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Circulating Qtumor DNA (ctDNA) offers new opportunities for noninvasive cancer management. Detecting
ctDNA in plasma is challenging because it constitutes only a minor fraction of the total cell-free DNA (cfDNA).
Pre-analytical factors affect cfDNA levels contributed from leukocyte lysis, hence the ability to detect low-
frequency mutant alleles. This study investigates the effects of the delay in processing, storage tempera-
tures, different blood collection tubes, centrifugation protocols, and sample shipment on cfDNA levels.
Peripheral blood (nZ 231) from cancer patients (nZ 62) were collected into K3EDTA or Cell-free DNA BCT
tubes and analyzed by digital PCR, targeted amplicon, or shallow whole-genome sequencing. To assess pre-
analytic effects, plasma was processed under different conditions after 0, 6, 24, 48, 96 hours, and 1 week
at room temperature or 4�C, or using different centrifugation protocols. Digital PCR showed that cfDNA levels
increased gradually with time in K3EDTA tubes, but were stable in BCT tubes. K3EDTA samples stored at 4�C
showed less variation than room temperature storage, but levels were elevated compared with BCT. A second
centrifugation at 3000 � g gave similar cfDNA yields compared with higher-speed centrifugation. Next-
generation sequencing showed negligible differences in background error or copy number changes be-
tween K3EDTA and BCT, or following shipment in BCT. This study provides insights into the effects of sample
processing on ctDNA analysis. (JMol Diagn 2018,-: 1e11; https://doi.org/10.1016/j.jmoldx.2018.07.005)
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Circulating tumor DNA (ctDNA) in plasma offers new
opportunities for noninvasive cancer management. Recent
studies have demonstrated its potential for molecular strat-
ification, monitoring tumor response, identifying resistance
mutations, and patients at risk of relapse.1,2 Detecting
ctDNA in plasma is challenging because it constitutes only a
minor fraction of the total cell-free DNA (cfDNA), partic-
ularly in early-stage cancers and in the minimal residual
disease setting.3,4 A proportion of background wild-type
DNA is believed to originate from lysis of white blood
cells.5 Previous studies have highlighted the pre-analytic
effects of different processing and collection protocols on
plasma ctDNA levels from cancer patients and pregnant
women.6e9 On the basis of these results, it is recommended
to process whole-blood samples for retrieval of plasma as
soon as possible after collection, before in vitro cell lysis. At
the same time, a double-centrifugation protocol has been
recommended to obtain cell-free plasma, using an initial
slow centrifugation speed to separate plasma, then fast
centrifugation to clear cellular material.7 However, some of
these procedures may be difficult to perform in a clinical
setting due to lack of appropriate personnel or equipment.
To circumvent this, cell-stabilizing blood collection tubes
have become available to stabilize cfDNA, enabling a delay
in processing, which may be done under more controlled
conditions and within centralized laboratories. This study
performed a systematic comparison of the effects of
different processing protocols and collection tubes on the
levels of cfDNA and ctDNA from cancer patients using
digital PCR (dPCR). With the growing use of next-
generation sequencing (NGS) for the analysis of ctDNA,
the effect of different protocols and collection tubes on the
performance of targeted amplicon and shallow whole-
genome sequencing (sWGS) for quantification of plasma
DNA was also investigated.

