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Abstract
Background/Objectives Bio-electrical impedance (BI) analysis is a simple body composition method ideal for children.
However, its utility in sick or malnourished children is complicated by variability in hydration. BI vector analysis (BIVA)
potentially resolves this, using a theoretical model that differentiates hydration from cell mass. We tested this model against
reference methods in healthy children varying widely in age and nutritional status.
Subjects/Methods We compiled body composition data from 291 children and adolescents (50% male) aged 4–20 years of
European ancestry. Measurements included anthropometry, BIVA outcomes (height-adjusted resistance (R/H) and reactance
(Xc/H); phase angle (PA)), and fat-free mass (FFM), fat mass (FM) and FFM-hydration (HFFM) by the criterion 4-component
model. All outcomes were converted to age- and sex-standardised standard deviation scores (SDS). Graphic analysis and
regression analysis were used to evaluate the BIVA model.
Results R/H and Xc/H declined with age in curvilinear manner, whereas PA increased linearly with age. R/H-SDS and Xc-
SDS were negatively correlated with FFM-SDS, HFFM-SDS. and FM-SDS. PA was positively correlated with FFM-SDS but
unrelated to HFFM-SDS and FM-SDS.
Conclusions While previous studies of adults with major fluid perturbations support the BIVA model, it is less successful in
predicting variability in FFM in healthy children and adolescents. BIVA outcomes varied as predicted by the model with
HFFM, but not as predicted with FFM. Variability in adiposity also explains some of the variability in BIVA traits. Further
work is needed to develop a theoretical BIVA model for application in paediatric patients without major fluid disturbances.

Introduction

There is increasing interest in measuring body composition
in children suffering from malnutrition or disease. Such
measurements could potentially aid in diagnosis, guide
clinical management, and help determine nutritional and
fluid requirements [1]. Obtaining such data during early life
could also help understand the long-term consequences of

childhood disease. However, obtaining accurate body
composition values is challenging in these groups, as the
theoretical assumptions on which measurement techniques
rely tend to be invalid [2]. Moreover, sick or malnourished
children are unable to cope with demanding measurement
protocols, and require simpler techniques.

Bio-electrical impedance analysis (BIA) is a simple
bedside technique presenting few practical difficulties in sick
or malnourished children, thus overcoming the second of
these limitations. However, the conventional approach—
predicting body water or lean mass from (height2/impe-
dance)—is often inappropriate, due to the likelihood of
altered body water distribution in many such children [3].
For example, some disease states are associated with dehy-
dration, whereas malnutrition and other conditions such as
renal disease or sepsis can also present with oedema.

An alternative BIA approach comprises vector analysis
(BIVA) as developed by Piccoli [4]. Impedance (Z) is divided
into its constituent components, resistance (R) and reactance
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(Xc), each adjusted for height (H). These components are
plotted on ‘R/H-Xc/H’ graphs, in which data from a popu-
lation are expected to form an ellipse, where one diagonal axis
represents variability in hydration, and the orthogonal axis
variability in body cell mass, a proxy for lean body mass [5].
Individual data points can be characterised by a vector, whose
angle relative to the x-axis (calculated as [(Xc/R)×180°/π)] is
termed ‘phase angle’ (PA) [4].

Piccoli’s approach is essentially qualitative rather than
quantitative, with data in abstract ohms/cm units (R/H, Xc/
H) or degrees (PA), but is proposed to indicate the level of
both hydration and cell mass [5]. PA has been proposed to
represent simultaneously a marker of cell mass and cellular
health, hence providing a valuable index of clinical status,
and numerous studies broadly support this hypothesis [6–9].
Higher values are proposed to reflect higher cell mass, cell
membrane integrity and better cell function [10]. In one
large study of adults, fat-free mass (FFM) was found to be
the strongest predictor of PA [11]. Furthermore, major
longitudinal changes in hydration correlate with changes in
the ratio between R/H and X/cH, as for example in adults
undergoing haemodialyses [12].

The position of the ellipse on the R/H-XcH graph varies
in association with a population’s age, sex and range of
body mass index (BMI), a broad marker of nutritional status
[13], as well as ethnicity [14]. However there are some
apparent inconsistencies between these findings and BIVA
theory. As children grow they ‘mature’ chemically, one
marker being a decline in the water content of FFM [15,
16]. On this basis, children would be expected to move
upwards and to the right on the graph with increasing age.
Contrary to this, however, studies show that R/H and Xc/H
values decline with age [13, 17]. This results in a contrast
between (a) data from populations demonstrating extreme
variability in hydration [12, 18], which broadly support
Piccoli’s model, and (b) data from normal healthy popula-
tions where variability in hydration arises through matura-
tion [17], which appear not to support the model.

