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Background: Prostate cancer (PCa) is the most common male cancer in the United Kingdom and we aimed to identify clinically
relevant biomarkers corresponding to stage progression of the disease.

Methods: We used enhanced proteomic profiling of PCa progression using iTRAQ 3D LC mass spectrometry on high-quality
serum samples to identify biomarkers of PCa.

Results: We identified 41000 proteins. Following specific inclusion/exclusion criteria we targeted seven proteins of which two
were validated by ELISA and six potentially interacted forming an ‘interactome’ with only a single protein linking each marker. This
network also includes accepted cancer markers, such as TNF, STAT3, NF-kB and IL6.

Conclusions: Our linked and interrelated biomarker network highlights the potential utility of six of our seven markers as a panel
for diagnosing PCa and, critically, in determining the stage of the disease. Our validation analysis of the MS-identified proteins
found that SAA alongside KLK3 may improve categorisation of PCa than by KLK3 alone, and that TSR1, although not significant in
this model, might also be a clinically relevant biomarker.

The most common male cancer in the United Kingdom is prostate
cancer (PCa), with 47 300 diagnoses in 2013 (CRUK, 2014a) and
10 837 deaths in 2012 (CRUK, 2014b) from the disease. At disease

presentation, B16% of men in the United States will have locally
advanced or metastatic disease, despite PSA screening, and of the
remainder, 30–40% will still suffer biochemical recurrence
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regardless of radical prostatectomy (Brawley, 2012). Once PCa has
metastasised, life expectancy is generally o5 years. Conversely,
patients presenting with organ-confined disease have a minimal
risk of death within 15 years (Brawley, 2012). The US screening
programme is thought to have led to 41 million additional men
being diagnosed and treated for PCa between 1986 and 2005.
However, a worrying observation is that for every 1 death that is
averted 20 men are ‘overdiagnosed’. Overdiagnosis is a disturbing
problem because of globally acknowledged treatment-associated
side effects (Welch and Albertsen, 2009).

In this context it becomes essential to discover modes for
improving diagnosis and planning surgical interventions. Novel
candidate biomarkers offer potential clinical utility in the more
accurate identification of patients with an increased risk of
aggressive PCa before invasive treatments.

Proteomic profiling utilising isobaric stable isotope labelling and
ultra-performance liquid chromatography linked with high-
resolution tandem mass spectrometry (LC-MS) offers extended
linear dynamic range in proteome coverage (Zeidan and
Townsend, 2008; Zeidan et al, 2009a, b; Al-Ruwaili et al, 2010)
with high analytical precision (Garbis et al, 2008, 2011).

Such methodological features are particularly important when it
comes to the analysis of serum samples whose protein content
spans a wide dynamic range of 412 orders of magnitude with the
carrier protein albumin accounting for B55% of total protein content
by mass (Anderson and Anderson, 2002; Boylan et al, 2010; Garbis
et al, 2011; Rehman et al, 2012; Tonack et al, 2013). Such high
abundance of albumin masks or sequesters the presence of lower
abundance proteins. Many serum proteomic methods utilise depletion
strategies to remove the high abundance proteins (primarily albumin
and immunoglobulins) to simplify the analysis of the proteome, but
this results in the concurrent removal of many other lower
abundance, potentially valuable, proteins (Yocum et al, 2005).

Building on the success of previous methods (Garbis et al, 2008;
Bouchal et al, 2009), we developed a quantitative version of a whole
serum analysis approach to investigate gender-mediated factors
affecting the obesogenic state in humans (Al-Daghri et al, 2014).
The aim of our current study was to apply this approach to identify
serum biomarkers of PCa progression. Our study hypothesis is that
the methodological attributes of the iTRAQ 3D LC-MS protocol
exhibits sufficient selectivity, specificity and sensitivity to reveal
novel and clinically relevant biomarkers that can stage PCa
progression.