Materials and Methods

Analysis Modules

The study was designed to include five different modules:
Module 1 investigated the effects of delayed processing on
the levels of circulating DNA (cfDNA and ctDNA) in
plasma collected in K3EDTA tubes (9 mL S-Monovette;
Sarstedt, Nümbrecht, Germany). The separation of plasma
was delayed for different durations: 0, 6, 24, 48, and 96
hours, and 1 week at room temperature (19�C to 25�C).
Module 2 investigated the effects of storage temperature on
the levels of circulating DNA in plasma collected in
K3EDTA tubes. Samples were stored at room temperature
or at 4�C before processing at the following hours post-
collection: 0, 24, 48, and 96 hours. Module 3 investigated
the effects of collection devices on the levels of circulating
DNA. Blood samples from each patient were collected at the
same time point into K3EDTA tubes and cell-stabilization
blood collection tubes (10 mL Cell-Free DNA BCT;
2
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Streck, La Vista, NE), respectively. BCTs contain a
proprietary formaldehyde-free preservative that stabilizes
nucleated blood cells preventing the release of genomic
DNA.10,11 The samples were processed at the following
times post-collection: 0, 96 hours, and 1 week. Module 4
investigated the effects of different centrifugation protocols
on the levels of circulating DNA. Module 5 investigated the
effects of shipment on samples collected in BCT tubes at
ambient temperature. For modules 1, 2, 3, and 5, plasma
was separated from blood using a double-centrifugation
protocol (protocol A): a first centrifugation at 820 � g for
10 minutes in a mega-centrifuge (Thermo Sorvall Legend
RT; Thermo Fisher Scientific, Waltham, MA), then
subjected to a second centrifugation step of the plasma
supernatant at 14,000 � g for 10 minutes in a benchtop
micro-centrifuge (Heraeus Fresco 21; Thermo Fisher
Scientific). For module 4, blood aliquots from the same
patients were processed with three different protocols:
protocol A as above, protocol B with the first centrifugation
performed at 1600 � g and the second centrifugation at
14,000 � g for 10 minutes in a bench top micro-centrifuge,
and protocol C with both first and second centrifugations
performed in the same mega-centrifuge, initially at
1600 � g for 10 minutes, then at 3000 � g for 10 minutes.

Patient Samples and DNA Extractions

Peripheral whole blood was collected from 62 patients in
total: 47 patients with high-grade serous ovarian cancer and
15 patients with metastatic breast cancer. Informed consent
was obtained from each patient with protocols approved by
an institutional ethics committee. Fifteen to 30 mL blood
from each patient was processed according to each analysis
module. DNA from all samples, except module 5, was
extracted from an average 1.4 mL (range, 0.3 to 2.76 mL)
plasma using the QIAamp Circulating Nucleic Acid Kit
(Qiagen Q, Hilden, Germany) according to the manufacturer’s
protocol, except that 6.2 mg of carrier RNA was added per
sample. DNA was eluted twice through the column to
maximize yield. A nonhuman spike-in PCR product was
added to each sample as an internal quality control to assess
extraction efficiency.12 In module 5, DNA was extracted
from plasma on a QIAsymphony robot (Qiagen) using a
2-mL extraction protocol. Eluted DNA was stored at �20�C
until analysis.
A total of 231 blood samples aliquots were analyzed in

this study. Table 1 summarizes the number of plasma
samples collected for each module. Note that the collection
was designed in such a way that each sample from every
processing condition (temperature, collection tube, delayed
processing duration) had a matched sample that was
collected in K3EDTA and processed immediately (denoted
E.RT.0h) using centrifugation protocol A, and was assigned
as the reference sample for each condition. The levels of
circulating DNA (either cfDNA or ctDNA), were expressed
as a ratio of the respective data with the reference sample
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 1 Summary of the Number of Samples Analyzed in Each Module Q28 Q29

Module Collection devices Temperature

Delay before sample processing

0 hours 6 hours 24 hours 48 hours 96 hours 1 week

Module 1 EDTA Room temperature 26 21 20 10 5 5
Module 2 EDTA Room temperature/4�C 20/11 10/10 5/5
Module 3 EDTA/BCT Room temperature 20/5 - - 5/10 5/15
Module 4 EDTA Room temperature 13 - - - - -

ModuleQ30 Collection devices Temperature 0 hour EDTA 48 hours BCT 96 hours BCT 5 days BCT

Module 5 EDTA/BCT Room temperature 13 - - 10 2 1

Module 1: The effects of delayed processing.
Module 2: The effects of storage temperature.
Module 3: The effects of collection devices (EDTA versus BCT).
Module 4: The effects of different centrifugation speeds.
Module 5: The effects of shipment in BCT.
For module 2, samples were stored both in room temperature and at 4�C. 20/11 indicates that 20 tubes were stored at room temperature and 11 at 4�C, and

so on.
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(E.RT.0h). Therefore, data collected under the same pro-
cessing conditions could be grouped together to evaluate the
effect of the processing even though they were collected
from different patients. A more detailed summary of the
distribution of samples involved in each module is given in
Supplemental Table S1.