To date, however, no BIVA study in children has
objectively measured the two parameters purportedly
indexed by Piccoli's model (hydration and cell mass), and
furthermore no analysis has attempted to control the raw
data for age before applying the model. We collected BIVA
and body composition data in a large sample of children and
adolescents across a wide range of nutritional status. We
generated age- and sex-adjusted standard deviation scores
(SDS) for all variables, to remove these sources of varia-
bility, and then investigated the validity of Piccoli’s model
in predicting variability in FFM and FFM hydration (HFFM),
to test the conventional interpretation of BIVA data in
healthy children.

Methods

We conducted secondary analysis of data from two prior
studies conducted by our group, both approved by the
Ethical Committee of UCL Institute of Child Health and
Great Ormond Street Hospital. Informed consent was
obtained from all participants and/or their parents as
appropriate. For this analysis, we included children of
European ancestry only, as ethnicity has been associated
with variability in fat and lean distribution [19–21], and the
loci of BIVA ellipses [14].

Most individuals were from a study of healthy children/
adolescents aged 4–20 years, recruited to establish body
composition reference charts [22]. Inclusion criteria were
the absence of any disease that might affect growth and
development. No BMI exclusion criteria were applied,
hence any child not recruited from an obesity weight-loss
clinic was eligible. In addition, baseline data from obese
children aged 7 to 14 years participating in weight loss
intervention studies were used [23, 24].

Weight and height were measured in duplicate using
electronic scales and a wall-mounted stadiometer. Body
mass index (BMI) was calculated, and converted to SDS
using UK reference data [25].

FFM, fat mass (FM) and HFFM were measured using the
4-component model [26, 27]. Total body water (TBW) was
measured using deuterium, assuming overestimation of
TBW from proton exchange of 1.044 [28]. Total bone
mineral content was measured by DXA, and body volume
in duplicate by air-displacement plethysmography, with
lung volumes predicted from child-specific equations [29].
HFFM was calculated as TBW/FFM.

Single-frequency BIA was conducted at 50 kHz
(Quadscan 4000 instrumentation; Bodystat, UK). This fre-
quency is proposed to maximise signal-to-noise ratio and
minimise frequency-dependent errors and variability of
electric flow paths [30], though the optimal frequency also
varies between individuals and by age [31]. Participants lay
supine on a non-conducting couch. Disposable electrodes
were attached in standard tetrapolar manner to left hand and
foot. R, Xc and PA were recorded in duplicate, and the
average used in analyses. R and Xc were standardised for
height (H) and expressed as R/H and Xc/H in ohm (Ω)/m4.
Prior to analysis, we excluded individuals with PA>8.0
(values in healthy people range between 5° and 7°, hence
allowing for measurement error, values above 8° were
considered implausible; n= 14 excluded) [10], as well as
those with poor repeatability (exclusion criteria were
duplicates >0.5 for PA, and ≥6.0 for R/H and Xc/H; n= 25
excluded).
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Statistics

FFM-SDS was divided into five categories: <−1.0 (n=
41); −1.0 to 0 (n= 80); 0 to 0.75 (n= 82); 0.75 to 1.50 (n
= 47); and >1.50 (n= 41). HFFM-SDS was likewise divided
into five categories: <−1.0 (n= 42); −1.0 to −0.5 (n=
55); −0.5 to 0 (n= 60); 0 to 1 (n= 90); and >1.0 (n= 44).
These cut-offs were selected to produce groups with mini-
mum sample size >40, whilst also distributed as evenly as
possible across the range of variability of the trait.

Confidence ellipses were drawn using Piccoli’s software
[32], and groups were compared using the Excel function
for Hotelling’s t-test.

To control for age, all BIVA outcomes were converted to
SDS using Cole’s LMS method (LMS Chart Maker, Med-
ical Research Council, UK), with the two sexes treated
separately [33]. This method was previously used to gen-
erate SDS for FFM, FM and hydration [22]. The approach
provides three outputs: (a) a smoothed median (M or mu)
curve which represents how the outcome varies in relation
to age; (b) the coefficient of variation (S or sigma), which
models the scatter of values around the mean and adjusts for
any non-uniform dispersion; and (c) the skewness (L or
lambda) which is addressed using age-specific Box-Cox
transformation to achieve a normal distribution. Goodness-
of-fit was assessed with the Bayesian Information Criterion,
adding an extra unit of complexity to the model only if it
reduced the deviance by more than Ln(N) units, where N is
the sample size.