MATERIALS AND METHODS

Discovery samples. For the mass spectrometry (MS) discovery
phase, we used serum from a panel of patients recruited (using
informed consent) through the University of Surrey (Professor
Pandha SUN study, REC reference 08/H1306/115) categorised as
follows: (1) PCa null, o1 ng ml� 1 PSA (20 samples in this category);
(2) putative benign disease, 4.7–12 ng ml� 1 PSA, including benign
prostatic hyperplasia, prostatitis, prostatic intraepithelial neoplasia,
inflammation and atrophy (15 samples in this category); (3) T1–T2
stage prostate cancer, 3.9–4.8 ng ml� 1 PSA (20 samples in this
category); and (4) T3–T4 stage PCa (some with metastatic disease),
6.7–17.65 ng ml� 1 PSA (20 samples in this category). Serum was
collected in red-topped serum activator tubes (BD Biosciences,
Oxford, UK), inverted five times and left at room temperature for
30 min before centrifugation at 3000 r.p.m. for 10 min. All samples
were centrifuged within 2 h of collection. After centrifugation, the top
clear fraction (serum) was removed and aliquoted into cryovials (1 ml
per vial) before being stored at � 80 1C.

Validation samples. To validate biomarkers by ELISA, we used a
separate, independent cohort of samples collected through the

University of Manchester (Professor Noel Clarke, Northern
Prostate Cancer Collaborative (ProMPT), MREC/01/4/061). These
samples were categorised as follows: (1) PCa null (20 samples);
(2) patients with BPH (20 samples); (3) T1–T2 stage PCa,
0.7–31 ng ml� 1 PSA (20 samples); and (4) T3–T4 stage
PCa (some with metastatic disease), 0.5–1400 ng ml� 1 PSA
(20 samples). Blood was collected in Gold-topped BD Vacutainer
SST II Plus plastic serum tube (BD Biosciences 367955), inverted
five times and left at room temperature for a minimum of 30 min
(up to 2 h) before centrifugation at 1000 g for 10 min. Serum was
removed and aliquoted before storing at � 80 1C.

LC-MS proteomics. All aspects of the LC-MS proteomics method
used for this study have been reported by the authors (Al-Daghri
et al, 2014). The offline HILIC peptide separation has also been
reported by the authors (Garbis et al, 2011; Delehouze et al, 2014;
Bouchal et al, 2015). The discovery experiment was executed once.
However, technical replicates of each group were performed using
the same samples. The samples were pooled twice and labelled
differently to provide these technical repeats (Figure 1A). Each
pooled serum category was analysed in parallel under the same
offline tryptic peptide LC-MS conditions. This gave us a high
degree of analytical precision and the ability to more reliably
determine a smaller degree of differential analysis not feasible
with label-free methods. The biological and technical reproduci-
bility of the study method has been reported by the authors
(Al-Daghri et al, 2014). Specific method details may be found in
the Supplementary Methods section. The mass spectrometric
proteomics data have been deposited to the ProteomeXchange
Consortium (Vizcaino et al, 2014) via the PRIDE partner
repository (Wang et al, 2012; Vizcaino et al, 2014; Vizcaino et al,
2013) with the data set identifier PXD004575.

Our protein selection process is depicted in Supplementary
Figure S1. For each group studied by MS, there were two technical
replicates, labelled with a different iTRAQ label, resulting in four
ratios for each comparison (i.e., 115/113, 115/114, 116/113 and
116/114 for BPH/control). Because of the variability observed
between replicates, a measure, termed the ‘regulation score’
(Equation (1)) was used to summarise both the magnitude and
consistency of differential abundance across multiple derived
log2(ratios). For instance, when the mean is high and the s.d. is low,
the resulting regulation score is high. The top 40 most consistently
regulated, significant (Po0.05) proteins were derived from the
regulation score values for the three conditions. This shortlist was
used for the selection of validation markers (Figure 2C).