Quantification of Circulating Plasma DNA by dPCR and
Targeted Amplicon Sequencing

Plasma samples from ovarian and breast cancer patients
were first quantified by dPCR (using the Biomark micro-
fluidic system (Fluidigm, South San Francisco, CA) as
previously described,13 using an assay that targets a 65-bp
amplicon in RPP30, a nonamplified region in the genome,
to estimate cfDNA levels.12,14 ctDNA levels were then
determined by dPCR using dual-labelled patient-specific
TaqMan assays designed to mutant and wild-type sequences
in TP53 or PIK3CA, or deletions in chromosome 8, 11, or
17. A summary of the samples analyzed is provided in
Supplemental Table S1, and sequences of primers and
fluorescent probes, amplicon sizes, and amplification con-
ditions used in dPCR are detailed in Supplemental Table S2.

The levels of cfDNA and ctDNA were calculated from
the number of observed amplifications above a set
threshold, and Poisson statistics were used to convert the
number of observed amplifications to estimated targets,
assuming independent segregation of DNA molecules into
the microfluidic reaction chambers. The total number of
amplifiable copies of DNA molecules per mL of plasma
(copies/mL) were calculated, taking into account the relative
fraction of the extracted DNA loaded and the proportion of
sample lost during the loading process through the micro-
fluidic channels. The levels of ctDNA were calculated as
mutant allele fraction (ie, the fraction of mutant DNA copies
divided by the total cfDNA copies) expressed as a
percentage or as mutant copies/mL plasma. For the purpose
of comparing different protocols in the modules, the data are
The Journal of Molecular Diagnostics - jmd.amjpathol.org
FLA 5.5.0 DTD � JMDI725_proof �
expressed at each processing condition as a ratio from the
E.RT.0h reference sample that was collected in K3EDTA
and immediately processed according to protocol A, unless
otherwise specified.

To investigate the effects of different collection devices
and processing protocols on the performance of NGS,
plasma samples from all modules were analyzed by Tagged
Amplicon deep sequencing (TAm-Seq), as previously
described.13 TAm-Seq is a targeted amplicon sequencing
method that allows identification and quantification of low-
frequency mutant alleles in plasma across sizable genomic
regions. Sequencing was performed using an Illumina
HiSeq 2500 sequencer (Illumina Q, San Diego, CA) to an
average of greater than 1000� sequencing depth. Mutations
were identified and quantified as previously described.13 To
assess the effect of collection and processing procedures on
the background error rates during NGS, the allelic read ratio
(reference/alternative) was generated at each position within
R software version 3.1.215 Qfrom the BAM files, using the
Bioconductor Qsoftware packages Rsamtools and Biostrings.
All positions flagged as polymorphic by the 1000 Genomes
Project (http://www.internationalgenome.org, last accessed Q)
or the COSMIC database (https://cancer.sanger.ac.uk/
cosmic, last accessed), were filtered out.

To investigate the effects of shipping on global somatic
copy number alterations, samples in module 5 were also
subjected to sWGS.16 Briefly, a DNA library was prepared
from 2 to 10 ng of cfDNA from each sample using the
ThruPLEX DNA-seq Kit (Rubicon QGenomics, Ann Arbor,
MI) and sequenced on an Illumina HiSeq 4000 to
0.1� average depth using single-end sequencing. Sequence
data were analyzed using a pipeline that involved the
following: single-end sequence reads were aligned to the
human reference genome (GRCh37) using BWA-mem
software version 0.7.1717 after removing any contaminant
adapter sequences. SAMtools software version 1.7 (https://
sourceforge.net/projects/samtools/files/samtools/1.7 Q) was
used to convert files to BAM format. PCR and
3
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optical duplicates were marked using Picard-Tools’
MarkDuplicates software feature version 2.17.6 (https://
broadinstitute.github.io/picard), and these were excluded
from downstream analysis along with reads of low
mapping quality and supplementary alignments. Reads in
each sample were down-sampled to approximately 3
million reads to have similar coverage between patients
and conditions. Subsequently, copy number analysis was
performed in R15 using the R package CNAclinic version
1.0 (https://github.com/sdchandra/CNAclinic, last accessed
December 21, 2017; manuscript under review), a software
suite that allows for robust copy number analysis of
sWGS data. Briefly, sequence reads were allocated into
equally sized (100 Mb) nonoverlapping bins throughout
the length of the genome. Read counts in each bin were
corrected to account for sequence GC content and
mappability, and regions corresponding to artifacts and
probable germline changes were excluded from
downstream analysis utilizing a cohort of 45 healthy
controls. After median normalization, binned counts were
segmented using both the Circular Binary Segmentatione
and Hidden-Markov Modelebased algorithms, and an
averaged log2 R value per bin was calculated.

