NA  2.5 NA NA <2.7 NA NA NA 
NA 

 NA 

K, % 0.9-7.3 1,2,4-17 1.0 1.0 0.89 0.37 0.45 0.32 65-72 38-100 1,2,4,5,8,11,12,16,17 2.8 

La 7.3 1 
8.1 17 11 12 16 16 0-28 

NA 
 30 

Mg, % 0.12-1.8 1,2,5-8,10-18 0.78 0.83 0.59 1 1.1 0.84 0-1.3 <0.01-12 2,8,11 1.33 
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Table 2.  

Compositions of the raw (APCR) and washed (w-APCR) air pollution control residues, with calculated element removals 

by washing, including comparison with the literature (more detail in S1 and S2) 

 

Element 

 

APCR 

(mg/kg dry mass) 

w-APCR 

(mg/kg dry mass) Removed by washing (%) 

Average 

crustal 

abundance [27]  

Literaturea XRF TAD AR XRF TAD AR This workb Literaturea  

Mn 270-700 7-9,11,17,18 600 600 500 860 800 800 0 <1 8,11,18 600 

Mo 11 6 
12 10 15 21 11 14 0-15 

NA 
 1.5 

Na, % 1.4-11 1,2,4-18 NA 1.2 1.1 NA 0.71 0.52 54 28-89 1,2,4,5,8,11,12,16,17 2.89 

Nd 6.1 6 
NA 7.5 7.3 NA 8.6 8.2 12 

NA 
 26 

Ni 17-160 1,5,6,14,16-18 36 50 65 54 49 80 0-25 <0.01-24 9,14,16,18 20 

P, % 0.088-2.6 2,6-8,10-13,17,18 0.37 0.35 0.31 0.54 0.5 0.48 0-6.1 <0.01-19 2,8 0.07 

Pb 640-17000 1-3,5-14,16-18 550 490 490 690 560 550 3.4-12 <0.01-20 2,8-11,14,16,18 20 

Pd NA  NA 0.9 1.0 NA 0.5 1.0 57 
NA 

 0.0005 

Pr NA  NA 2.3 1.9 NA 2.7 2.6 9.6 
NA 

 7.1 

Rb 78 6 
21 19 18 14 12 10 49-51 

NA 
 112 

S, % 0.26-4.6 1,4,5,7,8,11-14,17,18 1.3 NA NA 2.3 NA NA 0 0-94 1,3-5,8,12,14,18 NA 

Sb 200-500 6,8,17 200 13 180 310 14 260 0-17 <0.01 2 0.2 

Sc NA  NA 1.6 1.6 NA 2.1 2.1 0 
NA 

 11 

Se NA  1.9 NA NA 3.5 NA NA 0 
NA 

 50 

Si, % 1.1-10 1,2,5-7,10-18 3.7 NA NA 5.0 NA NA 0 0-4.6 2,11,12 30.8 

Sm NA  NA 1.4 1.1 NA 1.6 1.2 12 
NA 

 4.5 
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Table 2.  

Compositions of the raw (APCR) and washed (w-APCR) air pollution control residues, with calculated element removals 

by washing, including comparison with the literature (more detail in S1 and S2) 

 

Element 

 

APCR 

(mg/kg dry mass) 

w-APCR 

(mg/kg dry mass) Removed by washing (%) 

Average 

crustal 

abundance [27]  

Literaturea XRF TAD AR XRF TAD AR This workb Literaturea  

Sn 200-8000 6,8,9,17 160 <0.3 170 250 <0.2 210 0 <0.01 8 5.5 

Sr 480 6 
480 450 470 460 400 450 26-32 

NA 
 350 

Tb NA  NA 0.39 0.25 NA 0.31 0.32 39 
NA 

 0.64 

Ti, % 0.08-0.5 6-8,11,15 0.67 0.25 0.05 0.99 0.36 0.1 0 <0.01 8 0.3 

Th NA  6.1 2.3 1.6 8.2 2.6 2.4 0-13 
NA 

 10.7 

Tm NA  NA 0.07 0.11 NA 0.09 0.11 1.0 
NA 

 0.33 

U NA  42 1.0 0.8 55 1.3 1.2 0 
NA 

 2.8  

V 22-140 6,17,18 25 17 18 52 23 26 0 0.5-65 18 60 

Y NA  11 17 8 12 10 11 16-55 
NA 

 22 

Yb NA  NA 0.64 0.59 NA 0.66 0.51 0-21 
NA 

 2.2 

Zn, % 0.22-1.0 1,2,5-14,16-18 0.29 0.33 0.27 0.38 0.43 0.36 0.06-1.1 <0.01-3 2,8,11,14,16,18 71 

Zr 58 6 
110 NA NA 170 NA NA 0 

NA 
 190 

Total  NA  NA NA NA NA NA NA 23     10-54  NA 

XRF – element analysis of solid samples by X-ray fluorescence 

TAD – element analysis of extracts from total acid digestion by inductively coupled plasma spectroscopy 

AR – element analysis of extracts from aqua regia digestion 
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aSuperscripted source numbers are defined in Tables 1 and 2 showing the element concentration range of FAs/APC residues 

bRemoval in wash water (%) = 100(Ci-Cw(1-ML))/Ci,  where Ci = initial concentration in APCR; Cw = concentration in w-APCR; ML = mass lost in washing = 0.23 

kg/kg APCR; negative values caused by analytical variability but incompatible with reality have been shown as 0 

NA indicates that a parameter was not available or applicable 
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Table 3. Mineral phases previously identified in water-leached APC residues from combustion of MSW, compared with phases identified by X-
ray diffraction in current raw (APCR) and washed (w-APCR) samples  
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Table 4.  
Results from linear combination fitting of the PbLIII-edge X-ray absorption near edge spectra for raw (APCR) and washed 
(w-APCR) air pollution control residues using Athena in derivative space 

 

 

 

 

 

 

*Corning Glass B NMNH 117218-1; 0.61% PbO 

 

 

 

 

Reference mass proportion 

Material APCR w-APCR 

Pb-glass*  0.837 0.742 
PbCl2 0.018 0.018 
PbO 0.026 0.066 
PbSO4 0.130 0.174 

Total Pb 1.000 1.000 

Reduced χ2  (4.0 x 10-6)  (2.2 x 10-6) 
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