�x

ðs:d:þ1Þ ð1Þ

Equation (1) shows the calculation of the regulation score.
From the shortlist we selected proteins that differentiated one

disease group from the other two, or had a step-wise increase or
decrease with progression, and, critically, had commercially
available validation reagents (Table 1). Because of lack of
commercial availability, we were unable to study the markers that
seemed to be specific to early-stage PCa.

ELISA validation. The ELISAs were obtained from Antibodies
Online and My Biosource, details are shown in Supplementary
Table S1. The ELISAs were performed according to the
manufacturer’s protocols. More detail can be found in the
Supplementary Methods section.

Literature and network analysis. In addition to the ELISA validation
of our chosen MS-identified biomarkers, a literature and network
analysis of interacting proteins with the seven markers was performed
in collaboration with Biorelate (www.biorelate.com). Details can be
found in the Supplementary Methods section.
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RESULTS

Discovery MS. Our LC-MS proteomics method (Figure 1A)
enabled us to identify a total of 1034 proteins (Supplementary
Table S2). Our raw data have been uploaded to the PRIDE
database (Accession: PXD004575). As a proof of principle, our
method allowed the non-targeted relative quantitative analysis of
the low-abundant KLK3 (PSA) protein without the need for
mainstream immunodepletion strategies that may have otherwise
depleted it (Figure 1B). Our KLK3 finding demonstrates its well-
documented limitation to discriminate BPH from early-stage PCa
at the serum level, but does demonstrate its utility as a recurrence
marker because of the high levels seen in later-stage disease.

As a means to assess the absolute abundance range of our
quantified proteome we compared the total number of peptide-
spectrum matches (PSMs) for each protein across all four segments
with published and estimated concentration data from PeptideA-
tlas (Farrah et al, 2011). We found a linear relationship between
our MS-based average counts and the absolute concentrations for
4350 proteins, suggesting that approximate absolute abundances
for previously unidentified proteins can be predicted by the PSM
counts (Supplementary Figure S2).

To identify functional associations between the differentially
expressed proteins we created a protein–protein interaction
network using the Genes2FANs (Dannenfelser et al, 2012) tool
(Supplementary Figure S3A) that confirmed that a set of regulated
proteins is functionally related although not always through direct
interactions. Gene Ontology analysis (Chen et al, 2013) showed
significant enrichment of extracellular vesicular exosome proteins
(Supplementary Figure S3B), suggesting a potential secretion route
of the differentially expressed proteins into the blood stream.

A total of 1034 serum proteins were identified with excellent
reproducibility between technical replicates (Figure 2A). From this
total, we shortlisted 40 for further study based on the regulation
score mentioned previously. The distribution of regulation scores
for the markers is displayed in Figure 2B and the top 40 in
Figure 2C. Of these, seven were selected for validation by ELISA
(Supplementary Table S3) based on their ability to differentiate one
group (control/benign/T1–T2 PCa/T3–T4 PCa) from another
(according to the MS data) and the availability of commercial
reagents. These seven markers are summarised in Table 1.

Literature and network analysis. Using all PubMed abstracts and
all PubMed Central (PMC) open-access full-text articles, we
performed a comprehensive literature analysis of the seven
markers to assess their previous relevance with respect to PCa
and as biomarkers (Table 2). Only VWA5B2 had not been studied
in the context of PCa previously, with just three publications found
in total. Research was limited in PCa for both SGCd and TSR1. Of
note, Love et al (2009) demonstrated SGCd to have a 14-fold
increased level of extracellular expression in BPH RNA compared
with PCa RNA, whereas Savas et al (2010) identified single-
nucleotide polymorphisms (SNPs) associated with SGCd and
selenium resistance – a dietary trace element shown to protect
against various cancers including PCa (Platz and Helzlsouer, 2001;
Meuillet et al, 2004; Neill and Fleshner, 2006). No evidence was
found that supported TSR1 as a PCa biomarker. The remaining
four biomarkers CST3, SRC, SAA1 and KLK3, were found to
have been intensively studied in PCa biology, with each having
X40 PCa biomarker-associated publications. In keeping with our
MS data, CST3 has been shown to be downregulated in PCa
(Jiborn et al, 2006; Wegiel et al, 2009). SAA1 has been identified as
a marker for distinguishing PCa patients with bone lesions
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Figure 1. Mass Spectrometry Methodology. (A) Illustration of the multiplex quantitative serum proteomics method used for the discovery findings.
TR¼ technical repeat, iTRAQ labels are in bold. The method utilises multidimensional liquid chromatography, stable isotope labelling of surrogate
tryptic peptides and ultra-high resolution/precision tandem mass spectrometry using the state-of-the-art FT-Obritrap Elite platform. (B) Annotated
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(Le et al, 2005). SRC has been shown, as it has with many other
cancers, to be upregulated in PCa, with a large resource of research
available. The existing use of KLK3 as a gold standard marker for
PCa is clearly reflected in the 4908 associated PCa biomarker
publications found.