Statistical Analysis

The difference in circulating DNA levels between different
subgroups in each module was analyzed using nonpara-
metric ManneWhitney rank sum test unless specified, and
P < 0.05 was considered statistically significant. To assess
the noise of sWGS data, values corresponding to the median
of the absolute values of all pairwise differences were
calculated between log2 R copy numbers. This metric
provides a measure of the noise of the sample that is less
dependent on true biological copy number variation and
more on technical variation.18 To compare the three
collection methods in all patients, pairwise Spearman
correlations were calculated between the binned copy
number segments of the three collection methods. Further-
more, a nonparametric Wilcoxon signed rank test was
applied on these values to test the similarity of the copy
number profiles between all pairwise samples.

Results

Module 1: The Effects of Delayed Processing on the
Levels of Circulating DNA in Plasma Collected in EDTA
Tubes

In this module, all samples (n Z 26) were collected in
K3EDTA tubes. One tube from each collection was pro-
cessed immediately. The other tubes were stored at room
temperature and processed at different prolonged time
points: 6, 24, 48, 96 hours, and 1 week. Analysis by dPCR
showed that the levels of cfDNA in the plasma samples
increased gradually with increasing delay in the processing
4
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(Figure 1A), whereas the fraction of ctDNA decreased
(Figure 1B). In particular, the levels of cfDNA increased
significantly after 48, 96 hours, and 1 week of delay,
whereas the mutant allele fraction of ctDNA decreased
significantly after 96 hours and 1 week of delay
(ManneWhitney rank sum test, P < 0.05). Previous reports
have indicated that in analysis of circulating cell-free DNA
from maternal plasma, despite changes in total cfDNA, the
levels of fetal DNA are relatively stable in different storage
and processing conditions.8,19 Indeed, our results confirm
that the numbers of mutant molecules, expressed as copies/
mL of plasma, were relatively stable across the different
processing time points with no statistically significant dif-
ference observed compared to samples that were processed
immediately (Figure 1C and Supplemental Figure S1).

Module 2: The Effects of Storage Temperature on the
Levels of Circulating DNA in Plasma Collected in
K3EDTA Tubes

In this module, all samples (n Z 26) were collected in
K3EDTA tubes and either processed to plasma immediately
or after 24, 48, and 96 hours. The individual tubes were
stored in two conditions: at room temperature (19�C to
25�C) or at 4�C. If kept at room temperature, dPCR showed
that the levels of cfDNA significantly increased after
48 hours. If kept at 4�C, the levels increased after 48 hours
but were significantly lower than those observed at room
temperature (Figure 2A). If delayed for 96 hours, samples
kept at room temperature and 4�C all increased significantly.
The changes in mutant allele fraction showed an inverted
similar trend, although the amount of available data were
too low for statistical analysis (Figure 2B).

Module 3: The Effects of Collection Devices (K3EDTA
versus Cell-Free DNA BCT) on the Levels of Circulating
DNA