All SDS outputs were tested for normality, and were
normally distributed. Correlation and multiple regression
analysis were used to explore associations of BIVA-SDS
with body composition SDS, and also BMI-SDS for com-
parison. BIVA-SDS were compared across categories of
FFM-SDS and HFFM-SDS. Tolerance elipses were obtained
for FFM groups and hydration groups using the software of
Piccoli, and compared using Hotelling’s t-test.

Results

A total of 291 individuals provided data for analysis, 135
boys and 156 girls. Average age was 12.0 (SD 3.7) years,
range 4.2 to 19.9 years. There were no significant differ-
ences in age or sex ratio across the FFM or HFFM groups.

Figure 1 illustrates BIVA ‘growth charts’ for each sex. R/
H and Xc/H declined with age in both sexes in curvilinear
manner, but the shape of the centiles differed by sex. PA
increased in linear manner with age in each sex. The
reference data for calculating BIVA SDS are available to
download (Supplementary online Datafile 1).

Table 1 shows correlations between BIVA outcomes and
body composition measurements, all adjusted for age and

sex. PA-SDS was inversely associated R/H-SDS, positively
associated with Xc/H-SDS and FFM-SDS, and not asso-
ciated with FM-SDS or HFFM-SDS. R/H-SDS was posi-
tively correlated with Xc/H-SDS, and inversely correlated
with FFM-SDS, FM-SDS and HFFM-SDS. Xc/H-SDS was
inversely associated with FFM-SDS, FM-SDS and HFFM-
SDS. The magnitude of the correlation of BMI-SDS with
BIVA outcomes resembled that for FFM-SDS rather than
FM-SDS for PA-SDS, but resembled that for FM-SDS
rather than FFM-SDS for Xc/H-SDS, and was intermediate
between the FFM-SDS and FM-SDS correlations for R/H-
SDS. The correlations were very similar when stratified by
narrow age ranges (Supplementary online Table 1).

Figure 2 presents plots of the three BIVA SDS against
groups of FFM-SDS and HFFM-SDS. R/H-SDS declined
strongly with increasing FFM, with every group-contrast
significant (p<0.05) by ANOVA with Bonferroni correc-
tion. Likewise, Xc/H-SDS declined with increasing FFM,
with all contrasts significant except that between the two
lowest FFM groups. For PA-SDS, the low-normal group
was significantly different from all other groups, but no
other contrasts were significant. R/H-SDS was similar
across the first part of the hydration range and then fell, with
the highest HFFM group having values significantly different
to all other groups, and the fourth-highest group having
values different from the two lowest groups. A similar
pattern was evident for Xc/H-SDS. PA-SDS showed no
significant difference between any of the HFFM groups.

Figure 3 illustrates means and their 95% confidence
ellipses for the 5 FFM-SDS and 5 HFFM-SDS groups. For
FFM groups, differences were found by Hotelling’s t-test
between Group 1 and Groups 3–5, while groups 2 and 3
each differed from both group 4 and 5. For hydration
groups, differences were found between Group 5 and
Groups 1 to 3, and between Groups 2 and 4.

For FFM, the five ellipses were broadly distributed
within a single plane, with the exception of the lowest FFM
group which appeared displaced to the right. Using linear
regression, R/H was a highly significant predictor of Xc/H,
explaining 75.5% of the variance. However, when dummy
variables for different FFM-SDS groups were entered, none
was significant, nor was there any significant interaction
between FFM-SDS group and R/H. Thus, there was no
evidence that the overall relationship between Xc/H and R/
H varied by level of FFM. For hydration, the 5 ellipses lay
in the same plane on the graph. When dummy variables for
different HFFM-SDS groups were entered into the regression
model, only Group 5 was significant, and it also showed an
interaction with R/H in predicting Xc/H. Thus, individuals
with high hydration had significantly lower Xc/H than the
other groups for their R/H values.

Table 2 provides multiple regression models for the
prediction of FFM-SDS and HFFM-SDS from BIVA
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properties (Table 2). When all three BIVA terms were
included, R/H-SDS was the only significant predictor of
FFM-SDS, and the model explained 78.8% of the variance.

In contrast, both R/H-SDS and PA-SDS were significant
predictors of HFFM-SDS, but explained only 13.5% of the
variance.