Using each biomarker and their associated publications, we then
curated any documented interactions (both direct and indirect)
with other proteins, supplementing these with any additional
interactions stored in the STRING database. As a result,
interactions were discerned for all markers except for VWA5B2.
These were then combined to form a network of interactions
between proteins linking each of the six markers (Figure 3).
Interestingly, these form a coherent graph with SRC, SAA1 and
KLK3 contributing the most connecting proteins between the
markers. An analysis, using DAVID (Huang da et al, 2009), of the

enriched Gene Ontology (GO) terms associated with the six
markers and their connecting interactants revealed positive
regulation of biosynthetic process (P¼ 5.82E-18), positive regula-
tion of cellular biosynthetic process (P¼ 8.64E� 17) and positive
regulation of multicellular organismal process (P¼ 2.81E� 16) as
the most enriched terms (Table 2). Other significantly enriched
GO terms that may be indicative of this group’s role in PCa include
regulation of cytokine production (P¼ 1.78E� 13) and regulation
of cell migration (P¼ 2.55E� 12).

Biomarker validation by ELISA. The ELISAs, as a clinically
accepted diagnostics method, were performed on an independent
cohort of patients and results compared with the discovery MS
data (Figure 4A). Kruskal–Wallis analysis of the ELISA data
demonstrated that SAA and KLK3 (PSA) were significantly
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differentially expressed across the groups (Po0.001). Pairwise
Mann–Whitney U analysis showed significant SAA increases in
levels in benign and T1–T2 PCa (P¼ 0.037), benign and control
(P¼ 0.001), T3–T4 and control (Po0.001) and T1–T2 and T3–T4
(P¼ 0.002). The KLK3 ELISA concentration was consistent with
the MS data, with T3–T4 being significantly different to the control
(Po0.001), benign (Po0.001) and T1–T2 (P¼ 0.010) groups.
T1–T2 was also found to be significantly different to the control
group (P¼ 0.009).

TSR1 was found not to be significant by Kruskal–Wallis
analysis, but differences were found by pairwise Mann–Whitney
U with levels increasing in benign vs control, T1–T2 vs control and
T3–T4 vs control, although only the T1–T2 vs control was
significant (P¼ 0.013). TSR1 was identified as a T3–T4 stage PCa
marker according to MS, yet the ELISA data suggest it to be a
marker of ‘cellular change’ as it was significantly increased in
benign and the two PCa groups compared with the control group,
but not differentially expressed between the three disease groups.

Using ELISA, SGCd, SRC, CST3 and VWA5B2 did not show
any significant differences in abundance across the disease groups.
The ELISA validation was technically difficult as the data imply
that the levels of the target proteins largely fall below the detection
limits of such assays.

To provide further insight into the utility of these markers, we
performed binary logistic regression to produce predictive models
that were then analysed by ROC curves (Figure 4B). This analysis
showed that KLK3 had an AUC of 0.679 significantly different
from the null hypothesis of AUC¼ 0.5 (P¼ 0.006). Both SAA-1
and TSR1 had AUC values of 0.602 and 0.613, respectively.