In this module, one K3EDTA tube for each collection was
processed immediately (E.RT.0h) and served as a reference
sample (n Z 20). The other K3EDTA tubes were stored for
96 hours (n Z 5) and 1 week (n Z 5) at room temperature.
Cell-free DNA BCT’s were stored at room temperature and
processed immediately (n Z 5) or delayed for 96 hours
(nZ 10) and 1 week (nZ 15). The cfDNA levels increased
significantly after 1 week if kept in K3EDTA tubes, but
remained at similar levels if kept in BCT (Figure 3A). The
changes in the mutant allele fraction showed an inverted
similar trend, but the amount of data available were too low
for statistical analysis (Figure 3B). The mutant allele frac-
tion from six patients that were collected in K3EDTA and
processed immediately, versus the matched samples that
were collected in BCT was compared and processed after 1
week’s delay. The levels of ctDNA were similar for four
patients but decreased twofold for two patient samples
(Supplemental Figure S2). There was no statistically
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 1 The effects Q26of delayed processing on the levels of circulating DNA in plasma collected in K3EDTA tubes. Blood samples were collected into K3EDTA
tubes and stored at room temperature for 0, 6, 24, 48, and 96 hours, and 1 week before plasma separation. Cell-free DNA (cfDNA) copies/mL plasma (A),
mutant allele fraction (B). C: Circulating tumor DNA (ctDNA) copies/mL plasma in samples processed at different time of delay. The bottom and top of the box
represent the first and third quartiles, respectively, and the band inside the box represents the median. Data are expressed as the ratio from E.RT.0h of each
patient’s immediately processed K3EDTA sample. *P < 0.05 versus E.RT.0h (ManneWhitney rank sum test).
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Figure 2 The effects of storage temperature on the levels of circulating DNA in plasma collected in K3EDTA tubes. Blood samples collected into K3EDTA
tubes were stored at room temperature and at 4�C for 24, 48, and 96 hours, and 1 week before plasma was separated. Cell-free DNA (cfDNA) copies/mL plasma
(A) and mutant allele (B) fraction. The bottom and top of the box represent the first and third quartiles, respectively, and the band inside the box represents
the median. Data are expressed as the ratio from E.RT.0h of each patient’s immediately processed K3EDTA sample. *P < 0.05 versus E.RT.0h (ManneWhitney
rank sum test.
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significant difference in the numbers of mutant copies/mL
plasma between storage in the two tube types (Supplemental
Figure S1).

The effects of collection and processing procedures on
the background error rates during NGS analysis were next
assessed using targeted amplicon sequencing. As previously
6
FLA 5.5.0 DTD � JMDI725_proof
described, different A/C/G/T base substitutions are associ-
ated with different error rates.13 The distribution of the ratio
of nonreference/reference alleles was plotted as box plots,
shown according to mutation types. No difference was
observed using different collection devices and processing
conditions (Figure 3C).
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Figure 3 The effects of collection device (K3EDTA versus BCT) on the levels of circulating DNA. Blood samples collected into K3EDTA tubes were processed
immediately, after 96 hours or 1 week at room temperature. Blood samples in BCT were stored at room temperature for 96 hours and 1 week before plasma
separation. Cell-free DNA (cfDNA) copies/mL plasma (A) and mutant allele (B) fraction. C: The distributions of the ratio of nonreference/reference alleles as
generated by targeted amplicon sequencing shown in boxplots. The bottom and top of the box represent the first and third quartiles, respectively, and the
band inside the box represents the median. Data are expressed as the ratio from E.RT.0h of each patient’s immediately processed K3EDTA sample (A and B) or
log10 scale (C). *P < 0.05 versus E.RT.0h (ManneWhitney rank sum test).
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Module 4: The Effects of Different Centrifugation
Speeds on the Levels of Circulating DNA

In this module, all samples (n Z 13) were collected in
K3EDTA tubes and processed immediately. Aliquots
from the same patients were processed using three
different centrifugation protocols (A to C) as defined in
Materials and Methods. There were no statistically
significant differences across the three protocols on the
total circulating DNA levels as measured by dPCR
(Figure 4, A and B), or in mutant allele fraction as
measured by targeted amplicon sequencing (Figure 4, C
and D).
The Journal of Molecular Diagnostics - jmd.amjpathol.org
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Module 5: The Effects of Shipment of cfDNA BCT on
Mutant Allele Fraction and Global Copy Number
Changes