Table 1 Correlations between
body composition and BIVA
SDS

RH-SDS XcH-SDS BMI-SDS FFM-SDS FM-SDS Hydration-SDS

PA-SDS −0.32 0.40 0.20 0.29 0.01 −0.07

R/H-SDS 0.73 −0.72 −0.89 −0.58 −0.32

Xc/H-SDS −0.55 −0.65 −0.54 −0.35

BMI-SDS 0.74 0.92 0.45

FFM-SDS −0.61 0.31

FM-SDS 0.52

All correlations in bold significant p<0.0001

PA – phase angle, R/H – height-adjusted resistance, Xc/H – height-adjusted reactance

BMI – body mass index, FFM – Fat-free mass, FM – Fat mass, HFFM – Hydration, SDS – standard deviation
score

Fig. 1 Centile charts for BIVA
outputs. Left hand column
males, right hand column
females
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Fig. 2 Associations of BIVA-SDS with categories of fat-free mass and hydration. Left hand column males, right hand column females. (FFM – fat-
free mass; HFFM – hydration; SDS – standard deviation score). Group contrasts tested by ANOVA with Bonferroni correction (see main text)
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Finally, explorative regression analysis was conducted
under the reverse logic, to test the extent to which varia-
bility in body composition parameters (FFM-SDS, FM-SDS
and HFFM-SDS) could explain variability in BIVA para-
meters (Table 3). R/H-SDS was negatively associated with
FFM-SDS, while there were no independent associations
with FM-SDS or HFFM-SDS. This model was therefore
identical to the equivalent model in Table 2. In contrast, Xc/
H-SDS was inversely associated with each FFM-SDS, FM-
SDS and HFFM-SDS, while PA-SDS was positively asso-
ciated with FFM-SDS, negatively associated with FM-SDS,
but not associated with HFFM-SDS. The results for Xc/H-
SDS and R/H-SDS indicate that body fat content also pre-
dicts variability in some BIVA outcomes.

Discussion

Our analysis offers the first opportunity to test whether the
assumptions of the Xc/R plots, already supported in studies
of extreme changes in body composition and fluid dynamics
[12], are further consistent with broader variability in body
composition and hydration evident in the general popula-
tion. We studied children embracing a wide range of age
and nutritional status, in order to establish the associations
of these parameters with BIVA outcomes, and calculated

Fig. 3 Confidence ellipses by
category of a fat-free mass and b
Hydration. (FFM – fat-free
mass; HFFM – hydration). Group
contrasts tested by Hotelling’s t-
test (see main text)

Table 2 Multiple regression models for the prediction of FFM-SDS
and HFFM –SDS from BIVA SDS

Outcome Predictors B-coefficient Standard
error

p-value r2

FFM-SDS Constant 0.013 0.032 0.6 0.787

R/H-SDS −0.775 0.192 <0.0001

Xc/H-SDS −0.132 0.184 0.4

PA-SDS 0.117 0.163 0.4

HFFM-SDS Constant −0.086 0.056 0.12 0.135

R/H-SDS −0.840 0.332 0.012

Xc/H-SDS 0.488 0.318 0.12

PA-SDS −0.619 0.281 0.028

PA – phase angle, R/H – height-adjusted resistance, Xc/H – height-
adjusted reactance

FFM – Fat-free mass, HFFM – Hydration, SDS – standard deviation
score

Table 3 Multiple regression models for the prediction of BIVA SDS
from body composition SDS

Outcome Predictors B-coefficient Standard
error

p-value r2

RH SDS Constant −0.035 0.033 0.29 0.790

FFM-SDS −0.829 0.033 <0.0001

FM-SDS −0.038 0.033 0.26

Hydration-
SDS

−0.041 0.036 0.25

XcH SDS Constant −0.051 0.057 0.37 0.454

FFM-SDS −0.529 0.057 <0.0001

FM-SDS −0.175 0.058 0.003

Hydration-
SDS

−0.118 0.062 0.059

PA SDS Constant −0.027 0.059 0.65 0.127

FFM-SDS 0.388 0.059 <0.0001

FM-SDS −0.165 0.060 0.006

Hydration-
SDS

−0.103 0.064 0.11

PA – phase angle, R/H – height-adjusted resistance, Xc/H – height-
adjusted reactance

FFM – Fat-free mass, FM – Fat mass, SDS – standard deviation score

J. C. K. Wells et al.



SDS for each sex separately. We used FFM as an index of
cell mass, and measured hydration directly.