Alone these markers were not considered significantly different
from the null hypotheses. However, using TSR1 in combination
with KLK3 gave an AUC value of 0.727, improving on the
predictability of KLK3 alone that is significantly different from the
null hypothesis (Po0.0005).

DISCUSSION

The iTRAQ 3D-LC-MS analysis of pooled serum samples yielded
many putative targets for validation. Of note, KLK3 (PSA) was
identified, and its abundance across the groups was in keeping with
current literature and clinical experience. High levels were
observed in late-stage PCa but fairly similar levels were found in
the control and benign disease groups, with a slight increase in the
early-stage PCa group (not significant). There are few other
MS studies that have managed to identify KLK3 in serum samples
from PCa patients, probably because of the use of immunodeple-
tion strategies used in those studies (Adam et al, 2002; Rehman
et al, 2012). To overcome this, studies have been utilising
immunoprecipitation (IP) MS to ‘extract’ PSA for MS analysis.
Utilising stable isotope labelling-multiple reaction monitoring
MS (SIL/MRM-MS), it has been possible for one group to
simultaneously measure multiple biomarkers including various
PSA forms (Chen et al, 2015).

We chose several potential biomarkers identified by iTRAQ
3D-LC-MS analysis for further analysis in an attempt to find
biomarkers that together might allow the improved prediction of

Table 1. Summary data of the seven proteins identified via mass spectrometry that were shortlisted for ELISA validation

Protein log2 benign/control log2 T1–T2/control log2 T3–T4/control

Delta-sarcoglycan 5.329 5.457 5.643 5.837 1.159 1.385 0.232 0.377 �0.021 0.104 0.699 0.846

Pre-rRNA-processing protein
TSR1 homologue

0.334 0.452 0 0.078 � 0.058 0.014 � 1.11 � 1.012 4.555 4.676 4.642 4.77

Kalikrein 3 0.498 1.174 0.261 0.988 0.633 1.32 0.596 1.295 3.204 3.892 3.161 3.818

von Willebrand factor A domain-
containing protein 5B2

�0.312 � 0.026 � 0.682 � 0.435 � 0.253 � 0.012 � 1.836 � 1.569 3.991 4.28 4.096 4.393

Serum amyloid A protein 0.471 0.288 0.181 0.209 0.379 0.449 0.325 0.327 2.046 1.992 2.309 1.965

Proto-oncogene tyrosine-
protein kinase Src

�0.633 � 0.879 � 0.151 � 0.437 1.118 0.827 1.366 1.1 1.506 1.263 2.044 1.809

Cystatin-C 1.476 1.749 1.461 1.785 0.172 0.456 0.097 0.394 �0.345 �0.06 �0.405 �0.15

Abbreviation: ELISA¼ enzyme-linked immunosorbent assay. These were selected based on their ability to differentiate one patient group from another (for example, delta-sarcoglycan (SGCd)
showed marked overexpression in benign prostatic hyperplasia (BPH) compared with control, but T1–T2 and T3–T4 were similar to the control) or their stepwise increase over the course of the
disease (serum amyloid A (SAA)) and the availability of commercial reagents.