In this module, three tubes of blood were drawn from each
patient (n Z 13). K3EDTA tubes were processed immedi-
ately (E.RT.0h), one cell-free DNA BCT was collected and
stored at room temperature within the same centralized
processing laboratory, whereas the other BCT was packaged
and shipped back to the same laboratory. All shipped
samples, apart from three, were received and processed
within 48 hours from the time of collection. Of these, two
BCTs were processed after 96 hours and one was processed
7
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Figure 4 The effects of different centrifugation speeds on the levels of circulating DNA. Blood samples were collected into K3EDTA tubes and processed to
plasma with three different protocols. All protocols included two 10-minute centrifugation steps, the first on whole blood, and the second on plasma aliquots.
Protocol A (820 and 14,000 � g), protocol B (1600 and 14,000 � g), Protocol C (1600 and 3000 � g). Cell-free DNA (cfDNA) copies/mL plasma (A and B) and
mutant allele (C and D) fractions (%) in samples processed by different protocols. The bottom and top of the box represent the first and third quartiles,
respectively, and the band inside the box represents the median.
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after 5 days. The stored BCTs were processed at the same
time as the matched shipped sample. There was no statis-
tically significant difference in cfDNA levels between the
three collection methods (Figure 5, A and B). TP53 muta-
tions were identified by amplicon sequencing in four
patients, and there were no statistically significant differ-
ences in mutant allele fraction using the different collection
methods (Figure 5, C and D).

To further investigate the effects of collection methods on
global copy number changes, sWGS analysis was
performed on four patients with detectable TP53 mutations
(P161, P227, P479, P488) and four without (P615, P489,
8
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P464, P450). Data from one patient (P464) were excluded
from further analysis because the total read count generated
for one of the collection methods was below 1 million. This
is below the threshold recommended for inference when
analyzing shallow coverage.20 The segmental copy number
profiles among the three collection methods were highly
similar, showing an average Spearman correlation of 0.76,
range Z 0.44 to 0.98 (Supplemental Figure S3 and
Supplemental Table S3). The paired Wilcoxon test P values
indicated no significant differences in all 21 copy number
distributions comparisons (P > 0.001). Supplemental
Figure S4 shows an example of the copy number
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Figure 5 The effects of shipping using cell-
free DNA BCT on the levels of circulating DNA.
Blood samples were collected in K3EDTA tubes and
cell-free DNA BCT, and processed immediately
except for one cell-free DNA BCT from each
collection that was shipped by mail back to the
same collection center [BCT (posted)]. Cell-free
DNA (cfDNA) levels (AC/mL) Q27(A and B) and
mutant allele (C and D) fractions. The bottom and
top of the box represent the first and third quar-
tiles, respectively, and the band inside represents
the median.
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alterations in plasma samples processed with and without
shipping. The same gains and losses in chromosomal arms
were identified in all three protocols. Supplemental
Figure S5 depicts the estimation of noise in the sWGS
data using values that were the median of the absolute
values of all pairwise differences. All patients showed very
similar noise levels between the different tubes and
protocols.
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Discussion

Multiple research studies have demonstrated the potential of
using plasma as a tool for noninvasive cancer management.
There is increasing interest in incorporating ctDNA as a
liquid biopsy in both clinical and research settings. Because
the frequency of mutant alleles in plasma may be low,
particularly in early-stage disease, it is crucial to optimize
and standardize pre-analytic sample processing procedures
to maintain the quality of samples for accurate quantification
of rare mutant molecules. In this study, the pre-analytic
effects of blood sample processing procedures, including the
use of different blood collection tubes, storage conditions,
and centrifugation speeds, were examined on downstream
analysis of cfDNA using different molecular technologies
The Journal of Molecular Diagnostics - jmd.amjpathol.org
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including dPCR, targeted amplicon, and genome-wide
sequencing. Our results show that levels of cfDNA are
stable in K3EDTA tubes at room temperature for up to 24
hours. If delayed beyond 24 hours, storage of K3EDTA
blood at 4�C appeared to delay the increase in background
cfDNA. It is worth noting that a recent study demonstrated
that storing the samples in K2EDTA tubes at 4�C kept the
cfDNA levels stable for a course of 3 days.21 This agrees
with the observations that storing K3EDTA tubes at 4�C
improved the stability of cfDNA compared with room
temperature storage. Alternatively, collection into cell-free
DNA BCT tubes at room temperature maintained stable
cfDNA levels for at least a week. These tubes can facilitate
delayed and centralized blood processing, circumventing
issues arising with delayed plasma processing. Other re-
searchers have evaluated alternative cell-stabilization tubes
such as CellSave (CellSearch system; Menarini QSilicon
Biosystems, Huntington Valley, PA) and PAXgene Blood
ccfDNA tubes (Qiagen) and demonstrated similar stability
when sample processing was delayed.9,22 New cell-free
stabilization tubes have recently become available [eg,
Cell-free DNA Collection tube (Roche, Basel, Switzerland),
cf-DNA Preservation tube (Norgen Biotek, Thorold, ON,
Canada), Blood STASIS 21-ccfDNA, (MagBio Genomics,
Gaithersburg, MD), and LBgard Blood tubes, Biomatrica,
9
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San Diego, CA)], and it will be important to test these
thoroughly to assess their performance for optimal sample
processing procedures before next-generation sequencing
and dPCR analysis of ctDNA.