We detected correlations of BIVA outcomes with both
body composition and hydration, but not in the way pre-
dicted by classic BIVA theory [12]. Whereas the theore-
tical model proposes that BIVA plots are characterised by
orthogonal axes indexing variability in hydration and cell
mass [5], we found that both sources of variability plotted
in the same plane. Increasing R/H and Xc/H were both
associated with lower levels of hydration and lower levels
of FFM. The theoretical BIVA model therefore behaved
as expected for hydration, but not for FFM. However,
BIVA parameters explained substantially more variability
in FFM than in hydration, possibly because while those
overweight tend to have elevated hydration, we may have
lacked representation of the lower end of the hydration
range.

An exploratory finding was that variability in fatness
explained some of the variability in BIVA parameters.
Although there is an inherent correlation between the level
of FFM and the level of adiposity within children [27],
multiple regression analyses indicated an independent
contribution of fatness to the variability of BIVA para-
meters. Whether the magnitude of the correlation of BMI-
SDS with BIVA SDS resembled that for FFM-SDS, or that
for FM-SDS, varied by BIVA outcome, suggesting that
direct measurements of body composition are needed to
improve understanding of BIVA variability. These findings
may stimulate further development of BIVA theory for
paediatric application.

Our results contrast with previous work on individuals
with larger degrees of body composition variability or
severe fluid perturbations, in which changes in BIVA
parameters are associated with variability in both hydration
or cell mass [12, 18]. This suggest that there are different
ways in which body composition properties relate to BIVA
parameters, and that the normal range of variability does not
show the same associations as more marked perturbations.
It was previously suggested that variability in BIVA para-
meters in children might be better explained by taking into
account body shape variability [34]. This was recently
supported for adults [35], improving the prediction of tissue
masses, hence this represents an important avenue for future
research on BIVA in children and might resolve the poor fit
between model and data we describe here.

In adults, substantial variability in PA was explained by
FFM [11]. However, removing the contributions of age and
sex, we found that only a small amount of variability in PA
was explained by FFM in children and adolescents, with fat
mass also contributing, but hydration not significant. Our
definition of FFM incorporates any water content of adipose
tissue, hence associations of BIVA parameters with fat mass
are not due to variability in adipose tissue hydration, though

BIA models can address this [36]. PA has proven very
valuable in predicting clinical prognosis across diverse
diseases [10], but it is complex to interpret as it has been
indirectly associated with both tissue magnitudes and
properties such as cell membrane status, in contrast to R and
Xc which relate directly to water compartments, and the
capacitive opposition of cell membranes to current flow,
respectively. Further work is therefore necessary to improve
understanding of exactly what PA indexes at the physio-
logical level in younger age groups, and might also consider
whether the optimal frequency for collecting data differs
from 50 kHz in children.

The strengths of our analysis included a large sample
size, in which we were able to adjust BIVA parameters for
age and sex by making SDS. We were able to pursue the
same approach for our body composition predictors,
allowing us to conduct all analyses independent of age and
sex. This is important, because numerous previous studies
have demonstrated that BIVA parameters vary with both
age and sex.

Another strength was the availability of objective data on
both hydration and FFM, a useful proxy for cell mass.
Although both outcomes derived from the same 4-
component model, and hence might be affected by com-
mon measurement error, we have previously demonstrated
that FFM-SDS by the 4-component model correlates very
strongly with independent measurements by DXA. An
independent evaluation of hydration is more difficult, hence
the correlation with BIVA parameters in this study provides
new supporting evidence although only a small proportion
of the hydration variance was explained by them.

A limitation of our analysis is that we did not have direct
data on cell mass, nevertheless FFM should act as a valid
proxy. Another limitation is that we restricted our analysis
to individuals of European ancestry, hence our findings
might not apply to other populations. However, although
both body composition [19–21] and BIVA ellipses vary
with ethnicity [14], we are unaware of any reason why
associations between these traits should vary substantially
by ethnicity. Finally, although the sample size was rela-
tively high, we had relatively few individuals characterised
by very low FFM, hence such individuals merit further
investigation.

In summary, our study failed to link BIVA parameters
with body composition outcomes as expected on the basis
of the theoretical model of Piccoli. Normal variability in
hydration and FFM does not fit the model in the same way
as larger levels of variability, associated with extremes of
body composition or illness. Our novel approach, generat-
ing SDS for BIVA outcomes, may help apply the BIVA
approach in children and adolescents in future, as it removes
the need for age-specific reference data and provides a
valuable approach for ranking individuals.

Bio-electrical impedance vector analysis: testing Piccoli’s model against objective body. . .
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