Table 2. Literature-informatic analysis for PCa marker proteins

Marker Total publications PCa publications

PCa publications
enrichment

P-value
PCa biomarker

publications
PCa biomarker publications

enrichment P-value
SGCD 323 3 0.60 2 0.90

TSR1 112 2 0.29 0 1.00

VWA5B2 3 0 1.00 0 1.00

CST3 4431 60 5.85E� 3 50 1.00

SRC 7805 618 5.28E� 342 305 1.19E�1201

SAA1 3767 58 4.21E� 4 48 1.00

KLK3 44 017 19 295 1.75E�25 391 4908 1.92E�3105

Abbreviation: PCa¼prostate cancer. Publications were assigned to each protein if they were mentioned in the text. Prostate cancer (PCa) publications are those marker publications filtered
that also mention PCa-related terms. The PCa biomarker publications are those PCa publications further filtered for mentions of biomarker-related terms. Enrichment P-values were calculated
using Fisher’s exact test (see Materials and Methods).
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PCa stage. These ELISAs were used to investigate the abundance of
these proteins in individual patient samples. Ideally, the panel
would include proteins that showed different patterns of
abundance between groups to allow additional predictability. The
panel thus included proteins that should increase abundance in a
single patient group as well as proteins that showed progressive
changes across patient groups. Availability of ELISAs for the early-
stage PCa markers was limited. An ELISA kit for USP24 was
obtained, but was unable to detect the marker in serum (data not
shown) and hence this was excluded from further analysis. It was
noted that the Cancer Genome Atlas Research Network (2015)
identified an amplification of a region that includes XPO4
(13q12.11), one of the markers identified in our MS discovery
phase as a putative marker of early-stage disease.

Both SAA and KLK3 were found to be significantly differ-
entiated by Kruskal–Wallis analysis of the ELISA data with very
significant agreement between the two diagnostic methods. It is
unsurprising that there was a lack of further validated markers as
the stability of serum proteins can be poor (Gislefoss et al, 2009).
For example, studies of KLK3 (PSA) stability advise caution in any
analyses done on serum KLK3 after 2 years of storage at � 70 1C
(Woodrum and York, 1998). As MS, by its very nature, studies
proteins by looking at peptide signatures of proteins, it is less
hindered by this degradation than ELISA for whole proteins
would be.

Our literature analysis was useful in providing an improved
rigorous understanding of PCa with respect to each associated
marker. We found that although TSR1 has not been strongly
associated with PCa previously, it has been suggested to play a
putative role in the quality control of 18S rRNA precursor
production (Tafforeau et al, 2013). Taking this alongside the
importance of ribosome biogenesis in cancer (van Sluis and

McStay, 2014), it is perhaps unsurprising that a molecule
involved in this process has implicated in PCa. In addition, work
on tissue has shown TSR1 RNA expression in prostate tissue,
although its highest levels of expression are found in the testis
(Ardlie et al, 2015).

SRC is a non-receptor protein tyrosine kinase that has a number
of roles in cell signalling (Wheeler et al, 2009). These interactions
are thought to lead to several functions such as proliferation,
growth differentiation, motility, migration, angiogenesis and
survival. Hence, it has been implicated in several cancers including
PCa as it underpins many of the hallmarks of cancer as described
by Hanahan and Weinberg (2011). Previous studies utilising the
SRC inhibitor dasatinib in PCa cell lines suggests that SRC may be
a mediator of cell growth and migration (Nam et al, 2005). The
PCa clinical trials with dasatinib (SRC family kinase inhibitor)
have been promising, with a reduction in bone resorption in over
half of the patients with progressive metastatic prostate cancer
(Wheeler et al, 2009), where bone is the prime metastatic site for
PCa. Interestingly, the GTEx project database listed prostate as the
highest SRC RNA expressing tissue (Ardlie et al, 2015).

CST3 has been shown to be downregulated in PCa and is
thought to have a role in invasion through the MAPK/ERK and
androgen receptor pathways (Wegiel et al, 2009). A role for CST3
in neuroendocrine differentiation in PCa has also been suggested
(Jiborn et al, 2006). Here, CST3 was downregulated in non-
neuroendocrine tumour tissue and that this downregulation
correlated with increasing Gleason Grade. In PCa neuroendocrine
tumours (a highly aggressive subtype), however, the abundance
increased with Gleason grade (Jiborn et al, 2006). CST3 belongs to
a family of cysteine protease inhibitors that prevent proteolysis of,
for example, the extracellular matrix and basement membrane.
Downregulation of these inhibitors (and dysregulation of the
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proteolytic/anti-proteolytic homeostasis) are associated with
malignant progression and shorter mean patient survival (Jiborn
et al, 2006). Imbalance in these molecules can occur in response to
inflammatory diseases that could potentially account for its
upregulation in the benign disease group that includes conditions
such as prostatitis. CST3 RNA seems to be expressed fairly
ubiquitously with higher expression seen in the brain, although
expression has been observed in prostate tissue (Ardlie et al, 2015),
and particularly in PCa (Uhlén et al, 2015).