These findings have addressed a few of the practical
challenges in the blood-to-plasma sample processing
workflow in a hospital setting. For example, in the clinic,
processing may be delayed due to shortage of staff to
enable immediate processing, or collection outside office
hours. In some scenarios, when conducting multicenter
clinical trials, many individual centers do not have access
to the full spectrum of centrifuges with the higher second
centrifugation speeds required to perform the recom-
mended double-centrifugation procedures. The ability to
delay processing by collecting into cell-stabilization tubes,
or the flexibility to perform the centrifugation in a range of
different types of centrifuges, or storing at 4�C after
collection for a short period, will greatly improve the
feasibility of collecting high-quality specimens. For sam-
ples collected across a wide geographical area, shipment
may be necessary before central processing to standardize
pre-analytic factors and maximize cost-effectiveness. This
study showed no statistically significant difference in NGS
background noise with or without shipment. However,
other studies have shown that the shipping temperature of
cell-free DNA BCT was deemed to be a critical factor to
ensure delivery of high-quality specimens for downstream
ctDNA analysis.23 In these studies, variable results were
observed at extreme temperatures, at �10�C and 40�C,
which affected the cellular interface, resulted in an elevated
ratio of long/short genomic DNA fragments, and a
decrease in plasma volume. These studies indicate that
shipment temperature should be carefully controlled by the
use of insulated packages, gel blocks, or temperature log-
ging devices to maintain stability.

Previous studies have mainly focused on locus-specific
analysis using quantitative PCR or dPCR that examined one
locus at a time. With technology advances, an increasing
number of molecular profiling strategies have been devel-
oped using NGS,24 which provides a higher resolution and
larger genomic coverage than a locus-specific approach. It is
therefore important to also understand the effects of cfDNA
sample processing on the analytical performance of NGS-
based analysis. It is particularly important to test whether
using a collection tube containing a preservative has the
potential to introduce DNA sequence modifications, which
may be misinterpreted as true patient-specific genomic
alterations. A recent study examined the influence of sample
collection in CellSave tubes on the analysis of global copy
number variations using NGS technology, and did not find
differences in allele frequencies compared with EDTA
blood.9 In this study with BCT and K3EDTA tubes, the
effects of processing on the background error rates during
targeted amplicon sequencing and sWGS were evaluated.
As expected, different error rates were observed in different
base substitutions, but there was no difference in
10
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background error rate regardless of the type of collection
device and sample processing schedule. The sWGS analysis
results agreed with previous findings Qin that copy number
data were consistent across conditions.
All of these findings provide important insights for the

potential incorporation of routine NGS technology in
plasma-based molecular diagnostics. Beyond the analysis of
ctDNA, it is crucial to also understand the impact of pre-
analytical factors on other nucleic acids or genomic variants,
such as tumor-specific RNA (ctRNA), microRNA, or DNA
methylation, some of which have been studied,25 but more
evidence is required. Their quantification would likely be
affected by the levels of total RNA or methylated DNA that
is derived from the blood cells. It is important to understand
whether the effects of sample processing procedures could
be addressed in a similar manner to the effects on circulating
DNA.
With the increasing understanding of genomic alterations

and matched targeted treatment options, the demand for a
non-invasive molecular profiling tool is growing. Analyzing
cell-free nucleic acids presents a unique opportunity for
longitudinal follow-up during treatment of cancer patients.
Initiatives have begun to pursue the standardization of
methods for cell-free DNA analysis. Understanding the
impact of different pre-analytic factors will help accelerate
the process and drive large-scale cross-center validation
studies to provide robust evidence for clinical utility of
circulating tumor DNA and its integration into routine
clinical practice.
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