SAA was identified from MS as being more abundant in late-
stage disease that was supported by ELISA data. Le et al (2005)
identified SAA as a marker in PCa patients showing increased
levels in serum to be indicative of the presence of bone metastasis.
SAA is an acute-phase protein associated with inflammation, and
hence it is unlikely to be PCa specific but, in conjunction with
other PCa biomarkers, could be a useful addition to a panel of
(companion) biomarkers.

A limitation to the iTRAQ 3D LC-MS analysis used for our
study was the use of pooled specimens for each clinical cohort.
Essential to the pooled clinical cohorts was the implementation of
our well-defined inclusion and exclusion criteria that minimised
confounding factors. Ideally, the proteomic analysis of individual,
non-pooled specimens would have allowed the assessment of
heterogeneity between individual samples. The lack of validation of

some of our candidate markers could in part be related to the
heterogeneity of PCa itself and the variability between the two
cohorts. Prostate cancer is renowned for its clinical heterogeneity
in terms of treatment response, speed of growth and overall
prognosis, but it is also an incredibly complex disease at the
molecular level (Boyd et al, 2012). This molecular heterogeneity
may account for the difficulty of identifying commonalities with
pooled samples, and also for the low validation rate seen between
our discovery and validation cohorts that were taken from distinct
geographical UK locations.

The inability of ELISA to validate some of the MS identified
biomarkers may also be attributed to fundamental differences between
the LC-MS approach and the ELISA technique. ELISAs rely upon an
intact interaction between an epitope and antigen and are thus
dependent on both the integrity of analyte and quality of the antibody.
Conversely, MS is not limited by these factors and, in fact, is reliant
upon the detection and identification of peptide fragments and hence
is less hampered by epitope degradation. The gold standard in
verifying the absolute quantitative accuracy of our proposed
biomarkers is the use of targeted LC-MS approaches using such
tandem mass spectrometry techniques as multiple reaction monitoring
(MRM), parallel reaction monitoring (PRM) or selected reaction
monitoring (SRM). To increase their sensitivity the LC-MS technique
can be combined with affinity capture and purification of target
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proteins or their surrogate peptides, as reported in the literature
(Boja and Rodriguez, 2012) However, such LC-MS-based approaches
require considerable method development and were beyond the scope
of this proof-of-concept biomarker discovery study. We chose the
ELISA assay as a low-cost alternative that is in wide commercial use
for protein measurements.

Despite difficulties with validating potential biomarkers and a
relatively small sample size, we identified SAA and TSR1 as
biomarkers that could potentially add to the predictability of KLK3
and successfully validated these via ELISA. When analysed using
ROC curves, TSR1 in particular was able to add to the
predictability of KLK3, increasing the AUC from 0.679 to 0.737.
SAA did little to increase the ability of KLK3 to distinguish
between cancer and noncancer, but pairwise Mann–Whitney U
analysis suggested it may have a role in distinguishing different
stages of cancer and should not be dismissed as a potentially useful
biomarker in a future biomarker panel.

In conclusion, as a proof-of-principle study, our serum
proteomics discovery pipeline allows the discovery of novel
serological markers of PCa progression of potential clinical utility.
Our analysis has identified two potential biomarkers, SAA and
TSR1, that could be combined with KLK3 to improve its predictive
capability of disease progression. These proposed biomarkers
warrant validation across hundreds of samples in a blinded
randomised control setting. Such a validation process must also
include well-curated serum specimens derived from diverse
populations with well-defined patient information (BMI, family
history, pharmacological status, etc.). The validation of the
proposed biomarker panel constitutes a future perspective and is
beyond the scope of this proof-of-concept study.
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